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Extreme wet and dry conditions affected differently

by greenhouse gases and aerosols
Jana Sillmann 1, Camilla W. Stjern1, Gunnar Myhre 1, Bjørn H. Samset 1, Øivind Hodnebrog 1, Timothy Andrews 2,

Olivier Boucher 3, Gregory Faluvegi 4, Piers Forster 5, Matthew R. Kasoar 6,7, Viatcheslav V. Kharin 8, Alf Kirkevåg 9,

Jean-Francois Lamarque 10, Dirk J. L. Olivié9, Thomas B. Richardson 11, Drew Shindell 12, Toshihiko Takemura 13,

Apostolos Voulgarakis 7 and Francis W. Zwiers 14

Global warming due to greenhouse gases and atmospheric aerosols alter precipitation rates, but the influence on extreme
precipitation by aerosols relative to greenhouse gases is still not well known. Here we use the simulations from the Precipitation
Driver and Response Model Intercomparison Project that enable us to compare changes in mean and extreme precipitation due to
greenhouse gases with those due to black carbon and sulfate aerosols, using indicators for dry extremes as well as for moderate
and very extreme precipitation. Generally, we find that the more extreme a precipitation event is, the more pronounced is its
response relative to global mean surface temperature change, both for aerosol and greenhouse gas changes. Black carbon (BC)
stands out with distinct behavior and large differences between individual models. Dry days become more frequent with BC-
induced warming compared to greenhouse gases, but so does the intensity and frequency of extreme precipitation. An increase in
sulfate aerosols cools the surface and thereby the atmosphere, and thus induces a reduction in precipitation with a stronger effect
on extreme than on mean precipitation. A better understanding and representation of these processes in models will provide
knowledge for developing strategies for both climate change and air pollution mitigation.
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INTRODUCTION

Under global warming, the amount of extreme precipitation is
expected to increase about three times as much as mean
precipitation, with distinct regional patterns (e.g., see refs 1,2).
Observations also show that heavy precipitation increases more
than the mean precipitation.3,4 While recent studies emphasized
the robustness of the projected changes in precipitation extremes
on large-aggregated scales, our understanding of regional to local
changes in precipitation extremes remains limited.5 Various
dynamic and thermodynamic mechanisms influence the regional
patterns of changes in extreme precipitation,6–9 on short and long
time scales.10,11

Energy balance studies clearly show that aerosols differ from
greenhouse gases in their impact on precipitation.12–15 Unlike
greenhouse gases, atmospheric aerosols also responsible for air
pollution are not distributed homogenously around the globe, but
have distinct regional distributions.16 Especially, regions with high
emissions from fossil fuel burning sources (e.g. power plants,
traffic), such as South Asia, exhibit high concentrations of sulfate
and black carbon (BC).17 Through long-range transport,18 these
emissions can also affect remote regions, such as the Arctic.

Atmospheric aerosols are suggested to impact precipitation in
various ways, such as by influencing large-scale circulation and
changes in the intertropical convergence zone19–21 through
general cooling of the surface,22–24 by changing atmospheric
stability,22,25–27 and by influencing cloud microphysics.28–30 More-
over, scattering aerosols, such as sulfate, may influence these
processes in different ways than absorbing aerosols, such as BC.
The global mean precipitation change is constrained by the
energy budget,6,31,32 whereas there seems to be no such
constraint on the global change in extreme precipitation. In
addition, the effect of inhomogeneous aerosol burdens in the
atmosphere and varying circulation adjustments can lead to
regionally diversified patterns of changes in mean and extreme
precipitation (e.g., see refs 33–36).
Precipitation change occurs both as fast response to a change

in greenhouse gas or aerosol concentrations, through short
timescale alterations to stability and the atmospheric energy
balance, and on longer time scales, through changes in mean
surface temperature.22,27,37,38 The fast global mean precipitation
change scales strongly with absorption of radiation in the
atmospheric column and the slow response (feedback driven)
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scales with global surface temperature change.22,24,26 How
different drivers of climate change, such as greenhouse gases
and aerosols, impact extreme precipitation is currently highly
uncertain both on global and regional scales. Studies indicate that
changes in extreme precipitation are driven by the surface
temperature change, thus being independent from the forcing
mechanism.5,39 However, Lin et al.40 and Wang et al.41 find
indications of driver dependency for more moderate extreme
precipitation. This indicates that results depend on what exact
definition of extreme precipitation is used for the analyses, as
outlined also in Sillmann et al.42

