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ABSTRACT

Nowadays real-time industrial applications are generating a huge

amount of data continuously every day. To process these large data

streams, we need fast and e�cient methodologies and systems. A

useful feature desired for data scientists and analysts is to have easy

to visualize and understand machine learning models. Decision

trees are preferred in many real-time applications for this reason,

and also, because combined in an ensemble, they are one of the

most powerful methods in machine learning.

In this paper, we present a new system called streamDM-C++,

that implements decision trees for data streams in C++, and that has

been used extensively at Huawei. Streaming decision trees adapt to

changes on streams, a huge advantage since standard decision trees

are built using a snapshot of data, and can not evolve over time.

streamDM-C++ is easy to extend, and contains more powerful

ensemble methods, and a more e�cient and easy to use adaptive

decision trees. We compare our new implementation with VFML,

the current state of the art implementation in C, and show how our

new system outperforms VFML in speed using less resources.
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1 INTRODUCTION

Streaming data analysis in real time is becoming the fastest andmost

e�cient way to obtain useful knowledge from what is happening

now, allowing organizations to react quickly when problems appear

or to detect new trends helping to improve their performance. One

example is the data produced in mobile broadband networks. A

metropolitan city in China can have nearly 10 million subscribers

who continuously generate massive data streams in both signalling

and data planes into the network. Even with summarisation and

compression, the daily volume of the data can reach over 10TB,

among which 95% is in the format of sequential data streams. The

high volume of data overwhelms the computational resources for

processing the data. Even worse, the data streams may experience

a change of statistical distribution over time (this phenomenon is

known as a concept drift), because of the dynamics of subscriber

behaviours and network environments.While it is critical to analyze

the data in order to obtain better insights into network management

and planning, how to e�ectively mine the knowledge from the large-

scale data streams is a non-trivial issue.

In the data stream model, we need to deal with resources in

an e�cient and low-cost way. We are interested in three main

dimensions:

• accuracy

• amount of space (computer memory) necessary

• the time required to learn from training examples and to

predict

These dimensions are typically interdependent: adjusting the

time and space used by an algorithm can in�uence accuracy. By

storing more pre-computed information, such as look up tables, an

algorithm can run faster at the expense of space. An algorithm can

also run faster by processing less information, either by stopping

early or storing less; the more time an algorithm has, the more

likely it is that accuracy can be increased.

Classi�cation is one of the most widely used data mining tech-

niques. In very general terms, given a list of groups (often called

classes), classi�cation seeks to predict to which group a new in-

stance may belong. The outcome of classi�cation is typically either

the identi�cation of a single group or the production of a probability

distribution of likelihood of membership of each group. A spam

�lter is a good example, where we want to predict if new emails

are considered spam or not. Twitter sentiment analysis is another

example, where we want to predict if the sentiment of a new in-

coming tweet is positive or negative. The probability distribution
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generating the data may be changing, and this is why streaming

methods need to be adaptive to the changes on the streams [23, 24].

More formally, the classi�cation problem can be formulated as

follows: given a set of instances of the form (x ,y), where x =

x1, . . . ,xk is a vector of attribute values, and y is a discrete class

from a set of nC di�erent classes, the classi�er builds a model

y = f (x ) to predict the classes y of future examples. For example,

x could be a tweet and y the polarity of its sentiment; or x could be

an email message, and y the decision whether it is spam or not.

The state-of-the-art methods for classi�cation of evolving data

streams are classi�ers based on decision trees. A Hoe�ding tree [8]

is an incremental, anytime decision tree induction algorithm that

is capable of learning from massive data streams, assuming that

the distribution generating examples does not change over time.

Hoe�ding trees exploit the fact that a small sample can often be

enough to choose an optimal splitting attribute. This idea is sup-

ported mathematically by the Hoe�ding bound, which quanti�es

the number of observations (in our case, examples) needed to esti-

mate some statistics within a prescribed precision (in our case, the

information gain of an attribute).

The VFML (Very Fast Machine Learning) toolkit was the �rst

open-source framework for mining high-speed data streams and

very large data sets. VFML is written mainly in standard C, and

contains tools for learning decision trees (VFDT and CVFDT), for

learning Bayesian networks, and for clustering.

At Huawei, many real data applications need fast decision trees

that use a small amount of memory. C and C++ are still considered

the languages preferred for high-performance applications. Using

VFML for data stream mining was not good enough in large-scale

applications of mobile data, so there was a need to create a more

e�cient system for Huawei applications. In this paper, we present

a new framework streamDM-C++, that implements extremely fast

decision trees in C++, that outperforms VFML, and that contains

more classi�cation algorithms than VFML.

The main advantages of streamDM-C++ over VFML are the

following:

• Evaluation and classi�ers are separated, not linked together.

• It contains several methods for learning numeric attributes.

• It is easy to extend and add new methods.

• The adaptive decision tree is more accurate and does not

need an expert user to choose optimal parameters to use.

• It contains powerful ensemble methods as Bagging, Boosting,

and Random Forests.

• It is much faster and uses less memory.

