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Abstract

A climate state close to a tipping point will have a degenerate linear response to perturbations,

which can be associated with extreme values of the equilibrium climate sensitivity (ECS).

In this paper we contrast linearized (‘instantaneous’) with fully nonlinear geometric (‘two-

point’) notions of ECS, in both presence and absence of tipping points. For a stochastic energy

balance model of the global mean surface temperature with two stable regimes, we confirm

that tipping events cause the appearance of extremes in both notions of ECS. Moreover,

multiple regimes with different mean sensitivities are visible in the two-point ECS. We

confirm some of our findings in a physics-based multi-box model of the climate system.

Keywords Climate sensitivity · Tipping point · Energy balance model · Stochastic climate

model

1 Introduction

The equilibrium climate sensitivity (ECS) is widely used as a measure for expected future

global warming. Following Charney’s definition [7], the ECS is the increase in global mean

surface temperature (GMST) per radiative forcing change after the fast-acting feedback pro-

cesses in the earth system reach equilibrium. Fast-acting means here that those processes are

faster than the time-horizon for global mean temperature evolution that interests us, typically

taken to be 100 years [32].

The value of ECS remains not very well constrained, as the expected warming per dou-

bling of atmospheric CO2 still contains a considerable uncertainty of 1.5–4.5 ◦C [22]. In fact,

this range has not changed much since first ECS estimates based on energy balance argu-
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ments, despite enormous developments in climate modelling, and improved observational

methods [23]. In particular, large temperature changes and dangerous climate change as a

consequence of increased atmospheric CO2 cannot be excluded. For example, climate obser-

vations from the instrumental period have not narrowed down the range of expected climate

change mainly because of uncertainties in quantification of the forcing [33]. Recently there

have been concerted attempts to constrain ECS using emergent constraints in climate models

[9].

Some sources of uncertainty for ECS lie in the classical measurement or model uncertainty,

although in particular for observations the quantification of the applied forcing generally

contains the largest uncertainties. Furthermore, by going back in time further than the instru-

mental period (e.g. last millennium, glacial cycles or even millions of years of palaeoclimate

data) the uncertainty in both the forcing and the global mean temperature response becomes

significant [23]. There has been a debate as to the cause of the uncertainty and extremes of

the ECS distribution, in particular the long tail towards high sensitivity values. On the one

hand, [31] suggest it is an inevitable consequence of nonlinear transformation of normally

distributed feedbacks that appear in the denominator when calculating ECS. On the other

hand, [41] suggest they are a sign of ‘tipping points’ owing to nonlinearities in the system—

this has generated a lively debate. In this paper we highlight (a) the notion of ECS can

usefully be generalised to a truly nonlinear geometric notion: the two-point sensitivity and

(b) the distribution of ECS values is a valuable tool for characterising both state-dependent

(feedback) dynamics and tipping of the climate system.

The climate system exhibits both internal and forced variability on many timescales.

The consequence is that any ‘equilibrium’ is only relative to fixing part of the feedback

processes that are internal to the climate system, in particular the ‘slower’ part. This requires

an assumption that a time scale separation (into fast and slow processes) exists and the time

scale of interest sits between fast and slow. For climate model simulations and observations

of the last century there might be a time horizon where this is a reasonable assumption

[33], but as we include palaeoclimate data and model simulations into the estimate of ECS

this assumption needs to be carefully evaluated. In particular, methods to estimate ECS

from palaeoclimate data or models differ from those of (short) climate model simulations;

the latter generally derive ECS from the decay of the energy imbalance at the top of the

atmosphere induced by a instantaneous doubling or quadrupling of CO2 [18]; palaeoclimate

reconstructions instead make the assumption that the reconstructed climate is in (energetic,

short time scale) equilibrium and compare different of these ‘equilibria’ to each other for

estimating ECS. Without compensating for slow feedback processes, palaeoclimate records

give the so-called earth system sensitivity (ESS) that includes the effect of slow processes

and boundary conditions (e.g. geography, vegetation and land ice) [29]. If estimates of these

slow processes are available then ECS can be estimated from the ESS under an assumption

of time scale separation [32,38].

Note that the ECS is usually thought of as a linearized response of the GMST to pertur-

bations in the radiative balance of the earth. Next to incoming (short-wave) and outgoing

(long-wave) radiation, feedback processes in the climate system play an important role in

determining the ECS. In their sum these feedback processes tend to enhance ECS (net pos-

itive feedback) and associated time scales vary from fast to very slow. Examples of fast

feedback processes include cloud feedbacks, water vapour feedback and sea-ice processes.

The strength of each of these feedback processes depends on the background (long-term

mean) climate state [39] and it is therefore not surprising that the sum of the fast feedback

processes varies over time in particular when considering climate states far back in time and

under very different boundary conditions. For example, from palaeoclimate records together
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with ice sheet modelling, it has been found that ECS varies considerably between glacial and

interglacial states [15,24,25]. Both present-day and Palaeogene climate model simulations

suggest state-dependence of ECS due to feedback processes [6,30]. For example, Transient

Climate Response (TCR) considers the deep ocean warming as a slow process.

Abrupt climate shifts have occurred in the past climate system and therefore seem likely

to occur in the future for a variety of reasons [27,35]. In the present climate system, potential

tipping elements have been identified some of which may have a considerable impact on future

values of GMST [14,27]. Even those tipping elements that have little affect on the GMST

may cause significant regional damage and/or contribute to global mean climate change

by triggering cascades of transitions involving other tipping elements [11]. Across such an

abrupt transition there is a breakdown of the assumption of a linear response to perturbations,

suggesting that the ECS does not adequately represent the temperature response to radiative

perturbations [4,40]. In practice, when deriving ECS from palaeoclimate time series, which

include abrupt transitions, these shifts may lead to extreme values of ECS.

In this paper we show that more general notions of ECS can be useful in understanding the

response of a climate state to changes in radiative forcing—in addition to an ‘instantaneous’

linearised notion of ECS we explore ‘incremental’ and ‘two-point’ climate sensitivities that

are distributions related to dynamic properties of the climate system: they characterise the

geometry of the dynamics and are not simply estimators of a ‘mean ECS’. In fact the distri-

butions of sensitivities reflect the intrinsic uncertainty due to climate system dynamics. The

paper is organized as follows: Sect. 2 introduces these notions of ECS and relates them to

the underlying climate dynamics. We illustrate these concepts using a global energy balance

model in Sect. 3. In particular, we relate properties of extremes of the ECS to the presence

of tipping points and multistability. Section 4 finishes with a discussion of conclusions and

some challenges for the future. Appendix extends results of [38] and examines extremes of

this sensitivity associated with tipping points in a more realistic physics-based multi-box

model of the glacial cycles by Gildor and Tziperman [17].

