
Extreme statistics of superdiffusive Lévy flights
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Abstract

The search for hidden targets is a fundamental problem in many areas
of science, engineering, and other fields. Studies of search processes often
adopt a probabilistic framework, in which a searcher randomly explores a
spatial domain for a randomly located target. There has been significant
interest and controversy regarding optimal search strategies, especially for
superdiffusive processes. The optimal search strategy is typically defined
as the strategy that minimizes the time it takes a given single searcher to
find a target, which is called a first hitting time (FHT). However, many
systems involve multiple searchers and the important timescale is the time
it takes the fastest searcher to find a target, which is called an extreme
FHT. In this paper, we study extreme FHTs for any stochastic process
that is a random time change of Brownian motion by a Lévy subordinator.
This class of stochastic processes includes superdiffusive Lévy flights in
any space dimension, which are processes described by a Fokker-Planck
equation with a fractional Laplacian. We find the short-time distribution
of a single FHT for any Lévy subordinate Brownian motion and use this
to find the full distribution and moments of extreme FHTs as the number
of searchers grows. We illustrate these rigorous results in several examples
and numerical simulations.

1 Introduction

What is the best way to search for a target whose location is a priori unknown?
This basic search problem arises at various spatial and temporal scales in many
areas of science, engineering, and other fields [1]. Examples include rescuers
searching for castaways [2], military forces searching for enemy targets [3], ani-
mals searching for food, shelter, or a mate [1, 4, 5], proteins searching for DNA
binding sites [6], and computers searching a database [7].
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Empirical and theoretical studies of search processes often adopt a proba-
bilistic framework, in which the searcher randomly explores a spatial domain
for a randomly located target [1, 5, 8]. The random movement of the searcher
is often classified as diffusive, subdiffusive, or superdiffusive, depending respec-
tively on whether the square of its displacement scales linearly, sublinearly, or
superlinearly in time. While subdiffusive and superdiffusive motion are termed
“anomalous” diffusion, they have been observed in many physical and biological
systems [9].

Mathematical models of random search often assume that searchers explore
space via a continuous-time random walk. In this framework, a searcher waits at
its current location for a random time chosen from some waiting time probability
density w(t), and then moves to a new location by jumping a random distance
chosen from some jump length probability density l(y). The searcher repeats
these two steps indefinitely or until it reaches the target. This process can be
diffusive, subdiffusive, or superdiffusive, depending on the tails of the waiting
time density w(t) and the jump length density l(y). In particular, if the mean
waiting time is finite and the jump length density has the following slow power
law decay,

l(y) ∝ y−1−α as y →∞ for some α ∈ (0, 2), (1)

then the process is superdiffusive and is often called a Lévy flight [9, 10]. In a
certain scaling limit, the probability density p(x, t) for the position of a Lévy
flight in Rd satisfies the space fractional Fokker-Planck equation [11].

∂tp = −K(−∆)α/2p, x ∈ Rd, t > 0, (2)

where (−∆)α/2 denotes the fractional Laplacian [12] and K > 0 is the general-
ized diffusion coefficient. Similar models of superdiffusive search involving long
relocation events with distances chosen from a power law density akin to (1) are
Lévy walks [13] and truncated Lévy flights [5].

Many have argued that superdiffusion is a more efficient search method
compared to normal diffusion, since superdiffusive processes spend less time in
previously explored regions of space [14–16]. Signatures of superdiffusion have
been found in movement data for many different animal species [4], including
albatrosses [15], spider monkeys [17,18], jackals [19], sharks [20], microorganisms
[21], and also within biological cells [22]. In addition, superdiffusive search
methods involving Lévy flights are employed in computational algorithms such
as simulated annealing [23]. However, there has been controversy regarding the
empirical evidence of superdiffusion in animal foraging, as some have questioned
the accuracy of the statistical methods used in some of these studies [24].

Furthermore, the theoretical optimality of superdiffusive search models has
also been controversial. Indeed, the seminal work of Viswanathan et al. [16]
in 1999 claimed that the search time of a single searcher is minimized if the
searcher employs an inverse square Lévy walk (corresponding to α = 1 in (1)).
This result forms the core of the very influential Lévy flight foraging hypothesis,
which states that biological organisms must have evolved to perform such Lévy
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walks because of their optimality [5]. However, a recent analysis proved that
this founding result of the Lévy flight foraging hypothesis is incorrect [25–27].

Search time is often quantified in terms of a so-called first hitting time
(FHT), which is the first time the searcher reaches the target. If X = {X(t)}t≥0

denotes the position of the searcher as a function of time t ≥ 0, then the FHT
is

τ := inf{t > 0 : X(t) ∈ U}, (3)

where U denotes the position of the target(s) (or the region of space in which
the searcher can detect the target). There have been many studies of FHTs
of Lévy flights, using both computational and analytical approaches [28–33].
An interesting aspect of these studies is the discrepancy between first hitting
events (the searcher reaches or hits the target) and first passage events (the
searcher moves beyond the target). While these two notions are equivalent
for standard diffusion processes, paths of Lévy flights are discontinuous and
thus may jump across a target without actually hitting it, which is called a
“leapover” [29,30,32,33].

Studies of optimal search strategies generally ask what search method min-
imizes the FHT of a single searcher [1, 5, 8]. However, many systems involve
multiple searchers and the relevant timescale is the time it takes the fastest
searcher to find the target. Indeed, this can be the case for many of the tradi-
tional search scenarios referenced above, such as the search for missing persons
and castaways, military searches for enemy targets, and computer search pro-
cesses. In the context of biology, cellular events are often triggered when the
first of many searchers finds a target [34], and cooperative foraging involves
multiple animals working together to find a target [35–42]. If τ1, . . . , τN are
the respective FHTs of N parallel searchers, then the fastest searcher finds the
target at time

TN := min{τ1, . . . , τN}, (4)

which is often called an extreme FHT, fastest FHT [43], or parallel FHT [44,
45]. Hence, in these scenarios the relevant question is not what search strategy
minimizes the single searcher FHT τ in (3), but rather what search strategy
minimizes the extreme FHT TN in (4).

In this paper, we investigate the extreme FHTs of a general class of stochastic
processes which includes superdiffusive Lévy flights in Rd for any d ≥ 1. The
class of stochastic processes is called Lévy subordinate Brownian motions, as the
processes are obtained by random time changes of Brownian motion. We find
the short-time distribution of a single FHT τ and then use this to find the full
distribution and moments of the extreme FHT TN as the number of searchers
N grows.

