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Living, working and exercising in extreme terrestrial environments are challenging tasks
even for healthy humans of the modern new age. The issue is not just survival in
remote environments but rather the achievement of optimal performance in everyday
life, occupation, and sports. Various adaptive biological processes can take place to
cope with the specific stressors of extreme terrestrial environments like cold, heat,
and hypoxia (high altitude). This review provides an overview of the physiological
and morphological aspects of adaptive responses in these environmental stressors
at the level of organs, tissues, and cells. Furthermore, adjustments existing in native
people living in such extreme conditions on the earth as well as acute adaptive
responses in newcomers are discussed. These insights into general adaptability of
humans are complemented by outcomes of specific acclimatization/acclimation studies
adding important information how to cope appropriately with extreme environmental
temperatures and hypoxia.

Keywords: heat, cold, high altitude, natives, sojourners, pre-acclimatization

GENERAL ASPECTS OF ADAPTING TO EXTREME
ENVIRONMENTS

Coping with extreme environments is challenging. It is not just survival in extreme terrestrial
environments, but rather the necessity for performance in everyday life, occupation and sports.
Both survival and performance, require coping with specific environmental stressors by adaptive
biological processes of various kinds, which are adaptation, acclimatization, acclimation, and
habituation (Folk, 1966; IUPS, 1987; Gunga, 2015). Adaptation represents an evolutionary process
as a result of natural selection occurring over generations, which results in the expression of certain
genes that optimize functions (genetic adaptation). It also occurs in the course of the life-span of an
organism, where specialized organ functions are required (phenotypic adaptation). Acclimatization
is initiated by exposure to extreme natural environments of previously not-exposed individuals
and occurs gradually within days to weeks, sometimes even months, enabling maintenance of
performance. In contrast to acclimatization, acclimation involves adaptive processes induced by
exposures to habitats, where specific types of extreme conditions are simulated in order to achieve
acclimatization for later exposure to naturally occurring extreme habitats. Finally, habituation
defines the process of reducing physiological and psychological stress responses upon repeated
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stimuli, i.e., improved tolerance. Adjustments include
physiological and morphological, as well as behavioral responses,
of which in the following some short examples will be given.

Physiological responses, for instance help maintaining
homeothermy upon thermal stress (Moen, 1968). In heat
stress, cooling mechanisms include increased skin blood flow
and sweating and at the same time circulatory measures
are initiated to maintain central blood pressure, e.g., by
an increase in plasma volume and cardiac output (Taylor,
2014). In cold stress, heat loss is prevented by peripheral
vasoconstriction and heat production by shivering and
uncoupled mitochondrial activity (Manou-Stathopoulou et al.,
2015). In hypoxic stress, i.e., high altitude, hyperventilation,
hemoconcentration, and stimulated erythropoiesis are
physiological responses to warrant oxygen delivery to tissues
(West, 2006, 2017).

Morphological adjustments in extreme thermal stress for
instance include alterations in the body mass to body surface ratio
and in the amount of subcutaneous fat mass. Both are increased
in cold environments (Newman, 1961), which makes sense due
to the heat-conserving properties. Larger size of chest and lung
is found in high altitude natives (Newman, 1961), eventually
enabling higher ventilatory capacity.

Behavioral adjustments in turn play an important role for life
of modern humans in extreme environmental conditions. They
improved with advances in technology and include appropriate
clothing, shelter, air conditioning, and oxygen enrichment of
facilities (Makinen, 2010; West, 2015, 2017).

In contrast to acute responses, long-term adjustments require
altered cellular functions, which are the basis of optimized
performance of organs and the entire organism, and which
include altered regulation of metabolic pathways as well as altered
gene and protein expression. Typical examples are the heat
response induced by heat shock proteins (HSP) (Michel and
Starka, 1986), uncoupling proteins (UCPs) in brown adipose
tissue for heat production (Cannon and Nedergaard, 2004),
and the adjustments of aerobic and anaerobic metabolism to
hypoxia, which is governed by a family of hypoxia-induced
transcription factors (HIFs) (Semenza, 2012). It needs to
be pointed out that none of these is truly specific to the
respective environmental stressor, because all of them also
respond to other stressors such as oxidants, inflammation, and
cancer.

Although a complete overview on adaptations at various
levels by far exceeds the scope of this review at this point, the
examples of adaptive responses discussed above may highlight
their wide variety and complexity, as well as the capacity of
physiological, morphological, and behavioral means of humans
to adapt, which is best seen by studying natives living in
remote, extreme habitats. Better understanding of these adaptive
processes will provide the knowledge on survival, performance
and of disease states of humans living in extreme terrestrial
environments and how to survive and to achieve optimal
performance if not being a native. And it is of particular
importance when the organism has to cope not only with
a single but with combinations of stressors (Gibson et al.,
2017).

HUMANS EXPOSED TO EXTREME
ENVIRONMENTAL TEMPERATURES

Humans are homothermic, and to ensure optimal physiological
function, body temperature has to be regulated within a relatively
narrow range, i.e., 35–37.5◦C. When exposed to extreme
environmental temperatures the thermoregulatory system is
challenged to maintain a stable core temperature such as by
preventing heat loss and increased thermogenesis in the cold, and
by removing heat when the core temperature is increased. Specific
morphological, physiological and behavioral adjustments enable
people to live a normal life in such extreme areas.

Adaptive Responses to Cold
Adaptation of Natives to Cold Environments
Early studies on human cold adaptation demonstrated lower
ratios of body surface area to body mass of people living
in colder regions protecting them from extensive heat loss
(Ruff, 1994). This relationship, however, has become less
significant with changing nutrition pattern over time (Newman,
1961; Katzmarzyk and Leonard, 1998; Makinen, 2010). People
living in cold environments exhibit different types of cold
adaptation depending on the climate and lifestyle. Types of
adaptation can be distinguished by physiological responses to
cold exposure, namely, hypothermic, insulative, metabolic, or
mixed (Scholander et al., 1958a; Makinen, 2010) (Table 1).
A hypothermic response is characterized by a more pronounced
drop in core temperature when compared to non-acclimatized
individuals. A decrease of the skin temperature indicates an
insulative response, and metabolic thermogenesis (shivering
and non-shivering) a metabolic response (Makinen, 2010).
Insulation may have a passive (subcutaneous fat) and an active
(vasoconstriction of the skin and peripheral tissues) component.

