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1 Introduction

Extreme Value distributions arise as limiting distributions for maximums or minimums (extreme values) of a
sample of independent, identically distributed random variables, as the sample size increases. Extreme Value
Theory (EVT) is the theory of modelling and measuring events which occur with very small probability.
This implies its usefulness in risk modelling as risky events per definition happen with low probability.
Thus, these distributions are important in statistics. These models, along with the Generalized Extreme
Value distribution, are widely used in risk management, finance, insurance, economics, hydrology, material
sciences, telecommunications, and many other industries dealing with extreme events. The class of Extreme
Value Distributions (EVD’s) essentially involves three types of extreme value distributions, types I, II and
III, defined below.

Definition 1 (Extreme Value Distributions for maxima).
The following are the standard Extreme Value distribution functions:

(i) Gumbel (type I): Λ(x) = exp{− exp(−x)}, x ∈ R;

(ii) Fréchet (type II): Φα(x) =
{

0, x ≤ 0;
exp{−x−α}, x > 0, α > 0;

(iii) Weibull (type III): Ψα(x) =
{

exp{−(−x)α}, x ≤ 0, α > 0;
1, x > 0.

The EVD families can be generalized with the incorporation of location (λ) and scale (δ) parameters,
leading to

Λ(x;λ, δ) = Λ((x− λ)/δ), Φα(x;λ, δ) = Φα((x− λ)/δ), Ψα(x;λ, δ) = Ψα((x− λ)/δ), λ ∈ R, δ > 0.

Among these three families of distribution functions, the type I is the most commonly referred in discussions
of extreme values. Indeed, the Gumbel distribution {Λ(x;λ, δ) = Λ((x−λ)/δ);λ ∈ R, δ > 0}, is often coined
“the” extreme value distribution.

Proposition 1 (Moments and Mode of EVD).
The mean, variance and mode of the EVD as in definition 1 are, respectively:

(i) Gumbel – Λ: E[X] = γ = 0.5772 . . . = Euler′s constant; V ar[X] = π2/6; Mode = 0;

(ii) Fréchet – Φα: E[X] = Γ(1 − 1/α), for α > 1; V ar[X] = Γ(1 − 2/α) − Γ2(1 − 1/α), for α > 2;
Mode = (1 + 1/α)−1/α;

∗This work has been partially supported by FCT/POCI 2010 project.

1



(iii) Weibull – Ψα: E[X] = −Γ(1 + 1/α); V ar[X] = Γ(1 + 2/α)− Γ2(1 + 1/α); Mode = −(1− 1/α)−1/α,
for α > 1, and Mode = 0, for 0 < α ≤ 1;

here Γ denotes the gamma function Γ(s) :=
∫∞
0 xs−1e−xdx, s > 0.

Definition 2 (Extreme Value Distributions for minima).
The standard converse EVD’s for minima are defined as: Λ∗(x) = 1 − Λ(−x), Φ∗α(x) = 1 − Φα(−x) and
Ψ∗α(x) = 1−Ψα(−x).

The Gumbel distribution, named after one of the pioneer scientists in practical applications
of the Extreme Value Theory (EVT), the German mathematician Emil Gumbel (1891-1966),
has been extensively used in various fields including hydrology for modeling extreme events.
Gumbel applied EVT on real world problems in engineering and in meteorological phenomena
such as annual flood flows(Gumbel, 1958):

“It seems that the rivers know the theory. It only remains to convince the engineers of the validity of this analysis.” Emil Gumbel

The EVD of type II was named after Maurice Fréchet (1878-1973), a French mathematician
who devised one possible limiting distribution for a sequence of maxima, provided convenient
scale normalization (Fréchet, 1927). In applications to finance, the Fréchet distribution has
been of great use apropos to the adequate modeling of market-returns which are often heavy-
tailed. Maurice Fréchet

The EVD of type III was named after Waloddi Weibull (1887-1979), a Swedish engineer
and scientist well-known for his work on strength of materials and fatigue analysis (Weibull,
1939). Even though the Weibull distribution was originally developed to address the problems
for minima arising in material sciences, it is widely used in many other areas thanks to its
flexibility. If α = 1, the Weibull distribution function for minima, Ψ∗α, reduces to the Expo-
nential model, whereas for α = 2 it mimics the Rayleigh distribution which is mainly used
in the telecommunications field. Furthermore, Ψ∗α resembles the Normal distribution when
α = 3.5.

Waloddi Weibull

Owing to the equality
min(X1, . . . , Xn) = −max(−X1, . . . ,−Xn)

it suffices to consider henceforth only the EVD’s for maxima featuring in Definition 1. In probability theory
and statistics, the Generalized Extreme Value (GEV) distribution is a family of continuous probability dis-
tributions developed under the extreme value theory in order to combine the Gumbel, Fréchet and Weibull
families. The GEV distribution arises from the extreme value theorem (Fisher-Tippett, 1928 and Gne-
denko, 1943) as the limiting distribution of properly normalized maxima of a sequence of independent and
identically distributed (i.i.d.) random variables. Because of this, the GEV distribution is fairly used as an
approximation to model the maxima of long (finite) sequences of random variables. In some fields of ap-
plication the GEV distribution is in fact known as the Fisher-Tippett distribution, named after Sir Ronald
Aylmer Fisher (1890-1962) and Leonard Henry Caleb Tippett (1902-1985) who recognized the only three
possible limiting functions outlined above in Definition 1.