This paper is structured as follows.We present VFML in Section 2,

streamDM-C++ in Section 3. We perform an empirical evaluation

in Section 4, and �nally, in Section 6 we give our conclusions.

2 VFML: VERY FAST MACHINE LEARNING

TOOLKIT

The VFML (Very Fast Machine Learning) toolkit was the �rst open-

source framework for mining high-speed data streams and very

large data sets. It was developed before 2004. VFML is made up of

three main components:

• a collection of tools and APIs that help a user develop new

learning algorithms

HoeffdingTree(Stream, δ )

1 ✄ Let HT be a tree with a single leaf(root)
2 ✄ Init counts ni jk at root
3 for each example (x, y ) in Stream
4 do HTGrow((x, y ), HT , δ )

HTGrow((x, y ), HT , δ )

1 ✄ Sort (x, y ) to leaf l using HT
2 ✄ Update counts ni jk at leaf l
3 if examples seen so far at l are not all of the same class
4 then
5 ✄ Compute G for each attribute

6 if G (Best Attr.)−G (2nd best) >

√

R2 ln 1/δ
2n

7 then
8 ✄ Split leaf on best attribute
9 for each branch
10 do✄ Start new leaf
11 and initiliatize counts

Figure 1: The Hoe�ding Tree algorithm

• a collection of implementations of important learning algo-

rithms

• a collection of scalable learning algorithms that were devel-

oped by Pedro Domingos and Geo� Hulten [8].

VFML is written mainly in standard C, and provides a series of tuto-

rials and examples as well as in-source documentation in JavaDoc

format. VFML contains tools for learning decision trees (VFDT and

CVFDT), for learning Bayesian networks, and for clustering. VFML

is being distributed under a modi�ed BSD license.

VFML was the �rst software framework for data streams, but

the main motivation for it was to be a test bed for the academic

papers of the authors, not open-source software to be extended. For

example, evaluation methods are inside classi�ers, and there are

signi�cant barriers in terms of creating new methods.

2.1 The Hoe�ding Tree

In the data stream setting, where we can not store all the data, the

main problem of building a decision tree is the need of reusing

the examples to compute the best splitting attributes. Hulten and

Domingos [8] proposed the Hoe�ding Tree or VFDT, a very fast

decision tree for streaming data, where instead of reusing instances,

we wait for new instances to arrive. The most interesting feature

of the Hoe�ding tree is that it has theoretical guarantees that it

can build an identical tree with a traditional one if the number of

instances is large enough.

The pseudo-code of VFDT is shown in Figure 1. The Hoe�ding

Tree is based on the Hoe�ding bound. This inequality or bound jus-

ti�es that a small sample can often be enough to choose an optimal

splitting attribute. Suppose we make n independent observations of

a random variable r with range R, where r is an attribute selection

measure such as information gain or Gini impurity gain. The Ho-

e�ding inequality states that with probability 1 − δ , the true mean

r̄ of r will be at least E[r ] − ϵ , with

ϵ =

√

R2 ln 1/δ

2n

Using this fact, the Hoe�ding tree algorithm can determine, with

high probability, the smallest number n of examples needed at a

node when selecting a splitting attribute.
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The Hoe�ding Tree maintains in each node the statistics needed

for splitting attributes. For discrete attributes, this is the same infor-

mation as needed for computing the Naïve Bayes predictions: a 3-

dimensional table that stores for each triple (xi ,vj , c ) a count ni, j,c
of training instances with xi = vj , together with a 1-dimensional

table for the counts for each class. The memory needed depends

on the number of leaves of the tree, but not on the size of the data

stream.

A theoretically appealing feature of Hoe�ding Trees not shared

by other incremental decision tree learners is that it has sound

guarantees of performance. Using the Hoe�ding bound one can

show that its output is asymptotically nearly identical to that of a

non-incremental learner using in�nitely many examples.

Domingos et al. [8] improved the Hoe�ding Tree algorithm with

an extendedmethod called VFDT, with the following characteristics:

• Ties: when two attributes have similar split gain G, the im-

proved method splits if the Hoe�ding bound computed is

lower than a certain threshold parameter τ .

G (Best Attr.) −G (2nd best) <

√

R2 ln 1/δ

2n
< τ

• To speed up the process, instead of computing the best at-

tributes to split every time a new instance arrives, it com-

putes them every time a number nmin of instances has ar-

rived.

• To reduce the memory used in the mining, it deactivates the

least promising nodes that have lower pl × el where

– pl is the probability to reach leaf l

– el is the error in the node l

– It is possible to initialize the method with an appropriate

decision tree. Hoe�ding Trees can grow slowly and per-

formance can be poor initially so this extension provides

an immediate boost to the learning curve

A way to improve the classi�cation performance of the Hoe�d-

ing Tree is to use Naïve Bayes learners at the leaves instead of

the majority class classi�er. Gama et al. [10] were the �rst to use

Naïve Bayes in Hoe�ding Tree leaves, replacing the majority class

classi�er. However, Holmes et al. [15] identi�ed situations where

the Naïve Bayes method outperformed the standard Hoe�ding tree

initially but is eventually overtaken. To solve that, they proposed a

hybrid adaptive method that generally outperforms the two original

prediction methods for both simple and complex concepts.