For example, Australian Aborigines live in a semi-desert,
and they sleep barely covered and without shelter at an
ambient temperature of about 4◦C at night. They do not
increase metabolic heat production during exposure to the
cold and decrease body temperature compared to non-
acclimatized individuals indicating a hypothermic-insulative
adaptation (Scholander et al., 1958b). Kalahari Bushmen
demonstrate somewhat different responses without shivering
when sleeping at about 0◦C. They usually sleep around fires
generating a fairly comfortable ambient temperature. They
show a small increase in metabolic heat production but
a less pronounced decrease in body temperature indicative
of insulative adaptation (Wyndham and Morrison, 1958).
Whereas rather mild cold and low caloric intake results
in insulative adaptation (Australian Aborigines), metabolic
adaptation is typically associated with exposure to more severe
cold and high caloric intake (Arctic Inuit) (Leonard et al.,
2002; Makinen, 2010). Metabolic adaptation was also seen
in Alacuf Indians of Tierra del Fuego who demonstrate a
much higher metabolic heat production during cold exposure
when compared to non-acclimatized individuals (Hammel,
1960). Beside behavioral responses, extreme cold environment
triggers also shivering and rather mild cold conditions provoke
non-shivering thermogenesis (Janský, 1973). Cold-induced
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TABLE 1 | Most important adaptive responses to acute, repeated and chronic exposure to cold and heat.

COLD HEAT

Acute exposure

Cutaneous vasoconstriction Cutaneous vasodilation

Shivering Sweating

Few short-term exposures

Habituation: reduced cold shock response Plasma volume expansion

Enhanced sweating and cutaneous blood flow

Long-term exposures, natives

Various forms of adaptation (individual or mixed)

Insulative: Vasoconstriction of skin and peripheral tissue Evaporative: Optimal evaporation response with minimized
sweat dripping

Subcutaneous fat increase Skin blood flow adjustments

Metabolic: Shivering and non-shivering thermogenesis Metabolic: Metabolic rate adjustments (?)

Hypothermic: Drop in core temperature Hyperthermic: Higher resting core temperature (?)

recruitment of brown fat represents an important source
for non-shivering heat production (van der Lans et al.,
2013). An up to 19% higher basal metabolic rate has been
shown for indigenous populations living in polar regions
compared to people living in temperate climates (Leonard
et al., 2002). The higher basal metabolic rate seems to be
linked to seasonal thyroid responses in these populations.
In summary, people native to cold areas exhibit primarily
metabolic or insulative types of adaptation depending on the
severity of cold exposure and energy intake. However, behavioral
responses, including life in houses, heating, and clothes,
provide much more protection than physiological responses
alone.

Adaptation Due to Repeated Cold Exposure
Various occupations, sports and adventures are associated with
seasonal and repeated cold exposures over long time periods
(months to years). Examples are pearl divers in Korea, winter
swimmers, participants in polar and high-altitude expeditions,
skiing instructors, mountain guides, and downhill and nordic
ski racers. It is difficult to distinguish whether adaptive effects
arose from stimuli like cold, altitude, or high-intensity exercise.
Winter swimmers (Vybíral et al., 2000) and female pearl divers
from Korea (Tipton and Bradford, 2014), who are primarily
exposed to cold water, may exhibit two or all three forms of
cold adaptation (insulative, hypothermic, and metabolic) and,
additionally, local cold adaptation. In winter swimmers shivering
occurred considerably later during cooling when compared to
not cold-adapted subjects, which was explained by reduced heat
loss, more pronounced non-shivering thermogenesis, but less
total heat production (Vybíral et al., 2000). Insulative adaptation
was demonstrated in the cold-adapted during swimming, and
hypothermic adaptation occurred when only sitting in cold
water (Tipton and Bradford, 2014). Improved cold tolerance
has also been shown in pearl divers daily immersed in
cold water for several hours (Hong, 1973). Besides insulative,
hypothermic and metabolic forms of adaptation those women
also exhibited reduced heat flux in the limbs indicating local cold
adaptation. Interestingly, however, pearl divers lose their cold

adaptation within 3–5 years when wearing wet suits (Park et al.,
1983).

Acclimation and Habituation to Cold Environments
In contrast to the excellent capabilities of humans for heat
acclimatization, potential acclimatization to cold remains a
matter of discussion (Brazaitis et al., 2014a). Acclimation
studies are most appropriate to investigate type and time
course of cold responses under standardized conditions and
in individuals/populations of interest. Most studies have been
performed by cold water immersion due to the high conductivity
and thermal capacity of water compared to air. Cold water
immersion elicits typically a cold shock response characterized
by sympathetic activation, hyperventilation and tachycardia
(Castellani and Tipton, 2015). However, repeated immersions in
cold water (habituation) considerably decreases these responses,
and this depression is lasting for 7–14 months (Tipton et al.,
2000) (Table 1). Biological mechanisms involved in habituation
of the cold shock response are still unclear. Mental processes
seem just as involved as cold stimuli per se and the frontal
cortex area seems to play a pivotal role (Glaser and Griffin, 1962;
Castellani and Tipton, 2015). Even a small number of repeated
short cold exposures (e.g., 3 min × 60 min) resulted in less
discomfort, delayed, and reduced intensity of shivering associated
with lower skin temperature, which is indicative for insulative
adjustment (Makinen, 2010). Longer durations (90 min – 3 h)
of cold water immersion (10–18◦C) resulted in insulative or
combined metabolic insulative acclimation (Young et al., 1986).
It has been suggested that skin cooling is sufficient to provoke
the vasoconstrictor response, whereas a decrease (0.8◦C) in
core temperature seems to be necessary to induce sympathetic
activation (Makinen, 2010).