We find in this study, that the more extreme a precipitation
event is, the more pronounced is its response relative to global
mean surface temperature change, both for aerosol and green-
house gas changes. With BC-induced warming dry days become
more frequent, but also the intensity and frequency of extreme
precipitation increases. Sulfate aerosols cause a cooling of the
atmosphere, and thus induces a reduction in precipitation with a
stronger effect on extreme than on mean precipitation.

RESULTS AND DISCUSSION

Using the model simulations from the Precipitation Driver and
Response Model Intercomparison Project (PDRMIP),43 we are able
to investigate in more detail the responses of mean and extreme
precipitation to different climate forcing agents. Experiments were
run for globally increased levels of carbon dioxide (CO2 × 2),
methane (CH4 × 3), sulfate (SO4 × 5), BC (BC × 10), and solar forcing
(SOL) compared to baseline experiments representing present-day
conditions using aerosol concentrations from AeroCom Phase
II.44,45 For more details on the experiments and models see
“Methods”.
To assess extreme precipitation, we calculate the annual

maximum 1-day precipitation amount (Rx1day), which occurs by
definition once every year and resembles approximately the
99.7th percentile of the daily precipitation distribution. In addition,
to capture events that are much more extreme, we use the
99.99th percentile of the daily precipitation distribution, which is
expected to occur only every 30 years. Extreme precipitation
changes more than mean precipitation, when calculated as a
relative change in precipitation per degree increase in global

mean surface temperature (ΔT) for increased CO2 forcing (see Fig.
7.21 in Boucher et al.,46). We extend this analysis to all the forcing
agents considered in PDRMIP and show, in agreement with
previous studies,24 that the climate forcing mechanism plays a role
for the changes seen in the mean precipitation. To allow
comparison between the experiments, which represent perturba-
tions of different scales, all figures show changes normalized by
the magnitude (the absolute value) of the global mean surface
temperature change for each model and experiment. This
approach makes the magnitude of the responses comparable,
while retaining the sign of the change expected from perturba-
tions that cool (SO4) versus perturbations that warm (the other
forcing agents) the climate. We provide non-normalized model
mean changes in Supplementary Table 1 for reference.
The smallest mean precipitation change in the multimodel

median is found for CO2, followed by CH4, and SOL, while the
largest change occurs for sulfate aerosols, with only a small
intermodel spread (Fig. 1). The tendency of sulfate to induce
strongest changes (a reduction) to mean precipitation is true for
all the regions considered in Fig. 1 (global and extratropical land)
and Supplementary Fig. 1 (ocean, land, and tropical land), and is
related to its strong effect on the hydrological sensitivity (see also
Samset et al.16). Despite producing a positive global mean
temperature change, BC forcing generally reduces the mean
precipitation, due to its strong influence on atmospheric absorp-
tion, which generally stabilizes the atmosphere and dampens
precipitation formation (see refs 12,47) There is, however, a large
spread amongst the models, of which two show no change or a
slight increase.
In general, as opposed to the mean precipitation, the

