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Abstract

In this paper the central distributional results of classical extreme
value theory are obtained, under appropriate dependence restrictions, for
maxima of continuous parameter stochastic processes. In particular we prove
the basic result (here called Gnedenko's Theorem) concerning the existence
of just three types of non-degenerate limiting distributions in such cases,
and give necessary and sufficient conditions for each to apply. The
development relies, in part, on the corresponding known theory for
stationary sequences.

The general theory given does not require finiteness of the number of
upcrossings of any level x. However when the number per unit time is a.s.
finite and has a finite mean u(x), it is found that the classical criteria
for domains of attraction apply when u(x) is used in lieu of the tail of the
marginalﬂdﬁsfribution function. Thé‘theory is sbecialized to this case and
apﬁiied to give the general known results for stationary normal processes
(for which u(x) may or may not be finite).

A'general Poisson convergence theorem is given for high level
upcrossings, together with its implications for the asymptotic distributions

of rth largest local maxima.
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1. Introduction.

In this paper we shall be concerned primarily with asymptotic

distributional properties of the maximum
M(T) = sup{&(t): 0<t<T}

of a continuous parameter stationary process {£(t): t=0}. A great deal is
known about such properties in the important special case when the process
is normal (cf. [2], [16]). Our purpose here is to delineate the types of
limiting behavior which are possible when the process is not necessarily
normal, obtaining, in particular, versions of the central results of
classical extreme value theory which apply in this context.

The classical theory is concerned with properties of the maximum
Mn = max(gl,gz,...En) of n i.i.d. random variables as n becomes large.
Central to the theory is the result which asserts that if Mn has a
non-degenerate limiting distribution (under linear normalizations), i.e. if
P{an(Mn—bn) < x} » G(x) for sequences {an>0},{bn}, then G must be one of

only three general types:

Type I G(x) = exp(-e ) -0 < x <
Type 11 G(x) = exp(-x %) x>0 a>0
Type III G(x) = exp ~(—x)a x <0

(linear transformations of the variable x being permitted). This result,
which arose from work of Frechet [5] and Fisher and Tippett [4], was later
given a complete form by Gnedenko [6] and is here referred to as '"Gnedenko's

Theorem."



Gnedenko also obtained necessary and sufficient conditions for the
domains of attraction for each of the three limiting types. These and other
versions obtained subsequently (cf. [7]) concern the rate of decay of the
tail 1-F(x) of the distribution F of each En as x increases,

A further result--trivially proved in the classical case--is that for
any sequence {un}, T >0, P{MnSlﬂ]}*'e-Trif and only if i —.F(un)'v T/n.
This is sometimes useful in calculation of the constants an,bn in Gnedenko's
Theorem (when u, = x/an + bn).

In more recent years there has been considerable interest in extending
these and other results of the classical theory to apply to stationary
sequences which exhibit a "decay of dependence' which is not too slow. In
particular the early work of Watson [17] concerning convergence of P{MHSUn}
applied under m-dependence, Loynes [14] proved Gnedenko's Theorem under
strong mixing assumptions, and Berman [1] obtained detailed results for
normal sequences under a mild condition involving correlation decay. More
recently we have obtained a theory (cf. [9]) involving weak '"distributional
mixing'" conditions, which unifies these results and provides a rather
satisfying extension of the classical distributional theory to include
stationary sequences,

It is not too surprising that such an extension is possible for
stationary sequences, at least under suitable dependence restrictions. What
may seem surprising at first sight is that a corresponding theory is
possible for continuous parameter stationary processes. However this
becomes intuitively clear by recognizing that the maximum up to time n, say,
is just the maximum of n random variables--the '"submaxima' in the fixed

intervals (i-1,i), 1 < i< n. Our procedure will be, in fact, to use the



existing theory for stationary sequences by means of (a slightly modified
version of) this precise approach. The sequence results which will be
needed are stated in Section 2,

In Section 3 we will obtain Gnedenko's Theorem for continuous parameter

stationary processes, showing under appropriate conditions that if

P{aT(M(T)-bT) < x} +Gx) as T »

for some constants aT>O,bT, then G must be one of the extreme value forms.
In Section 4 we obtain a related result--again extending a classical
theorem--to give necessary and sufficient conditions for the convergence of
P{M(T)51Lr} for sequences not nécessérily of the form U, =>x/aT + bT
implicit in Cnedenko's Theorem.
As a corollary of this result we obtain necessary and sufficient
criteria for the domains of attraction occurring in Gnedenko's Theorem. In
the classical i.i.d. sequence case, the criteria for domains of attraction
involve the rate of decay of the marginal distribution 1-F(x) as x
increases; For the present case the very same criteria apply, provided
1-F(x) is replaced by another function Y(x). For processes whose mean
number U(x) of upcrossings of any level x is finite, the function Y(x) is
precisely u(x), a readily calculated quantity.
The general theory will not require that the mean number of upcrossings
of a level per unit time be finite, and accordingly will include the class
of stationary Gaussian processes with covariances of the form
r(t) = 1 - C1T|Oc + o(]f!a) aé T‘* 6 for 0 % d <72. In Section 5 we considerr
such processes, as well as (possibly non-Gaussian) cases for which the mean

number of upcrossings per unit time Zs finite. Finally in Section 6 we note



the general Poisson limit for the point processes of upcrossings of

increasingly high levels and its implications regarding limit theorems for

th

the distribution of the r largest local maximum of E(t) in 0 s t < T,

2. Two results for stationary sequences.

As noted, our development of extremal theory for stationary processes
will rely in part on the existing sequence theory. Specifically we shall

require the following definitions and results (which may be found e.g. in

[10]).
Let {£_} be a stationary sequence and write F, . (x,...x) for the
n 11"'1n 1 n
joint distribution function of Ei ...fgi . For brevity write also Fi 5 (v)
1 ' ] e SR
to denote F. . (u,u...u) = P{g, <u...&, <u}l. If {u_} is a sequence of
ipead i i n

real constants, we say that the sequenée {gn} satisfies the (dependence)
condition D(un) if for each n, 1511<12...<1p<31...<3p, <n, jl- ipz 2,

(2.1) |F, . . (u.) - F. (u)F. (u)| < a
11...1P3i...3p, n 1. p n 31...Jp, n n,%

where

(2.2) an,ﬂn-+ 0 for some sequence Qn =0 as n > o |,

Note that o) o can (and will) be taken to be decreasing in & for each n
by simply replacing it by the smallest value it can take to make (2.1) hold
(i.e. the maximum value of the left-hand side of (2.1) over all allowable

sets of integers i Note also that (2.2) may then be shown

1...1p, Jl...Jp,.
equivalent to the condition (cf. [12] for proof)

(2.3) an’nxﬁ-o as n > o for each A >0



The condition D(un) indicates a degree of "approximate independence" of
members of the sequence separated by increasing distances. However this
condition, which we refer to as '"distributional mixing,' is clearly
potentialiy far less restrictive than, for example, '"strong mixing." In the
case of normal sequences, it is in fact satisfied when the covariance
sequence {rn} tends to zero even just fast enough so that T logn =+ 0.