This method works by performing a Naïve Bayes prediction per

training instance, and comparing its prediction with the majority

class. Counts are stored to measure how many times the Naïve

Bayes prediction gets the true class correct as compared to the

majority class. When performing a prediction on a test instance,

the leaf will only return a Naïve Bayes prediction if it has been

more accurate overall than the majority class, otherwise it resorts

to a majority class prediction.

2.2 Concept-adapting Very Fast Decision Trees

CVFDT

Hulten, Spencer and Domingos presented the CVFDT (Concept-

adapting Very Fast Decision Trees) algorithm [16] as an extension

of VFDT to deal with concept drift, maintaining a model that is

CVFDT(Stream,δ )

1 ✄ Let HT be a tree with a single leaf(root)

2 ✄ Init counts ni jk at root

3 for each example (x ,y) in Stream

4 do Add, Remove and Forget Examples

5 CVFDTGrow((x ,y),HT ,δ )

6 CheckSplitValidity(HT ,n,δ )

CVFDTGrow((x ,y),HT ,δ )

1 ✄ Sort (x ,y) to leaf l using HT

2 ✄ Update counts ni jk at leaf l and nodes traversed in

3 the sort

4 if examples seen so far at l are not all of the same class

5 then

6 ✄ Compute G for each attribute

7 if G(Best Attr.)−G(2nd best) >

√

R2 ln 1/δ
2n

8 then

9 ✄ Split leaf on best attribute

10 for each branch

11 do✄ Start new leaf and

12 initialize counts

13 ✄ Create alternate subtree

CheckSplitValidity(HT ,n,δ )

1 for each node l in HT that it is not a leaf

2 do for each tree Talt in ALT(l)

3 do CheckSplitValidity(Talt ,n,δ )

4 if exists a new promising attributes at node l

5 do✄ Start an alternate subtree

Figure 2: The CVFDT algorithm

consistent with the instances stored in a sliding window. It does

not have theoretical guarantees like the Hoe�ding Tree.

Figure 2 shows the code for the CVFDT algorithm. It is similar

to the code for the Hoe�ding Tree but with the following changes:

• The main method maintains a sliding window with the latest

instances to have arrived: so it has to add, remove and forget

instances.

• The main method in addition to CVFDTGrow, calls also

another method called CheckSplitValidity to check if the

splits chosen are still valid.

• CVFDTGrow also updates counts of the nodes traversed in

the sort.

• CheckSplitValidity creates an alternate subtree if the at-

tributes chosen to split are now di�erent from the ones that

were chosen when the split was done.

• Periodically, it checks if the alternate branch is performing

better than the original branch tree, and if it is perform-

ing better it replaces it, and if not, it removes the alternate

branch.
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3 STREAMDM-C++ DATA STREAMMINING

SYSTEM

The main goals of streamDM-C++ is to build a fast and e�cient

system, well designed to be very easy to use and to extend. The

main objectives of streamDM-C++ are the following:

• run experiments from the command line like this:

PrequentialEvaluation -t train.dataset

-e test.dataset -l HoeffdingTree

-s (FileReader -f file)

• add new learners easily

• create new tasks easily

• evaluators and learners should be separated, not linked to-

gether

• contain several methods for learning numeric attributes

• the adaptive decision tree should not need to tune parameters

that depend on the dataset

Instead of using CVFDT, streamDM-C++ uses the Hoe�ding

Adaptive Tree [3], since it adapts to the scale of time change in the

data, and it does not need an experienced user to select the correct

parameters. In the rest of this section, we describe the advantages

of the Hoe�ding Adaptive Tree, and explain in detail the design of

streamDM-C++.

3.1 Hoe�ding Adaptive Tree

The Hoe�ding Adaptive Tree [3] is an adaptive extension to the Ho-

e�ding Tree, that has theoretical guarantees, no need of parameters,

and uses ADWIN as a change detector and error estimator. A formal

and quantitative statement of the theoretical guarantees (in the

form of a theorem) of the Hoe�ding Adaptive Tree appears in [3].

ADWIN [2] is a change detector and estimator that solves in a well-

speci�ed way the problem of tracking the average of a stream of

bits or real-valued numbers. ADWIN keeps a variable-length window

of recently seen items, with the property that the window has the

maximal length statistically consistent with the hypothesis “there

has been no change in the average value inside the window".

More precisely, an older fragment of the window is dropped if

and only if there is enough evidence that its average value di�ers

from that of the rest of the window. This has two consequences:

�rst, that change is reliably declared whenever the window shrinks;

and second, that at any time the average over the existing window

can be reliably taken as an estimate of the current average in the

stream (barring a very small or very recent change that is still not

statistically visible).

ADWIN is parameter- and assumption-free in the sense that it

automatically detects and adapts to the current rate of change. Its

only parameter is a con�dence bound δ , indicating how con�dent

we want to be in the algorithm’s output, a property inherent to all

algorithms dealing with random processes.

Also, ADWIN does not maintain the window explicitly, but com-

presses it using a variant of the exponential histogram technique.

