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Particulate composites with negative stiffness inclusions in a viscoelastic matrix are shown to have

higher thermal expansion than that of either constituent and exceeding conventional bounds. It is

also shown theoretically that other extreme linear coupled field properties including piezoelectricity

and pyroelectricity occur in layer- and fiber-type piezoelectric composites, due to negative inclusion

stiffness effects. The causal mechanism is a greater deformation in and near the inclusions than the

composite as a whole. A block of negative stiffness material is unstable, but negative stiffness

inclusions in a composite can be stabilized by the surrounding matrix and can give rise to extreme

viscoelastic effects in lumped and distributed composites. In contrast to prior proposed composites

with unbounded thermal expansion, neither the assumptions of void spaces nor slip interfaces are

required in the present analysis. © 2001 American Institute of Physics.

@DOI: 10.1063/1.1413947#

I. INTRODUCTION

Microstructure in multiphase materials such as compos-

ites and biological tissues may be so complex that theoretical

prediction of aggregate physical properties from constituent

properties becomes difficult or impossible. Consequently, it

is useful to develop analytical bounds upon properties in

order to constrain the range of properties which may be ex-

pected. Bounds1,2 have been developed for the thermal ex-

pansion coefficient a of composite materials of two solid

phases in terms of constituent expansion coefficients a1 and

a2 . The upper bound is a rule of mixtures a5a1V1

1a2(12V1), in which V1 is the volume fraction of the first

phase. If the detailed microstructure of a composite is

known, the exact relations of overall mechanical or coupled

properties and those of each constituent can be obtained

theoretically. Even if the microstructure is unknown for a

particular composite, the bound equations constrain attain-

able behavior provided the assumptions of the bounding

theorems are satisfied. Many bounding formulas are attain-

able, that is, they correspond exactly to a known microstruc-

ture. In deriving the bounds on thermal expansion coeffi-

cients, it was tacitly assumed that the two phases are

perfectly bonded and with zero void content; moreover, that

each phase is of positive stiffness with zero stored energy at

equilibrium. We have shown that arbitrarily high thermal ex-

pansions can be achieved in composites with void fraction3

or in dense composites with interfaces which allow slip.4

These composites contain rib elements of composite micro-

structure. Each rib element is a bilayer made of two bonded

layers of differing thermal expansion coefficient a. Compos-

ites with extremal thermal expansion coefficients have also

been presented based on topology optimization5 of structure

allowing void space. Inclusion of void space of appropriate

shape in a composite microstructure can also give rise to

unusual mechanical properties such as a negative Poisson’s

ratio.6 Void space is not, however, a necessary condition to

achieve negative Poisson’s ratio; a hierarchical laminate with

dissimilar constituents also has this property.7 A common

aspect is nonaffine or heterogeneous deformation.8 Negative

thermal expansion coefficients are known in certain oxide

systems;9 they also occur in lattice composites if the higher

expansion constituent is on the convex side of each bilayer.

We remark that molecular design of materials with moderate

values of negative linear and volumetric thermal expansion

has been conducted.10

It is the purpose of this article to explore the effects of

negative stiffness composite phases in achieving extreme

thermal expansion, piezoelectric, and pyroelectric coupled

field properties. The possibility of extreme behavior in such

composites was explored theoretically11 for viscoelastic sys-

tems. High viscoelastic damping in composite cells with

negative stiffness has been demonstrated experimentally12 in

compliant systems containing postbuckled tubes. High vis-

coelastic damping has also been observed in composites with

negative stiffness particulate inclusions.13 In this article, we

first demonstrate the possibility to achieve extreme thermal

expansion of particulate composites via the exact relation of

thermal expansion coefficients and bulk moduli. Second, we

show theoretically that extreme piezoelectric constants, pi-

ezoelectric coefficients, and pyroelectric constants can also

be observed in layer- and fiber-type piezoelectric composites,

based on available exact or approximate relations.