The following result is basic to the sequence theory and will be

required in later sections.

Lemma 2.1. Let {gn} be a stationary sequence satisfying D{un} for a given
sequence {un} of econstants and write M= max(&,,€,...€ ). Then for any

integer k 2 1 (writing [ ] to demote integer part),
P{M <u_} - P M su} >0 as nae.
n- n [n/k]” ™n :

This lemma indicates a degree of independence between the [n/k] maxima
when the first n integers are divided into k groups. We shall also need the

sequence form of Gnedenko's Theorem, which is given (e.g. in [10]) as follows:

Theorem 2.2. Let {gn} be a stationary sequence such that Mn = max(&l,gz...in)
satisfies P{an(Mn-bn) < x} » G(x) a8 n + o for some non-degenerate d.f. G
and constants {an>0},{bn}. Suppose that D(u ) holds for all u_ of the form
x/an.+ bn’ - < x < o, Then G is one of the three extreme value

distributional types.

The other classical result quoted--concerning convergence of P{Mnsun}
for arbitrary sequences {un}-Jis'also important and holds under appropriate
conditions for stationary sequences {En}. This will not be discussed here
since the corresponding continuous parameter result will be independently

derived.



3. Gnedenko's Theorem for stationary processes.

As indicated above, it will be convenient to relate the maximum M(T) of
the continuous parameter stationary process £(t) to the maximum of n terms

of a sequence of ''submaxima." Specifically if h > 0 we write

(3.1) Ci= sup{£(t): (i-1)h <t <ih}

so that for n = 1,2,3...,

(3.2) M(nh) = max(Cl,cz,...zn)

The following preliminary form of Gnedenko's Theorem (involving

conditions on the Z-sequence) is immediate.

Theorem 3.1. Suppose that for some families of constants {aT>O},{bT} we

have

(3.3) P{aT(M(T)—bT) < x}+G(x)as T+ =

for some non-degenerate G, and that the {Ci} sequence defined by (3.1)
satisfies D(un) whenever u = x/anh + bnh for some fixed h > 0 and all real

X. Then G is one of the three extreme value types.

Proof. Since (3.3) holds in particular as T =+ « through values nh and the
gn—sequence is clearly stationary, the result follows by replacing En by Cn

in Theorem 2.2 and using (3.2). O

Corollary 3.2. The result holds in particular if the D(un) conditions are

replaced by the assumption that {E(t)} is strongly mixing. For then the

sequence {cn} 18 strongly mizing and satisfies D(un). 0



We now introduce the continuous analog of the condition D(un), stated

of £(t)

in terms of the finite dimensional distribution functions Ft ¢

190+t
(again writing Ft ot (u) for Ft ot (u...u).
1 n 1 n

The condition Dc(uT) will be said to hold for the process E(t) and the
family of comstants {uT: T>0}, with respect to a family {qT-+ 0}, if for
any points sl< Sye- .< sp< tl’ o< tp' belonging to (qu: 0< qu <T) and

satisfying tl- sp > 1, we have

(3.4) |F (u.) - F (u,.) F w)l =«
sl...sptl...tp, T sl...sp T tl...tp, T T,vY
where aT ¥ + 0 for some sequence YT = o(T) or, equivalently, where
T
(3.5) a, +>0as T >

T,AT

for each A > 0.

The D(u ) condition for {Cn} required in Theorem 3.1 will now be
related to Dc(uT) by approximating crossings and extremes of the continuous
parameter process, by corresponding quantities for a sampled version. To
achieve the approximation we require two conditions involving the maximum of
£(t) in fixed and in very small time intervals. These conditions are given
here in a form which applies very generally--readily verifiable sufficient
conditions for important cases are given in Section 5.

Specifically we suppose that there is a function Y(u) such that, for
h >0,

P{M(h)>u} <

(3.6) lim sup YTE)

U0
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and that for each a > 0, there is a family of constants q = qa(u) + 0 as
u - « such that
(3.7) lim sup Ple(0)<u, 211(1%1)1;11 M@>u) 0 as a > 0 .

Yoo

Note that Equation (3.6) specifies an asymptotic upper bound for the
tail distribution of the maximum in a fixed interval, whereas (3.7) limits
the probability that the maximum in a short interval exceeds u, but the
process itself is less than u at both endpoints. The following result now
enables us to approximate the maximum in an interval of length h by the

maximum at discrete points in that interval.

Lemma 3.3.

(2) If (3.6) holds, then P{M(q)>u} = oy(u) as u > » for any .
q = q(u) » 0. Also P{E(0)>ul} = oY(u).

(ii) If (3.6) and (3.7) both hold, and I ie an interval of length h,

then there are constants Aa such that

(3.8) 0 < lim sup[P{E(jq)<u, jqeI} - PIM(D)sul]/v(u) < x;# 0 as a0,

u—reo

where q = q, ie as in (3.7), the comvergence being uniform in all intervals

of this fixed length h.