This means that it keeps a window of lengthW using onlyO (logW )

memory and O (logW ) processing time per item.

CVFDT has no theoretical guarantees, and it uses a number of

parameters, with default values that can be changed by the user

- but which are �xed for a given execution. Besides the example

window length, it needs:

(1) T0: after each T0 examples, CVFDT traverses the entire deci-

sion tree, and checks at each node if the splitting attribute is

still the best. If there is a better splitting attribute, it starts

growing an alternate tree rooted at this node, and it splits

on the currently best attribute according to the statistics at

the node.

(2) T1: after an alternate tree is created, the following T1 exam-

ples are used to build the alternate tree.

(3) T2: after the arrival ofT1 examples, the followingT2 examples

are used to test the accuracy of the alternate tree. If the

alternate tree is more accurate than the current one, CVDFT

replaces it with this alternate tree (we say that the alternate

tree is promoted).

The default values are T0 = 10, 000, T1 = 9, 000, and T2 = 1, 000.

One can interpret these �gures as the presumption that often the

last 50, 000 examples are likely to be relevant, and that change

is not likely to occur faster than every 10, 000 examples. These

presumptions may or may not be correct for a given data source.

The main internal di�erences of the Hoe�ding Adaptive Tree

with respect to CVFDT are:

• The alternate trees are created as soon as change is detected,

without having to wait for a �xed number of examples to

arrive after the change. Furthermore, the more abrupt the

change, the faster a new alternate tree will be created.

• Hoe�ding Adaptive Tree replaces the old trees by the new

alternate trees as soon as there is evidence that they are

more accurate, rather than having to wait for another �xed

number of examples.

These two e�ects can be summarized by saying that the Hoe�ding

Adaptive Tree adapts to the scale of time change in the data, rather

than having to rely on the a priori guesses made by the user.

In the case of noisy distributions with outliers, the Hoe�ding

Adaptive Tree and CVFDT will not �uctuate abruptly when they

see an outlier, since they compute and use mean values that helps

to smooth the computation.

3.2 Architecture

The architecture of streamDM-C++ is composed by the following

elements:

Instances Data arrive as a sequence of instances. Instances

contain values for a set of input attributes, and for only

one output attribute. streamDM-C++ contains two types of

instances

• Dense Instance: stores the information of the instance

using an array of doubles..

• Sparse Instance: only stores the non-zero values of an

instance using two arrays, one for the indices, and one

for the values. An InstanceHeader object maintains meta-

information about attributes using Attribute objects.

Streams Streams are the objects that read and get instances.

Instances can be obtained in ARFF, C4.5, or CSV format.

Learner Every algorithm in streamDM-C++ is a learner, that

basically has three methods:

• init(): to reset and initialize themodel when there is change

or at the beginning of the mining process
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• update(instance): to update the model when a new in-

stance arrives

• predict(instance): to predict the probabilities for each class

label

Creating new classi�ers is as simple as implementing these

three methods.

Evaluator Evaluators maintain and keep statistics of the mea-

surements of the results. We have two types:

• BasicClassi�cationPerformanceEvaluator: keeps statistics

over a landmark window, i.e., from the beginning of the

data mining rocess.

• WindowClassi�cationPerformanceEvaluator: keeps sta-

tistics over a sliding window containing the most recent

predictions and results.

Task Tasks contains work�ows of the streammining processes.

streamDM-C++ runs tasks. As example, for evaluation we

have two important tasks:

• Holdout Evaluation: performs an evaluation using di�er-

ent test and training datasets

• Prequential Evaluation: performs an interleaved test then

train evaluation. All instances are �rst used to test and

then to train

Parameters To be able to execute tasks, on the command line,

we need to be able to use classes as parameters. An important

feature is to implement class parameters recursively, so that

classes can have class parameters as well. For example, a

bagging class can have the decision tree class as its base

learner and a Naive Bayes Classi�er class at the leaves.

3.3 Machine Learning Algorithms

In this section we detail the learners available in streamDM-C++

and the classes needed to implement the decision trees.

The classi�ers available in streamDM-C++ are the following:

Hoe�dingTree This is the main class that manages the ini-

tialization, the growing and the prediction of the Hoe�ding

tree. It is a learner with a tree structure of nodes.

Hoe�dingAdaptiveTree This is the main class for the adap-

tive decision tree, that extends the Hoe�ding tree.

Bagging Ensemble that uses sampling with replacement, and

majority vote for prediction.

Boosting Streaming boosting that approximates the batch tra-

ditional boosting classi�er.

Random Forests Bagging that uses randomized decision trees.

The components of the Hoe�fding Tree are the following:

AttributeClassObserver Statistics for each attribute thatman-

ages information about the distribution of the data for each

class label. We give more details in the next subsection.

SplitCriterion Criterion to decide splits. There are two di�er-

ent criteria: information gain, and Gini, but it is very easy to

add new ones.

InstanceConditionalTest Tests used to mark the branches.

Node Node of the tree, that can be a leaf (active learning node),

or an internal node (split node).

ActiveLearningNode Node at a leaf of the tree, that keeps

statistics using AttributeClassObservers needed to decide if

we need to split or not.