magnitude of the change in extreme precipitation (Rx1day and
the 99.99th percentile) is similar across all forcing agents with the
multimodel median changes being very close to each other. Note,
for instance, that the global change in the 99.99th percentile is
around 6%/|K| for CO2, CH4, and SOL and around −6%/|K| for SO4,
which cools the climate and therefore reduces both mean and
extreme precipitation. The intermodel spread is however large
compared to mean precipitation. BC stands out with somewhat
weaker changes in the extremes and with a substantially larger
intermodel spread, with some models even indicating a decrease
in extreme precipitation. Over extratropical land (i.e. latitudes
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Fig. 1 Relative changes in mean precipitation and dry and wet extremes for the different forcing agents. All values are defined and calculated
for each grid box, regionally averaged for baseline and perturbed climate, before relative changes are calculated. These changes are then
normalized by the absolute value of the global mean temperature change. Extreme precipitation is expressed in terms of the annual
maximum 1-day precipitation amount (Rx1day) and in terms of the precipitation intensity of the upper 99.99th percentile of daily
precipitation (PI_99.99), and extreme dry conditions in terms of the annual number of consecutive dry days (CDD). Box sizes show the
interquartile range, the model median is shown as a solid line, and crosses indicate individual model values
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polewards of 30°S and 30°N), all models agree that the intensity of
the annual maximum precipitation (Rx1day) increases for all
forcing agents except sulfate (see Supplementary Fig. 1 for
changes over oceans, global land, and tropical land). Globally, the
change in extreme precipitation is for all forcing agents generally
larger for the intensity of the 99.99th percentile (PI_99.99) than for
Rx1day supporting earlier findings3,5 (Fig. 1). The multimodel
median difference between the change in very extreme precipita-
tion (99.99th percentile) and the change in Rx1day is smallest for
SO4 (see Supplementary Fig. 2). Further research based on more
model simulations, and ideally observations, is needed to under-
stand the changes in extreme precipitation associated with sulfate
forcing, particularly for very extreme precipitation, as sampling
uncertainties are very large.
We find the same type of response for the frequency of

precipitation events with different intensities. Supplementary Fig.
3 shows that the more intense the precipitation event (i.e., higher
percentiles), the larger the relative change in how often it occurs.
Again, the increase (with higher precipitation intensity) in the
magnitude of the change is smaller for BC and SO4. This feature is
clearest for the SO4 case, for which the model spread is also
smaller than for BC. Also, the change for SO4 in the lowermost
panel, showing changes in the frequency of days with very intense
precipitation (amounts above the 99.99th percentile for each
given grid cell), stands out with a very small change compared to
the other climate forcers. This could be due to the fact that SO4

unlike the other climate forcers cools the climate, and this cooling
will not necessarily induce a similar response as a warming of the
same magnitude. However, caution is needed as differences in
frequency in the highest percentile are very uncertain due to a
very small sample size.
Due to its large effect on atmospheric absorption, BC causes a

strong reduction in the fast precipitation change,24 and therefore
imposes a different effect on the changes in mean and extreme
precipitation than the other forcing agents. At the same time, the
spread between models is largest for BC, with some models
showing opposite signs of change. This tendency of BC-induced
climate signals to be associated with larger model spreads than
those induced by other drivers is a well documented feature of
the PDRMIP data set,18 and is partly related to differences in
experiment setups and partly to model differences in BC lifetime,
absorptivity, and baseline cloud cover. For the BC and CH4

perturbations, the surface temperature response is much smaller
than for the other forcing agents (see Supplementary Table 1), and
especially for the BC experiment some models yield a particularly
weak temperature response (see inset bar plots in Fig. 3). This
causes artificially strong changes in precipitation when normalized
by temperature change for those models, and contributes to a
particularly large model spread for BC. Overall, this uncertainty
adds to the uncertainty coming from sampling very extreme
events (i.e. the 99.99th percentile).
In general, BC tends to have a drying effect on mean