Proof. TIf (3.6) holds and q + 0 as u + «, then for any fixed h > 0, q is

eventually smaller than h and P{M(q)>u} < P{M(h)>ul}, so that

lim sup P{M(q)>ul}/¥(u) < lim sup P{M(h)>u}/Y(u) < h by (3.6) ,

u-e U=

from which it follows that P{M(q)>ul}/¥(u) + 0, as stated. The remaining .

statement of (Z) also follows since P{£(0)>u} < P{M(q)>ul.
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‘ Suppose now that (3.6) and (3.7) both hold and that I is an interval of
fixed length h. The interval I consists of no more than h/q subintervals of
the form ((j-1)q, jq), together with (possibly) a shorter interval at each
end. The difference in probabilities in (3.8) is clearly non-negative and

(using stationarity) dominated by

A = = P{E(0)<u, E(q)<u, M(qQ)>u} + 2P{M(q)>u} .

a,u

Qs

The desired result (ZZ) now follows from (3.7) and (<) by writing

Aa = lim sup Aa,u' a

u-—co

It is now relatively straightforward to relate D(unimfor the sequence
{Cn} to the condition DC(uT) for the process £(t), as the following lemma
. shows. (In this we use the (potentially ambiguous) notation D(unh) to mean

D(vn) with v, = unh')

Lemma 3.4. Suppose that (3.6) holds with some function Y(u) and let {qa(u)}
be a family of constants for each a > 0 with qa(u)>0, qa(u)+0 as u > o,
and such that (3.7) holds. If Dc(uT) 1g satisfied with respect to the
family dp = qa(uT) for each a > 0, and Tw(uT) 18 bounded, then the sequence
{Cn} defined by (3.2) satisfies D(u ) for h > 0.

Proof. For a given n, let 11€i2...<ip<jl...<jp,<11, jl— ip 2 L. Write
ir= [fir—i)h, irhj, JS =[(js—1)h',jsh]. For brevity let q denote one of the

families {qa(-)} and

- e—

p
A = n {g(jq)gunh’jqélr} ’ A=

- q r=1 T

B =
q

H ow

1 p'
{g(Jq)sunh’quJs}’ B= :

s=1 S
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It follows in an obvious way from Lemma 3.3 that

o
A

lim sup{P(Aanq) - P(AnB)} s lim sup(p+p')V¥(u )X,

n-ee n->ee

A

mp(u A, S KA,

for some constant K (since nhw(unh) is bounded) and where Aa~+ 0 as a - 0.

Similarly
lim sup|P(Aq)-P(A)|sKAa , lim suplp(Bq)-p(B)|sta .
Now

[P(AnB) - P(A)P(B)| < |P(AnB) - P(Aanq)| + (P(Aqnsq) - P(Aq)P(Bq)|

(3.9) * P(Aq)IPch) - P(B)| + P(B)IP(Aq) - P(A)]

Rn’a + |P(Aanq) - P(Aq)P(Bq)|

where lim sup Rn,a < SKAa.
n-*co

Since the largest jq in any Ir is at most iph, and the smallest in any

Js is at least (j-1)h, their difference is at least (R-1)h. Also the
1
largest jq in Jp' does not exceed jp,h < nh so that from (3.4) and (3.9)

(3.10) |P(AnB) - P(A)P(B)]| < Rn,a + aéﬁz(g_l)h

{(in which the dependence of a on a is explicitly indicated). Write now

T,%
a;’z = izg{Rn’a + anh,(l-l)h}'_ Since the left-hand side of (3.9) does no

depend on a we have

|P(AnB) - P(AYP(B)]| < o g s
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which is precisely the desired conclusion of the lemma, provided we can show

that lim a* = 0 for any A > 0 (cf. (2.3)). But for any a > 0
n,An _
n-oo .
(a) (a)
*
0tn,)\n < Rn,a * oth,()m-l)h < Rn,a * Oth,li)\nh

when n is sufficiently large (since a%a% decreases in ), and hence by (3.5)
3

lim sup a* < 3KA
1o n,An a’
and since a is arbitrary and Ka + 0 as a +- 0, it follows that a; e 0 as
3

desired. U

The general continuous version of Gnedenko's Theorem is now readily

restated in terms of conditions on £(t) itself.

Theorem 3.5. With the above notation for the stationary process &(t)
satisfying (3.6) for some function Y, suppose that, for some families of

constants {aT>O},{bT},
P{aT(M(T)—bT) < x} > G(x)

for a non-degenerate G. Suppose that Ty (u) 18 bounded and Dc(uT) holds for
up = x/aT + by, for each real x, with respect to families of constants
{qa(u)} satisfying (3.7). Then G is one of the three extreme value

distributional types.

Proof. This follows at once from Theorem 3.1 and Lemma 3.4. g
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As noted the conditions of this theorem are of a general kind, and more
specific sufficient conditions will be given in the applications in

Section 5.

4. Convergence of P{M(T)SuT}.

Gnedenko's Theorem involved consideration of P{aT{M(T)—bT} < x}, which

may be rewritten as P{M(T)SuT} with Up = a%lx + bT‘ We turn now to the

question of convergence of P{M(T)31LT} as T » = for families U, which are

not necessarily linear functions of a parameter x. (This is analogous to

the convergence of P(MnSun) for sequences, of course.) These results are

of interest in their own right, but also since they make it possible to

simply modify the classical criteria for domains of attraction to the three
limiting distributions, to apply in this continuous parameter context. .

The discussion will be carried out in terms of so-called "e-upcrossings"
of a level by the stationary process--a concept originally introduced by
Pickands [15] to deal with extremes of processes whose sample functions were
so irregular that the "ordinary" upcrossings could be infinite in number in
a finite interval. (Here we make essential use of this concept whether the
process is irregular or not.)

Briefly, if € > 0, £(t) is said to have an e-upcrossing of u at a point
to if £(t) £ u for all t in the interval (to-e, to), but £(t) > u for some
point t € (to, t0+n) for each n > 0. Since the interval (to-e, tO) contains
no upcrossings, the number of €-upcrossings in a unit interval does not
exceed 1/e . We write Ne,u(t)’ Ne,u(I) for the number of e-upcrossings in
the intervals (0,t),I respectively and Ue,u = ENe,u(l) so that
ENe,u(t) = tue,u . The following small result indicates some connections

between e€-upcrossings and maxima. .



15

Lemma 4.1.
(¢) For h > 0, P{M(h)>u} 2 huy w”
(<7) hu, 2 P{M(2h)>u} - P{M(h)>u}.