To summarize our results, let B = {B(s)}s≥0 be a d-dimensional Brownian
motion with unit diffusivity, and let S = {S(t)}t≥0 be an independent subor-
dinator, which means that S is a one-dimensional, nondecreasing Lévy process
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Figure 1: Lévy flights are subordinate Brownian motions. Left: The thin gray
trajectory is the path of a Brownian motion B(s), and the thick black trajectory
is the path of a Lévy flight X(t) = B(S(t)) obtained as a random time change
of B(s) according to the (α/2)-stable subordinator S(t). Right: The path of
the (α/2)-stable subordinator S(t). We take α = 1.5 in this plot.

with S(0) = 0. Define the path of a single searcher X = {X(t)}t≥0 by

X(t) := B(S(t)) +X(0) ∈ Rd, t ≥ 0, (5)

where X(0) is some initial position independent of B and S. That is, X is a
random time change of Brownian motion (see Figure 1 for the special case that
X is a Lévy flight). Assuming that X(0) cannot lie in the target U , we prove
that the FHT in (3) has the universal short-time distribution,

P(τ ≤ t) ∼ P(X(t) ∈ U) ∼ ρt as t→ 0+, (6)

where ρ ∈ (0,∞) is the rate,

ρ :=

∫ ∞

0

P(B(s) +X(0) ∈ U) ν(ds), (7)

and ν(ds) is the Lévy measure of S. Throughout this paper, “f ∼ g” means
f/g → 1. If we set X(0) = 0, then the Gaussianity of B(s) means the integrand
in (7) is

P(B(s) +X(0) ∈ U) =
1

(4πs)d/2

∫

U

exp
(−‖x‖2

4s

)
dx.

We prove (6) for any nondeterministic subordinator S and any target set U ⊂ Rd
that is nonempty and is the closure of its interior.

Furthermore, if τ1, . . . , τN are independent and identically distributed (iid)
realizations of the FHT τ , then we prove that (ρN)TN converges in distribution
to a unit rate exponential random variable as N grows, which means

P
(
TN >

z

ρN

)
→ e−z as N →∞ for each z ≥ 0. (8)
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Figure 2: Fastest FHTs of Brownian motions versus Lévy flights. Starting from
x0 (green ball), the thick blue path illustrates a Brownian motion that is the
first to hit the target (red regions) out of many iid Brownian motions. Such
fastest Brownian motions tend to follow the shortest path to the target. The
thick black path illustrates the fastest Lévy flight out of many iid Lévy flights,
which does not take the shortest path to the target. This fastest Lévy flight
is obtained as a random time change of a typical Brownian motion (thin gray
path) that wanders around and moves in and out of targets. This illustration
of the fastest Lévy flight is characteristic of any subordinate Brownian motion.

Hence, TN is approximately exponentially distributed with rate ρN . Further-
more, if E[TN ] <∞ for some N ≥ 1, then we obtain all the moments of TN for
large N . In particular, we prove that

E[TN ] ∼
√

Variance[TN ] ∼ 1

ρN
as N →∞. (9)

We also extend (8) and (9) to the kth fastest FHT for any 1 ≤ k � N . In the
case that X is a superdiffusive Lévy flight whose probability density satisfies
the fractional Fokker-Planck equation in (2), the Lévy measure ν used in the
rate ρ in (7) is

ν(ds) = K
α/2

Γ(1− α/2)

1

s1+α/2
ds, s > 0. (10)

We emphasize that our results hold for any nondeterministic subordinator S
(meaning we exclude only the trivial case that S(t) is a deterministic function
bt for some b ≥ 0). In particular, the Lévy measure ν of the subordinator S
need not have the slow power law decay in (10) which gives rise to long jumps
of X in (5). Examples of other subordinators commonly used in modeling are
given in section 4.3.

Before outlining the rest of the paper, we comment on how our results on
subordinate Brownian motions relate to extreme statistics and large deviation
theory for standard diffusion processes (i.e. processes satisfying a standard drift-
diffusion Itô stochastic differential equation). First, the 1/N decay in (9) is much
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faster than the well-known 1/ lnN decay for diffusion processes [46]. Indeed,
the extreme FHT for diffusion processes has the following rather slow decay in
mean as the number of searchers N grows [47],

E[T diff
N ] ∼ L2

4D lnN
as N →∞, (11)

where L > 0 is a certain geodesic distance from the possible searcher starting
locations to the target and D > 0 is the characteristic diffusivity. Further
contrasting (9) and (11), a salient feature of extreme FHTs of diffusion processes
is that they only depend on the shortest path to the target since the fastest
searchers follow this geodesic path [47]. In particular, extreme FHTs of diffusion
are unaffected by changes to the problem outside of this path, such as altering
the size of the target, the size of the domain, or even the space dimension d ≥ 1.
In contrast, it is evident from the formula for the rate ρ in (7) that the extreme
FHTs of subordinate Brownian motion depend on all these global properties
of the problem, which reflects the fact that the fastest subordinate Brownian
searchers do not take a direct path to the closest part of the target. These results
are illustrated in Figure 2 for the case of a Lévy flight (though the illustration
is characteristic of any subordinate Brownian motion).

These differences stems from the difference between our result in (6) for
subordinate Brownian motion and Varadhan’s formula for diffusion processes
[48]. Varadhan’s formula is a celebrated result in large deviation theory which
implies that if Xdiff = {Xdiff(t)}t≥0 is a diffusion process, then

lim
t→0+

t lnP(Xdiff(t) ∈ U) = −L2/(4D) < 0, (12)

where L and D are as in (11). The result in (6) can thus be interpreted as a
type of Varadhan’s formula for subordinate Brownian motion.

The rest of the paper is organized as follows. In section 2, we review some
definitions and results from probability theory. In section 3, we present our
general mathematical results. In section 4, we illustrate our results in several
examples and compare the theory to numerical simulations. We conclude by
discussing relations to prior work. Proofs are presented in the appendix.

2 Preliminaries

We begin by reviewing properties of subordinators, subordinate Brownian mo-
tions, Lévy flights, fractional Laplacians, and related concepts.

2.1 Subordinators

A Lévy process is a continuous-time stochastic process that has iid increments
and satisfies certain technical conditions [49]. A subordinator is a one-dimensional,
nondecreasing Lévy process S = {S(t)}t≥0 with S(0) = 0. The distribution of
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S is determined by its Laplace exponent Φ(β), which satisfies

E
[
e−βS(t)

]
= e−tΦ(β), for all t ≥ 0 and β ≥ 0,

Φ(β) = bβ +

∫ ∞

0

(1− e−βs) ν(ds), for all β ≥ 0, (13)

where b ≥ 0 is the drift and ν is the Lévy measure. In particular, ν satisfies

ν((−∞, 0]) = 0 and

∫ ∞

0

min{1, s} ν(ds) <∞.

A Lévy measure ν(ds) can be interpreted as the rate that S increases by s > 0.
A subordinator S is called an (α/2)-stable subordinator for α ∈ (0, 2) if it

satisfies the following self-similarity or scaling property,

t−2/αS(t) =d S(1) for all t > 0, (14)

where =d denotes equality in distribution. In this case, S is a pure jump process
(i.e. zero drift b = 0) with Laplace exponent Φ(β) = Kβα/2 and Lévy measure
in (10) for someK > 0. Examples of other subordinators are given in section 4.3.