Types of acclimatization/acclimation to cold air depend
mainly on the duration of exposure. Whereas exposures for up
to about 1 h cause habituation with a later onset of shivering
and maintenance of skin and core temperatures (Hesslink et al.,
1992; Makinen, 2010), longer exposures (3 h to days) result in
hypothermic habituation (Mathew et al., 1981). A few studies
suggest that chronic cold exposure (weeks), e.g., during camping
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in remote areas without sufficient cold protection, triggers
metabolic acclimatization (Scholander et al., 1958a).

Studies have typically been performed under resting
conditions. It is remarkable that exercise during the cold
exposure seems to blunt some of the acclimation effects, e.g., the
hypothermic acclimation observed during rest (Launay et al.,
2002). Another study demonstrated increased susceptibility
to hypothermia after multiple days of severe exertion in
cold environment (Castellani et al., 2001). This topic has
not been investigated extensively and urgently needs further
attention.

Physiological and Pathophysiological Responses to
Acute Cold Exposure
Acute cold exposure causes powerful autonomic homoeostatic
responses in order to prevent heat loss and to maintain core body
temperature. Cutaneous vasoconstriction and thermogenesis
(Table 1), primarily by skeletal muscle contractions, are most
important and are particularly powerful when cooling involves
both superficial and deep thermoreceptors (Stocks et al.,
2004). Thermogenesis may be achieved by voluntary behavioral
responses, e.g., physical activity, but occurs involuntarily by
shivering. The magnitude of the effector responses to cold are
varying depending on the severity and duration of exposure,
physical activity and clothing, and individual characteristics
such as age, gender, and body composition (Stocks et al.,
2004). When these responses are not sufficient to maintain
core temperature, the risk of hypothermia will occur if not
protected by appropriate clothing (Burtscher et al., 2012).
Moreover, peripheral vasoconstriction may also enhance the risk
of cold injury and impair manual dexterity. The occurrence
of freezing and non-freezing cold injuries depends on the
severity and duration of cold exposure (Vale et al., 2017)
and may predispose for future cold injury (Gorjanc et al.,
2018). Systemic blood pressure (systolic and diastolic) typically
increases, and heart rate may increase, e.g., when only legs
are cold exposed, or decrease with whole body exposure,
again depending on the severity of cold (Korhonen, 2006).
The augmentation of the double product (systolic blood
pressure × heart rate) indicate elevated myocardial oxygen
consumption. This fact may in part explain the cold-induced
provocation of angina attacks in patients suffering from
coronary artery disease, especially in those with an abnormal
baroreceptor function (Marchant et al., 1994). In addition,
elevated blood pressure and centralization of blood might
cause an increase of diuresis (cold-induced pressure diuresis).
The primary effect of cold air on the respiratory system is
to decrease minute ventilation and chemosensitivity which is
not really efficient in humans. More importantly, however,
bronchoconstriction, airway congestion, secretion and reduced
mucociliary clearance may compromise pulmonary mechanics
in subjects with cold- or exercise induced asthma (Giesbrecht,
1995). In addition, acute cold stress was shown to impair
vigilance, overall mood, motor, and cognitive performance
(Brazaitis et al., 2014b). However, most of these responses to acute
cold exposure diminish or even disappear with habituation or
acclimation.

Cellular Responses to Cold Exposure
Prevention of cooling can be achieved by increasing heat
production by excessive breakdown of stored nutrients such
as fat, which is called non-shivering thermogenesis. Prolonged
cold exposure results in an increase in PGC1α protein
expression, which in turn stimulates mitochondrial biogenesis,
e.g., in skeletal muscle (Chung et al., 2017). In white and in
brown adipose tissue the cold-sensing receptor TRPM8 seems
to initiate increased mitochondrial thermogenesis (Frontini
and Cinti, 2010; Rossato et al., 2014) by up-regulating
mitochondrial UCPs (e.g., UCP1). In brown adipose tissue UCP1
uncouples mitochondrial oxygen consumption from oxidative
phosphorylation resulting in heat production, which is an
important means to regulate body temperature in cold ambient
temperatures, in particular in small mammals and human infants
(Cannon and Nedergaard, 2004). Such mechanism also occurs
in beige adipose tissue (Shabalina et al., 2013), whose formation
is stimulated in the cold (Fisher et al., 2012) or by caloric
restriction (Fabbiano et al., 2016). Notably, acute exposures (3 h)
of healthy humans to cold temperatures (7◦C) seems to not
elicit changes in skeletal muscle gene expression (Zak et al.,
2017). Therefore, it has been discussed that exercise might be
a necessary accompanying condition to induce expression of
respective genes when acutely exposed to extreme environmental
temperatures.

Clinical and Practical Relevance of Cold Acclimation
The question arises which lessons can be learned from the present
findings on cold adaptive responses and how does knowledge
impact on general health and/or on performance in profession
and sports practiced in cold environments. Studies addressing
these questions are rare and thus the following suggestions are
sometimes speculative.