II. ANALYSIS

Thermal expansion in composites is intimately linked

with the bulk properties. The thermal expansion coefficient
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ac of a composite is related to the bulk properties as

follows,14,15 provided the composite as well as each phase is

isotropic.

ac
5a11

a12a2

1

K2

2

1

K1

S 1

Kc2

1

K1
D . ~1!

The composite thermal expansion ac can be large if the com-

posite bulk modulus Kc is small. That is the case in the

lattice structures considered in Refs. 3 and 4. ac can also be

large if bulk compliances of the constituents are out of pro-

portion to their thermal expansion coefficients. Based on the

statistically isotropic assumption, Eq. ~1! was obtained as an

exact solution by applying an eigenstress technique through

the uniform fields approach,16 described as follows. The

name for the uniform field was coined much later than the

derivation done by Levin. First, separate the inclusions from

the matrix; let both of them be loaded by a hydrostatic stress

with a uniform temperature change. Second, put those inclu-

sions back into the matrix, constrain them to satisfy the trac-

tion and displacement continuity conditions on the inter-

faces. Then, the expression is found for effective thermal

expansion coefficients by the superposition of a hydrostatic

stress in the opposite direction on the outer boundary of the

matrix to cancel the one added artificially in the first step.

As for the bulk modulus as input to Eq. ~1!, consider the

Hashin–Shtrikman17 ~1963! formulas. The lower bounds for

the elastic shear modulus GL and bulk modulus KL of a

composite are:

GL5G21

V1

1

G12G2

1

6~K212G2!V2

5~3K214G2!G2

, ~2!

KL5K21

V1~K12K2!~3K214G2!

~3K214G2!13~K12K2!V2

, ~3!

in which K1 and K2 , G1 and G2 , and V1 and V2 are the bulk

modulus, shear modulus, and volume fraction of phases 1,

and 2, respectively. If G1.G2 , then GL represents the lower

bound on the shear modulus. Interchanging the subscripts 1

and 2 results in the upper bound GU for the shear modulus.

The bounds for isotropic composites are attainable. The

Hashin–Shtrikman formula for the bulk modulus, Eq. ~3!, is

attained exactly by a coated sphere morphology. The

‘‘lower’’ composite corresponds to the case of stiff spheres

coated with a compliant layer. The shear modulus of the

coated sphere morphology approximates the corresponding

Hashin–Shtrikman formula, Eq. ~2!. Exact attainment of Eq.

~2!, however, is possible via a laminate morphology18 as

shown by Milton.

We now allow one phase to have negative stiffness.

Negative stiffness entails a reversal of the usual directional

relationship between force and displacement in deformed ob-

jects. It does not violate any physical law, but an isolated

object with negative stiffness is unstable. Composite materi-

als with negative stiffness inclusions can be stable provided

the inclusion stiffness is not excessively negative. In elastic

composites, the elastic moduli can become singular if the

phases of positive and negative stiffness are properly bal-

anced. In viscoelastic composites11 with a negative stiffness

phase, an anomaly in stiffness is predicted, as well as a peak

in the mechanical damping. In that analysis, we applied the

elastic–viscoelastic correspondence to the exact relations ~1!
and ~3! to obtain corresponding relations for viscoelastic me-

dia. These formulas no longer represent bounds, however

they are exact solutions for particular microstructures.

If the bulk modulus of one phase is allowed to become

negative, the thermal expansion coefficient can greatly ex-

ceed that of either phase, as shown in Fig. 1, which is based

on Eq. ~1!, and the lower bound formula for effective bulk

modulus, Eq. ~3!. As inclusion stiffness is reduced, the com-

posite thermal expansion attains its maximum magnitude

first, then the composite bulk modulus attains a minimum.

The enhancement of thermal expansion becomes singular as

the mechanical damping of the phases tends to zero, as

shown in Fig. 2. The singularity in thermal expansion occurs

as the composite bulk modulus tends to zero. Therefore, the

present composites share with prior ones3–5 the characteristic

that extreme expansion is associated with bulk compliance.