2 Extreme Value Theory and Max-Stability

Richard von Mises (1883-1953) studied the EVT in 1936, giving in particular the von Mises sufficient
conditions on the hazard rate (assuming the density exists) in order to give a situation in which EVT
behaviour occurs, leading to one of the above three types of limit law that is, giving an extremal domain
of attraction D(G) for the extreme-value distribution G. Later on, and motivated by a storm surge in the
North Sea (31 January-1 February 1953) which caused extensive flooding and many deaths, the Netherlands
Government gave top priority to understanding the causes of such tragedies with a view to risk mitigation.
Since it is the maximum sea level which is the danger, EVT became a Netherlands scientific priority. A
relevant work in the field is the doctoral thesis of Laurens de Haan in 1970.
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The fundamental extreme value theorem (Fisher-Tippett 1928; Gnedenko, 1943) ascertains the Gener-
alized Extreme Value distribution in the von Mises-Jenkinson parametrization (von Mises, 1936; Jenkinson,
1955) as an unified version of all possible non-degenerate weak limits of partial maxima of sequences com-
prising i.i.d. random variables X1, X2, . . .. That is:

Theorem 1 (Fisher-Tippett 1928; Gnedenko, 1943).
If there exist normalizing constants an > 0 and bn ∈ R such that

lim
n→∞

P
{
a−1
n (max(X1, . . . , Xn)− bn) ≤ x

}
= G(x),

for some non-degenerate distribution function G, then it is possible to redefine the normalizing constants in
such a way that

G(x) = Gξ(x) := exp(−(1 + ξx)−1/ξ),

for all x such that 1 + ξx > 0, with extreme value index ξ ∈ R. Taking ξ → 0, then Gξ(x) reduces to Λ(x)
for all x ∈ R (cf. Definition 1). Thus the distribution function F belongs to the domain of attraction of Gξ,
which is denoted by F ∈ D(Gξ).

Remark 1. Note that, as n→∞, the max(X1, . . . , Xn) detached of any normalization converges in distri-
bution to a degenerate law assigning probability one to the right endpoint of F , xF := sup{x : F (x) < 1}.

For ξ < 0, ξ = 0 and ξ > 0, the Gξ distribution
function reduces to Weibull, Gumbel and Fréchet distribu-
tions, respectively. More precisely,

Λ(x) ≡ G0(x),
Φα(x) ≡ G1/α(α(x− 1)),

and
Ψα(x) ≡ G−1/α(α(1 + x)).

For exhaustive details on EVD see Chapter 22 of Johnson,
Balakrishnan, and Kotz (1995).

Proposition 2 (Moments and Mode of GEV).
The mean, variance and mode of the GEV as in Theorem 1 are, respectively:
E[X] = −1

ξ [1−ξ(1−ξ)], for ξ < 1; V ar[X] = 1
ξ2 [Γ(1−2ξ)−Γ2(1−ξ)], for ξ < 1/2; Mode = 1

ξ [(1+ξ)−ξ−1],
for ξ 6= 0.

Proposition 3 (Skewness of GEV).
The skewness coefficient of GEV distribution, defined as skewGξ

:= E[{X −E[X]}3]/{V ar[X]}3/2, is equal
to zero at ξ0 ' −2.8. Moreover, skewGξ

> 0, for ξ > ξ0, and skewGξ
< 0, for ξ < ξ0. Furthermore, for the

Gumbel distribution, skewG0 ' 1.14.

The Fréchet domain of attraction contains distributions with polynomially decay tails. All distribu-
tion functions belonging to Weibull domain of attraction are light-tailed with finite right endpoint. The
intermediate case ξ = 0 is of particular interest in many applied sciences where extremes are relevant, not
only because of the simplicity of inference within the Gumbel domain G0 but also for the great variety of
distributions possessing an exponential tail whether having finite right endpoint or not. In fact, separating
statistical inference procedures according to the most suitable domain of attraction for the sampled distribu-
tion has become an usual practice. In this respect we refer to Neves and Fraga Alves (2008) and references
therein.

Definition 3 (Univariate Max-Stable Distributions).
A random variable X with distribution function F is max-stable if there are normalizing sequences {an >
0} and {bn ∈ R} such that the independent copies X1, X2, · · · , Xn satisfy the equality in distribution
max(X1, · · · , Xn) d=anX + bn. Equivalently, F is a max-stable distribution function if [F (x)]n = F ((x −
bn)/an), all n ∈ N.
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The class GEV, up to location and scale parameters, {Gξ(x;λ, δ) = Gξ((x− λ)/δ), λ ∈ R, δ > 0}, repre-
sents the only possible max-stable distributions.

Additional information can be found in Kotz and Nadarajah (2000), a monograph which describes in an
organized manner the central ideas and results of probabilistic extreme-value theory and related extreme-
value distributions – both univariate and multivariate – and their applications, and it is aimed mainly
at a novice in the field. De Haan and Ferreira (2006) constitutes an excellent introduction to EVT at the
graduate level, however requiring some mathematical maturity in regular variation, point processes, empirical
distribution functions, and Brownian motion. Reference Books in Extreme Value Theory and in the field
of real world applications of EVD’s and Extremal Domains of Attraction are: Embrechts, Klüppelberg
and Mikosch (2001), Beirlant, Goegebeur, Segers and Teugels (2004), David and Nagaraja (2003), Gumbel
(1958), Castillo, Hadi, Balakrishnan, and Sarabia (2005) and Reiss and Thomas (2007).
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