2.2 Subordinate Brownian motion

For any dimension d ≥ 1, let B = {B(s)}s≥0 be a d-dimensional Brownian
motion with mean-squared displacement

E
[
‖B(s)‖2

]
= 2ds for all s ≥ 0. (15)

It is well-known that B satisfies the diffusive scaling property,

s−1/2B(s) =d B(1) for all s > 0. (16)

If S is an independent subordinator with Laplace exponent Φ, then the Lévy
process X = {X(t)}t≥0 defined by

X(t) := B(S(t)) +X(0), t ≥ 0, (17)

is called a subordinate Brownian motion [50]. That is, X is a random time
change of Brownian motion. We assume that the possibly random initial condi-
tion X(0) ∈ Rd is independent of B and S. The Lévy exponent of X is Φ(|ξ|2),
meaning

E
[
eiξ·(X(t)−X(0))

]
= e−tΦ(|ξ|2), ξ ∈ Rd, t ≥ 0.

Subordinate Brownian motions are said to be isotropic since their Lévy expo-
nent depends only on |ξ|2. The infinitesimal generator of X can be written as
−Φ(−∆), where ∆ is the Laplacian in Rd [50]. It follows immediately from
(15)-(17) that the mean-squared displacement of X is

E
[
‖X(t)−X(0)‖2

]
= 2dE[S(t)] for all t ≥ 0.
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2.3 Lévy flights

If S is an (α/2)-stable subordinator with α ∈ (0, 2) as in (10), then we call
the corresponding subordinate Brownian motion X = {X(t)}t≥0 in (17) a Lévy
flight [10]. It follows immediately from (14)-(16) that a Lévy flight X satisfies
the superdiffusive scaling property,

t−1/αX(t) =d X(1) for all t > 0. (18)

Lévy flights arise as a scaling limit of a random walk with heavy-tailed, power
law jumps [9]. The probability density function for the position of the Lévy
flight satisfies the space fractional Fokker-Planck equation in (2) [11].

2.4 First hitting times (FHTs)

Let τ > 0 denote the FHT of the subordinate Brownian motion X in (17) to
some target set U ⊂ Rd,

τ := inf{t > 0 : X(t) ∈ U}, (19)

and let σ > 0 denote the FHT of the Brownian motion B to U ,

σ := inf{s > 0 : B(s) ∈ U}. (20)

We are not interested in the behavior of X after time τ , and thus it is enough
to consider the so-called stopped subordinate Brownian motion,

X(min{τ, t}) = B(S(min{τ, t})). (21)

In (21), we first subordinate Brownian motion and then stop the process when
it hits the target. Reversing the order of these two operations gives the so-called
subordinate stopped Brownian motion,

X̃(t) := B(min{σ, S(t)}) t ≥ 0. (22)

The FHT of (22) to U is,

τ̃ := inf{t > 0 : X̃(t) ∈ U} = inf{t > 0 : S(t) > σ}. (23)

While we are primarily interested in τ in (19) rather than τ̃ in (23), the fact
that τ̃ ≤ τ almost surely plays an important role in studying τ .

3 General analysis

In this section, we present our general analysis and results on subordinate Brow-
nian motions. We begin with two propositions.
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3.1 Two useful propositions

The first proposition computes the generator of a subordinator in a case that is
useful for our analysis.

Proposition 1. Assume F : [0,∞)→ [0, 1] is Lipschitz continuous and satisfies

F (0) = 0 and F ′(0) := lim
s→0+

F (s)

s
∈ [0,∞). (24)

If S = {S(t)}t≥0 is a subordinator with drift b ≥ 0 and Lévy measure ν, then

lim
t→0+

E[F (S(t))]

t
= ρ := bF ′(0) +

∫ ∞

0

F (s) ν(ds) <∞. (25)

Proposition 1 is useful for finding the short-time distribution of function-
als of subordinated processes. The next proposition shows how the short-time
distribution of a single FHT yields the asymptotic behavior of extreme FHTs.

Before stating the proposition, we recall a few definitions. A random variable
T has an exponential distribution with rate λ > 0 if P(T ≤ t) = 1 − e−λt

for t ≥ 0. If {Ti}ki=1 are k ≥ 1 iid exponential random variables with rate
λ > 0, then their sum has an Erlang distribution with rate λ > 0 and shape
k ∈ {1, 2, 3, . . . }, which means

P
( k∑

i=1

Ti ≤ t
)

= 1− Γ(k, λt)

Γ(k)
, t ≥ 0,

where Γ(a, z) :=
∫∞
z
ua−1e−u du is the upper incomplete gamma function. A

sequence of random variables {ZN}N≥1 converges in distribution to Z as N →
∞ if

P(ZN ≤ z)→ P(Z ≤ z) as N →∞,

for all points z ∈ R such that F (z) := P(Z ≤ z) is continuous. If {ZN}N≥1

converges in distribution to an Erlang random variable with rate λ and shape
k, then we write ZN →d Erlang(λ, k), and if k = 1, then we write ZN →d

Exponential(λ).

Proposition 2. Let {τn}n≥1 be an iid sequence of random variables with

P(τn ≤ t) ∼ ρt as t→ 0+, (26)

for some rate ρ > 0. Let Tk,N be the kth order statistic,

Tk,N := min
{
{τ1, . . . , τN}\ ∪k−1

j=1 {Tj,N}
}
, k ∈ {1, . . . , N}, (27)

where T1,N := min{τ1, . . . , τN}. The following rescaling of Tk,N converges in
distribution to an Erlang random variable with unit rate and shape k,

(ρN)Tk,N →d Erlang(1, k) as N →∞.
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If we assume further that E[T1,N ] <∞ for some N ≥ 1, then

E[(Tk,N )m] ∼ Γ(k +m)

Γ(k)

1

(ρN)m
for each moment m ∈ (0,∞) as N →∞.

Proposition 2 is a special case of Theorems 5 and 6 in [51] which were proven
for the case P(τ ≤ t) ∼ ρtq as t→ 0 for some ρ > 0 and q > 0.

3.2 Subordinated processes

Before considering subordinate Brownian motion, we first analyze subordinate
processes when the “parent” process is not necessarily Brownian. Let S =
{S(t)}t≥0 be a subordinator with drift b ≥ 0 and Lévy measure ν as in sec-
tion 2.1. Let Y = {Y (s)}s≥0 be a stochastic process independent of S. Define
the FHT to a set U in the state space of Y ,

σ := inf{s > 0 : Y (s) ∈ U}.

Define the two subordinations of the “parent” process Y ,

X(t) := Y (S(t)), X̃(t) := Y (min{σ, S(t)}), t ≥ 0.