We remark that singular thermal expansion can be achieved

without the composite bulk modulus passing through nega-

tive regions in which stabilization might be required. Specifi-

cally, in Fig. 2, as the inclusion bulk modulus is tuned

through progressively more negative values, the composite

thermal expansion becomes singular before the composite

bulk modulus.

As for the piezoelectric coupling problems, Skinner,

Newnham, and Cross19 proposed a set of rule-of-mixtures

type equations to approximately estimate the effective piezo-

electric coefficients, as follows.
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i «33

m
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m «33
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FIG. 1. The thermal expansion coefficient ~real part of ac! of a Hashin–

Shtrikman composite assuming a matrix phase of mechanical damping tan d
50.05 in the bulk modulus with negative stiffness inclusions, as a function

of inclusion stiffness and volume fraction. Thermal expansion coefficients of

inclusion and matrix differ by a factor of two. The composite thermal ex-

pansion coefficient is normalized to that of phase 1.
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where the symbols d jk , « jk , and S jk are piezoelectric coef-

ficients, permittivity constants, and elastic compliances, the

inverse of the elastic modulus (C jk). The indexes j and k of

second rank tensor properties « jk are from 1 to 3, denoting

the axes of the coordinate system. The subscripts, series and

parallel, represent the type of connectivity, which corre-

sponds to the Reuss and Voigt composites, respectively, in

geometry. In the series case, 3-axis represents the axis per-

pendicular to the layers; the reverse applies in the parallel

case. The superscripts i, m, and c represent the inclusion,

matrix, and composite. The relationship between piezoelec-

tric constants (e jk) and piezoelectric coefficients (d jk) is

d jk5e jqSqk . The usual contracted index notation is used for

the higher order tensorial properties, such as elastic moduli

(C i jkl), elastic compliances (S i jkl), and piezoelectric prop-

erties ~e i jk or d i jk! in which only the last two indexes are

contracted, as used by Nye.20 The contraction means indexes

11 becomeI 1, 22 becomeI 2, 33 becomeI 3, 23 become 4, 13

become 5, 12 become 6. Each of the field quantities is mea-

sured when all others are fixed. A more rigorous derivation,

based on the linear coupled field theory and uniform field

technique, for this sort of two-phase layer-type piezoelectric

composites, consisting of transversely isotropic phases, is

given by Benveniste and Dvorak.21 The 17 independent ma-

terial parameters for the overall orthotropic piezoelectric

composites are obtained exactly.

To simplify our theoretical analysis of this coupled field

problem, we assume each of the piezoelectric transducer

~PZT! inclusion layers or rods is mechanically isotropic. This

assumption is justified since the degree of mechanical anisot-

ropy of certain PZT materials, for example PZT-5A ~Ref. 22!
is not very pronounced. Moreover, most piezoelectric ceram-

ics are rather stiff, therefore typical matrix materials can be

expected to be much more compliant than piezoelectric in-

clusions. In the vicinity of a phase transformation, a single

domain can go from positive to negative stiffness even if the

parent material is stiff away from the transition. Therefore, to

delineate phenomena, we allow the shear modulus of the

inclusion to become negative. To aid the numerical calcula-

tion of the overall piezoelectric properties, we assume the

electrical and coupled properties of the inclusion to be the

same as those of PZT-5A material,24 which are 25.4, 15.8,

and 12.3 ~C/m2! for e31 , e33 , and e15 , as well as 916«0 ,

FIG. 2. Thermal expansion properties of a Hashin–Shtrikman composite

assuming a inclusion phase of mechanical damping tan d50.05 or 0 and

negative stiffness. Thermal expansion is normalized to that of phase 1. The

volume fraction of the inclusion is 0.01.