(ii2) If (3.6) holds (i.e. lim sup P{M(h)>ul}/(hy(u)) < 1 for some YP(u),

u-o°
h > 0) then lim sup Wy u/1p(u) <1.
u->eo ’
(iv) If
(4.1) P{M(h)>u} ~ hy(u) as u > ® for 0 < h < h,

then He , ~ V(W) for all (sufficiently small) e > 0.

ot

Proof. Since clearly Nh u(h) is either zero or one, we have
4 .

huh,u - ENh,u(h) = p{Nh,u(h)=1} < P{M(h)>u}

so that (7) follows at once. To prove (ii) we note that

A

P{M(2h)>u} < P{M(h)>u} + P{Nh u(h,2h)21}

P{M(h)>u} + LT

If (3.6) holds (%) follows at once from (Z).
Finally, if (4.1) holds, the conclusion of (Zv) follows from (Z21) and

the inequality (7<), which gives

lim inf p_ /Y(u) = 1im
uo €,u u-»oo

P{M(2e)>u} _ P{M(e)>u} | _ . -
€Y (u) ey (u) =4

Our main purpose is to demonstrate the equivalence of the relations

P{M(h)>uT} ~ T/T and P{M(T)suT} + ¢ ' under appropriate conditions. The
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following condition will be referred to as D(':(uT), and is analogous to D' .
conditions required for similar purposes for sequences (cf. [10]).
If {uT} is a given family of constants.the condition Dé(uT) will be
said to hold (for the process {&(t)} satisfying (4.1)) if

(4.2) lim sup T[u

- w(uT)l + 0as e >0 .
Torco

eT,uT

We now state and prove the first part of the desired equivalence.

Theorem 4.2. Suppose that (4.1) holds for some function Y and let {uT} be a
family of constants such that DC(uT) holds (with respect to a family (q)

satisfying (3.7));vand that D!(up) holds. Then

(4.3) Th(ug) + T > 0
implies
(4.4) PM(T)<u ) » e T .

Proof. Let 0 < h < ho (cf. (4.1)), and let n,k be integers, writing
n' = [n/k]. By Lemma 3.4, the sequence of "submaxima' {Cn} defined by

(3.1) satisfies D(unh) and hence, from Lemma 2.1,
(4.5) P{M(nh)Sunh} - Pk{M(n'h)Sunh}-+ 0 as n+> o
Now writing U4 = u, Lemma 4.1 (Z) gives

n'hun'h,u < P{M(n'h)>u} < n'P{M(h)>u} ~ n'hy(u)

so that
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(4.6) 1 - n'hy(u) (1+o(1)) < P{M(n'h)<u} < 1 - nthu gy

But n'hy(u) = nhW(unh)/k + T/k by (4.3). Further

_ nh nh
n'hun ' h,u - T [Unh u - w(unh) ] + T ‘P(Unh)
X ’ nh

so that letting n - « in (4.6) and using Dé(uT) we have

1 - t/k < lim inf P{M(n'h)su} < 1im sup P{M(n'h)<u}
n-»o n->co

IA

1 - 1/k + o(1/K)
. th .
By taking k~ powers and using (4.5) we see that

(1-~c/1<)k < lim inf P{M(nh)<u} < 1lim sup P{M(nh)<u} < (1- T/k+o(1/k))k
and hence, letting k - o, that
4.7) P{M(nh)<u_, } + el .
Now if n is chosen so that nh < T < (n+1)h, and if U < U

P{M(nh)< uT} = P{M(nh)Suhh} + P{unh< M(nh)SuT}

where the last term does not exceed

n

nP{unhsM(h)<uT} n[P{M(h)>unh} - P{M(h)>uT}]

M 1vo1)) - B (1o
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by (4.1) and (4.3). Since nh ~ T this clearly tends to zero. A .

corresponding calculation where Uh > un thus shows from (4.7) that

P{M(nh)SuT} > e T

with T = [n/h]. Finally

A

PIM(T) = uT} < P{M(nh)suT}

IA

P{M(T)SuT} + P{M(nh)SuT< MDY} .

But the event M(nh) < u., < M(T) implies that the maximum in thé interval

T

[nh, (n+1)h] exceeds u.,, which has probability P{M(h)>uT}, giving

T’

P{M(nh)SuT} - P{M(h)>uT} < P{M(T)suT} < P{M(nh)suT} , ‘
from which (4.4) follows since P{M(h)>1xr}'v ht/T - 0. O

In our treatment of the converse result it will be convenient to use

the innocuous further assumption
(4.8) w(uT) ~ WCu[T/h]h) as n =+

(for some given h > 0). This assumption is possibly dispensable but

certainly commonly holds (e.g. when Ip(uT) ~ (2 log T)I/2 for stationary

normal processes) and, of course, always holds if the function U is

replaced by the step function u[T/h]h’ constant between consecutive points nh.
The first step of the derivation exhibits approximate independence of

maxima in disjoint intervals.
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‘ Lemma 4.3. Suppose that (4.1) holds for some ¢ and let {uT} be a family of
constante (satisfying (4.8) for some h > 0) such that Dc(uT) holds with
respect to a family (q) satiefying (3.7) and such that Ttp(uT) s bounded.

Let

(4.9) PM(DIsu } > ™"

for some T > 0. Then for k = 1,2...

(4.10) P{M(T/k)SuT} + ¢ /K ag T + o ,

Proof. As in the previous result the assumptions surrounding DC(uT) imply

that
® (4.11) PIM(nh)<u} - PX{M(n'h)<u} » 0 as n = o

where n' = [n/k] and u = U - Now if n = [T/h] it is readily checked that

[n/k]h < T/k < ([n/k]+1)h, so that
P{M(T/k}<u} = P{M(n'h)<u} - e /K

by (4.5) (which holds here by the same argument as in Theorem 4.2), and

(4.9) with T = nh. But also

v

PIM(T/K)su} = P{M((n'+1)h)<u}

P{M(n'h)<u} - P{M(n'h)<u<M((n'+1)h)}

v

P{M(n'h)<u} - P{M(h)>u} .