2 Sensitivities and the Climate Attractor

In order to understand variability, abrupt transitions and response to perturbations we con-

sider the climate system as a high-dimensional multiscale complex dynamical system whose

evolving trajectories form a climate attractor. The ECS can be defined on this attractor and

regimes or states may be identified where a linear approximation of the response may be

reasonable. Tipping points visible in the GMST will show up as large but occasional shifts

between different ‘climate regimes’ of the attractor, or indeed different attractors. We visu-

alise the attractor by projection onto climate observables relevant for determining ECS, i.e.

the GMST T and the radiative forcing R per unit area [38]. Consider the energy balance

model

cT

dT

dt
= Rforcing + Rslow + Rfast − ROLW, (1)

where the left hand side represents the rate of change of the global mean surface temperature

T (with specific heat capacity cT ) and on the right hand side Rforcing is the (external) radiative

forcing (including changes in CO2), Rslow (Rfast) is the radiative perturbation due to all slow

(fast) feedback processes within the climate system and ROLW is the outgoing longwave

radiation, respectively. Following the formalism of [32], the specific climate sensitivity is
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Sforcing,slow =
ΔT

ΔRforcing + ΔRslow
≈

dT

d(Rforcing + Rslow)
, (2)

which equals the Charney sensitivity S if ΔRslow is the sum of all slow feedback processes

contributing to the ECS (and under the assumption of time scale separation). In practise,

only some of the slow processes are accessible from palaeoclimate records (e.g. only land

ice), in which case the specific climate sensitivity is only an approximation of the Charney

sensitivity [32] (e.g. S[C O2,L I ] is the specific climate sensitivity considering only land ice

changes as slow feedback). This ECS gives a linear prediction for change in temperature:

T ′ = T + Sforcing,slow

(

ΔRforcing + ΔRslow

)

. (3)

For a specific energy balance model including regime shifts we can explicitly calculate ECS

for the different regimes, see Sect. 3. We note that several other authors have highlighted

the need to improved notions of ECS: this includes [8] who propose to use a measure-

based approach to understand climate sensitivity and [12] who consider conditional climate

sensitivities constrained by temperature, coupled with resilience measures for switching to

other regimes.

2.1 Observation of the Climate Attractor

We consider the climate system as a high dimensional dynamical system that evolves along

trajectories x(t) according to a smooth flow

x(t) = ϕt (xo) (4)

where x ∈ X represents the instantaneous state of the climate system in some high dimen-

sional state space and ϕt (x0) evolves the initial state x0 along by a time t . The global mean

temperature T : X → R and radiative forcing R : X → R are considered to be observables

of the underlying dynamical system on X . We assume that the dynamics of x are stationary,

i.e. that there is a natural probability measure M on X such that typical trajectories x(t) of

(4) satisfy

lim
t→∞

1

t

∫ t

s=0

p(x(s)) ds =

∫

x

p(x) d M(x). (5)

for typical x0 and any integrable observable p : X → R, i.e. the long-time average of p

can be computed using an ergodic hypothesis, by averaging over the measure M in phase

space. This implies that, for any open set A ⊂ X , the long-term average proportion of time

a typical trajectory spends in A is M(A). For small enough perturbations, linear response

theory suggests a linear change in mean observables: see for example [28].

In [38] it is supposed there is a stationary measure μ of points in the (ΔR[C O2,L I ], T )-

plane according to how often they are visited over asymptotically long times, i.e. for any

measurable subset A ⊂ R
2 we define

μ(A) := lim
t→∞

1

t

∫ t

s=0

χA(ΔR[C O2,L I ](s), T (s)) ds. (6)

for typical initial condition, where χA is the indicator function, χA(ΔR, T ) = 1 if (ΔR, T ) ∈

A and = 0 otherwise. Note that applying (5) with p(x) = χA(x) (where χA(x) = 1 if x ∈ A

and 0 otherwise) gives

μ(A) = M({x : (R[C O2,L I ](x), T (x)) ∈ A}). (7)
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In other words, the measure μ is simply a projection of a natural measure M on the ‘climate

attractor’ onto the two observables (R[C O2,L I ], T ). In general we will consider throughout

ΔR[C O2,L I ] = R[C O2,L I ] − R̃[C O2,L I ]

i.e. the change in radiative forcing relative to some fixed reference level R̃[C O2,L I ] usually

chosen as the level during the pre-industrial climate.

2.2 Incremental and Two-Point Sensitivities

In order to predict the temperature at some fixed future time-horizon Δt in response to a

change in radiative forcing, we consider the quotient (2) for fixed changes in time. In this

case we can view the distribution of what we call incremental sensitivities as the spread of

trajectories from the current estimated values of instantaneous (ΔR, T ), where from now

on we write the radiative forcing corrected for slow feedback as R. On the other hand we

can consider a time-independent choice of pairs of points on the climate attractor to obtain

two-point sensitivities.

Let us assume the current state at time t = 0 of the climate system is given by a measure

σ0 on some high dimensional phase space X (that projects onto a point A in Fig. 1). Note that

this will always be a measure rather than a point because of lack of knowledge of sub-grid

parametrized processes (e.g. [37]) but it will project onto the current values (ΔR0, T0) =

(ΔR(x), T (x)) for all x in the support of σ0. As time progresses, this state will spread to

give a measure at time t that is

σt (A) = σ(ϕ−t (A))

for any A ⊂ X (Fig. 1 shows a trajectory in black and others from the ensemble starting at

A in grey). The incremental sensitivity for a time interval Δt is then

SΔt
0 (x) =

T (ϕΔt (x)) − T0

ΔR(ϕΔt (x)) − ΔR0
(8)

with distribution

P(SΔt
0 ∈ A) = σ({x : SΔt

0 (x) ∈ A}).

Over long time, if there is decay of correlations and mixing of trajectories on the climate

attractor [28,36,37] then σΔt → M in the weak sense as Δt → ∞, and so we expect the

distribution of long-term incremental sensitivities for Δt → ∞ becomes time-independent

for typical trajectories within the attractor:

P(S∞
0 ∈ A) = M({x : S∞

0 (x) ∈ A}). (9)

where

S∞
0 (x) =

T (x) − T0

ΔR(x) − ΔR0
.