SplitNode Node that is no longer a leaf, that contains branches

with an InstanceConditionalTest for each branch.

3.4 Handling numeric attributes

Handling numeric attributes in a data stream classi�er, is much

more di�cult than in a non-streaming setting. In this sectionwewill

present the most popular methods used in decision tree algorithms

in evolving data streams. They are all implemented in streamDM-

C++, as AttributeClassObserver objects. We look at how to manage

the statistics of numeric attributes, and how to decide what are the

best splitting points in decision trees.

3.4.1 VFML. VFML contains the following method for handling

numeric attributes in VFDT andCVFDT: basically, numeric attribute

values are summarized by a set of ordered bins. The range of values

covered by each bin is �xed at creation and does not change as more

examples are seen. A hidden parameter serves as a limit on the

total number of bins allowed–in the VFML implementation this is

hard-coded to allow a maximum of one thousand bins. Initially, for

every new unique numeric value seen, a new bin is created. Once

the �xed number of bins have been allocated, each subsequent value

in the stream updates the counter of the nearest bin.

There are two potential issues with the approach. Clearly, the

method is sensitive to data order. If the �rst one thousand examples

seen in a stream happen to be skewed to one side of the total range

of values, then the �nal summary will be incapable of accurately

representing the full range of values.

The other issue is estimating the optimal number of bins. Too

few bins will mean the summary is small but inaccurate, whereas

too many bins will increase accuracy at the cost of space. In the

experimental comparison the maximum number of bins is varied

to test this e�ect.

3.4.2 Exhaustive Binary Tree. This method represents the case

of achieving perfect accuracy at the necessary expense of storage

space. The decisions made are the same that a batch method would

make, because essentially it is a batch method—no information is

discarded other than the observed order of values.

Gama et al. present this method in their VFDTc system [9]. It

works by incrementally constructing a binary search tree structure

as values are observed. The path a value follows down the tree

depends on whether it is less than, equal to or greater than the

value at a particular node in the tree. The values are implicitly

sorted as the tree is constructed.

This structure saves space over remembering every value ob-

served at a leaf when a value that has already been recorded reap-

pears in the stream. In most cases a new node will be introduced to

the tree. If a value is repeated the counter in the binary search tree

node responsible for tracking that value can be incremented. Even

then, the overhead of the tree structure will mean that space can

only be saved if there are many repeated values. If the number of

unique values were limited, as is the case in some data sets, then

the storage requirements will be less intensive.

The primary function of the tree structure is to save time. It

lowers the computational cost of remembering every value seen,

but does little to reduce the space complexity. The computational
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considerations are important, because a slow learner can be even

less desirable than one that consumes a large amount of memory.

Beside memory cost, this method has other potential issues.

Because every value is remembered, every possible threshold is also

tested when the information gain of split points is evaluated. This

makes the evaluation process more costly than more approximate

methods.

This method is also prone to data order issues. The layout of the

tree is established as the values arrive, such that the value at the

root of the tree will be the �rst value seen. There is no attempt to

balance the tree, so data order is able to a�ect the e�ciency of the

tree. In the worst case, an ordered sequence of values will cause

the binary search tree algorithm to construct a list, which will lose

all the computational bene�ts compared to a well balanced binary

search tree.

3.4.3 Greenwald and Khanna �antile Summaries. The �eld of

database research is also concerned with the problem of summa-

rizing the numeric distribution of a large data set in a single pass

and limited space. The ability to do so can help to optimize queries

over massive databases.

Greenwald andKhanna [13] proposed a quantile summarymethod

with even stronger accuracy guarantees than previous approaches.

The method works by maintaining an ordered set of tuples, each of

which records a value from the input stream, along with implicit

bounds for the range of each value’s true rank. Speci�cally, a tuple

ti = (Vi ,дi ,∆i ) consists of three values:

• a value vi of one of the elements seen so far in the stream

• a value дi that equals rmin (vi ) − rmin (vi−1), where rmin (v )

is the lower bound of the rank ofv among all the values seen

so far

• a value ∆i that equals rmax (vi ) − rmin (vi ), where rmax (v )

is the upper bound of the rank of v among all the values

seen so far

Note that rmin (vi ) =
∑

j≤i дj , and rmax (vi ) = rmin (vi ) + ∆i =
∑

j≤i дj + ∆i .

The quantile summary is said to be ϵ-approximate, after seeing

N elements of a sequence any quantile estimate returned will not

di�er from the exact value by more than ϵN . An operation for

compressing the quantile summary is de�ned, guaranteeing that

max(дi + ∆i ) ≤ 2ϵN , so that the error of the summary is kept

within a desired bound.

The worst-case space requirement is shown by the authors to be

O ( 1ϵ log(ϵN )), with empirical evidence showing it to be even better

than this in practice.

3.4.4 Gaussian Approximation. This method presented in [20]

approximates a numeric distribution in small constant space, us-

ing a Gaussian (commonly known as normal) distribution. Such a

distribution can be incrementally maintained by storing only two

numbers in memory, and is completely insensitive to data order.