The first term on the right tends to e'T/k . and the second is asymptotically

equivalent to hw(unh) ~ n'l[nhw(unh)] -+ 0 since Tlp(uT) is bounded. Hence

‘ we have
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(4.12) PIM(T/K)Su ) > Tk

But it follows simply that u, may be replaced by U in (4.12) to give

the desired result since if, for example, Uy S Un we have

[
IA

P{M(T/k)< uT} - P{M(T/k)Sunh}

(4.13)

P{unh<M(T/k)SuT}

IA

(n/k)P{unh< M(h)SuT} + P{M(h)>unh}

since if the maximum in (0, T/k) lies between Uh and Up, this must also
occur in one of the first n' intervals ((i-1)h, ih) or in (n'h, T/k). The

first term of (4.13) is readily seen to be
(nh/K) [¥(u_p) (1+0(1)) - w(up) (1+o(1)]

which is easily seen to tend to zero by (4.8) since nhw(unh) is bounded.
Boundedness of nhw(unh) also implies that the second term of {4.13) tends
to zero. A corresponding calculation applies for U 2 up SO that

P{M(T/k)SuT} - P{M(T/k)sunh} + 0, giving the desired result. 0

Lemma 4.4. Under the same assumptions as in Lemma 4.3 we have

-€T

é lim sup|P(M(eT)<uy} - e 7| > 0 as e >0 .

T->c0

Proof. Choose the integer k depending on € > 0, so that E%T s g < %—.

Then

P{M(T/k)SuT} < P{M(ET)SuT} < P{M(T/(k+1))suT} .
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By subtracting e %" from each term, and using the facts from Lemma 4.3 that
-t/k -1/ (k+1)

P{M(T/k)SuT}-%e , P{M(T/(k+1))SuT}+e , we see that
lim sup]P{M(eT)SuT} - e s max[|e'T/(k+1)-e—ET| ,|e'T/k-e_€T|]
T30

But

l]e—T/(k+1) _ e—€T| < }-|l ) e—T(s-l/(k+l))l

€ €

- -L[l _ e—T(e-e(1+o(1)))]
E 3

which tends to zero as € - 0. Similarly -é| ~T/k

e - e %] » 0 so that the

desired result follows. 0

The next lemma gives a conclusion which is interesting in itself and

from which the main result will follow immediately.

Lemma 4.5. Again suppose that the conditions of Lemma 4.3 hold. Then

(4.14) lim sup|Tu

Tco

-1|>0as €+0.
eT,uT

Proof. By Lemma 4.1 (Z%),

P{M(2€T)>uT} < P{M(sT)>uT} + eTuST’uT

so that

1 -
- 2 2 [PM(eT)<u ) - &7

TusT,u

1. -2et 1, - -
+ E[e - P{M(ZET)SUT}] + E[e €T _ 2eT et] |
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giving

1, -eT ~2€T
=le

lim inf[Tu - e - €T]
Toreo eT,u

- é lim sup|P{M(€T)SuT} - e T

T-»00
- 2 lin sup|P{M(2eTy<u } - &7
€ T-0

The latter two terms tend to zero as € - (0 by Lemma 4.4, so that

lim inf[TuET w -

T] 2a_ >0 as € >0 .
Toroo »Up €

Similarly from the inequality eTu_. < P{M(ET)>UT} (Lemma (4.1) (%)) it
T
follows that

lim sup[Tu

T-reo

-T]1 <D

T €

€T,u

where b8 + 0 as € - 0. Since if 1lim inf Bn 2z A and lim sup Bn < A it is

easily shown that lim sup]Bnl < max(]Ar],|A]), we have

lim sup|Tu - 1| s max(la_|,|b_]) ,
Toroo sT,uT € €
which tends to zero as € -+ 0, giving the conclusion of the lemma. (]

It will be noted that (4.14) is very similar to the condition Dé(uT)
and follows as a conclusion from the assumption P{M(T)SuT} + ¢" ' under
appropriate conditions. For this we do not require that Dé(uT) hold. If

we now do assume that Dé(uT) holds we immediately obtain the main converse

result.
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Theorem 4.6. Suppose that (4.1) holds for some Y and let {uT} be a family
of constants (satisfying (4.8) for some h > 0) such that Dc(uT) holds with
respect to a family (q) satiefying (3.7). Suppose also that Dé(uT) holds.

Then (4.4) implies (4.3).

Proof. Since Tu€ < T/(eT) = 1/e it is implicit in the assumption

T,uT

Dé(uT) that Tw(uT) is bounded. Thus the conditions of the previous lemma

are satisfied if (4.4) holds and hence

lim sup|Tu -T| >0 as € >0 .
Toro0 &:T,uT

But Dé(uT) requires that

lim sup|Tu - TY(u)| ~ 0 as € >0,
eT,uT T

T-c0

from which it follows simply that Tw(uT) + T, as required. 0

Theorems 4.2 and 4.6 may be related to the corresponding results for

i.i.d. sequences in the following way.

Theorem 4.7. Let {uT} be a family of constants such that the conditions
of Theorem 4.6 hold, lgt 0 < p < 1, and let h be chosen as in (4.1)
and (4.8). Then

(4.15) PIM(T)Suz}l > p as T

if and only if there is a sequence {cn} of Z.i.d. random variables with

common d.f. F satisfying 1 - F(u) ~ hf(u) as u »+ » and such that

A
Mn = max(cl,cz...cn) satisfies
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M<u }
(4.16) P Mn_unh > P

Proof. If there is an i.i.d. sequence {Cn} with common d.f. F such that
(4.16) holds then (as noted in the introduction) we have 1 - F(unk) ~ 1/n,
where p = e '. Since 1 - F(u) ~ h¥(u) we have w(unh) ~ T/nh, from which
(by (4.8)) w(uT) ~ T/T. Hence Theorem 4.2 gives P{M(T)SuT} > e ' so that
(4.15) holds.

Conversely if (4.15) holds ‘it follows from Theorem 4.6 that
Tw(uT) -+ T and hence nhW(unh) -+ T. Let {Cn} be i.i.d. random variables

with the same d.f. F, say, as M(h), so that by (4.1)

1- Fluy) ~ ho(u )~ t/n,

A
from which it follows that Mn = lnax(cl,cz...cn) satisfies

P{MnSun} + et = p, as required. O

These results show how the function ¥ may be used in the classical
criteria for domains of attraction to determine the asymptotic distribution
of M(T). We write D(G) for the domain of attraction to the (extreme value)
d.f. G, i.e. the set of all d.f.'s F such that Fn(x/an>+ bn) > G{x) for

some sequences {an>0},bn.

Theorem 4.8. Suppose that the conditions of Theorem 4.6 hold for all

families u,, = x/aT * by, -©<x < e, yhen {aT>0},{bT} are given

T

constants and
(4.17) P{aT(M(T)—bT) < x} G(x) .