FIG. 3. ~a! Normalized piezoelectric coefficient d33 , in series, ~b! normal-

ized piezoelectric coefficient d33 , in parallel, and ~c! normalized piezoelec-

tric coefficient d31 of a layer-type piezoelectric composite versus inclusion

volume fraction (V1) and normalized inclusion shear modulus (G i/G ref),

where G ref525 GPa. Calculated by Eqs. ~4!–~6!.
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830«0 for «11 and «33 , where «0 represents the permittivity

in a vacuum. For the isotropic matrix, there are no coupled

electrical properties, but we assume its permittivity to be

4.43«0 . Figure 3 shows the existence of singularities, pre-

dicted by Eqs. ~4!–~6!, in this type of composites for their

piezoelectric coefficients when their piezoelectric phases un-

dergo a negative stiffness transition. Based on those equa-

tions obtained by Benveniste and Dvorak, the singularities

also can be observed in the graphical results, Fig. 4, for the

overall piezoelectric coefficients d33 , d32 , d31 , and d15 , in

which the index 3 indicates the axis perpendicular to the

layers.

In the piezoelectric composites with 1–3 connectivity,

contrasted with the aforementioned piezoelectric composites,

which are catalogued as those with 2–2 connectivity, the

piezoelectric phase is continuously self-connected in one di-

mension and the matrix is connected in three dimensions. In

other words, they are fiber-type or transversely isotropic

composites. Throughout our analysis for fiber composites,

the 3 direction of the composite is along the direction in

which the fibers are aligned and poled. Benveniste23 pointed

out, among the ten independent material constants for the

overall properties, nine of them can be derived exactly as

simple expressions in the model of composite cylinder as-

semblage. Because of the independence of electric field, the

relation for effective plane strain bulk modulus, Eq. ~7! is

exact, based on the same argument used for the effective

bulk modulus in the Hashin–Shtrikman bounds.

kc
5km

1

V1

1

k i
2km 1

12V1

k1GT
m

, ~7!

where k is the plane strain bulk modulus, and GT is the

transverse shear modulus, differing from GA , which is de-

noted as the longitudinal shear modulus. Following the uni-

versal connection for piezoelectric fiber-type composites,

found by Schulgasser,24 we can obtain the following exact

relations.

C13
c

5

~km
2kc!C13

i
2~k i

2kc!C13
m

km
2k i , ~8!
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c

5V1C33
i

1V2C33
m

2

~C13
m
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c !~V1C13

i
1V2C13

m
2C13

c !

km
2kc , ~9!

FIG. 4. ~a! Normalized piezoelectric coefficient d33 , ~b! normalized piezoelectric coefficient d32 , ~c! normalized piezoelectric coefficient d31 , and ~d!

normalized piezoelectric coefficient d15 of a layer-type piezoelectric composite versus inclusion volume fraction (V1) and normalized inclusion shear modulus

(G i/G ref), where G ref525 GPa. Calculated by the equations, which are exact, in Ref. 21.
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c !

km
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c
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2kc!
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c
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m

2
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m
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2V1e31

i
2V2e31
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km
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The rest of the exact relations for e15 , GA , and «11 , dem-

onstrated by Milgrom and Shtrikman,25 are presented as fol-

lows.

L
c
5L

m@~12V1!L
i
1~11V1!L

m#21@~11V1!L
i

1~12V1!L
m# , ~13!

where

L
r
5FGL e15

e15 2e11
G

r

, r5i ,m .

Figure 5 shows the singularities in piezoelectric con-

stants, e31 and e33 , and permittivity «33 , predicted by the

exact solutions, Eqs. ~10!–~12!. For the transversely isotro-

pic materials modeled by composite cylinder assemblage, the

effective transverse shear modulus can not be determined

exactly.23 However, deriving this effective property is a

purely mechanical problem, since there is no coupling with

electric field. Therefore, one can use, for example, general-

ized self-consistent method26 to calculate it approximately.