A Gaussian distribution is essentially de�ned by its mean value,

which is the center of the distribution, and standard deviation or

variance, which is the spread of the distribution. The shape of the

distribution is a classic bell-shaped curve that is known by scien-

tists and statisticians to be a good representation of certain types of

natural phenomena, such as the weight distribution of a population

of organisms.

For each numeric attribute the numeric approximation procedure

maintains a separate Gaussian distribution per class label. Amethod

similar to this is described by Gama et al. in their UFFT system [10].

To handle more than two classes, the system builds a forest of

trees, one tree for each possible pair of classes. When evaluating

split points in that case, a single optimal point is computed as

derived from the crossover point of two distributions. It is possible

to extend the approach, however, to search for split points, allowing

any number of classes to be handled by a single tree. The possible

values are reduced to a set of points spread equally across the range,

between the minimum and maximum values observed. The number

of evaluation points is determined by a parameter, so the search

for split points is parametric, even though the underlying Gaussian

approximations are not. For each candidate point the weight of

values to either side of the split can be approximated for each class,

using their respective Gaussian curves, and the information gain is

computed from these weights.

4 COMPARATIVE EXPERIMENTAL

EVALUATION

Comparing streaming decision trees with batch trees can be found

in the original paper of VFDT, and may not be fair as streaming

decision trees may be faster and more accurate when there are

changes on the data stream. The settings are di�erent, and also

the online evaluation is di�erent from the batch evaluation. On

streaming decision trees, only two implementations are available:

VFML and MOA.

Massive Online Analysis (MOA) [4] is a software environment

for implementing algorithms and running experiments for online

learning from data streams in JAVA. JAVA is known to be slower

than C++, due to the fact that it needs to run an instance of the

Java Virtual Machine. We perform experiments to compare our new

framework with these two implementations.

4.1 Datasets for concept drift

Synthetic data has several advantages – it is easier to reproduce

and there is little cost in terms of storage and transmission. For this

paper we use data streams of 1, 000, 000 instances created using the

data generators most commonly found in the literature.

SEA Concepts Generator This arti�cial dataset contains abrupt

concept drift, �rst introduced in [21]. It is generated using

three attributes, where only the two �rst attributes are rele-

vant. All three attributes have values between 0 and 10. The

points of the dataset are divided into 4 blocks with di�er-

ent concepts. In each block, the classi�cation is done using

f1+ f2 ≤ θ , where f1 and f2 represent the �rst two attributes

and θ is a threshold value. The most frequent values are 9, 8,

7 and 9.5 for the data blocks. In our framework, SEA concepts

are de�ned as follows:

(((SEA9 ⊕
W
t0

SEA8) ⊕
W
2t0

SEA7) ⊕
W
3t0

SEA9.5)

Rotating Hyperplane It was used as testbed for CVFDT ver-

sus VFDT in [16]. A hyperplane in d-dimensional space is
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Table 1: Time comparison of streamDM-C++ algorithms with the relative percentage of acceleration. Time is measured in

seconds. The best individual times are indicated in boldface.

streamDM-C++ VFML MOA

HT HAT HT-NB HAT-NB VFDT CVFDT CVFDT CVFDT HT HAT HT-NB HAT-NB

win 1000 win 5000 win 10000

RBF(50,0) 7.11 18.09 7.06 18.16 107.44 23.62 58.49 212.14 14.12 36.68 14.70 37.66

RBF(50,0.0001) 7.24 16.78 7.02 17.6 65.99 20.65 50.13 119.78 14.86 34.27 14.54 36.06

RBF(50,0.001) 7.18 15.92 7.58 15.65 84.64 20.56 58.17 106.48 15.45 34.09 15.50 33.05

RBF(10,0) 7.14 17.98 7.06 17.99 107.74 23.87 58.55 212.69 14.78 38.09 14.62 35.30

RBF(10,0.0001) 7.10 17.19 7.28 17.25 92.04 24.39 35.44 124.52 14.46 36.04 14.46 37.11

RBF(10,0.001) 7.03 17.53 7.04 17.02 97.01 21.61 35.22 113.23 13.82 37.62 14.69 33.86

SEA(50) 3.76 10.28 3.64 10.13 109.13 10.96 41.29 77.91 7.37 21.48 7.41 20.31

SEA(50000) 3.69 10.2 3.67 9.97 125.16 10.79 40.86 78.87 7.33 21.56 7.52 19.79

HYP(10,0.001) 6.65 14.95 6.62 15.27 51.82 29.46 67.80 111.07 13.65 29.51 14.09 32.70

HYP(10,0.0001) 6.79 12.56 6.78 12.8 54.06 19.75 48.25 93.66 13.73 26.01 14.42 27.20

LED(50000) 6.87 23.82 6.97 25.25 33.44 12.62 17.00 19.62 14.67 47.49 14.00 53.15

CovType 0.34 0.64 0.44 0.73 0.65 1.00 1.55 1.66 0.68 1.31 0.86 1.53

Electricity 7.75 21.56 7.73 18.95 22.50 20.05 20.93 26.74 15.53 44.43 16.18 38.71

Poker 3.99 7.97 4.01 8.24 21.26 20.95 16.87 18.88 8.23 16.25 8.15 17.37

the set of points x that satisfy

d
∑

i=1

wixi = w0 =

d
∑

i=1

wi

where xi , is the ith coordinate of x . Examples for which
∑d
i=1wixi ≥ w0 are labeled positive, and examples for which
∑d
i=1wixi < w0 are labeled negative. Hyperplanes are use-

ful for simulating time-changing concepts, because we can

change the orientation and position of the hyperplane in a

smooth manner by changing the relative size of the weights.