precipitation and induces an overall smaller increase in extreme
precipitation than the other forcing agents. The difference
between mean and extreme precipitation response is stronger
for Rx1day compared to the other climate drivers investigate here,
and becomes less obvious for higher percentiles (see also
Supplementary Fig. 3, and Fig. 2a for spatial patterns of Rx1day).
To investigate further the drying effect of BC, we have analyzed
the annual maximum number of consecutive dry days (CDD) (see
Fig. 1). The increase in CDD per degree warming is largest for BC
for the globe and extratropical land, although showing a large
spread among the models. For extratropical land areas, BC and
SO4 are the only forcing agents inducing a drying trend with
model median changes significantly different (at the 95% level, by
the Wilcoxon signed-rank test) from zero. When looking at all land
areas including the tropics, the drying effect of BC seems less
pronounced compared to the other forcing agents and SO4 causes

reduced CDD here (see Supplementary Fig. 1). Over tropical land,
two of the models, CESM-CAM5 and MIROC-SPRINTARS, appear as
extreme positive and negative outliers, respectively, as they are
normalized by a warming for the BC perturbation that is close to
zero. This contributes to a very large spread among the models.
Despite that spread, and unlike over extratropical land, over
tropical land there is more agreement about the sign of the CDD
change among forcing agents, as all but SO4 induce a drying. Over
extratropical land, SO4 shows a drying trend with a similarly large
magnitude as BC, but with less spread between the models.
The regional patterns for changes in CDD per degree warming

due to increase in CO2, CH4, and SOL are similar as depicted in Fig.
2b, with global spatial (Pearsons) correlation coefficients of 0.78
and 0.92. Regions with strong increases in CDD are Central
America, Southern Europe, Southern Africa, and the Eastern Indian
Ocean, and all induce reductions in CDD at higher northern and
southern latitudes. SO4 displays similar patterns but of opposite
sign, while BC influences CDD in the same regions as the other
drivers, but with a magnitude that is substantially higher. This
pattern of strong BC-induced drying is similar to what has been
found for mean precipitation change due to BC increase in
another study.45 Note, for example, the very strong increases over
Europe/Western Russia. This difference in magnitude seems to be
the main cause of the positive extratropical-average CDD change
for BC (Fig. 1), contrasting the negative change for the other
warming drivers CO2, CH4, and SOL (see also a corresponding
figure of the annual number of dry days in Supplementary Fig. 4,
which displays the same tendency). In fact, the spatial correlation
between CO2- and BC-induced changes to CDD for extratropical
land regions is 0.81 and highly significant. On the other hand,
although the tropical average CDD changes in Supplementary Fig.
1 are similar between all warming drivers including BC, spatial
correlations over tropical land masses are poorer than it was over
the extratropics (i.e., 0.55 between CO2 and BC). This pattern of BC-
induced drying is similar to what has been found for mean
precipitation change due to BC increase in another study.45

So far, we have shown that extremes of various intensities have
different responses to climate forcing. In Fig. 3, we show how the
frequency of different precipitation events varies for different
precipitation amounts for individual models. These are absolute
changes not normalized by the temperature change, which is
shown for each model as bars in the Fig. 3 inset. The spread
between models increases the more extreme precipitation gets,
and there is also an increase in the relative intermodel standard
deviation (that is, the standard deviation relative to the model
mean magnitude of the change at the given precipitation
intensity) for CO2, CH4, and SOL. BC has the weakest globally
averaged temperature response with respect to forcing, but
produces some of the strongest precipitation reductions despite
increasing global mean temperature due to its strong atmospheric
shortwave absorption.24,43 However, it has to be noted that for the
models with the weakest temperature responses (CESM-CAM5
and MIROC-SPRINTARS), the precipitation change induced by CH4

and BC is within the range of natural variability even for the most
intense precipitation (see Fig. 3). For the other forcing agents, the
change in frequency increases (except SO4, for which it decreases)
with precipitation intensity, and the signal falls well outside the
range of natural variability.
For the total change in global precipitation per degree

temperature change (Fig. 4 upper panel) all the warming forcing
agents cause a decrease in the frequency of precipitation events
with intensities up to about 5 mm/day. This is consistent with the
fact that the frequency of precipitation events of intensities
between 1mm/day and the 90th percentile are reduced for these
forcers (see also Supplementary Fig. 3). However, a clear
distinction between aerosols and the other forcing agents can
be seen over extratropical land (Fig. 4 upper right panel), where all
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except BC and SO4 lead to an increase also in the lowest
precipitation amounts (up to around 30mm/d).
Finally, precipitation changes can be disentangled into fast