Then
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(4.18) Y(u) ~ 1 - F(u) as u > > for some F e D(G) .

Conversely <f (4.1) holds and Y(u) satisfies (4.18) there are families of
constants {aT>O},{bT} such that (4.17) holds, provided that the conditions
-0 < x < oo,

of Theorem 4.6 are satisfied for each u., = x/aT +Db

T T

Proof. 1If (4.17) holds, together with the conditions stated, Theorem 4.7

shows that

A
P{anh(Mn—bnh) < x} =+ G(x)

A
where Mn is the maximum of n i.i.d. random variables with a common d.f. FO’

say, and where hy(u) ~ 1 - Fo(u) as u >, and F, € D(G). We may choose

0
a d.f. F such that 1 - F(u) = %f(l_FO(u)) when u is large and the classical
domain of attraction criteria show that F e D(G). But Y(u) ~ 1 - F(u) as
desired, showing (4.18).

Conversely if (4.18) holds and h > 0 we may choose FO € D(G) such that

hp(u) ~ 1 - F (u) and hence define an i.i.d. sequence {En} with common

A
d.f. FO’ Mn = max(gl,cz...cn), such that

, A
P{an(Mn- b;l) < x} » G(x)

for some constants a'>0,b'. Define a_=a', b.=b' for nh < T < (n+1)h,
n n T n T "n

n=20,1,2.... Then (4.16) holds with p = G(x). If the conditions of

Theorem 4.6 hold for each u. = x/aT + b, then (4.15) holds, which yields

T T
(4.17). 0
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5. Particular classes of processes.

In this section we first show how the conditions required for the
previous theory may be simplified when the mean number u(u) of upcrossings
of each level u by &(t) per unit time is finite, and then briefly indicate
applications to stationary normal processes (whether or not u(u) < «),
Throughout Nu(I) (Nu(t)) will denote the number of upcrossings of the level
u in the interval I (or in (0,t) respectively).

First we write for q > 0

(5.1) I, = P{E(0)<u<&(q)}/q .

Clearly Iq(u) < P{Nu(q)zl}/q < ENu(q)/q = u. Further, it is readily
shown (by a standard dissection of the unit interval into subintervals of
length q) that
(5.2) p(u) = lim I _(u) ,

o 4
which, for now, we assume finite for each u. It is apparent from (5.2) that
u(u) may, at least in principle, be readily calculated from the bivariate
distributions of the process. It may also happen (as for many normal
processes) that Iq(u) ~ p(u) as u > = when q depends on u, q = q(u) = 0.
For greater flexibility we shall use the following variant of such a
property. Specifically we shall assume, when needed, that for each a > 0

there is a family {qa(u) + 0 as u =+ «} such that (with q, = qa(u), H=u(u))

(5.3) lim inf I (uw)/u = v,
u-oo 9

where Vg 7 1 as a + 0. As indicated below, for many normal processes we

may take q_(u) = a/u and more generally as aP{£(0)>ul}/u(u) .



We shall assume as needed that
(5.4) P{E(0)>u} = ou(u) as u +» o ,

which holds under general conditions. For example, it is readily verified

if for some q = q(u) + 0 as u » o,

P{E(0)>u, E(q)>u} <1
P{E(0)> u}

(5.5) lim sup

oo

since (5.5) implies that 1im inf qu(u)/P{€(0)>u} > 0, from which it
Lo

follows that P{£(0)>u}/1q(u) + 0, and hence (5.4) holds since

1 < .

q (u) < p(w

We may now recast the conditions (3.6} and (3.7) in terms of the

function u(u).

Lemma 5.1.
(1) Suppose u(u) < « for each u and that (5.4) (or the sufficient
condition (5.5)) holds. Then (3.6) holde with Y(u) = u(u).
(1) If (5.3) holds (for some family {qa(u)}) then (3.7) holds with

v(w) = p(.
Proof. Since clearly

P{M(h)>u} < P{Nu(h)ZI} + P{(0)>u} < uh + P{E(0)>ul} ,

(3.6) follows at once from (5.4), which proves (7).

Now if (5.3) holds, then with <1=qa(u) s U=u(u),

P{E(0)<u, £(q)<u, M(q)>u} = P{E(0)<u, M(q)>u} - P{E(0)<u<&(q)}

IA

P{Nu(q)zl} - qu(u)

S Mg - uqv, (1+o(1))

27
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so that
lim sup P{E(0)<u, £(q)<u, M(q)>ul/(qu) < 1 - v_,
o a
which tends to zero as a =+ 0, giving (3.7). O

In view of this lemma, Gnedenko's Theorem now applies to processes of
this kind using the more readily verifiable conditions (5.3) and (5.4), as

follows.

Theorem 5.2. Theorem 3.5 holds for a stationary process &(t) with
Y(u) = u(u) < » for each u if the conditions (3.6) and (3.7) are replaced

by (5.4) and (5.3). 0

Finally, the condition Dé(uT) may, in certain circumstances, be
replaced by a sufficient condition involving the second moment of Nu(l) when
this is finite. This condition is not necessarily simpler to verify, but
the second moment involved may usually be obtained in terms of (integrals
containing) the joint densities of the process and its derivative at two

general points t.,t

172"

Lemma 5.3. Suppose that for the stationary process E(t), ENﬁ(l) < o, and

for a given family {u} = {u.},
(5.6) 1 Jim sup EN (eT)(N (eT)-1) + 0 as €+ 0 .
€ Tooo u u

Then &(t) satisfies Dé(uT), with Y(u) = uu) = ENu(l).
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Proof. Clearly, writing u = u(uT),

05 TQlgy ) = T EMN, (N -Ngp (eT))

Now if Nu(aT) > 1, Nu(eT) - NsT,u(eT) < Nu(eT)(Nu(eT)—l). Also
Nu(eT) - NET,u(ET) is zero if Nu(eT) = 0 and is zero or 1 if Nu(eT) =1,

the latter case requiring that Nu(—eT,O) 2 1 also. Hence we have

o
IA

E{Nu(eT) - NeT’u(eT)} < BN, (eT) (N, (eT)-1) + P{N(2eT)>1}

IA

ENu(aT)(Nu(eT)—l) + ENu(ZeT)(Nu(ZeT)-l)
so that Dc(uT) follows by applying (5.6) twice (once with 2¢ replacing €). [J