It seems reasonable that cold habituation accompanied by
more comfortable feeling and delayed shivering responses would
be beneficial during work and exercise in cold conditions.
However, the assumption that reduced thermal responses of
hand/fingers would enhance dexterity and thus the ability to
work/exercise under cold ambient conditions has not been
confirmed (Muller et al., 2014). Moreover, repeated intense
exercise of outdoor winter athletes seems to provoke exercise-
induced asthma obviously without beneficial acclimation effects
(Carlsen, 2012). Furthermore, acute cold exposure such as
exposures to other extreme environmental conditions, are
associated with increased sympathetic activity and the risk of
cardiac events in susceptible subjects (Cordioli et al., 2000).
However, cold acclimation has been shown to blunt sympathetic
stimulation likely representing an effective prophylactic measure
(Mäkinen et al., 2008). A recent study reported promising effects
of cold acclimation on other potentially health-related effects
(van der Lans et al., 2013). Individuals subjected to intermittent
cold exposures for 10 days (15–16◦C; 2–6 h per day) felt
more comfortable and reported less shivering in the cold. The
authors demonstrated pronounced recruitment of brown adipose
tissue and increase in energy expenditure through non-shivering
thermogenesis which might be used to counteract the current
obesity epidemic (van der Lans et al., 2013).
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Adaptive Responses to Heat
Adaptation of Natives to Hot Environments
Living for generations in hot environments (i.e., indigenous
dwellers) leads to evolutional heat adaptation aimed at reducing
physiological strain in the hot environment (Taylor, 2014). These
adaptations include morphological and genetic changes as well
as functional adjustments. As such, indigenous inhabitants of hot
regions show some apparent differences to dwellers of temperate
environments that might reflect adaptations stimulated by the
unique environment these residents live in (Lambert et al., 2008;
Taylor, 2014). In this regard morphological adaptations have
been reported with people from the hottest regions (i.e., South
Asia, Africa, India, and Australia) showing the largest surface
area to body mass ratio (Taylor, 2006; Tipton et al., 2008).
Of course, factors other than heat exposure, as for example
diet might have determined characteristic body composition
evolution as well. Nonetheless, the relationship between surface
area and body mass may be seen as an important determinant
of heat balance (Lambert et al., 2008; Taylor, 2014). This
morphological shape favors dry heat exchange known to be
the most efficient way of heat dissipation (Tipton et al., 2008)
and may reduce reliance upon evaporation in hot and humid
conditions (Taylor, 2014). However, in conditions where air
temperature approaches and exceeds skin temperature, dry
heat loss is minimized or even reversed leaving evaporative
cooling the main means of heat dissipation (Tipton et al.,
2008). Here, the larger body surface area of indigenous people
augments the area available for evaporation, thus improving
thermoregulation in hot dry environments (Fudge et al., 2008).
With respect to evaporation, another morphological difference
between indigenes of hot climates and people from a temperate
area could be a variation in the distribution and number
of eccrine sweat glands (Taylor, 2006, 2014). Indeed, some
early studies reported greater glandular density in indigenous
groups, yet according to Taylor (2006, 2014) racial differences do
unlikely exist as the majority of studies did not find difference
in the number of sweat glands (Taylor, 2006, 2014). Besides
number, the ability to activate the sweat glands determines
sudomotor capacity (Taylor, 2006). An increased sweating
rate is one of the alterations occurring with short term heat
acclimation as outlined below (Périard et al., 2016). Thus,
it might be anticipated that if effective, these short-term
adjustments could also lead to long-term adaptations. However,
since evaporative cooling is energetically wasteful, particularly
in hot and humid conditions, such adaptations might even
be detrimental leading to excessive water loss, which may
challenge fluid homeostasis (Taylor, 2006, 2014; Tipton et al.,
2008; Lee et al., 2009). Accordingly, in indigenous people of
hot and tropical countries lower sweat response relative to
people of cooler countries have been suggested (Wijayanto
et al., 2011; Taylor, 2014; Lee et al., 2016), indicating that
these dwellers possible adopt an optimal evaporation response
with minimized sweat dripping (Tipton et al., 2008) (Table 1).
Additionally, a higher resting core temperature in the warm
has been reported in some studies, which from an ecological
viewpoint might be helpful to reduce sweat loss and water

consumption (Nguyen and Tokura, 2002; Saat et al., 2005;
Wakabayashi et al., 2011; Wijayanto et al., 2012) and additionally
may reduce the total amount of heat that must be dissipated
(Lambert et al., 2008). Yet, in contrast, also lower core
temperatures at rest and during sleep have been described
in indigenes, which have been linked to a supposed lower
resting metabolic rate as outlined below (Lee et al., 2009;
Taylor, 2014). Furthermore, studies reported lower skin blood
flow of indigenes compared to un-acclimatized Caucasians,
which allows skin temperature to rise with the effect of a
reduced exogenous heat gain while simultaneously enhancing
evaporation (Tipton et al., 2008). These adjustments may
contribute to the smaller increase in core temperature during heat
exposure found in heat-adapted people (Wakabayashi et al., 2011,
2014).

Another possibility to deal with the hot climate would
be to reduce resting metabolic rate and thus body’s heat
production (Tipton et al., 2008; Taylor, 2014). This would
be of particular advantage in conditions where dry heat loss
is challenged and evaporative cooling is critical due to the
danger of dehydration (Taylor, 2014). However, even though
an inverse relationship between basal metabolism and monthly
mean ambient temperature (Hori, 1995) as well as a reduced
basal metabolic rate after extended heat exposure were described,
data seem more likely to indicate that such differences between
ethnic groups do rarely exist (Tipton et al., 2008; Taylor,
2014). Here, it is necessary to consider that in free-living
conditions distinguishing between true physiological adaptations
and behavioral modifications (i.e., exercise avoidance) may be
challenging (Taylor, 2014). The former description generally
outlines the adaptations to heat exposure ignoring that daily
living includes physical activity and exercise as well. During
exercise, metabolic heat production can be increased several-
fold which challenges the body’s ability to dissipate heat even
more. Efficient movement and exercise patterns thus could be
of considerable benefit when exercising in a hot environment
(Tipton et al., 2008; Taylor, 2014). Accordingly, a greater
metabolic efficiency and a shift of substrate use favoring lipid
oxidation over carbohydrates after heat adaptation have been
reported (Kirwan et al., 1987; Weston et al., 2000; Taylor,
2006, 2014; Tipton et al., 2008). However, when considering
movement efficiency also mechanical and anthropometric next
to the metabolic properties need to be addressed (Marino et al.,
2004). Moreover, in people of a tropical environment specific
distribution of blood to the acral area during exercise was
reported, which is suitable for heat loss as the extremities have
a large surface area to mass ratio and its containing blood may
mix with warm core blood (Magalhães et al., 2010; Lee et al.,
2011; Wakabayashi et al., 2011). Additionally, smaller fluid losses
and reductions in plasma volume during exercise were reported
in some (Saat et al., 2005; Wakabayashi et al., 2014) but not all
investigations (Lee et al., 2011; Wakabayashi et al., 2011) dealing
with people living in the tropical environment. An increased
body fluid conservation would be of advantageous by aiding to
effective heat dissipation (Saat et al., 2005; Wakabayashi et al.,
2014).
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Acclimatization/Acclimation and Habituation to Hot
Environments
In contrast to the strategies adopted by indigenes, people not
adapted to heat and acutely exposed to such conditions may
experience different adjustments yet enabling them to cope with
the hot environment. Heat acclimatization/acclimation has a
relatively fast time course with increased heat tolerance and
improved exercise performance in a hot environment occurring
after only 5–14 days of heat exposure (Guy et al., 2014, 2016;
Karlsen et al., 2015; Périard et al., 2015; Racinais et al., 2015;
Neal et al., 2016). The timeline can be categorized as short-term
(<7 days), medium term (8–14 days), and long-term acclimation
(>14 days) (Périard et al., 2015). The mechanisms responsible
for the favorable effects include plasma volume expansion and
lowering of submaximal heart rate, occurring within 3–6 days
(Neal et al., 2016; Périard et al., 2016). Additionally, enhanced
sweating and cutaneous blood flow responses (completed after
10–14 days) together with developing thermal tolerance through
heat shock response contribute to improved cardiovascular
stability and exercise performance (Horowitz, 2016; Périard et al.,
2016) (Table 1).