We introduce change to this dataset adding drift to each

weight attribute wi = wi + dσ , where σ is the probability

that the direction of change is reversed and d is the change

applied to every example.

Random RBF Generator This generator was devised to o�er

an alternate complex concept type that is not straightforward

to approximate with a decision tree model. The RBF (Radial

Basis Function) generator works as follows: A �xed number

of random centroids are generated. Each center has a random

position, a single standard deviation, class label and weight.

New examples are generated by selecting a center at random,

taking weights into consideration so that centers with higher

weight are more likely to be chosen. A random direction is

chosen to o�set the attribute values from the central point.

The length of the displacement is randomly drawn from a

Gaussian distribution with standard deviation determined by

the chosen centroid. The chosen centroid also determines the

class label of the example. This e�ectively creates a normally

distributed hypersphere of examples surrounding each cen-

tral point with varying densities. Only numeric attributes are

generated. Drift is introduced by moving the centroids with

constant speed. This speed is initialized by a drift parameter.

LED Generator This data source originates from the CART

book [6]. An implementation in C was donated to the UCI [1]

machine learning repository by David Aha. The goal is to

predict the digit displayed on a seven-segment LED display,

where each attribute has a 10% chance of being inverted. It

has an optimal Bayes classi�cation rate of 74%. The particular

con�guration of the generator used for experiments (led)

produces 24 binary attributes, 17 of which are irrelevant.

4.2 Real-World Data

For con�dentiality and reproducibility reasons, we use public datasets

in our experiments instead of the real ones used at Huawei. The UCI

machine learning repository [1] contains some real-world bench-

mark data for evaluating machine learning techniques. We will

consider three: Forest Covertype, Poker-Hand, and Electricity.

Forest Covertype dataset It contains the forest cover type

for 30 x 30meter cells obtained fromUS Forest Service (USFS)

Region 2 Resource Information System (RIS) data. It contains

581, 012 instances and 54 attributes, and it has been used in

several papers on data stream classi�cation [12].

Poker-Hand dataset It consists of 1, 000, 000 instances and

11 attributes. Each record of the Poker-Hand dataset is an

example of a hand consisting of �ve playing cards drawn

from a standard deck of 52. Each card is described using

two attributes (suit and rank), for a total of 10 predictive

attributes. The order of cards is important, which is why

there are 480 possible Royal Flush hands instead of 4.

Electricity dataset Another widely used dataset is the Elec-

tricity Market Dataset described by M. Harries [14] and used

by Gama [11]. This data was collected from the Australian

New South Wales Electricity Market. In this market, the

prices are not �xed and are a�ected by demand and supply

of the market. The prices in this market are set every �ve

minutes. The ELEC2 dataset contains 45, 312 instances. The

class label identi�es the change of the price related to a mov-

ing average of the last 24 hours. The class level only re�ects

deviations of the price on a one day average and removes

the impact of longer term price trends.
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The size of these datasets is small, compared to tens of millions of

training examples of synthetic datasets: 45, 312 for ELEC2 dataset,

581, 012 for CoverType, and 1, 000, 000 for Poker-Hand. Another

important fact is that we do not know when drift occurs or if there

is any drift.

4.3 Results

We use the datasets explained in Sections 4.1 and 4.2. The experi-

ments were performed on 2.66 GHz Core 2 Duo E6750 machines

with 4 GB of memory. The evaluation methodology used was In-

terleaved Test-Then-Train: every example was used for testing the

model before using it to train. This interleaved test followed by

train procedure was carried out on 1 million examples from the

hyperplane, SEA, LED and RandomRBF datasets. The parameters

of these streams are the following:

• RBF(x ,v): RandomRBF data stream of 5 classes with x cen-

troids moving at speed v .

• HYP(x ,v): Hyperplane data stream of 5 classes with x at-

tributes changing at speed v .

• SEA(v): SEA dataset, with length of change v .

• LED(v): LED dataset, with length of change v .

The �rst, and baseline, algorithm (HT) is a single Hoe�ding tree,

enhanced with adaptive Naive Bayes leaf predictions. Parameter

settings are nmin = 1000, δ = 10−8 and τ = 0.05, used in [8]. We

compare the following classi�ers:

streamDM-C++: Hoe�ding Tree (HT), Hoe�ding Adaptive

Tree (HAT), Hoe�ding Tree with Hybrid Adaptive Naive

Bayes (HT-NB), and Hoe�ding Adaptive Tree with Hybrid

Adaptive Naive Bayes (HAT-NB).