Define the FHTs of X and X̃ to U ,

τ := inf{t > 0 : X(t) ∈ U}, τ̃ := inf{t > 0 : X̃(t) ∈ U} = inf{t > 0 : S(t) > σ}.

Since Y and S are independent, conditioning on the value of S(t) gives

P(τ̃ ≤ t) = P(σ ≤ S(t)) = E[F̃ (S(t))], t ≥ 0,

where F̃ (s) := P(σ ≤ s). Therefore, if F̃ (s) is merely Lipschitz and satisfies
(24), then Proposition 1 yields the short-time behavior of the distribution of τ̃ ,

lim
t→0+

P(τ̃ ≤ t)
t

= ρ̃ := bF̃ ′(0) +

∫ ∞

0

F̃ (s) ν(ds) <∞. (28)

Furthermore, if ρ̃ > 0 and T̃k,N is the kth fastest FHT of N iid realizations of τ̃

(see (27)), then Proposition 2 yields the large N distribution of T̃k,N in terms

of an Erlang random variable. Furthermore, if E[T̃1,N ] < ∞ for some N ≥ 1,

then Proposition 2 also yields the large N behavior of the mth moment of T̃k,N .
Next, notice that we have the following bounds on the distribution of the

FHT τ ,

P(X(t) ∈ U) ≤ P(τ ≤ t) ≤ P(τ̃ ≤ t) for all t ≥ 0, (29)

since τ̃ ≤ τ almost surely and X(t) ∈ U implies τ ≤ t. Since Y and S are
independent, we again condition on the value of S(t) to obtain

P(X(t) ∈ U) = E[F (S(t))], t ≥ 0,
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where F (s) := P(Y (s) ∈ U). Therefore, if F (s) is Lipschitz and satisfies (24),
then Proposition 1 yields

lim
t→0+

P(X(t) ∈ U)

t
= ρ := bF ′(0) +

∫ ∞

0

F (s) ν(ds) <∞. (30)

Therefore, the bounds in (29) and the limits in (28) and (30) yield the following
bounds on the short-time behavior of the distribution of τ ,

ρt+ o(t) ≤ P(τ ≤ t) ≤ ρ̃t+ o(t) as t→ 0+,

where f(t) = o(t) means f(t)/t → 0. If Tk,N is the kth fastest FHT of N iid
realizations of τ (see (27)), ρρ̃ > 0, and E[T1,N ] < ∞ for some N ≥ 1, then it
follows from Proposition 2 that we can bound the decay of the mth moment of
Tk,N as N →∞,

Γ(k +m)

Γ(k)

1

(ρ̃N)m
+ o(N−m) ≤ E[(Tk,N )m] ≤ Γ(k +m)

Γ(k)

1

(ρN)m
+ o(N−m).

Summarizing, if X is defined by subordinating some process Y , then Propo-
sition 1 yields information about the short-time distribution of X and FHTs of
X. Then, Proposition 2 translates this short-time distribution of a single FHT
into the behavior of extreme FHTs. Importantly, these conclusions require only
mild assumptions on the parent process Y . In the next subsection, we consider
the case that the parent process is a Brownian motion.

3.3 Subordinate Brownian motion

Let S = {S(t)}t≥0 be a subordinator as in section 2.1 and assume that S has
nontrivial Lévy measure,

ν((0,∞)) > 0, (31)

to exclude the trivial case in which S is the deterministic function S(t) = bt
for all t ≥ 0. Let B = {B(s)}s≥0 be an independent, d-dimensional Brownian
motion for any d ≥ 1 as in (15). Define X = {X(t)}t≥0 as the random time
change of B,

X(t) := B(S(t)) +X(0), t ≥ 0, (32)

where X(0) ∈ Rd is a possibly random initial position independent of S and B.
Let τ be the FHT of X to some target set U ⊂ Rd (see (19)). Assume U is

nonempty and is the closure of its interior, which precludes trivial cases such as
the target having zero Lebesgue measure. Assume that the distribution of X(0)
is a probability measure with compact support U0 ⊂ Rd that does not intersect
the target,

U0 ∩ U = ∅. (33)

11



Note that U0 and U are both closed sets, and thus (33) ensures that U0 and
U are separated by a strictly positive distance. As two examples, the initial
distribution could be a Dirac mass at a point X(0) = x0 = U0 ∈ Rd if x0 /∈ U
or it could be uniform on a set U0 satisfying (33).

Theorem 3. Under the assumptions of section 3.3, we have that

P(τ ≤ t) ∼ P(X(t) ∈ U) ∼ ρt as t→ 0+, (34)

where ρ :=

∫ ∞

0

P(B(s) +X(0) ∈ U) ν(ds) ∈ (0,∞). (35)

Furthermore, if TN := min{τ1, . . . , τN}, where {τn}n≥1 is an iid sequence of
realizations of τ , then

(ρN)TN →d Exponential(1) as N →∞. (36)

More generally, if Tk,N is the kth fastest FHT in (27), then

(ρN)Tk,N →d Erlang(1, k) as N →∞. (37)

If E[TN ] <∞ for some N ≥ 1, then

E[(Tk,N )m] ∼ Γ(k +m)

Γ(k)

1

(ρN)m
for each moment m ∈ (0,∞) as N →∞.

(38)

Before applying Theorem 3 to some examples in section 4, we make several
comments. First, the asymptotic equality P(τ ≤ t) ∼ P(X(t) ∈ U) in (34)
means that paths which hit the target before a short time t are much more
likely to stay in the target than to leave before t. While this is intuitive, it does
not hold for Brownian motion, except on a logarithmic scale (the assumption
in (31) means that X cannot be a Brownian motion). Second, (36) means
that TN is approximately exponentially distributed with rate ρN is N is large,
and similarly Tk,N is approximately Erlang distributed with rate ρN and shape
k. Third, the asymptotics in (34) and (38) differ markedly from the case of
diffusion. Further, the exponential distribution in (36) differs from the typically
Gumbel distributed extreme FHTs of diffusion [52]. See the Introduction section
for more on how Theorem 3 differs from the diffusion case. Finally, while (34)
gives the short-time distributions, these are equivalent to the “small noise”
distributions in the case of a Lévy flight. Indeed, if X is a Lévy flight with
generalized diffusion coefficient K, then (34) implies

P(X(t) ∈ U) ∼ Kt
∫ ∞

0

P(B(s) +X(0) ∈ U)
α/2

Γ(1− α
2 )

1

s1+α
2

ds as K → 0 + .

4 Examples and numerical simulation

We now apply Theorem 3 for various choices of the space dimension d ≥ 1, the
target U , and the subordinator S.