Note that (7) means that the distribution of long-term sensitivities starting at (ΔR0, T0) can

be written in terms of the geometry of the projected measure μ

P(S∞
0 ∈ A) = μ({(ΔR1, T1) : S∞

0,1 ∈ A}) (10)

where we define the two-point sensitivity as

S∞
0,1 =

T1 − T0

ΔR1 − ΔR0
. (11)
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Fig. 1 Schematic diagram to demonstrate the instantaneous, incremental and two-point sensitivities for an

ensemble of trajectories starting at point A that evolves on the climate attractor. The equilibrium of a mean

energy balance model is shown as a red curve. For a specific trajectory (shown in black) in the ensemble the

slopes of AC and AD correspond to incremental sensitivities (for fixed Δt) or two-point sensitivities (for

varying Δt). The instantaneous sensitivity is the slope of the tangent to the closest solution in the equilibrium

model at B. Note that the cold regime T ≤ Tthr and the warm regime T > Tthr have different asymptotic

(instantaneous) sensitivities corresponding to slopes E B and DF respectively (Color figure online)

The distribution of long-term incremental sensitivities (10) for a generic choice of the

initial climate state suggests [38] a time-independent notion of climate sensitivity that can

be found by picking pairs of points (R0,1, T0,1) independently and identically distributed

according to μ and evaluating (2).

This means that for any A ⊂ R we can use μ to assign a probability to the sensitivity

being in A:

P(S∞
0,1 ∈ A) := μ × μ

({

(ΔR0, T0), (ΔR1, T1) : S∞
0,1 ∈ A

})

. (12)

with S∞
0,1 defined as in (11). This gives, in some sense, a maximal set of possibilities for the

sensitivities in that it compares the observables T and ΔR over all possible time points and

possible trajectories of the system. This is comparable to the conditional climate sensitivity

of [12] except rather than dividing into regimes, they restrict to deviations of temperature

at most δT from T0. In the case that the sensitivity is fixed at S0, note that S∞
0,1 is a Dirac

δ-distribution centred at S0.

2.3 Sensitivities and Climate Regimes

By partitioning the climate attractor into a number of regimes, we can condition the sensitiv-

ities on staying within a regime, or undergoing a transition between regimes. By making an

optimal partition of the attractor projected into (ΔR, T ) space we can hope to find localised

distributions of sensitivities for pairs in the same regime. As in [38] we consider these sen-

sitivities conditional on climate regime by partitioning μ into two distributions

μ = μC + μW
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corresponding to being in a cold (C) or warm (W) state. In our case we set

μC (A) = μ(A ∩ {(ΔR, T ) : T ≤ Tthr }),

μW (A) = μ(A ∩ {(ΔR, T ) : T > Tthr })

for any measurable A ⊂ R
2 and some threshold temperature Tthr . As in [38] we define

distributions of conditional sensitivities by

P(SW W ∈ A) := μW × μW

({

(ΔR0, T0), (ΔR1, T1) : S∞
0,1 ∈ A

})

(13)

Conditional sensitivities for changes of regime are for example

P(SCW ∈ A) := μC × μW

({

(ΔR0, T0), (ΔR1, T1) : S∞
0,1 ∈ A

})

(14)

The distribution of sensitivities (12) is then a sum of the four conditional sensitivities

P(S∞
0,1 ∈ A) = P(SCC ∈ A) + P(SCW ∈ A) + P(SWC ∈ A) + P(SW W ∈ A).

Moreover, (14) means that we have a symmetry

P(SCW ∈ A) = P(SWC ∈ A).

The distributions of SCW and SWC correspond to choices of pairs across the two regimes:

these distributions are associated with ‘tipping between regimes’. Even though the two-point

sensitivities may measure states very far apart in time, we will see that extreme values of the

sensitivity are usually associated with choice of points from two different regimes.

3 Sensitivity and Tipping in ClimateModels

To illustrate the notions of instantaneous and two-point sensitivities, we consider a concep-

tual energy balance model: a more complex model is briefly discussed in Appendix. We

consider a variant of the Budyko–Ghil–Sellers energy balance model [5,16,34] for GMST.

This model builds on [12,41] and has multiple regimes with state-dependent sensitivity in

each. It is a special case of (1) for global mean surface temperature T (t) with atmospheric

CO2 concentration C(t) as a parameter:

cT

dT

dt
= F(T , C) :=

[

Q0(1 − α(T )) + A ln

(

C

C0

)

− ǫ(T )σ T 4

]

(15)

For this equation, Q0 represents the solar input modulated by the temperature-dependent

albedo α(T ). The change in radiative forcing due to atmospheric greenhouse gases is

ΔR[C O2] = A ln(C/C0).

where A = 5.35 Wm−2 is the direct forcing effect of CO2 and C0 represents pre-industrial

CO2 levels. Finally, the outgoing long wave radiation σ T 4 is modified by a temperature-

dependent emissivity 0 < ǫ(T ) < 1.

We consider a temperature-dependent emissivity decreasing from one plateau to a lower

one because of changes in water vapour and cloud feedbacks. There are other choices [41],

but for simplicity we assume here

ǫ(T ) = ǫ1 +
ǫ2 − ǫ1

2

[

1 + tanh

(

T − T0

Tǫ

)]

.
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where ǫ1 and ǫ2 are the limit emissivities for low and high temperatures respectively, T0 is the

threshold and Tǫ > 0 corresponds to the range of temperatures over which there is variation

(see Fig. 2b).

Note that water vapour feedback is sometimes included in the CO2 term, resulting in an

additional constant and modified A [12,20]. Here we separate radiative forcing due to CO2

and temperature-dependent water feedbacks in emissivity. As in [12], we assume that the

albedo varies with temperature due to changes in land-ice feedback processes: we assume

there are threshold temperatures T1 < T2 associated with changes of albedo α(T ) and define

a function

Σ(T ) =
(T − T1)

T2 − T1
H(T − T1)H(T2 − T ) + H(T − T2) (16)

that switches from 0 for T < T1 to 1 for T > T2: H(T ) is approximately a Heaviside unit

step function and we use a smooth approximation

H(T ) = (1 + tanh(T /Tα))/2

as in [12]. As in that paper, we write the albedo

α(T ) = α1(1 − Σ(T )) + α2Σ(T )

so that it changes smoothly from a higher albedo α1 in the presence of more ice surface

(T < T1) to a lower α2 in the presence of more ocean surface (T > T2), see Fig. 2a. Note

that [12] consider a global transition from ice-covered to ocean-covered earth - here we

model a large but regional change in ice cover resulting in a smaller contrast in global albedo

between the two states; our choice of parameters might be more realistic for albedo variations

between glacial and interglacial states.