precipitation changes (instantaneous radiative perturbation and
rapid adjustment) and feedback response (slow changes scaling
with global temperature change). CO2 and SOL impose somewhat
different fast precipitation changes signals in the mean precipita-
tion, but are similar for extreme precipitation.42 Earlier studies
have also emphasized the particular role of BC relative to GHGs in
the fast precipitation contribution to the mean precipitation
change.22,24 We find that for all drivers except BC, most of the total
precipitation change originates from the slow feedback response
(Fig. 4, middle panel), which is in a similar range as the total
change (Fig. 4, upper panel). The globally averaged rapid
adjustment (Fig. 4, lower panel) is generally of opposite sign
and smaller in magnitude than the slow feedback response, but
for BC the rapid adjustments dominate the total change for the
low to medium precipitation amounts (about 40 mm/day). This
could also be the cause for the difference in BC- and GHG-
response in more moderate precipitation percentiles (up to the
99th percentile) as seen in Supplementary Fig. 3. However, the
latter shows also that for the most extreme precipitation

percentiles (>99th percentile), the difference between the
responses to aerosols and greenhouse gases diminishes, except
for SO4.
Over extratropical land, a similar transition is visible in the fast

precipitation response (Fig. 4). For precipitation intensities up to
about 70 mm/day, there are large differences between BC and the
other forcing agents inducing a warming. While for the highest
intensities, the precipitation response from BC perturbations
approaches that from greenhouse gas perturbations, confirming
also results from Pendergrass et al.39 and Sillmann et al.42 that the
most extreme precipitation is independent of the type of
forcing agent.
In conclusion, the PDRMIP simulations made it possible to

separate the thermodynamic effect of different forcing agents on
changes in mean and extreme precipitation. BC and sulfate
aerosols seem to have opposing effects on extreme precipitation
per absolute temperature change (see also Ocko et al.48). Sulfate
aerosols, by cooling the surface, reduce both mean and extreme
precipitation unlike the other forcing agents, but also increase
CDD particularly in extratropical land areas. BC induces a decrease
in mean precipitation despite warming the surface. Although its
influence on extreme precipitation is much more uncertain due to

Fig. 2 Spatial patterns of model mean changes in wet and dry extremes. Wet extremes shown in a as annual maximum 1-day precipitation
amount (Rx1day) and dry extremes shown in b as number of consecutive dry days (CDD) are normalized by the absolute value of the global
temperature change. Hatched areas indicate grid cells where less than 75% of the models agree on the sign of the change
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a large model spread, all but one model simulate more positive
changes in the extremes than in the mean, and over extratropical
land all models predict an increase in Rx1day. BC also has the
largest model spread in CDD changes. The response to BC forcing
may be a significant contributor to the uncertainty in estimates of
future changes in both wet and dry extremes.18,24,43 This study
underlines the need to improve the understanding of climate
models’ responses to aerosols (along with improving global
aerosol monitoring networks), for realistic projections of mean and
extreme precipitation. While other PDRMIP experiments with more
distinct regional aerosol forcing can provide further insights into
regional climate change and air pollution mitigation,49 we
highlight here the differences in mean and extreme precipitation
response based on globally increased sulfate and BC
concentration.