Physiological and Pathophysiological Responses to
Acute Heat Exposure
Passive heat stress may induce hyperthermia and cause
pronounced strain on the cardiovascular system. Large increases
in sympathetic neural activity, heart rate and left ventricular
contractility, coupled with reductions in central blood volume,
left ventricular filling pressures and cerebral perfusion have been
reported (Crandall and Gonzalez-Alonso, 2010; Akerman et al.,
2016). Additionally, increased glycogenolysis and oxidative stress
levels as well as different neuroendocrine responses may occur
(Akerman et al., 2016). Physical exercise in hot conditions with
or without dehydration may also induce hyperthermia. This
causes cardiovascular strain which limits exercise performance
and may even lead to serious heat associated health conditions
(Crandall and Gonzalez-Alonso, 2010; Yankelson et al., 2014;
Brocherie et al., 2015; Racinais et al., 2017), which include heat
rash, syncope, heat cramps, heat exhaustion, and heat stroke
(Howe and Boden, 2007; Brocherie et al., 2015; Racinais et al.,
2017). The responses of subjects exposed to a hot environment
will depend on type, duration and intensity of exercise, as well
as additional factors (i.e., related to body composition, clothing
or other weather independent variables) (Brocherie et al., 2014).
With respect to exercise performance, a reduction in cardiac
output, stroke volume, arterial pressure and blood flow to the
brain, skin and exercising muscles have been observed prior to
exhaustion (Crandall and Gonzalez-Alonso, 2010; Akerman et al.,
2016). Hyperthermia may also impair central as well as peripheral
neuromuscular function (Racinais et al., 2017).

Cellular Responses to Heat Exposure
A common response of cells to acute heat exposure is the
increased expression of HSP (heat shock response). However, the
heat shock response is not only triggered by temperature increase
but also by other stresses like oxidative stress or toxic substances
like ethanol (Michel and Starka, 1986). HSPs are molecular

chaperones which prevent cellular structures from damage. The
critical regulator for the heat shock response is the transcription
factor heat-shock-factor (Hsf1), which binds to the heat shock
element (HSE) on DNA thereby initiating the transcription of
HSPs (Wu et al., 1986). The protective effect of HSPs lies mainly
in the prevention of high-temperature-induced misfolding of
proteins and removal of damaged proteins to prevent toxic effects
(Parsell and Lindquist, 1993; Henstridge et al., 2016; Zhu et al.,
2016).

Another cellular response to increased temperature is an
adjustment of cellular energy metabolism. However, mechanisms
are not well established in humans. In insects, however, a shift
toward anaerobic glycolysis during exposure to heat has been
described (Malmendal et al., 2006). In ectoderm vertebrates a
down-regulation of cytochrome c oxidase and citrate synthase has
been demonstrated (Seebacher, 2009), which was accompanied
by reduced activity of PGC1α, which is a bio-energetic master-
regulator and controls mitochondrial metabolism (Scarpulla,
2011; Vincent et al., 2015). This is in line with observations on
reduced expression of mRNAs related to mitochondrial proteins
in humans exercising in hot environments as opposed to room
temperature (Heesch et al., 2016). However, it appears that heat
as a sole stimulus is ineffective, but that exercising in the heat
is required to induce the respective metabolic adjustments in
skeletal muscle (Zak et al., 2017).

Clinical and Practical Relevance of Heat
Acclimatization/Acclimation
As mentioned before the adjustments found after heat
acclimatization/acclimation may differ to some extent to the
adaptations found in indigenous dwellers of hot environments.
In contrast to the body water saving strategies adopted by
indigenes, short term heat acclimation increases sweating rate
(Périard et al., 2016) in order to enhance evaporative cooling
which, however, may also lead to hypohydration (Akerman
et al., 2016). Hypohydration and heat strain can reduce central
venous pressure and stroke volume, increase oxidative stress
and may induce several neuro-endocrine responses (e.g.,
increased plasma levels of renin activity, aldosterone and
catecholamine) (Francesconi et al., 1983; Wright et al., 2010;
Akerman et al., 2016). In addition, hypohydration (>2–3%
of body mass) may augment effort perception and negatively
affect exercise performance, especially in hot environments
(Sawka et al., 2015; Nuccio et al., 2017). So far it is not clear
if some degree of dehydration is necessary for optimal heat
acclimation (Akerman et al., 2016), yet a recent study found
that the time course and magnitude of the acquisition of heat
acclimation are largely unaffected by permissive dehydration
or maintaining euhydration (Neal et al., 2016). Nonetheless, it
seems advisable to reduce the negative consequences of severe
hypohydration in hot environments and during heat acclimation.
With respect to physical performance in hot environments, pre
heat acclimation allows individuals to complete tasks in the
heat that prior to acclimation were difficult or even impossible
(Périard et al., 2015). Thus, if unaccustomed people have to
perform or work in hot environments a prior short-term heat
acclimatization/acclimation program lasting for at least one but
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ideally 2 weeks and including exercise sessions (e.g., every second
day for 60–90 min) is advisable to minimize the heat dependent
performance loss (Brocherie et al., 2015; Périard et al., 2015).