Alternatively, by the multiple-scattering technique, all of the

ten effective material properties can be computed by Eqs.

~14!–~23!, plus the pyroelectric constant p3 by Eq. ~24!,27,28

presented next, in the sense of a first order approximation.

The importance of these equations is that they represent the

overall properties of the two-phase transversely isotropic pi-

ezoelectric composites, whose microstructure is comprised

of infinitely long fibers. Mathematically, they are equivalent

to the results of the self-consistent effective-medium

theory,29 after the V1 square terms are ignored in the effec-

tive elastic moduli.

kc
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~14!
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FIG. 5. ~a! Normalized piezoelectric coefficient e33 , ~b! normalized piezo-

electric coefficient e31 , and ~c! normalized permittivity constant «33 of a

1–3 fiber-type piezoelectric composite versus inclusion volume fraction

(V1) and normalized inclusion shear modulus (G i/G ref), where G ref

525 GPa. Calculated by Eqs. ~10!–~12!, exact relations.
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in which k/2, m/2, l, n, p are Hill’s30 elastic moduli under a

constant electric and temperature field. The single subscripts

represent the inclusion, as 1, and the matrix, as 2. In contrast,

the double subscripts represent second order tensors. The

symbols p3 , b represent pyroelectricity and thermal stress

coefficient. This pyroelectricity is the variation of electric

displacement along the 3-axis due to a unit change of tem-

perature. The relation of b to the thermal expansion coeffi-

cients is b5Ca .

To investigate the anomaly in the pyroelectric constants,

we adopt the CdS-epoxy piezoelectric composite,28 for

which material parameters are 20.074 and 1.32 ~C/m2! for

e31 and e33 , 1.17«0 for «33 , and 20.04 (1024 C2-m22-K21)

for p3 . Also, the degree of mechanical anisotropy of the

inclusion is low. The thermal properties of the inclusion and

matrix are 6.5 and 4 (1026 K21) for a11 and a33 of the

inclusion, and 60 (1026 K21) for the thermally isotropic ma-

trix. It is noteworthy that, in all of our analysis, the absolute

values of these material properties are not important because

only the normalized values are of interest to demonstrate the

anomalies. The standard normalization method used here is

to divide each of the overall composite properties by that of

phase 1, correspondingly, except for the shear modulus of the

inclusion, which is normalized to that of phase 2, and the

overall piezoelectric coefficients, which are normalized to

those evaluated at V151 and G i/G ref51. In our calculation,

shear modulus is tuned through negative values while main-

taining coupled field constants unchanged. Single domains

may approximate such behavior but polydomain blocks

would not. Here, since we are considering linear systems, the

influence of nonlinear behavior of piezoelectric materials,

such as ferroelectricity,31 upon the homogenization of com-

posites is neglected. Figure 6 shows the singularity in the

composite piezoelectric constants e31 and e33 , as inclusion

stiffness becomes negative. Figures 7 and 8 show that singu-

larities also occur in the composite piezoelectric coefficients,

d33 , d32 , d31 , and d15 , and the permittivity «33 , as the

inclusion stiffness becomes negative. Figure 9 shows the in-

fluence of inclusion negative stiffness on the composite py-

roelectric property. As with the other coupled fields, singu-

larities occur for proper values of inclusion stiffness. As with

the viscoelastic case,11 the singularities in the coupled fields

become peaks of finite magnitude when material damping

properties of either phase are considered.

III. DISCUSSION

Although a giant magnitude of thermal expansion coef-

ficients can be also achieved by introducing the concepts of

void phase or slip interfaces,3,4 the present approach not only

largely increases the expansion of materials in magnitude,

but also improves the properties of stiffness and mechanical

damping simultaneously.11–13 In addition, the layer type of

this kind of composites makes the actuator application, such

as cantilever beam bimorph actuators,32 more feasible at a

designated temperature, without microdevice fabrication.