We add a stochastic term to (15) that represents unresolved subgrid processes with a fixed

amplitude ηT :

cT dT = F(T , C)dt + ηT dWT . (17)

The motivation for noise on the T variable is to model internal variability of climate heat

transport processes. The parameters listed in Table 1 are used, except where specified. Note

that the deterministic equilibria of (15) are at F(T , C) = 0, which gives

C = Γ (T ) := C0 exp

[

ǫ(T )σ T 4 − Q0(1 − α(T ))

A

]

. (18)

From (18), this means we have equilibria at

ΔR[C O2] = A ln(Γ (T )/C0) = ǫ(T )σ T 4 − Q0(1 − α(T )) (19)

Figure 2 illustrates temperature dependence of albedo and emissivity as well as the result-

ing equilibrium forcing ΔR = A ln(Γ (T )/C0) needed to give this temperature. Note there is

a unique equilibrium for each T , but not necessarily for each C : as discussed in [12,41] there

are three branches of equilibria for a range of C : for the parameters used there is bistability

in the region

− 1.744 W m−2 < ΔR < 3.004 W m−2, 202 ppm < C < 490 ppm, (20)
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Fig. 2 Behaviour of the equilibrium energy balance model (15) with parameters as in Table 1. a temperature-

dependence of albedo α(T ) and b emissivity ǫ(T ); c CO2 and d radiative forcing levels necessary to give

temperature equilibria, corresponding to (18) and (19), respectively. Note the region of multistability, and

temperature-dependence of the sensitivity corresponding to slopes in the bottom right figure

denoted using the red lines in Figs. 3 and 5. We can define the instantaneous sensitivity1 as

S = 1/λ, where

λ =
d

dT
ΔR[C O2] = [ǫ′(T )T + 4ǫ]σ T 3 + Q0α

′(T ) (21)

is the total feedback factor in this model: S corresponds to the slope of the tangent of the

equilibrium (non-stochastic) model (see Fig. 1, point B).

The sensitivities on the stable branches differ due to both nonlinearity of black body

radiation and change in emissivity. Due to the choice of albedo and emissivity changes in

this model, α′ is nonzero only in the bistable regime and ǫ′ is nonzero only in the temperature

range where it varies (T0 − Tǫ/2 ≤ T ≤ T0 + Tǫ/2): see Fig. 2. State-dependence between

glacial and interglacial states has been detected in estimates of specific climate sensitivities

from different palaeo-data, suggesting lower sensitivity during cold periods than during warm

periods (e.g. [15,39] who estimate a close approximation of the Charney sensitivity and find

warm (interglacial) climate states to be about 60% more sensitive than cold (glacial) states).

We can compute the curvature of (19) as

d2

dT 2
ΔR[C O2] = (ǫ′′T 2 + 8ǫT + 12ǫ′)T 2 − Q0α

′′

Note that this is small except near the folds at T ≈ T1 and T ≈ T2 with maximum absolute

value d2

dT 2 ΔR of order T −1
α . This confirms that the saddle-node becomes non-smooth in the

1 This is referred to as local slope sensitivity in [24].

123



1540 P. Ashwin, A. S. von der Heydt

Table 1 Parameters for the

energy balance model (15, 17)

adapted from [12] to include

state-dependent emissivity

α1 0.52 – α2 0.47 –

T1 278 K T2 288 K

ǫ1 0.53 – ǫ2 0.39 –

A 5.35 W m−2 T0 288 K

Tα 5 K Tǫ 20 K

C0 280 ppm Q0 342 W m−2

CT 5 × 108 Jm−2 K−1 σ 5.67 × 10−8 W m−2 K−4

ηT 5 × 10−6 K s−1/2 ηC 2 × 10−6 s−1/2

Note that [12] consider a global transition and so use different values:

α1 = 0.7 α2 = 0.2, T1 = 263 K, T2 = 293 K, Tα = 0.273 K A =

20.5 W m−2 and have an additional constant 150 W m−2

limit Tα → 0. The second derivative gives the size of the quadratic correction a in Zaliapin

et al. [41]; very large values of the slope near the saddle nodes correspond to the run-away

climate observed in [4].

For the model (17), the atmospheric CO2 concentration is a parameter for the energy

balance dynamics. We explore this by considering a ‘wandering’ CO2 profile such that

γ (t) := ln(C(t)) undertakes a Brownian motion with growth in variance ηγ per unit time

between reflecting limit values. More precisely, we consider CO2 dynamics governed by soft

reflecting boundary conditions at ln Cmin and ln Cmax :

dγ = K θ(γ ) dt + ηC dWγ (22)

where the noise in the C variable (with fixed amplitude ηC ) represents variability in

CO2forcing. We assume

θ(γ ) := H(ln Cmin − γ )(ln Cmin − γ ) + H(γ − ln Cmax )(ln Cmax − γ ) (23)

and we use parameters

K = 10−7 s−1, Cmin = 102 ppm, Cmax = 103 ppm, ηC = 2 × 10−6 s−1/2. (24)

Clearly there are common causes of variability of temperature and CO2 and so in general

there will be strong correlation between the noise terms WT and Wγ ; for convenience we

assume here that they are uncorrelated. In most studies of climate sensitivity, carbon cycle

processes are not treated as feedbacks but rather as forcing (external to the system); this

assumption corresponds in our model to CO2 driving temperature changes with no direct

impact of temperature on CO2. The parameter ηC determines the timescale of wandering

of the CO2: we consider cases where this is slower than, or comparable to the timescale of

evolution of T .

Figure 3b shows a time series for a typical simulation of (17) with wandering CO2 (22)

and parameters as in Table 1, while the corresponding time series of T is shown in Fig. 3a;

we see as C crosses thresholds (for the bistable regime as calculated in (20)) the state of the

system tips between warm and cold states. Global mean temperature T vs C and relative

radiative forcing ΔR[C O2] are shown in Fig. 2c, d for the non-stochastic model and in Fig 4

for the stochastic model, respectively. Observe the region of bistability around ΔR[C O2] = 0

(Fig. 4b) that switches rapidly between cool high albedo and warm low albedo states via

saddle-node bifurcations. There is approximate linearity away from these tipping points, but

with different mean slopes.
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Fig. 3 Time series for the energy balance model (1) with wandering CO2 (22). a Global mean temperature

T (t) and b, c atmospheric CO2 C in original b and logarithmic coordinates (c). The red lines indicate the

limits imposed on the randomly wandering CO2. See text for details

Fig. 4 a Temperature versus a atmospheric CO2 concentration and b ΔR of radiative forcing by CO2, for the

time series in Fig. 3. The red line corresponds to the steady solution of (15) with dependence on CO2 (Color

figure online)

3.1 Extreme Sensitivities, EarlyWarning Signals and Tipping Between Regimes

The energy balance model (17) with wandering CO2 (22) gives a framework in which one can

test correlation between extreme values of sensitivity and tipping between climate regimes,
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as well as testing other possible early warning signals for a tipping event. Indeed, we find a

rise in instantaneous sensitivity seems to act as a good precursor in cases of slow variation

of CO2.