LIFE IN A HYPOXIC ENVIRONMENT

Impaired oxygen supply compromises cellular functions and thus
performance. It can be caused by environmental hypoxia such as
at high altitudes (HA), where the partial oxygen pressure (PO2)
is decreased in proportion to the lower ambient pressure. In
patients, common reasons causing hypoxia are hypoventilation,
impaired oxygen diffusion in the lungs (e.g., pulmonary edema),
anemia, and impaired cardio-vascular function. Here we will
focus on major mechanisms of adjustment of tissue oxygen
supply to hypoxia at HA, which are ventilation, alveolar diffusion
and oxygen transport in blood, and we will dissect differences
between HA natives showing genetic and phenotypic adaptation,
and lowlanders during sojourns at HA, which represents
acclimatization. Differences between those mechanisms are
demonstrated best by the fact that deterioration in physical
performance with increasing altitude is much less pronounced in
HA natives than in naïves within the 1st days and even weeks
of their sojourns (Brutsaert, 2008). Also, aspects of acclimation
will be discussed, which are of significance for performance at HA
and for the prevention of acute mountain illnesses that are often
observed in not-acclimatized lowlanders (Bärtsch and Swenson,
2014).

Adaptation of Natives to High Altitude
The HA natives show improved hypoxia-tolerance in comparison
to sojourners, which is characterized by a variety of physiologic
and morphologic adjustments. However, there are differences
among HA natives of different ethnicity.

Ventilation and Alveolar Gas Exchange
All HA natives hyperventilate relative to lowlanders at low
altitude (Table 2). However, the degree of hyperventilation to a
defined hypoxic stimulus (hypoxic ventilatory response, HVR)
varies considerably among different ethnic groups. Tibetans seem
to have an elevated HVR (Curran et al., 1995), whereas it

TABLE 2 | Summary of adaptive responses to hypoxia.

Hypoxia

Acute exposure (a few hours)

Hyperventilation Pulmonary arterial vasoconstriction

Peripheral vasodilation Increased cardiac output

Exposure for days to months (intermittent/permanent)

Hyperventilation Pulmonary arterial vasoconstriction

Low-to-normal cardiac output Decreased plasma volume: increased hematocrit,
hemoglobin Stimulated erythropoiesis: increased total hemoglobin mass

High altitude natives

Hyperventilation Increased lung volume and diffusion capacity Pulmonary arterial
vasoconstriction

Low-to-normal cardiac output Decreased plasma volume: increased hematocrit,
hemoglobin Stimulated erythropoiesis: increased total hemoglobin mass

seems blunted in Andeans (Beall et al., 1997) and in Sherpas
(Santolaya et al., 1989) implying differences in the sensitivity of
the peripheral chemoreceptor (Moore, 2000).

Because in HA natives hyperventilation begins with their first
breath and is maintained throughout their life, it is likely the
main mechanism causing extended growth of the lungs resulting
in greater forced vital capacity and increased lung volumes and
diffusion capacity in HA natives compared with Han Chinese
(East Asian ethnic group) living in the Tibet and with sojourners
to the Andes, who moved to HA as adults and lived there for
several years (Jones et al., 1992; Brutsaert et al., 2004). Similarly,
larger lung volumes and increased diffusion capacity has been
found in rodents and dogs raised in hypoxia. Animals raised in
normoxia that moved to hypoxia for several years did not acquire
larger lungs (Brutsaert, 2016). It has to be noted, however, that
also lifestyle favors the development of larger lungs in HA natives,
because many study subjects were physically much more active
than their low-land-counterparts (Kashiwazaki et al., 1995).

Hypoxia-induced vasoconstriction of small pulmonary
arteries (Euler-Liljestrand reflex) seems to be blunted in
Tibetans (Groves et al., 1993), which has been discussed to
protect from augmented fluid filtration into the alveoli and
thus from interstitial and alveolar edema, and to favor alveolar
oxygen diffusion in HA natives relative to lowlanders with
high pulmonary capillary pressure at HA. In fact, a decreased
alveolar-to-arterial oxygen difference has been found in HA
natives (Lundby et al., 2004), but results are conflicting.

Together, these results indicate phenotypic adaptation with
improved alveolar oxygen diffusion and higher arterial oxygen
saturation (SaO2) at rest and during exercise (Wagner et al., 2002;
Lundby et al., 2004; Brutsaert, 2016).

Oxygen Transport by Hemoglobin
An increased oxygen affinity of hemoglobin (Hb-O2-affinity) in
hypoxia is favorable, because it results in higher SaO2 at a low
PO2 than low oxygen affinity (Mairbäurl and Weber, 2012). It
is unclear, however, whether adjustments at this level occur in
HA natives. No differences in Hb-O2-affinity have been found
between sojourners and Andeans (Lundby et al., 2006), and
between sojourners and Sherpas (Samaja et al., 1979). However,
increased Hb-O2-affinity in HA natives has also been reported
(Balaban et al., 2013; Simonson et al., 2014). This is in line with
increased Hb-O2-affinity in animals native to HA relative to their
lowland counterparts (Petschow et al., 1977).

Amount of Hemoglobin
An increased hemoglobin concentration ([Hb]) is of advantage
in hypoxia because it increases the oxygen content of arterial
blood to compensate for decreased SaO2. Most HA natives
show an increased [Hb] in blood (Table 2). The degree of
elevation directly relates to the absolute altitude. However, [Hb]
varies considerably among different ethnical groups living at
comparable altitude. Most data were obtained in the Andes
and on Han-Chinese living on the Tibetan plateau, where a
pronounced increase in [Hb] has been found (e.g., Hurtado
et al., 1945; Cosio and Yataco, 1968; Winslow and Monge, 1987;
Wu et al., 2014). However, similar to the animal kingdom,
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where yaks and alpacas have lower [Hb] than their lowland-
relatives, cows and llamas, respectively, when exposed to HA
(Bouverot, 1985), also some human populations living at HA
have only mildly elevated [Hb]. Those are Tibetans (Simonson
et al., 2010) and Ethiopians (Beall et al., 2002), whose [Hb]
is a few g/dl lower than that of Andeans and Han Chinese
(Beall et al., 1998), and their [Hb] actually is close to normal
sea-level-values despite living at altitudes >3500 m. Differences
exist even among Andean populations, where Quechuas have
lower [Hb] than Aymaras (Arnaud et al., 1981). In any of the
aforementioned populations the altitude-related increase in [Hb]
exist both in men and in women (Wu et al., 2005; Gassmann et al.,
unpublished data).