For stationary normal processes, finiteness of ENi(l) ;édﬁireé a little
more than existence of the second spectral moment used to ensure finiteness
of u (cf. [3]). We turn now to the consideration of stationary normal
processes, but will not restrict attention to those for which even
U= ENu(l) is finite. Specifically we assume that £(t) is a (zero mean)

stationary normal process with covariance function

(5.7) r(t) = 1- C|t|*+ o]t|* as T+ 0

for some o, 0 < o < 2. (The case o = 2 gives Y < .,) There is a
considerable literature dealing with extremal properties of such processes,
and of slightly more general cases (which could be included here) in which
the term ITIa is multiplied by a slowly varying function as T + 0

(cf. [2], [16]). Of course a number of the same arguments (which in some

cases are rather intricate) used in these papers are required to verify our
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general conditions here. We will not attempt to reproduce these arguments
but rather to simply indicate the basic considerations used and where they
may be found. However it will be convenient to summarize these results as a

theorem even though formal proofs are not given.

Theorem 5.4. Let E(t) be a zero mean stationary normal process with
covariance function r(t) satisfying (5.7). Then
(1) (3.6), and in fact (4.1), hold with Y(u) = cM/® Hauz/a S(w)/u,
in which ¢ is the standard normal density C is as in (5.7), and
H, 18 a constant depending only on o .
(11) (3.7) holds with q,(u) = au—z/a.
(211) Dc(uT) holds with respect to a family {q} if TW(uT) 18 bounded

and

~up/(+ [ (k) )

(5.8) L ) lr(kq) |e >0 ag T+
1 AT<kqsT

AT
for each X > 0. This holds, in particular, if TW(uT) ig
bounded (with Y defined ag in (i)) and r(t) log t = 0 as t + o,

(iv) If r(t) log t » 0 and Tw(uT) > T >0, then Dé(uT) holds and

T

P{M(T)SuT} - e .

(v) If r(t) log t » 0, M(T) has the limiting distribution given by

-X
Pla,(M(T)-by) = x} » &™°
where
e
an = (2 log T)
- Y o101
bp = (2 log T)® + (2 log T) {(a—j)log log T
o lal -y 1/a
+ log(2 T C H)} .

o
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Indications and sources of proof.

(7) A derivation of (4.1) (from which (3.6) follows) appears in
several developments of the normal theory (e.g. Theorem 2.1 of [16]1). 1In
the case a = 2, (3.6) is incidentally simply obtained from "Rice's formula'
b= (e /ome ™ 12,

(i2) This may be shown, for example, along the lines of Lemma 2.4 of
[16], although a more direct derivation is obtainable from the normal theory
given by Lindgren and Rootzen in [13].
(iiZ) The proof of this involves a standard calculation using "Slepian's

Lemma" (cf. Lemma 3.5 of [15]), from which it follows that for two sets of

standard normal random variables gl...gn, nl...nn with covariance matrices

D31 0551 a1z v

n
[P{ n
j:

, S
oomut/ (1AL D
Z Ixij - \)ijlcl'}\ij) ‘e H

n
n
= i<j

(gjsu)} - P{

(nsuw)} =< K
1 j=1 7

1
In this application (using the notation of (3.4)), the Ei are identified

with the r.v.'s E(sl)...E(sp),E(tl)...E(tp,) and the n; with p+p!

standard normal r.v.'s having the same correlations except that

cov(E(si), E(tj)) is replaced by zero for 1sisp, 1sjs<p'.

The fact that boundedness of TW(uT) together with r(t) log t > 0
implies (5.8) follows by standard calculations (cf. [1] or Lemma 3.1 of [13]).
(iv) If r(t) log t > 0 and Tw(uT)-+ T > 0 then Dé(uT) may be

obtained from arguments leading to Theorem 3.1 of [15], though it seems
likely that a shorter route via our Lemma 3.3 may be possible. It then
follows from Theorem 4.2 that P{M(T)SuT} + e T, Of course any proof (of

which there are several) that r(t) log t -~ 0 and TW(uT)-+ T implies that
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P{M(T)SUTJ + ¢ ' must also imply that Dé(uT) holds by virtue of our
Lemma 4.5. That is Dé(uT) may be regarded as a necessary condition for
(4.3) to imply (4.4).

(v) This follows at once from the (relatively) straightforward
verification of the fact that TW(uT) + T = e X when u_ = x/a., + b using

T T T’

the above results. O

6. Poisson and related properties.

In this section we shall just briefly indicate the Poisson properties
associated with high level upcrossings. We confine the discussion to the
case where the number Nu(I) of upcrossings in a bounded interval I has a
finite mean, writing again u = u(u) = ENu(l). Cases where this is not so
are similarly dealt with in terms of €-upcrossings.

Our objective is to show, under Dc and Dé conditions, that the point
process of upcrossings of a high level takes on a Poisson character--as is
well-known in the case when the stationary process £(t) is normal. Since
the upcrossings of increasingly high levels will tend to become rare, a
normalization is required. To that end we consider a time period T and a
level Urps both increasing in such a way that Tu-+1, (u==u(uT)), and
define a normalized point process of upcrossings by

NED =N, (T, (NFCE) =N, (e1)

for each interval (or more general Borel set) I, so that, in particular,

{6.1) EN%(l) = ENT(T) = uT» T .
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This shows that the "intensity" (i.e. mean number of events per unit
time) of the (normalized) upcrossing point process converges to T. Our task
is to show that the upcrossing point process actually converges (weakly) to
a Poisson process with mean T.

The derivation of this result is based on the following two extensions
of Theorem 4.2, which are proved by similar arguments to those used in

obtaining Theorem 4.2.

Theorem 6.1. Under the conditions of Theorem 4.2, if 6 < 1 and uT - T,

then

(6.2) - P{M(GT)suT} > e Mg Tow, 0

Theorem 6.2, If Il’I ...Ik are disjoint subintervals of [0,1] and

2

I; = TIj = {t: t/T € 1} then under the conditions of Theorem 4.2, if uT - T,

k k
(6.3) P{.n M(I}!’)SUT} - I

P{M(I®)<u } + 0,
j=1 j=1 3T

so that by Theorem 6.1

k —TZ6i
(6.4) P{ n M(I¥)<u, )} + e ,
. j T
j=1
where ej i8 the length of Ij’ 1<3j<k, 0

It is now a relatively straightforward matter to show that the point
processes N% converge (in the full sense of weak convergence) to a Poisson

process N with intensity T.
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Theorem 6.3. Under the conditions of Theorem 4.2, if Tu + 1 where ‘
M= ulug), then the family N of (normalized) point processes of upecrossings
of up on the unit interval converges in distribution to a Poisson process N

with intensity T on the unit interval as T + .