12



4.1 Half-line

Consider a one-dimensional Lévy flight X in R that starts at X(0) = 0 with
α ∈ (0, 2). That is, X is defined in (32) and S is an (α/2)-stable subordinator
defined in section 2.1. Suppose the target is U = (−∞,−L] for some L > 0.
Theorem 3 implies that τ has the short-time distribution in (34) with rate

ρ = K

∫ ∞

0

P(B(s) ∈ U)
α/2

Γ(1− α/2)

1

s1+α/2
ds =

Γ(α) sin(απ/2)

π

K

Lα
∈ (0,∞),

since P(B(s) ∈ U) = P(B(s) ≤ −L) = 1
2 [1 + erf(−L/

√
4s)] for s > 0. This

result for this example was derived formally in [32]. Theorem 3 further implies
the convergence in distribution in (36)-(37). In addition, the Sparre-Anderson
theorem [29] implies that P(τ > t) = O(t−1/2) as t→∞ which implies

E[TN ] =

∫ ∞

0

P(TN > t) dt =

∫ ∞

0

(P(τ > t))N dt <∞ if N ≥ 3.

Hence, Theorem 3 implies E[(TN )m] ∼ Γ(m + 1)(ρN)−m as N → ∞ for any
m > 0.

These conclusions of Theorem 3 about the asymptotic behavior of TN as
N → ∞ are illustrated in Figure 3 using stochastic simulations (simulation
details are given in section 4.6 below). In the top left panel, we plot the em-
pirical probability density of (ρN)TN obtained from stochastic simulations with
α = 1.5. As implied by Theorem 3, (ρN)TN converges in distribution to a unit
rate exponential random variable. In the top right panel, we plot the maxi-
mum difference between the empirical distribution of (ρN)TN and a unit rate
exponential random variable,

sup
z≥0

∣∣P((ρN)TN > z)− exp(−z)
∣∣, (39)

as a function ofN for different choices of α. The difference (39) is the Kolmogorov-
Smirnov distance. This plot shows that the convergence of (ρN)TN to an expo-
nential random variable is faster for small α. In the bottom two plots, we plot
the absolute errors between the simulations and the theory for the mean and
standard deviation,

∣∣E[TN ]− (ρN)−1
∣∣,

∣∣√Variance[TN ]− (ρN)−1
∣∣, (40)

as functions of N for α = 1.5 (bottom left panel) and α = 1 (bottom right
panel). As implied by Theorem 3, these errors decay faster than N−1 as N
grows.

4.2 Escape from a d-dimensional sphere

Consider a Lévy flight X in Rd with d ≥ 1 starting at X(0) = 0 ∈ Rd with
α ∈ (0, 2). Suppose the target is

U = {x ∈ Rd : ‖x‖ ≥ L}, (41)

13
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Figure 3: Comparison of Theorem 3 and empirical results obtained from stochas-
tic simulations for Lévy flights in the one-dimensional geometry in section 4.1.
Top left: Empirical probability density of (ρN)TN for α = 1.5. Top right:
Kolmogorov-Smirnov distance in (39) between the empirical probability density
of (ρN)TN and a unit rate exponential for different choices of α. Bottom: Ab-
solute errors for the mean and standard deviation in (40) for α = 1.5 (bottom
left) and α = 1 (bottom right). In all four plots, we take K = L = 1.
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so that τ is the escape time from a d-dimensional sphere of radius L > 0 centered
at the origin. Theorem 3 implies that (34) holds with

ρ = ρ(L) = K

∫ ∞

0

P(‖B(s)‖ ≥ L)
α/2

Γ(1− α/2)

1

s1+α/2
ds =

2αΓ(d+α
2 )

Γ(d2 )Γ(1− α
2 )

K

Lα
,

(42)

since P(‖B(s)‖ ≥ L) = Γ(d2 ,
L2

4s )/Γ(d2 ) for s > 0. Theorem 3 further implies the
convergence in distribution in (36)-(37). Furthermore,

E[TN ] ≤ E[τ ] =
[
ρΓ
(

1− α

2

)
Γ
(

1 +
α

2

)]−1

<∞ for any N ≥ 1,

where the formula for E[τ ] is due to Getoor [53]. Therefore, Theorem 3 implies
that E[(TN )m] ∼ Γ(m+ 1)(ρN)−m as N →∞ for any moment m ∈ (0,∞).

These results are illustrated in Figure 4 for dimension d = 3. In the top
left panel, we plot the empirical probability density of (ρN)TN obtained from
stochastic simulations with α = 1.5, which shows that (ρN)TN converges in
distribution to a unit rate exponential random variable. The top right panel
plots the Kolmogorov-Smirnov distance in (39) as a function of N for difference
choices of α. The bottom two plots show the absolute errors for the mean and
standard deviation in (40) for α = 1.5 (bottom left panel) and α = 1 (bottom
right panel). As implied by Theorem 3, these errors decay faster than N−1 as
N grows.

We emphasize that the large N decay of the moments of TN for Lévy flights is
much faster than for normal diffusion. To illustrate, let τdiff be the FHT of a pure
diffusion process {Xdiff(t)}t≥0 to the target, τdiff := inf{t > 0 : ‖Xdiff(t)‖ ≥ L}.
The mean FHT is E[τdiff] = L2

2dD [53], where D is the diffusivity of Xdiff. If
T diff
N := min{τdiff

1 , . . . , τdiff
N } is fastest FHT out of N iid realizations of τdiff,

then [46,47]

E[T diff
N ] ∼ L2

4D lnN
as N →∞.

Now, it is straightforward to choose the diffusion coefficient of Xdiff so that
E[τ ] = E[τdiff]. Hence, for these parameters, the mean FHT for a single Lévy
flight and a single diffusion process are identical, but the mean fastest FHT for
many Lévy flights is much faster than for many diffusion processes.

4.3 Tempered stable subordinator and gamma subordina-
tor

The slow power law decay of the Lévy measure ν of the stable subordinator S
means that a Lévy flight X often takes large jumps. This may be undesirable
in some modeling situations, and thus it common to “temper” the stable sub-
ordinator by multiplying its Lévy measure by a decaying exponential in order
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Figure 4: Comparison of Theorem 3 and empirical results obtained from stochas-
tic simulations for the Lévy flight escape problem in section 4.2 with d = 3.
Top left: Empirical probability density of (ρN)TN for α = 1.5. Top right:
Kolmogorov-Smirnov distance in (39) between the empirical probability density
of (ρN)TN and a unit rate exponential for different choices of α. Bottom: Ab-
solute errors for the mean and standard deviation in (40) for α = 1.5 (bottom
left) and α = 1 (bottom right). In all four plots, we take K = L = 1.
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to suppress these large jumps. Specifically, the so-called tempered stable sub-
ordinator is defined by zero drift and the following Laplace exponent and Lévy
measure,

Φ(β) = K((β + µ)α/2 − µα/2),
ν(ds)

ds
= K

α/2

Γ(1− α/2)

e−µs

s1+α/2
, s > 0,

(43)

for α ∈ (0, 2), K > 0, and µ > 0. Taking α → 0 in the exponent in the
Lévy measure of the tempered stable subordinator yields another subordinator
commonly used in modeling called the gamma subordinator, which has zero drift
and the following Laplace exponent and Lévy measure for some rate C > 0,

Φ(β) = C log
(β + µ

µ

)
,

ν(ds)

ds
= C

e−µs

s
, s > 0. (44)

Suppose S = {S(t)}t≥0 is the gamma subordinator defined by (44) and let
X(t) := B(S(t)) where B = {B(s)}s≥0 is a 3-dimensional Brownian motion.
Letting the target be as in (41), Theorem 3 implies that (34) holds with

ρ = C

∫ ∞

0

P(‖B(s)‖ ≥ L)
e−µs

s
ds = 2C

(
e−L

√
µ +

∫ ∞

L
√
µ

e−z

z
dz
)
.