Figure 5(left) shows the variation of instantaneous sensitivity and two early warning

signals for tipping between regimes for the wandering variation of CO2 concentration ln C(t)

relative to the timescale of evolution of T , with ηC = 2 × 10−6 s−1/2; this means that

CO2 variations are comparable in timescale to T fluctuations. By considering the nearest

equilibrium point on C = Γ (T ) for fixed C (18), we evaluate the instantaneous sensitivity

S using (21) and plot this in middle panel. Observe there is a qualitative change in S before

and after tipping events. There is a clear precursor and then singularity as the tipping point

is crossed. Note that in this case the instantaneous sensitivity depends only on the current

CO2 level and the nearest branch—fluctuations in T around the branch do not affect S, while

fluctuations in C do. There are also apparent ‘false alarms’: for example, the fluctuations of S

around 3 kyr and 18 kyr. Figure 5(left, d, e) show detrended estimates of sd(t) and AR1(t) [42]

using moving averages with length τ = 500 years. Neither show any clear precursors before

tipping events. By contrast, Fig. 5(right) shows early warning signals for tipping between

regimes for slower variation of CO2 concentration with ηC = 5×10−7 s−1/2, where T evolves

faster than C . Unlike the case on the left, this slower switching gives a visible precursor of

increasing AR1. In both cases there are increasing fluctuations of instantaneous sensitivity

S. Note however, that the instantaneous S we consider here uses the model equations, and

hence will be more difficult to access from complex model realisations or observations.

3.2 Two-Point Sensitivities and Tipping

An approximation of the stationary density of the global attractor for the system (17, 22) is

shown in Fig. 6. We classify the system regime as one of:
{

Warm (W) if T > Tthr

Cold (C) if T ≤ Tthr

where we choose a threshold Tthr = 10 C between the two stable branches: see Fig. 1. We

simulate a single very long trajectory (5 × 105 years) of the energy balance model (15, 17)

with wandering CO2 and use this to create a density plot of the climate attractor projected

onto T versus ΔR, as shown in Fig. 6. This is used to consider the two-point sensitivities

and probabilities of tipping as in Fig. 7. Panels (a–d) are computed by sampling incremental

sensitivities (8) from points for increments up to 20 kyr. Panels (e–h) are computed by

sampling 107 pairs of points from the distribution in Fig. 6 using the two-point sensitivity

(11). We observe:

– There is good qualitative agreement between the incremental sensitivities averaged over

long delays and the two-point sensitivities sampled independently from the attractor.

Indeed, the autocorrelation of the timeseries for T (not shown) has substantially decayed

and has its first zeros around 20 kyr.

– High probability of tipping (see Fig. 7b, d) corresponds mostly to extremes of S that may

be positive or negative S.

– Within the W and C regimes, the sensitivities are closely clustered but have different

means for the W and C state. We can estimate these using average temperatures and (21)

as S ≈ 0.79 K [W m2]−1) for the W and S ≈ 0.55 for the C state, respectively.

– Note that there are relatively low-probability ‘shoulders’ of the distributions within-

regime. These are due to the classification of regimes also including states that are in
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Fig. 5 Examples of tipping events for T for the energy balance model (15, 17) with wandering CO2 (22) with

(left) parameters as in Fig. 3, i.e. with (ηT , ηC ) = (5 × 10−6, 2 × 10−6) and (right) slower variation of C

(ηT , ηC ) = (5×10−6, 5×10−7). a, b Time series of ΔR and T . The red lines on a show the locations of the

saddle-node bifurcations that bound the region of bistability (20). c shows estimated instantaneous sensitivity

from the nearest equilibrium of (17). Note the gradual rise and fluctuations in S on approach to the tipping

point, and the two levels of S corresponding to the differing sensitivities of the two stable branches. d, e

Standard deviation and AR1 coefficient: note that the AR1 coefficient seems to have predictive power only

for the right column

transitions: although the system is in transition, both points are still classified as the same

regime.

– A hysteresis-like effect may appear even in the absence of bistability. If the dynamic

change in a system parameter is fast enough then an apparent hysteresis may arise due

to different lags for a rising or falling parameter: see for example [19]. However, Fig. 4

suggests this is not the case here.

3.3 Sensitivities in the Absence of Tipping

Considering the same model (15, 17) with wandering CO2 (22), we use different parameters

to contrast the results in the previous sections with cases where there is no bistability. In

particular we consider parameters as in Table 1 except for:

– Default albedo contrast: α1 = 0.52, α2 = 0.47 (i.e. also as in Table 1).

– Low albedo contrast: α1 = 0.50, α2 = 0.48.

– No albedo contrast: α1 = α2 = 0.495.

Figure 8 shows the low and no albedo contrast cases, comparing to the default case Fig. 5(left).

For the low albedo contrast case there is no longer a region of bistability, but there is nontrivial
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Fig. 6 Density of T versus

ΔR = A ln(C/C0) of radiative

forcing by CO2 for a longer time

series similar to that in Fig. 4b.

Observe the two regions with

approximately linear relationship

(cf. Fig. 1): the colour scale

indicates density [arbitrary units]

(Color figure online)
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Fig. 7 a, c, e, g Conditional two-point sensitivities and b, d, f, h probabilities of tipping from warm (a, b, e,

f) and cold (c, d, g, h) states, for the energy balance model (17) with wandering CO2 (22). a–d Are computed

using a range of delays up to 20 kyr while e–h are computed using 107 independently sampled pairs of points

from the distribution in Fig. 6. Note that sensitivities outside the horizontal range are rounded to the last bin

variation of the instantaneous sensitivity along the attractor. For the no albedo contrast case,

the instantaneous sensitivity is close to constant. The projection of the climate attractor

into the (ΔR, T ) plane is shown in Fig. 9a–c, while the corresponding distribution of two-

123



Extreme Sensitivity and Climate Tipping Points 1545

-5

0

5

 R
a

0

10

20

T

b

0

2

4

S

c

0

5

10

15

s
d

(t
)

d

0 1 2 3 4 5

t [yr] 10
4

0.98

1

A
R

1
(t

)

e

a

b

c

d

e

-5

0

5

 R

0

10

20

T

0

2

4

S
0

5

10

15

s
d

(t
)

0 1 2 3 4 5

t [yr] 10
4

0.98

1

A
R

1
(t

)

Fig. 8 Response of global mean temperature to the same realisation of wandering CO2 for the energy balance

model (17) with (left) low albedo contrast and (right) no albedo contrast; a–e as in Fig. 5. In both cases there

is no region of bistability. Observe there are large but bounded fluctuations of the instantaneous sensitivity in

case (left), indicating state-dependency but no tipping. In case (right) there is comparatively little fluctuation

of sensitivity; compare with Fig. 5(left) for the default parameters with a region of bistability

point sensitivities in Fig. 9d–f. Observe the presence of non-unimodal distributions for (d,

e) associated with regions with different two-point sensitivity, and clear skewness and tails

again associated with the geometry of the measure in (a, b). Note the higher average in

(e) corresponds to there being only a single regime in (b) that runs over a wide range of

temperatures.