Proof. By Theorem 4.7 of [8] it is sufficient to prove that
(1) EN%‘,{(a,b]} >~ EN{(a,b]} = T(b-a) as T + « for all a,b,

0<as<bz=sl.

n
(ii) P{N%(B)=O} - P{N(B)=0} as T » » for all sets B of the form uB,
1
where n is any integer and Bi are disjoint intervals
(ai’ bl] < (0:1] .
Now (i) follows trivially since
EN,‘I*,{(a,b]} = uT(b-a) + t(b-a) . ‘
To obtain (ii) we note that
0 < P{N:f,(B)=o} - P{M(TB)SuT}
= P{N (TB)=0, M(TB)>u,}
n
< .Z P{E(Tai)>uT}
i=1
n
since if the maximum in TB = vy (Tai,Tbi] exceeds U but there are no
i=1

upcrossings of U, in these intervals, then £ must exceed u at the initial
point of at least one such interval. But the last expression is just

nP{€(0)>uT} > 0 as T + o, Hence
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P{N:I‘.(B)=O} - P{M(TB)SuT} + 0 .

R PSR - .Cn/ . \,_'I\E:Sbi_ ai.} .....
But P{M(TB)SuT} = P{ n (M(TBi)SuT} + e by Theorem 6.2 so that
R _ =Ti(b, - a;) - -
(ii) follows since P{N(B)=0} = e . ]

Corollary. If B, are disjoint (Borel) subsets of the unit interval and

if‘the boundary of each B, has zero Lebesgue measure then

T.

n -Tm(Bi)[Tm(Bi)] 1

P{N*(B,)=r, , lsisn} + I e —_—
T V1 i . r.!
i=]1 i

where m(Bi) denotes the Lebesgue measure of Bi'

Proof. This is an immediate consequence of the full weak convergence proved

(cf. Lemma 4.4 of [8]). 0

The above results concern convergence of the point processes of
upcrossings of U in the unit interval to a Poisson process in the unit
interval. A slight modification (requiring DC and Dé to hold for all
families Ugr in place of Un, for all & > 0) enables a corresponding result
to be shown for the upcrossings on the whole positive real line, but we do
not pursue this here. Instead we show how Theorem 6.3 yields the asymptotic
distribution of the rth largest local maximum in (0,T).

Suppose, then, that £(t) has a continuous derivative a.s. and define
N&(T) to be the number of local maxima in the interval (0,T) for which the
process value exceeds u, i.e. the number of downcrossing points t of zero by
g' in (0,T) such that &(t) > u. Clearly N&(T) = Nu(T) - 1 since at least

one local maximum occurs between two upcrossings. It is also reasonable to
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expect that if the sample function behavior is not too irregular that there
will tend to be just one local maximum between most successive upcrossings

of u when u is large, so that N'(T) and N (T) w111 tend to be approximately

equal. The following result makes this precise.

Theorem 6.4. With the above notation let {uT} be constants such that
Tu(=Tu(uT)) + T > 0. Suppose that EN&(l) 18 finite for each u and that

EN'(1) ~ u(u) as u > «. Then, writing up = u, EINl'l(T) - Nu(T)l + 0.

If also the conditions of Theorem 6.3 hold (so that

P{Nu(T)=r} + e TtT/r1) it follows that P{N&(T)=r} > e T /rt

Proof. As noted above, N&(T) 2 Nu(T) - 1, and it is clear, moreover, that

if NI(T) = N,(T) - 1, then &(T) > u. Hence ‘

EIN' (T) - N (D] = EIN!(T) - N (T)} + 2P{N!(T) = N (T) - 1}

< TEN! (1) - uT + 2P{E(T)>u} ,

which tends to zero as T »+ » since P{E(T)>uT} = P{E(O)>uT} -~ 0 and
TEN&T(I) - WT = uT[(1+0(1)) - 1] = 0, so that the first part of the theorem
follows. The second part now follows immediately since the integer-valued
r.v. Ni(T) - N (T) tends to zero in probability, giving P{N&(T) z Nu(T)}-+ 0

and hence P{N&(T)=r} - P{Nu(T)=r}-+ 0 for each r. g

Now write M(r)(T) for the rth largest local maximum in the interval

(0,T). Since the events {M( )(T)<u} {N’(T)<r} are identical we obtain the

following corollary:
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Corollary 1. Under the conditions of the theorem

(r) R R

PIM (T <upl » e ] /st . 0
s=1

As a further corollary we obtain the limiting distribution of M(r)(T)

in terms of that for M(T).

Corollary 2. Suppose that P{aT(M(T)—bT) < x} + G(x) and that the
econditions of Theorem 4.6 hold with up = x/aT + b, for each real x (and ¢ = ).

Suppose also that EN'(1) ~ ENu(l) as u + o, Then

r-1
(6.5) P{aT(M(r)(T)-bT) < x}» G J [-log G(x)]%/s! ,
s=0

where G(x) > 0 (and zero if G(x) = 0).

Proof. This follows from Corollary 1 by writing G(x) = e ' since

Theorem 4.6 implies that Tup = T. g
Note that for a stationary normal process with finite second and fourth

spectral moments AZ’A4 it may be shown (Section 11.6 of [3]) that

EN&(I) = u@(uAZ/A) + (>\4/)\2)1/2 [1 - @fu(k4/A)%}

_ 2
where A = X4 - AZ

EN&(l) ~ U oas u > e,

and ¢ is the standard normal d.f., so that clearly

The relation (6.5) gives the asymptotic distribution of the rth largest
local maximum M(r)(T) as a corollary of the Poisson result, Theorem 6.4 .

This Poisson result may itself be generalized to apply to joint convergence



38

of upcrossings of several levels to a point process in the plane composed of
successive "'thinnings" of a Poisson process. From a result of this kind it
is possible to obtain the joint asymptotic distribution of any number of the

M(r)(T), and also of their time locations.
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