Theorem 3 further implies the convergence in distribution in (36)-(37) and the
moment behavior in (38) (it is straightforward to check that E[TN ] ≤ E[τ ] <
∞). These results are illustrated in Figure 5 using stochastic simulations (see
section 4.6). In the left panel, we illustrate the convergence in distribution in
(36) by plotting the Kolmogorov-Smirnov distance in (39) as a function of N .
The moment convergence in (38) is illustrated in the right panel of Figure 5,
where we plot the absolute errors for the mean and standard deviation (see (40))
as functions of N .

4.4 Annular target in Rd

As in section 4.2, consider a Lévy flight X in Rd with X(0) = 0 ∈ Rd. However,
now suppose that the target is the annular region,

U = {x ∈ Rd : 0 < L− ≤ ‖x‖ ≤ L+}, where 0 < L− < L+.

Hence, (34) holds with ρ = ρ(L+)− ρ(L−) > 0, where ρ(L±) is defined in (42)
since

P(B(s) ∈ U) = P(‖B(s)‖ ≥ L−)− P(‖B(s)‖ ≥ L+).

This example illustrates some features not seen in the examples above. First,
the FHT τ to U is not the same as the first passage time, τfpt := inf{t > 0 :
‖X(t)‖ ≥ L−}. This is because, in contrast to normal diffusion, X is a jump
process, and therefore it may “leapover” the annulus U so that τfpt < τ . Second,
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Figure 5: Comparison of Theorem 3 and empirical results obtained from stochas-
tic simulations for the problem in section 4.3 of a Brownian motion subordinated
by a gamma subordinator. Left: Kolmogorov-Smirnov distance in (39) between
the empirical probability density of (ρN)TN and a unit rate exponential for dif-
ferent choices of α. Right: Absolute errors for the mean and standard deviation
in (40). In both plots, we take µ = C = L = 1.

the FHT is infinite with positive probability in dimensions d ≥ 3. That is, there
exists q(d) > 0 so that

P(τ =∞) = q(d) > 0 in dimension d ≥ 3. (45)

To see why (45) holds, note that X may leap over U with positive probability.
After leaping over U , the process starts at some radius larger than L+ and may
never return to a radius less than L+, as a result of the strong Markov property
and the fact that Brownian motion is transient if d ≥ 3. Third, (45) implies
that P(TN = ∞) = (q(d))N > 0 if d ≥ 3. Therefore, the mean fastest FPT is
infinite if d ≥ 3,

E[TN ] =∞ for every N ≥ 1 if d ≥ 3.

Hence, Theorem 3 ensures that the convergence in distribution in (36)-(37)
holds, but the moment asymptotics in (38) do not hold.

4.5 Poisson distributed targets in Rd

Consider again a Lévy flight X in Rd. Studies of the efficiency of superdiffusive
search often consider Poisson distributed targets [25]. To illustrate, suppose
{xi}i∈N is a d-dimensional Poisson spatial point process with constant density
λ > 0. Fix a realization of {xi}i∈N and suppose that the target is obtained by
making each point xi ∈ Rd into a ball of radius l > 0,

U := {x ∈ Rd : ‖x− xi‖ ≤ l for some i ∈ N}.

Prior work often considers the case of sparse targets, which means that λldVd �
1, where Vd := πd/2/Γ(1+d/2) > 0 is the d-dimensional volume of a unit sphere.
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If the support of the initial distribution of X(0) does not intersect the target
(see (33)), then Theorem 3 applies. To approximate the rate ρ in (34), we use
that P(B(s) ∈ U) vanishes exponentially as s→ 0+ and P(B(s) ∈ U)→ λldVd ∈
(0, 1) as s → ∞, since λldVd is the fraction of space occupied by targets. The
characteristic distance between neighboring xi and xj is L := (λVd)

−1/d � l
and so the characteristic timescale when B reaches the target is L2 (B has unit
diffusivity). Hence, if we approximate P(B(s) ∈ U) by 0 for s < L2 and by
λldVd for s > L2, then we obtain

ρ ≈ K
∫ ∞

L2

λldVd
α/2

Γ(1− α
2 )

1

s1+α/2
ds =

V
1+α/d
d

Γ(1− α
2 )
Kldλ1+α/d. (46)

If we define X via X(t) := B(S(t)) where S is the tempered stable subordinator
in (43) with µ > 0, then the analysis above holds and the approximation in (46)
is

ρ ≈ K
∫ ∞

L2

λldVd
α/2

Γ(1− α
2 )

e−µs

s1+α/2
ds =

KldVdαλµ
α/2Γ(−α2 , (Vdλ)−2/dµ)

2Γ(1− α
2 )

.

4.6 Stochastic simulation algorithm

We now give the stochastic simulation algorithm used to generate FHTs of Lévy
flights. Given a discrete time step ∆t > 0, we generate a statistically exact path
of the (α/2)-stable subordinator S = {S(t)}t≥0 on the discrete time grid {tk}k∈N
with tk = k∆t via

S(tk+1) = S(tk) + (∆t)2/αΘk, k ≥ 0,

where S(t0) = S(0) = 0 and {Θk}k∈N is an iid sequence of realizations of [54]

Θ =
sin(γ(V + π/2)

(cos(V ))1/γ

(
cos(V − γ(V + π/2))

E

) 1−γ
γ

, with γ := α/2 ∈ (0, 1),

where V is uniformly distributed on (−π/2, π/2) and E is an independent expo-
nential random variable with E[E] = 1. This allows us to generate a statistically
exact path of the Brownian motion {B(s)}s≥0 on the (random) discrete time
grid {S(tk)}k∈N via

B(S(tk+1)) = B(S(tk)) +
√

2(K∆t)2/αΘkξk, k ≥ 0,

where {ξk}k∈Z is an iid sequence of standard d-dimensional Gaussian vectors.
Finally, we obtain a statistically exact path of the Lévy process X = {X(t)}t≥0

on the discrete time grid {tk}k∈N via X(tk) = B(S(tk)) for k ≥ 0. The FHT τ
to U ⊂ Rd is then approximated by k := min{k∆t ≥ 0 : X(tk) ∈ U}.