In physical terms, the skewness (and long tails) in (d, e) originate from the state-

dependence and nonlinearity of feedbacks (i.e. non-constant feedback factors). The bistability

of the two regimes with different feedbacks gives the two peaks in the distribution of Fig. 9d.

However, Fig. 9e still has two peaks: these originate from state dependence on the same

attractor (Fig. 9b. For this low-albedo-contrast case, there is no ‘tipping’ but we still find

very non-Gaussian distribution of S that comes from nonlinearities in the system that, in

this case, do not produce tipping. Note that only in the no albedo contrast case (c) is there a

plausible fit to Gaussian.

4 Discussion

We demonstrate that state-dependence and the presence of tipping points produces signatures

in the distribution of instantaneous and two-point notions of ECS. We explore this using a

global energy balance model where state-dependence and multistability originate from the

dependence of both albedo and emissivity on temperature.
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Fig. 9 a–c Plots of T versus ΔR for a long timeseries of the energy balance model (17) with wandering CO2,

parameters as in Fig. 6. d–f Plots of distributions of two-point sensitivities corresponding to a–c respectively.

a, d Correspond to the default scenario with bistability, b, e to the low albedo contrast and c, f to the no albedo

contrast scenario; cf. Fig. 8. Observe the presence of two peaks (corresponding to state dependent sensitivities

on the two branches) and a large mass of extremes for (d). e A range of state-dependent variation but relatively

few extremes; while f resembles a normal distribution. Observe that d can be decomposed into the conditional

sensitivities shown in Fig. 7

For the deterministic version of our model (15) with fixed CO2 the changes in albedo

mean there can be bistability between regimes, while the changes in emissivity contribute

to different sensitivities within these regimes. The distribution of ECS comes from sev-

eral sources—nonlinearities that result in tipping points and/or state-dependence of the

feedbacks and sub-grid variability that we model here as stochastic perturbations. Such

regime-dependent sensitivity and extremes associated with tipping points are also visible in

the more complex Gildor and Tziperman model [17,38], as outlined in Appendix.

For the stochastic model (17) with wandering CO2, regime-dependent sensitivity is visible

as differences in slope of the stable regimes for the T versus ΔR plots (see Fig. 4b). The

densities of the stable regimes for the T versus ΔR plots (see Fig. 6) show varying slopes

and so conditional two-point sensitivities for the two regimes (see e.g. Fig. 7a, c) can have

peaks at different sensitivities. We compare several notions of sensitivity. These are the

instantaneous sensitivity associated with the slope of the equilibrium branch, incremental

sensitivity associated with a fixed delay, and two-point sensitivity that compares arbitrary

points on the climate attractor. The presence of tipping points gives extremes of sensitivities
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in that (i) there are large fluctuations of instantaneous sensitivities for the nearest equilibrium

just before a tipping point (see Fig. 5); and (ii) in the distributions of conditional two-point

sensitivities that cross regimes (see Fig. 7d. f). It is remarkable that the two-point sensitivities

are so informative, given that they compare points that may be very far from each other in

time.

There remains much work to be done to understand the relation between and limitations

of these notions of ECS, and indeed ECS calculated in other ways, for example from instan-

taneous doubling of CO2: this will involve transient non-equilibrium processes due to ocean

thermal inertia. Note that determining ECS from palaeoclimate time-series [40], the two-

point notion clearly has an advantage that we are not limited by the time-resolution of the

time series.

The energy balance model can be criticised as being very simple and hard to parametrize

in terms of the various physical processes that contribute to albedo and emissivity. Moreover,

we consider CO2 in (17) purely as a forcing term which ignores known land surface and

ocean processes where temperature is known to affect CO2 balance. However, the model is

complex enough to confirm that extremes in ensembles of computed climate sensitivities can

indicate nearby tipping points. Computations presented in Appendix confirm this picture in

a more complex box-model for the glacial cycles, where the CO2 is modelled dynamically.

4.1 Future Perspectives

When (and how) extremes of sensitivity can be effective precursors of a tipping event will

depend on a number of factors. In particular, the timescale of dynamics of the climate response

needs to be faster than the timescale of changes in forcing. Figure 5(left) shows that as CO2

variability is rapid, this results in tipping points with little precursor visible in changes to

AR1, though it is visible in the instantaneous sensitivity. There may be ‘rate-induced’ tipping

points [1,2] that appear when the timescale of the forcing interacts with that of the system.

The size of the region of effective nonlinearity can also vary. For (17) this is affected by the

temperature scales Tα and Tǫ over which the albedo and emissivity changes occur. Note also

that although tipping points do give rise to extremes in the distribution of ECS, extremes do

not necessarily indicate a tipping point.

Translating these results to a time-dependent setting and to more complex models will be

difficult: the possible states in the ‘climate attractor’ and the associated invariant measure μ

is harder to define in the presence of non-stationary temporal variation of forcing, or for large

recurrence times and a variety of nonlinear multiscale processes. In such cases, interpreting

transitions as tipping points is a challenge; nonetheless, the palaeoclimate record does show

a variety of large and sudden transitions [26]. For example, ice core/ocean core records

indicate repeated sudden changes in (regional) surface temperature associated with glacial

cycles [20] or Dansgaard–Oeschger [13] events as well as global transitions, for example the

greenhouse-icehouse transition at the Eocene–Oligocene transition [10]. Although glacial

cycles can be found in models such as [17] as relaxation oscillation with clear regimes, for

climate reconstruction data these regimes are not so clear (e.g. [15,24]).

Recent work [35] suggests we are at a crossroads in terms of the future earth system state.

On the one hand, looking at the palaeoclimate record for the last 1 million years suggests

that we are overdue descent into an ice age. On the other hand, comparison of anthropogenic

CO2 emissions with the palaeo record suggest the next tipping point may be to much warmer

‘hothouse’ earth. A better understanding of improved indicators such as two-point ECS and

what they say about the climate response to changes in greenhouse gases, together with a
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better understanding of hothouse earth climate states that may have existed in the past (e.g.

the Palaeocene climate [3,21]) should help our understanding and guide future generations

in their need to avoid dangerous climate change.
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Appendix: Tipping in aMulti-box ClimateModel with Ocean
Biogeochemistry

To investigate the notion of two-point sensitivity in a more complex and physics based

earth system model, we explore here the Gildor–Tziperman model [17] with Milaknovich

forcing and biogeochemistry in the ocean. In this model the ocean and atmosphere consists

of 4 latitudinal (zonally averaged) boxes each, with two layers in the ocean and one in the

atmosphere. Within the boxes a variety of thermodynamic quantities (e.g. temperature T )

and species (e.g. ocean salinity S and atmospheric CO2) are modelled. In addition there

is dynamic land ice (slowly evolving) and sea ice (rapidly evolving) as well as fluxes that

join these boxes. The system is sufficiently complex to allow modelling of the Pleistocene

ice-age oscillations of land-ice in response to Milankovich forcing. The glacial-interglacial

cycles appear in this model as internally generated self-sustained oscillations, which are then

modified by the Milankovich forcing. More details are given in [17,38].