Though most studies have been performed on adult
individuals, a few studies indicate that [Hb] is already elevated
during childhood in Han-Chinese (Wu et al., 2005) and in
Quechuas (Garruto et al., 2003) living at altitudes between 4200
and 4500 m, whereas [Hb] of Tibetan children living at HA is only
slightly higher (Wu et al., 2005) than that of lowland-children
(Fulwood et al., 1982) of ages between 6 months and 15 years,
both in girls and in boys. Data on newborns are sparse (Moore
et al., 1982; Niermeyer et al., 1995), but [Hb] appears to be within
the range of lowland-newborns, with a tendency of lower [Hb]
in Tibetan than in Han Chinese newborns in Lhasa (Niermeyer
et al., 1995).

The mechanisms explaining the different patterns in [Hb]
in HA natives of different ethnicity are not fully understood.
The lower [Hb] in Tibetans than in Han Chinese is associated
with putatively advantageous polymorphisms of EPAS1 (HIF-2α)
(Beall et al., 2010), the prolyl hydroxylase EGLN1 and PPARα

(Simonson et al., 2010) in Tibetans, as well as of the thyroid
hormone receptor THRB and, marginally, also of EPAS1 in
Ethiopians (Scheinfeldt et al., 2012), which are all associated with
low [Hb] thus indicating genetic adaptation.

There is a clear increase in total hemoglobin mass (tHb)
with decreasing SaO2 in North Americans residing at different
altitudes (Weil et al., 1968). However, a significant increase in
tHb was only found when PaO2 dropped below ∼70 mmHg.
This is consistent with data showing that Bolivians living at
2600 m did not have an elevated tHb (Schmidt et al., 2002;
Böning et al., 2004) indicating that the stimulus of chronic
hypoxia at moderate altitudes was not strong enough to induce
polycythemia. In contrast, tHb was elevated by ∼15% in La Paz
(3600 m) (Wachsmuth et al., 2013), and by up to 80% in residents
of Cerro de Pasco (4330 m) (Sanchez et al., 1970). However,
excessive high [Hb] is considered maladaptive and represents a
key factor of chronic mountain sickness (CMS) first described
by Carlos Monge in the Peruvian Andes (Vargas and Spielvogel,
2006).

Cardiac Function
Cardiac function is well maintained in HA natives; however, most
reports indicate a slightly lower cardiac output, e.g., in Andeans,
than sea level residents (Banchero, 1987). Interestingly, when HA
natives return to sea level, cardiac output increases significantly
within approximately 10 days, likely because improved venous
return (Hartley, 1971).

Lowlanders Ascending to High Altitude
Lowlanders ascending to HA without any pre-acclimatization
usually do not tolerate altitudes >4000 m very well in the sense
that their performance is considerably decreased in comparison
to performance at low altitude and relative to HA natives
(Klausen et al., 1970). Thus immediate means of acclimatization
such as hyperventilation, hemoconcentration and erythropoiesis
are initiated to increase total oxygen carrying capacity. Yet, low
altitude performance will not be fully regained while at HA.

Alveolar Ventilation and Oxygen Diffusion
Decreased oxygen content in arterial blood is detected by
carotid bodies, which generate signals stimulating alveolar
ventilation. Hyperventilation at HA slightly raises the
alveolar partial pressure of oxygen (PAO2) at the expense
of decreased arterial partial pressure of carbon dioxide (PCO2)
and respiratory alkalosis, and slightly elevates SaO2 as long
as alveolar oxygen diffusion is not impaired. However, the
degree of hyperventilation to a defined hypoxic stimulus varies
considerably among individuals, where those with the lowest
HVR are the least hypoxia-tolerant ones indicated by increased
susceptibility to HA pulmonary edema (HAPE) (Hohenhaus
et al., 1995). Sojourners to HA also show pronounced hypoxic
pulmonary vasoconstriction (Sylvester et al., 2012) (Table 2),
which favors alveolar filtration and subclinical edema, and
which, if exaggerated vasoconstriction occurs, might result in
HAPE with massively impaired trans-alveolar oxygen diffusion
(Swenson et al., 2002). Even after long-term sojourns lowlanders
did not acquire the improved gas exchange observed in
HA-natives (Dempsey et al., 1971).

Cardiovascular Responses
Due to the decreased arterial oxygen content cardiac output
increases in order to maintain oxygen delivery to the periphery.
At rest, the increase is mainly due to an increased heart rate,
while the stroke volume is decreased, likely due to a decreased
venous return because of peripheral vasodilation (Alexander and
Grover, 1983). However, with prolonged stay at HA, cardiac
output decreases and might even fall below low altitude values.
Although cardiac output for the same work load is higher at HA
than at low altitude, stroke volume remains decreased (Alexander
et al., 1967). Maximal heart rate is decreased because of down-
regulation of adrenergic β-receptors (Kacimi et al., 1992). In
general, it has been assumed that cardiac function is preserved
in sojourners to HA (Reeves et al., 1987).

Oxygen Affinity of Hemoglobin
Hyperventilation decreases arterial CO2 and results in respiratory
alkalosis. Together, both effects increase the Hb-O2-affinity which
improves oxygen binding by hemoglobin even at low arterial PO2
(Mairbäurl and Weber, 2012). Furthermore, elevated levels of
organic phosphates, such as 2,3-DPG, increase the Bohr effect
on Hb-O2-binding which favors the release of oxygen from its
Hb-bond in peripheral tissues (Mairbäurl and Weber, 2012).

Amount of Hemoglobin
It has long been known that [Hb] increases in lowlanders
sojourning at HA (Viault, 1891). The nature of the increase
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can be dissected into two phases: A rapid decrease in plasma
volume is observed upon exposure of lowlanders to HA (Sawka
et al., 2000; Siebenmann et al., 2017). It results in increased
[Hb] and increases the amount of oxygen transported per unit-
volume of blood (e.g., per stroke-volume). Decreased plasma
volume is maintained over months at HA (Reynafarje et al.,
1959; Hannon et al., 1969). The loss of plasma water is likely
caused by decreased aldosterone activity and increased levels
of atrial natriuretic peptide resulting in an increased fractional
Na-excretion and diuresis (Olsen, 1997), but other mechanisms
may contribute as well (Sawka et al., 2000).