Paths of the gamma subordinated Brownian motion in section 4.3 are sim-
ulated using the same method, except that {Θk}k∈N is an iid sequence of real-
izations of gamma random variables with shape C∆t > 0 and rate µ > 0. The
data in Figures 3-5 is computed from 105 independent trials with ∆t = 10−5.
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5 Discussion

Most studies of search processes measure the speed of search in terms of the
FHT of a single searcher. In this paper, we considered the scenario in which
there are N � 1 iid searchers and studied the FHT of the fastest searcher to find
the target. Our analysis involved finding the short-time distribution of the FHT
of a single searcher and using this to find the distribution and moments of the
FHT for the fastest searcher. Our results apply to searchers whose paths follow
a subordinate Brownian motion, which is any process obtained by composing
a Brownian motion with a Lévy subordinator. We were primarily interested in
the case that the searchers move by Lévy flights, which is a prototypical model
for superdiffusive search [10].

Previous analysis of extreme FHTs has focused on diffusion, which began
with the work of Weiss, Shuler, and Lindenberg in 1983 [46]. The 1/N decay of
mean extreme FHTs for subordinate Brownian motion contrasts sharply with
the well-known 1/ lnN decay of extreme FHTs for diffusion (compare (9) and
(11)). See the Introduction section for more on how extreme statistics and large
deviation theory for subordinate Brownian motion compare to diffusion. Our
results also contrast with results on extreme FHTs of subdiffusive processes
modeled by a time fractional Fokker-Planck equation [55]. For searchers ex-
ploring a discrete space, an interesting recent study analyzed extreme FHTs for
Lévy walks on the two-dimensional integer lattice [45], which was motivated
by the Lévy flight foraging hypothesis described in the Introduction section
above. Other works investigating extreme FHTs on discrete state networks
include [42,56] in discrete time and [57] in continuous-time.

Biological search processes are often modeled by superdiffusive Lévy walks
[4], which are similar to Lévy flights but move with a finite velocity [14]. In
particular, Lévy walks follow ballistic flights of uniformly distributed random
directions and constant speed, and the lengths of the flights are chosen from a
probability density with the slow power law decay in (1). Lévy walks are thus
similar to run-and-tumble processes, except run-and-tumble models typically
assume the distance of each ballistic flight (i.e. a “run”) is chosen from an
exponential distribution. The choice of an exponential distribution makes a
run-and-tumble a piecewise deterministic Markov process. While Lévy walks
are not Markovian, they are nonetheless piecewise deterministic in the sense
that the motion is deterministic (constant velocity in a fixed direction) between
turns. Extreme FHTs of piecewise deterministic processes were analyzed in [58],
and it would be interesting to apply that theory to Lévy walks.

6 Appendix

In this appendix, we prove the results in the main text.

Lemma 4. Assume S = {S(t)}t≥0 is a compound Poisson process plus a drift,
meaning its Laplace exponent is in (13) with b ≥ 0 and

∫∞
0

ν(dz) ∈ (0,∞). If
F : [0,∞)→ [0, 1] is continuous and satisfies (24), then (25) holds.
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Proof of Lemma 4. By assumption, we have that S(t) = bt+
∑M(t)
m=1 Zm, where

M = {M(t)}t≥0 is a Poisson process with rate λ =
∫∞

0
ν(dz) ∈ (0,∞) and

{Zm}m≥1 are iid nonnegative random variables independent of M . In this case,
the probability measure of Zm is ν(dz)/λ. Decomposing the mean based on the
value of M(t) yields

E[F (S(t))] = E[F (S(t))1M(t)=0] + E[F (S(t))1M(t)=1] + E[F (S(t))1M(t)≥2],

where 1A denotes the indicator function on an event A. Since M(t) is a Poisson
random variable with mean λt and F is bounded, we have that E[F (S(t))1M(t)≥2] =
o(t) as t→ 0+. Furthermore, since M and Z1 are independent, we have that

E[F (S(t))1M(t)=1] = P(M(t) = 1)E[F (bt+ Z1)] = λte−λtE[F (bt+ Z1)],

E[F (S(t))1M(t)=0] = P(M(t) = 0)E[F (bt)] = e−λtF (bt).

Since F is bounded, F is continuous, and
∫∞

0
ν(ds) <∞, we complete the proof

by applying the Lebesgue dominated convergence to conclude

E[F (bt+ Z1)] =
1

λ

∫ ∞

0

F (bt+ s) ν(ds)→ 1

λ

∫ ∞

0

F (s) ν(ds) as t→ 0 + .

Proof of Proposition 1. The boundedness of F and (24) ensure that the integral
in (25) is finite. Let ε = 2−j > 0 for some j ∈ {0, 1, 2, . . . } and define

S[ε,∞)(t) := bt+

∫∫

z∈[ε,∞), t′∈[0,t]

zN(dt′,dz),

S(0,ε)(t) :=

∫∫

z∈(0,ε), t′∈[0,t]

zN(dt′,dz),

(47)

where N is a Poisson point process on the first quadrant with intensity measure
dt′ ν(dz). The process S can then be written as S(t) = S[ε,∞)(t) + S(0,ε)(t).
Since F is Lipschitz, there exists a constant κ > 0 so that

E[F (S[ε,∞)(t))]− κE[S(0,ε)(t))] ≤ E[F (S(t))]

≤ E[F (S[ε,∞)(t))] + κE[S(0,ε)(t))] for all t > 0.
(48)

Since S[ε,∞) is a compound Poisson process plus a drift, Lemma 4 implies that

lim
t→0+

t−1E[F (S[ε,∞)(t))] = ρε := bF ′(0) +

∫ ∞

ε

F (s) ν(ds) <∞. (49)

To handle the terms in (48) involving S(0,ε)(t), recall that ε = 2−j and
observe that a dyadic partitioning of the interval (0, ε) yields

S(0,ε)(t) :=

∫∫

z∈(0,ε), t′∈[0,t]

zN(dt′,dz) ≤
∞∑

k=j

2−kN([0, t]× [2−k−1, 2−k]).
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Since N is a Poisson point process, we have that

2−kE
[
N([0, t]× [2−k−1, 2−k])

]
= 2t

∫ 2−k

2−k−1

2−k−1 ν(dz) ≤ 2t

∫ 2−k

2−k−1

z ν(dz).

Therefore,

E[S(0,ε)(t)] ≤ 2t

∫ ε

0

z ν(dz). (50)

Combining (48) with (49) and (50) yields

ρε − 2κ

∫ ε

0

z ν(dz) ≤ lim inf
t→0+

E[F (S(t))]

t
≤ lim sup

t→0+

E[F (S(t))]

t
≤ ρε + 2κ

∫ ε

0

z ν(dz).

Since these bounds converge to ρ as ε→ 0+, the proof is complete.

Lemma 5. Let H : [0,∞) → [0, 1] be nondecreasing and satisfy (24). Then
lim supt→0+ E[H(S(t))]/t <∞.