METHODS

Precipitation Driver and Response Multimodel Intercomaprison
Project
In PDRMIP, ten global climate models performed baseline simulations with
present-day concentrations of greenhouse gases and aerosols, and five
perturbation experiments involving, respectively, a doubling of CO2 (CO2 ×
2), a tripling of CH4 (CH4 × 3), a 2% increase in the solar constant (SOL), a
tenfold increase in BC (BC × 10) and a fivefold increase in sulfate (SO4 × 5).
Note that the magnitude of the perturbations is somewhat arbitrary, but
the applied perturbations were chosen to obtain robust signals in the
models, and not to represent realistic past or possible future changes.
Therefore, we refer only to climate responses normalized by the global
mean surface temperature change that the perturbation causes, to make
the experiments comparable. Both baseline and perturbation experiments
were run both in a fully coupled mode, as well as in a fixed-sea surface
temperature (fixed-SST) mode. The coupled simulations were run for at
least 100 years and the fixed-SST simulations for at least 15 years. Analyses
in the present paper are based on years 51–100 of the coupled runs and
years 6–15 of the fixed-SST runs. Results from the fixed-SST simulations
give us the rapid response (the fast precipitation changes, occurring within

days to weeks after the start of the perturbation), while the feedback
response (the slow change, occurring within months to years after the start
of the perturbations) is found by subtracting the fixed-SST response from
the result of the fully coupled simulations. The reader can refer to Myhre
et al.43 for a more comprehensive description of the experiments and the
models used.

Averaged precipitation extremes
For each model and grid cell, we calculate the mean precipitation, Rx1day
(i.e., the annual maximum 1-day precipitation amount) and the 99.99th
percentile—first averaged overall daily values from the last 50 years of the
BASE simulation, and then averaged over the same years for the five
perturbation simulations (the cases). The relative difference between the
globally averaged values of, for instance, Rx1day for BASE and each case
are then calculated and divided by global mean surface temperature
change for the given model and case. The state-of-the-art models as used
in the PDRMIP experiments have been previously assessed with regard to
their ability to simulate mean and extreme precipitation.2

Histograms
To calculate histograms of relative changes in occurrence for fixed 5-mm/
day precipitation intervals, we count how often precipitation falls within a
given intensity interval for each grid cell, model, and for BASE as well as
the five forcing agents. We use daily values for the last 50 years of the
coupled simulations and normalize this number by the number of
available data points. This gives, for each grid cell, a number between 0
and 1 (the frequency of occurrence), depending on how often precipita-
tion of that intensity occurs. We then, for each model and case, calculate
the percent change in the globally averaged frequency of occurrence,
divided by the global mean surface temperature change for the given
model and case. Note, however, that the fast changes were not divided by
the global temperature changes in the end, as these do not scale with the
applied radiative forcing.

Natural variability
To provide an estimate of how much signals in Fig. 4 deviate from natural
variability, we utilize all available years in the BASE runs (around 100 years,

Fig. 3 Relative changes in the frequency of different precipitation amounts for individual models and forcing agents. Note that here, the
changes are not normalized by the magnitude of the global temperature change ΔT, which instead is provided in the barplot insets in each
figure panel. Gray lines show “background” variation (based on the years 1–100 of the BASE simulations) calculated from Monte Carlo
simulations, as an indication of natural variability
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varying slightly between models). We construct a precipitation series
based on random picks from the entire time series, and then count the
frequency of occurrence in each precipitation bin for this random
precipitation time series, as well as the difference relative to the “original”
BASE used in the analyses above. This procedure is repeated ten times, and
the largest positive and negative difference from the original BASE for each
bin is then plotted as a gray line in Fig. 3, together with individual model
changes. As there is no temperature change in BASE, we do not normalize
by global mean temperature change in Fig. 3.
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Tables 

 

 Global Extratropical land 

 dT Mean Rx1day PI_99.99 CDD Mean Rx1day PI_99.99 CDD 

CO2x2 2.4 3.6 11.3 15.0 0.6 4.8 11.6 13.7 -0.7 

CH4x3 0.7 1.5 3.4 4.3 1.2 1.8 3.6 4.0 -0.6 

SOL 2.5 6.1 13.7 17.4 -0.1 6.4 13.0 15.3 -1.1 

BCx10 0.7 -1.2 2.1 2.2 4.6 -1.0 2.6 2.6 4.0 

SO4x5 -2.3 -6.1 -7.0 -10.2 0.7 -6.9 -7.9 -11.1 3.0 

 