Hypoxia also stimulates erythropoiesis. It affects both [Hb]
and tHb. Erythropoiesis is stimulated by elevated erythropoietin
levels (EPO), a HIF-induced anti-apoptotic growth factor
(Wenger and Kurtz, 2011). Changes in EPO follow interesting
kinetics: first, a pronounced increase can be observed within
a few hours after exposure to hypoxia, which is then followed
by a decrease to considerably lower levels that are still above
the low altitude plasma concentration. Both, initial peak and
steady state EPO depend on the degree of hypoxia (Wenger
and Kurtz, 2011). Despite this rapid increase in EPO it takes
weeks to months to gain significant amounts of new erythrocytes
and increased tHb. The magnitude of increase depends on
absolute altitude and duration of stay (Garvican et al., 2012;
Rasmussen et al., 2013). However, there is great variability
in the erythropoietic response to HA (Chapman et al., 1998;
Hauser et al., 2017). This aspect is of particular importance
in athletes who chose training at HA to improve aerobic
performance.

Only to mention, HA (hypoxia) exposure is accompanied by
reduced hunger and energy intake, which should be considered
by HA climbers (Matu et al., 2018).

Acclimation and Behavioral
Adjustments: Means to Improve
Performance in Hypoxia
Pre-exposure to hypoxia turns on adaptive processes and thus
protects from HA illnesses such as acute mountain sickness
(AMS), HAPE and cerebral edema (HACE) (Bärtsch and
Swenson, 2013). It also improves performance at HA (Benoit
et al., 1992; Chapman et al., 2013). This is particularly of
advantage, when ascent to altitudes higher than 4000 m is
planned. Repeated mountain hikes and nights spent on huts
above 2500 m work very well (Bärtsch et al., 1991) although
systematic studies are scarce. Results on pre-acclimatization by
sleeping in hypoxic tents might also be effective (Dehnert et al.,
2014).

Performance at HA can greatly be improved by breathing
oxygen (Klausen et al., 1970), which is often used by climbers
at extreme altitudes. Air can be enriched with oxygen in
workplaces located at HA (West, 2016) and in trains crossing
HA ranges (West, 2008). Positive expiratory airway pressure also
improves oxygenation (Schoene et al., 1985). In addition, there
are pharmacologic aids preventing AMS and HAPE which also
improve performance by stimulating ventilation and by lowering
pulmonary artery pressure to minimize fluid filtration into the

lungs, both of which improve alveolar gas exchange (Bärtsch and
Swenson, 2013).

In recent years, researchers started to examine potential
cross-adaptive effects between different environmental stressors,
e.g., heat, cold, and hypoxia. For instance, cross tolerance has
been reported for hypoxia (altitude) after prior heat acclimation-
induced diminished HSP response (Gibson et al., 2017),
indicating reduced cellular stress responses and better
maintenance of homeostasis at HA. Future research work is
necessary to explore potential clinical/practical applications and
benefits related to cross adaptation.

Cellular Responses to Hypoxia
Reduced availability of oxygen forces cells to adjust a variety of
metabolic pathways aimed at maintaining adequate levels of ATP
and decreasing the ATP requirement by reducing the activity of
ATP-consuming processes (Hochachka, 1986).

As with the increased EPO production, most adjustments
are initiated by increasing the amounts of hypoxia inducible
factors (HIFs), which is achieved by preventing its degradation
by decreasing the activity of HIF-prolyl hydroxylases (Semenza,
2001; Haase, 2013). HIF-1α mainly increases the expression of
glycolytic enzymes, which improves anaerobic ATP production,
and, at the same time, decreases mitochondrial biogenesis and
activity, even initiates mitophagy (Zhang et al., 2008), all of
which appear necessary, because in hypoxia mitochondria show
increased production of oxygen radicals (ROS) (Solaini et al.,
2010), which potentially may damage cells (Semenza, 2007). In
contrast, HIF-2α increases the expression of EPO and proteins
involved in iron metabolism in order to sufficiently supply
erythroid progenitors with the iron required for heme synthesis
and stimulated erythropoiesis (Haase, 2013; Gassmann and
Muckenthaler, 2015).

ATP-demand is decreased by decreasing pathways of synthesis
of substances such as proteins, steroids, and glycogen. The
mediator for those responses is activation of the adenosine-
monophosphate-activated kinase (AMPK), which is a master
regulator of cell metabolism (Hardie et al., 2012). Activation
involves HIF-dependent and HIF-independent mechanisms.
As a consequence, protein synthesis, which typically requires
roughly 30% of a cells energy supply, is decreased, which helps
conserve ATP for metabolic pathways required for maintaining
cellular integrity such as the Na/K-ATPase (Hochachka, 1986).
As a consequence, specific cellular function required for the
performance of certain organs might be impaired resulting in
maladaptation of the entire organism.

CONCLUSION

The aspects discussed above emphasize the potential of
successful adaptive and acclimatization/acclimation strategies
supporting survival and performance in places exposed to
extreme environmental temperatures or hypoxic stressors. In the
long term, specific morphological, physiological, and behavioral
adjustments enable people to live an almost normal life in
such extreme areas. In contrast to the strategies adopted by
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indigenes, people acutely exposed to extreme conditions may
experience impaired performance, at least initially, and different
mechanisms of adjustment will later on enable them to
cope with cold, hot, and/or hypoxic environments. However,
in certain circumstances also mal-adaptive processes may
occur in both indigene and acutely exposed. Individually
adjusted pre-exposure to specific (simulated) environmental
conditions may turn on adaptive processes, which improves
performance and provides some protection from maladaptation.
Finally, potential cross-adaptive effects between different

environmental stressors, e.g., development of cross tolerance
for hypoxia (altitude) after prior heat acclimation, may be
considered.
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