Figure 10 shows projections of a long trajectory (500 kyr) on the climate attractor of

this more complex climate model onto the plane of global mean temperature T against (a)

ΔR[C O2] (b) ΔR[L I ] and (c) ΔR[C O2,L I ] [38]. Observe that all three projections clearly

show two climate regimes, a lower ‘cold’ state (corresponding to large amounts of sea ice

and T < 12.28C) and an upper ‘warm’ state (corresponding to T > 12.28C). The projection

on the combined radiative forcing of CO2 and the slow feedback in land ice changes ΔR[L I ]

shows a clear slope and hence ’mean’ sensitivities in both regimes (Fig. 10c). Following the

formalism of [32], the slopes in (a) should reflect the Earth System sensitivity, while (c) should

give a good approximation of the Charney or equilibrium climate sensitivity. Note that in this

model there is only one slow feedback to correct for, namely the land-ice albedo feedback.

When projecting onto the ΔR[C O2] plane (Fig. 10a) the cold regime appears very diffuse and

with very high (or sometimes negative) earth system sensitivities (ESS), suggesting that in

the cold branch local climate dynamics are not entirely determined by CO2. Similarly, when
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Fig. 10 Plots of T versus ΔR for

the Gildor–Tziperman model

[17]; see [38]. a Projection onto

the (ΔR[C O2], T )-plane, which

should reflect the earth system

sensitivity only considering CO2
as forcing; b projection onto the

(ΔR[L I ], T )-plane, considering

only the slow land-ice albedo

feedback as forcing; c projection

onto the (ΔR[C O2,L I ], T )-plane,

considering both CO2 and the

slow feedbacks (in this model

there is only the land-ice albedo

feedback slow) as forcing.

Following the formalism of [32]

the slopes in this graph should

reflect a good approximation of

the Charney ECS
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projecting only on land ice changes ΔRL I (Fig. 10b) the warm branch appears more diffuse,

i.e. CO2 dynamics seem to be more important than land ice dynamics on this branch.

The left column of Fig. 11a–d shows the distribution of two-point climate sensitivities for

R[C O2,L I ] conditional on regime: this is comparable to Fig. 7a–d in that one can observe (i)

clearly localised distributions of ECS in (a, c) conditional on remaining within the W or C

regime, (ii) a broader distribution in (c): this seems to be associated with the curvature of the

C regime branch in Fig. 10c), (iii) a clear association of tipping from W to C (b) or from C to

W (d) being associated with extreme sensitivities. Note that for this model there is no energy

balance model available and so it is not possible to compute the instantaneous sensitivity.

For comparison we show in the right column of Fig. 11e–h the same distributions for the

ESS, which are not compensated for the slow feedback (in this model the land-ice albedo

feedback). Observe that for both regimes there is a much broader distribution for the ESS (e,

g) than for the ECS in (a) and (c). In particular in the cold regime, earth system sensitivities

(g) are much higher than equilibrium sensitivities (c) because the land-ice albedo feedback

is very strong in the cold (land-ice covered) states.
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Fig. 11 Conditional sensitivities and probabilities of tipping for glacial cycles simulations with the Gildor–

Tziperman model [17] (as in Fig. 7 for the energy balance model). a–d Conditional two-point sensitivities

compensating for slow feedbacks (i.e. reflecting ECS) and probabilities of tipping (i.e. from the distribution

shown in Fig. 10c). e–h Conditional earth system sensitivities ESS (not compensated for slow feedbacks) and

probabilities of tipping (i.e. from the distribution shown in Fig. 10a)

References

1. Ashwin, P., Wieczorek, S., Vitolo, R., Cox, P.: Tipping points in open systems: bifurcation, noise-induced

and rate-dependent examples in the climate system. Philo. Trans. R. Soc. A 370(1962), 1166–1184 (2012)

2. Ashwin, P., Perryman, C., Wieczorek, S.: Parameter shifts for nonautonomous systems in low dimension:

bifurcation-and rate-induced tipping. Nonlinearity 30(6), 2185 (2017)

3. Baatsen, M.L.J., von der Heydt, A.S., Huber, M., Kliphuis, M.A., Bijl, P.K., Sluijs, A., Dijkstra, H.A.:

Equilibrium state and sensitivity of the simulated middle-to-late Eocene climate. Clim. Past Disuss.

(2018). https://doi.org/10.5194/cp-2018-43.

4. Bloch-Johnson, J., Pierrehumbert, R.T., Abbot, D.S.: Feedback temperature dependence determines the

risk of high warming. Geophys. Res. Lett. 42, 4973–4980 (2015)

5. Budyko, M.I.: The effect of solar radiation variations on the climate of the earth. Tellus 21(5), 611–619

(1969)

6. Caballero, R., Huber, M.: State-dependent climate sensitivity in past warm climates and its implications

for future climate projections. Proc. Natl. Acad. Sci. 110(35), 14162–14167 (2013)

7. Charney, J.: Carbon Dioxide and Climate: A Scientific Assessment. The National Academies Press,

Washington, DC (1979)

8. Chekroun, M.D., Simonnet, E., Ghil, M.: Stochastic climate dynamics: random attractors and time-

dependent invariant measures. Physica D 240(21), 1685–1700 (2011)

123

https://doi.org/10.5194/cp-2018-43.


Extreme Sensitivity and Climate Tipping Points 1551

9. Cox, P.M., Huntingford, C., Williamson, M.S.: Emergent constraint on equilibrium climate sensitivity

from global temperature variability. Nature 553(7688), 319 (2018)

10. Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H., Backman, J.: Rapid stepwise onset of antarctic glaciation

and deeper calcite compensation in the pacific ocean. Nature 433, 53–57 (2005)

11. Dekker, M.M., von der Heydt, A.S., Dijkstra, H.A.: Cascading transitions in the climate system. Earth

Syst. Dyn. 9(4), 1243–1260 (2018)

12. Dijkstra, H.A., Viebahn, J.P.: Sensitivity and resilience of the climate system: a conditional nonlinear

optimization approach. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 13–22 (2015)

13. Ditlevsen, P.D., Kristensen, M.S., Andersen, K.K.: The recurrence time of Dansgaard-Oeschger events

and limits on the possible periodic component. J. Clim. 18(14), 2594–2603 (2005)

14. Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M., Huntingford, C., Scheffer, M., Sgubin,

G., Swingedouw, D.: Catalogue of abrupt shifts in intergovernmental panel on climate change climate

models. Proc. Natl. Acad. Sci. USA 112(43), E5777–86 (2015)

15. Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O.E., Ganopolski, A.: Nonlinear climate sensitivity

and its implications for future greenhouse warming. Sci. Adv. 2(11), e1501923–e1501923 (2016)

16. Ghil, M.: Climate stability for a sellers-type model. J. Atmos. Sci. 33(1), 3–20 (1976)

17. Gildor, H., Tziperman, E.: A sea ice climate switch mechanism for the 100-kyr glacial cycles. J. Geophys.

Res. Oceans 106(C5), 9117–9133 (2001)

18. Gregory, J.M.: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett.

31(3), 147–4 (2004)

19. Herein, M., Márfy, J., Drótos, G., Tél, T.: Probabilistic concepts in intermediate-complexity climate

models: a snapshot attractor picture. J. Clim. 29(1), 259–272 (2016)

20. Hogg, A.Mc.C: Glacial cycles and carbon dioxide: a conceptual model. Geophys. Res. Lett. 35(1), L01701

(2008)

21. Huber, M., Caballero, R.: The early Eocene equable climate problem revisited. Clim. Past 7(2), 603–633

(2011)

22. IPCC: Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,

Cambridge (2013)

23. Knutti, R., Hegerl, G.C.: The equilibrium sensitivity of the earth’s temperature to radiation changes. Nat.

Geosci. 1, 735–743 (2008)

24. Koehler, P., Stap, L.B., von der Heydt, A.S., de Boer, B., Van De Wal, R.S.W., Bloch-Johnson, J.: A

state-dependent quantification of climate sensitivity based on paleodata of the last 2.1 million years.

Paleoceanography 32, 1102–1114 (2017)

25. Köhler, P., de Boer, B., von der Heydt, A.S., Stap, L.B., van de Wal, R.S.W.: On the state dependency of

the equilibrium climate sensitivity during the last 5 million years. Clim. Past 11(12), 1801–1823 (2015)

26. Lenton, T.M.: Early warning of climate tipping points. Nat. Clim. Change 1(4), 201 (2011)

27. Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., Schellnhuber, H.J.: Tipping

elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 105(6), 1786–1793 (2008)

28. Lucarini, V.: Revising and extending the linear response theory for statistical mechanical systems: eval-

uating observables as predictors and predictands. J. Stat. Phys. 173, 1698–1721 (2018)

29. Lunt, D.J., Haywood, A.M., Schmidt, G.A., Salzmann, U., Valdes, P.J., Dowsett, H.J.: Earth system

sensitivity inferred from Pliocene modelling and data. Nat. Geosci. 3(1), 60–64 (2010)

30. Pfister, P.L., Stocker, T.F.: State-dependence of the climate sensitivity in earth system models of interme-

diate complexity. Geophys. Res. Lett. 44(20), 10,643–10,653 (2017)

31. Roe, G.H., Baker, M.B.: Why is climate sensitivity so unpredictable? Science 318(5850), 629–632 (2007)

32. Rohling, E.J., Sluijs, A., Dijkstra, H.A., Köhler, P., van de Wal, R.S.W., von der Heydt, A.S., Beerling, D.J.,

Berger, A., Bijl, P.K., Crucfix, M., et al.: Making sense of palaeoclimate sensitivity. Nature 491(7426),

683 (2012)

33. Schwartz, S.E.: Determination of earth’s transient and equilibrium climate sensitivities from observations

over the twentieth century: strong dependence on assumed forcing. Surv. Geophys. 33(3–4), 745–777

(2012)

34. Sellers, W.D.: A global climatic model based on the energy balance of the earth-atmosphere system. J.

Appl. Meteorol. 8(3), 392–400 (1969)

35. Steffen, W., Rockström, J., Richardson, K., Lenton, T.M., Folke, C., Liverman, D., Summerhayes, C.P.,

Barnosky, A.D., Cornell, S.E., Crucifix, M., Donges, J.F., Fetzer, I., Lade, S.J., Scheffer, M., Winkelmann,

R., Schellnhuber, H.J.: Trajectories of the earth system in the anthropocene. Proc. Natl. Acad. Sci. 115(33),

8252–8259 (2018)

36. Tantet, A., van der Burgt, F.R., Dijkstra, H.A.: An early warning indicator for atmospheric blocking events

using transfer operators. Chaos 25(3), 036406 (2015)

123



1552 P. Ashwin, A. S. von der Heydt

37. Tantet, A., Lucarini, V., Lunkeit, F., Dijkstra, H.A.: Crisis of the chaotic attractor of a climate model: a

transfer operator approach. Nonlinearity 31(5), 2221–2251 (2018)

38. von der Heydt, A.S., Ashwin, P.: State dependence of climate sensitivity: attractor constraints and palaeo-

climate regimes. Dyn. Stat. Clim. Syst. 1(1), 1–21 (2017)

39. von der Heydt, A.S., Koehler, P., Van De Wal, R.S.W., Dijkstra, H.A.: On the state dependency of fast

feedback processes in (paleo) climate sensitivity. Geophys. Res. Lett. 41(18), 6484–6492 (2014)

40. von der Heydt, A.S., Dijkstra, H.A., Van De Wal, R.S.W., Caballero, R., Crucifix, M., Foster, G.L., Huber,

M., Koehler, P., Rohling, E.J., Valdes, P.J., Ashwin, P., Bathiany, S., Berends, T., van Bree, L., Ditlevsen,

P.D., Ghil, M., Haywood, A.M., Katzav, J., Lohmann, G., Lohmann, J., Lucarini, V., Marzocchi, A.,

Pälike, H., Baroni, I.R., Simon, D., Sluijs, A., Stap, L.B., Tantet, A., Viehbahn, J.P., Ziegler, M.: Lessons

on climate sensitivity from past climate changes. Curr. Clim. Change Rep. 2(4), 148–158 (2016)

41. Zaliapin, I., Ghil, M.: Another look at climate sensitivity. Nonlinear Process. Geophys. 17(2), 113–122

(2010)

42. Zhang, X., Kuehn, C., Hallerberg, S.: Predictability of critical transitions. Phys. Rev. E 92, 052905 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

123


	Extreme Sensitivity and Climate Tipping Points
	Abstract
	1 Introduction
	2 Sensitivities and the Climate Attractor
	2.1 Observation of the Climate Attractor
	2.2 Incremental and Two-Point Sensitivities
	2.3 Sensitivities and Climate Regimes

	3 Sensitivity and Tipping in Climate Models
	3.1 Extreme Sensitivities, Early Warning Signals and Tipping Between Regimes
	3.2 Two-Point Sensitivities and Tipping
	3.3 Sensitivities in the Absence of Tipping

	4 Discussion
	4.1 Future Perspectives

	Acknowledgements
	Appendix: Tipping in a Multi-box Climate Model with Ocean  Biogeochemistry
	References