Supplementary Table 1: Multi-model mean changes in global temperature and global and 

extratropical precipitation per forcing agent. Wet and dry extremes are captured as the intensity of 

annual maximum temperature (Rx1day; %), the intensity of the 99.99th percentile of daily precipitation 

(PI_99.99; %) and the annual number of consecutive dry days (%). Extratropics are defined as regions 

polewards of 30°N/S. An increase in sulphate aerosols (SO4x5) actually causes a decrease in 

temperature, while the other forcing agents introduce a warming. Note that in Figure 1, the multi-model 

median shows relative changes, for which first the change in mean or extreme precipitation for a 

particular model is divided by the respective model’s temperature change, and then averaged into the 

model-mean shown as the black horizontal line within each box. Therefore, dividing the model-mean 

change in mean precipitation with the model-mean temperature change from the table will not be 

exactly the same. 

  



Figures 

 

 

 

Supplementary Figure 1: Relative changes in mean precipitation and dry and wet extremes for the 

different forcing agents. Same as Figure 1 but showing changes over oceans, land and tropical (30°S to 

30°N) land. 



 

Supplementary Figure 2: Difference between the magnitude (absolute value) of change in mean and 

extreme precipitation and between different intensities of extreme precipitation. Extreme precipitation 

is captured as Rx1day and PI_99.99. Note that although the BC-induced change in Rx1day is positive and 

the change to mean precipitation is negative, the magnitude of the Rx1day change is larger than the 

mean precipitation change, and so the difference is positive in this plot. Boxes show the interquartile 

range and solid lines show the model-median. All numbers show global averages. 

 



 

 

Supplementary Figure 3: Change in the frequency of precipitation events of different intensities. 

Precipitation intensities are characterized by different percentiles. Positive changes indicate that the 

given type of precipitation events (e.g., precipitation amounts within the 90th to 99th percentile range) 

are becoming more common under the given perturbation. 

 

In Supplementary Figure 3, we illustrate how much more/less often precipitation falls within a given 

intensity interval in a case simulation compared to the BASE. The figure is similar to Figure 4, but instead 

of using fixed precipitation bins, here we use percentiles. We do this to account for the fact that there are 

large regional variations between what precipitation intensities may be characterized as extreme (a 20 

mm/day precipitation event might be extreme in Sahara but not in the Amazon). First, we calculate the 

value of the different percentiles (90th, 99th, 99.9th and 99.99th) for the BASE simulations for all grid cells 

and models. For BASE and the five cases, we then count (for each grid cell and model) the frequency of 

occurrence of precipitation for six precipitation bins (less than 1 mm/day of precipitation, 1mm/day to 

the 90th percentile, 99th to 99.9th percentile, 99.9th to 99.99th percentile and above the 99.99th 



percentile), based on the last 50 years of the coupled runs. For each precipitation bin, we globally average 

the frequencies of occurrence, and then find the relative change between the five cases and BASE. This is 

again divided by the absolute value of the global mean temperature change for the given model and case. 

To check the robustness of our results we also investigated the change in area fraction instead of 

frequency of occurrence (not show). In doing this, for each day in the time series (the last 50 years of the 

coupled runs) we find the total area of the grid cells fulfilling the criteria (e.g. precipitation within the 

given interval), and divide this by the area of the globe. These area fractions are then averaged over all 

days, and the relative changes from BASE are then found. This analysis show the same as the other tests 

above, and are therefore not shown.  

 

 

 

 

 

 



 

 

Supplementary Figure 4: Relative changes in the total annual number of dry (daily precipitation 

amount < 1 mm) days (NDD) for the different forcing agents. All values are defined and calculated for 

each grid box, regionally averaged for baseline and perturbed climate, before relative changes are 

calculated. These changes are then normalized by the absolute value of the global mean temperature 

change. Box sizes show the interquartile range, the model median is shown as a solid line, and crosses 

indicate individual model values.  
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