The achievement of enhanced composite stiffness by nega-

tive stiffness inclusions, while supported experimentally,13

raises questions of stability.33 For thermoelasticity or piezo-

electricity, the sign is usually immaterial in transducer or

sensor applications. Consequently, we expect it will be easier

to achieve overall stability in composites intended for ex-

treme thermoelastic or piezoelectric coupling. Tuning of

negative stiffness can be achieved by control of temperature

through a phase transition13 or by controlling prestrain upon

a postbuckled system.12 The negative stiffness approach is

distinct from the use of structural resonance34 to achieve

high dielectric properties, since there are no inertial terms in

the continuum elasticity equations used in the present work.

Piezoelectric composite materials35 are of interest since

the figure of merit for a variety of sensor and actuators can

FIG. 6. ~a! Normalized piezoelectric constant e33 and ~b! normalized piezo-

electric constant e31 of a 1–3 fiber-type piezoelectric composite versus in-

clusion volume fraction (V1) and normalized inclusion shear modulus

(G i/G ref), where G ref525 GPa. Calculated by Eqs. ~19! and ~20!.
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be increased by using composites.36 In the present work, it

has been shown that piezoelectric and other coupled field

properties can become unbounded, not just increased.

To extend our idea to predict other anomalies in other

coupled fields, phenomenologically, the effective moduli of

two-phase composites with coupled multiple fields, such as

thermoelectric, magnetoelectric, and piezoelectric effects,

can be obtained exactly by a modulus matrix decomposition

approach.37 Therefore, the overall properties can be exactly

calculated simply by summing a finite series, whose terms

FIG. 7. ~a! Normalized piezoelectric longitudinal coefficient d33 , ~b! normalized piezoelectric transverse coefficient d32 , ~c! normalized piezoelectric

transverse coefficient d31 , and ~d! normalized piezoelectric shear coefficient d15 of a 1–3 fiber-type piezoelectric composite versus inclusion volume fraction

(V1) and normalized inclusion shear modulus (G i/G ref), where G ref525 GPa. Calculated by Eqs. ~14!–~24!.

FIG. 8. Normalized permittivity constant e33 of a 1–3 fiber-type piezoelec-

tric composite versus inclusion volume fraction (V1) and normalized inclu-

sion shear modulus (G i/G ref), where G ref525 GPa. Calculated by Eq. ~23!.

FIG. 9. Normalized pyroelectric coefficient p3 of a 1–3 fiber-type piezo-

electric composite versus inclusion volume fraction (V1) and normalized

inclusion shear modulus (G i/G ref), where G ref525 GPa. Calculated by Eq.

~24!.
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are comprised of the phase moduli and volume fractions

only. By allowing negative stiffness inclusions, we violate

the common assumption of positive definiteness for moduli.

In particular, it is possible to exceed commonly accepted

bounds. The consequences of negative stiffness inclusions in

mechanical systems have been explored theoretically11 and

experimentally.12,13 Therefore, due to negative eigenvalues of

the modulus matrix as the coefficients of the terms in the

finite series, its sum, which represents the effective moduli,

may lead to extremely small or large values of properties,

whereas the magnitude of the influence depends on the inter-

action of the degree of fields. The present theoretical analysis

supports this argument. In thermoelastic and piezoelectric

materials, elasticity is coupled with temperature and electric

field, respectively. Consequently, composites with negative

stiffness inclusions may find use in high performance sensors

and actuators based on coupled fields.

IV. CONCLUSION

Extreme coupled field properties including thermal ex-

pansion, piezoelectricity, and pyroelectricity can occur in

composites in which one phase has negative stiffness. In lin-

early elastic materials, the properties become singular when

positive and negative stiffness are appropriately balanced.

The presence of time or frequency dependence in elastic or

electric properties, or their coupling will smooth out the sin-

gularities to finite peaks. Following the same idea, it also can

be envisaged that similar anomalies can be found in other

coupled field problems.
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