Proof of Lemma 5. Using the definitions in (47), we have that

H(S(t)) = H(S[ε,∞)(t) + S(0,ε)(t)) ≤ H(2S[ε,∞)(t)) +H(2S(0,ε)(t)).

Since 2S[ε,∞)(t) is a compound Poisson process plus a drift, Lemma 4 ensures
that limt→0+ E[H(2S[ε,∞)(t))]/t < ∞. Since H satisfies (24), there exists an
s0 ∈ (0, 1] and a θ ≥ 1 so that H(s) ≤ θs for all s ∈ (0, s0]. Therefore,
H(s) ≤ θs/s0 for all s ≥ 0. The proof is complete since (50) implies

E[H(2S(0,ε)(t))] ≤
2θ

s0
E[S(0,ε)(t)] ≤

4θt

s0

∫ ε

0

z ν(dz).

Proof of Theorem 3. Define F (s) := P(B(s) + X(0) ∈ U) ∈ [0, 1] for s ≥ 0.
Using the independence of B and X(0), we have

F (s) =
1

(4πs)d/2

∫∫

U×U0

exp
(−‖x− x0‖2

4s

)
µ0(dx0) dx, if s > 0, (51)

where µ0 is the probability measure of X(0) with support U0 ⊂ Rd. Using
standard results for interchanging differentiation with integration (for example,
see Theorem A.5.3 in [59]), F (s) is infinitely differentiable and each deriva-
tive is bounded. Furthermore, (33) ensures that F (0) = F ′(0) = 0 and thus
Proposition 1 implies

lim
t→0+

P(X(t) ∈ U)

t
= lim
t→0+

E[F (s)]

t
= ρ :=

∫ ∞

0

P(B(s) +X(0) ∈ U) ν(ds).

(52)
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In the first equality in (52), we have used the independence of B, S, and X(0).
Note that ρ ∈ (0,∞). Indeed, Proposition 1 implies ρ < ∞. Further, ρ > 0 by
(i) the assumption in (31), (ii) the fact that B(s) ∈ Rd is a Gaussian random
variable with variance proportional to s > 0, and (iii) U has strictly positive
Lebesgue measure (since U is nonempty and the closure of its interior).

To complete the proof, we therefore need to show that

lim
t→0+

t−1P(τ ≤ t) = lim
t→0+

t−1P(X(t) ∈ U). (53)

For t > 0, define the enlarged target Uδ(t) := {x ∈ Rd : infy∈U ‖x− y‖ ≤ δ(t)},
where we set δ(t) := t1/4 > 0 in order to satisfy

lim
t→0+

δ(t) = 0 and lim
t→0+

δ(t)t−1/2 =∞. (54)

Decomposing the event τ ≤ t based on the position of X(t) yields

P(τ ≤ t) = P(X(t) ∈ U) + P(τ ≤ t,X(t) ∈ U δ(t)\U) + P(τ ≤ t,X(t) /∈ U δ(t)).

Therefore, showing (53) amounts to showing that

lim
t→0+

t−1P(τ ≤ t,X(t) ∈ U δ(t)\U) = 0 = lim
t→0+

t−1P(τ ≤ t,X(t) /∈ U δ(t)). (55)

We first prove the first equality in (55). Since X(t) = B(S(t)) + X(0) and
B, X(0), and S are independent, integrating over the possible values of S(t)
yields

P(τ ≤ t,X(t) ∈ Uδ(t)\U) ≤ P(X(t) ∈ Uδ(t)\U) = E[F0(S(t); t)],

where F0(s; t) := P(B(s) + X(0) ∈ U δ(t)\U). By the assumption in (33), we
may take t0 sufficiently small so that Uδ(t0) ∩ U0 = ∅. Therefore, if t ∈ (0, t0],
then F0(s; t) satisfies the assumptions of Proposition 1 (by the same argument
used for F (s) in (51)). Therefore, Proposition 1 implies that we may take t
sufficiently small so that,

t−1P(τ ≤ t,X(t) ∈ Uδ(t)\U) ≤ 2

∫ ∞

0

P(B(s) +X(0) ∈ U δ(t0)\U) ν(ds) <∞.

Now, it is immediate that P(B(s) + X(0) ∈ Uδ(t0)\U) → 0 as t0 → 0 for each
s ≥ 0. Hence, the Lebesgue dominated convergence theorem implies

lim
t0→0+

∫ ∞

0

P(B(s) +X(0) ∈ U δ(t0)\U) ν(ds) = 0,

and thus the first equality in (55) holds. Turning to the second equality in (55),
conditioning that τ ≤ t implies

P(τ ≤ t,X(t) /∈ Uδ(t)) = P(X(t) /∈ U δ(t) | τ ≤ t)P(τ ≤ t),
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and the fact that τ̃ ≤ τ almost surely and Lemma 5 imply

lim sup
t→0+

t−1P(τ ≤ t) ≤ lim sup
t→0+

t−1P(τ̃ ≤ t) <∞,

since P(τ̃ ≤ t) = E[H(S(t)] where H(s) := P(σ ≤ s) is nondecreasing. Next, it
follows from the strong Markov property [49] that

P(X(t) /∈ U δ(t) | τ ≤ t) ≤ sup
r∈(0,t]

P0(‖X(r)‖ ≥ δ(t)),

where P0 denotes the probability measure conditioned that X(0) = 0. Again
using that B and S are independent, we have that

P0(‖X(r)‖ ≥ δ(t)) = E[F1(S(r); t)] ≤ E[F1(S(t); t)], if r ∈ [0, t], (56)

since F1(s; t) := P(‖B(s)‖ ≥ δ(t)) is an increasing function of s and S is almost
surely nondecreasing. Define

δ1(t) := (1 + b)t > 0, (57)

and observe that (56) implies that for r ∈ (0, t],

P0(‖X(r)‖ ≥ δ(t)) ≤ E[F1(S(t); t)1S(t)<δ1(t)] + E[F1(S(t); t)1S(t)≥δ1(t)].

Since S(t)/t converges in probability to b ≥ 0 as t→ 0+ [49], we have that

E[F1(S(t); t)1S(t)≥δ1(t)] ≤ P(S(t) ≥ δ1(t)) = P(S(t) ≥ (1 + b)t)→ 0 as t→ 0 + .

Next, since F1(s; t) is an increasing function of s, we have that

E[F1(S(t); t)1S(t)<δ1(t)] ≤ F1(δ1(t); t) = P(‖B(δ1(t))‖ ≥ δ(t)).

The Brownian scaling in (16) and the choices of δ(t) in (54) and δ1(t) in (57)
imply

P(‖B(δ1(t))‖ ≥ δ(t)) = P(‖B(1)‖ ≥ δ(t)(δ1(t))−1/2)→ 0 as t→ 0 + .

Hence, the second equality in (55) holds and the proof is complete.
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