VFML: VFDT and CVFDT with di�erent sliding window sizes

MOA: Hoe�ding Tree (HT), Hoe�ding Adaptive Tree (HAT),

Hoe�ding Tree with Hybrid Adaptive Naive Bayes (HT-NB),

and Hoe�ding Adaptive Tree with Hybrid Adaptive Naive

Bayes (HAT-NB).

4.3.1 Time. Table 1 reports the speed of the classi�cation mod-

els induced on synthetic data and real datasets: Electricity, Forest

CoverType, and Poker Hand.

We observe that the speed of CVFDT depends on the size of the

window. In general, as the window size increases the time needed

also increases. If we compare a single Hoe�ding Tree, we see that

the streamDM-C++ tree is much faster than the VFML and MOA

trees, in some cases 10 times faster than VFML and 2 times faster

than MOA. The Hoe�ding Adaptive Tree is much slower than the

Hoe�ding Tree, as it needs more time to manage, detect changes

and build new branches.

Comparing the Hoe�ding Adaptive Tree with the CVFDT tree,

we see that the Hoe�ding Adaptive Tree is faster, but the increment

of speed is not uniform and depends on the size of the sliding

window. Using the hybrid adaptive Naive Bayes at the leaves of

both trees, the speed of the Hoe�ding Tree and the Hoe�ding

Adaptive Tree only increases by a small amount.

4.3.2 Memory. The behaviour of the memory results is similar

to the behaviour of the time results. Tables 2 and 3 report the

memory of the classi�cation models induced on synthetic data and

real datasets.

Table 2: Memory comparison of VFML algorithms: VFDT

and CVFDT with di�erent sliding window sizes. Memory is

measured in Kb.

VFDT CVFDT CVFDT CVFDT

win 1000 win 5000 win 10000

RBF(50,0) 862,320 3,040 13,316 94,920

RBF(50,0.0001) 839,172 3,032 15,200 77,028

RBF(50,0.001) 889,348 3,048 16,736 35,156

RBF(10,0) 862,320 3,040 13,316 94,920

RBF(10,0.0001) 835,464 3,280 11,768 85,612

RBF(10,0.001) 866,056 3,044 9,816 78,088

SEA(50) 534,616 1,952 12,352 31,396

SEA(50000) 545,788 1,952 12,052 31,436

HYP(10,0.001) 833,960 3,052 17,664 37,852

HYP(10,0.0001) 828,688 3,056 17,028 35,760

LED(50000) 1,144,436 2,192 7,128 13,196

CovType 36,588 4,464 10,776 21,192

Electricity 1,381,460 3,900 13,900 27,648

Poker 586,504 2,404 5,644 9,404

Table 3:Memory comparison of streamDM-C++ algorithms.

Memory is measured in Kb.

HT HAT HT-NB HAT-NB

RBF(50,0) 4,828 6,452 4,828 6,328

RBF(50,0.0001) 4,916 11,372 4,916 11,948

RBF(50,0.001) 4,512 9,268 4,512 9,084

RBF(10,0) 4,828 6,356 4,828 6,360

RBF(10,0.0001) 4,964 9,184 4,964 9,856

RBF(10,0.001) 4,772 8,728 4,772 9,056

SEA(50) 4,616 8,168 4,616 8,092

SEA(50000) 4,600 8,288 4,600 8,236

HYP(10,0.001) 5,984 10,364 5,988 9,988

HYP(10,0.0001) 7,428 11,776 7,428 11,984

LED(50000) 10,284 23,492 10,280 24,608

CovType 3,956 5,240 3,984 4,932

Electricity 10,264 101,124 10,272 76,660

Poker 5,404 13,448 5,408 15,316

Comparing a singleHoe�ding Tree, we observe that the streamDM-

C++ tree needs less memory than the VFML tree.

The memory used by CVFDT depends on the size of the window,

as expected. In general, as the window size increases the memory

needed also increases. The Hoe�ding Adaptive Tree uses more

memory than the Hoe�ding Tree.

Using the hybrid adaptive Naive Bayes at the leaves of both

trees, the memory used by the Hoe�ding Tree and the Hoe�ding

Adaptive Tree only slightly increases.

4.3.3 Accuracy. Table 4 shows the accuracy of decision trees

over all the real and synthetic datasets.

In general, we observe the following facts:

• The accuracy of the single Hoe�ding trees are similar in

VFML and streamDM-C++.

• The performance of the decision trees with hybrid adaptive

Naive Bayes at the leaves is superior to the performance of

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1740



Table 4: Accuracy comparison of streamDM-C++ algorithms with the relative percentage of acceleration. Accuracy results are

given in %. The best individual accuracies are indicated in boldface.

streamDM-C++ VFML MOA

HT HAT HT-NB HAT-NB VFDT CVFDT CVFDT CVFDT HT HAT HT-NB HAT-NB

win 1000 win 5000 win 10000

RBF(50,0) 69.39 74.1 83.18 84.54 69.68 29.7 37.14 41.71 69.39 74.1 83.18 84.54

RBF(50,0.0001) 31.05 35.6 45.27 61.78 29.43 29.7 32.06 33.62 31.05 35.6 45.27 61.78

RBF(50,0.001) 29.88 30.19 32.26 37.39 29.71 29.7 30.70 29.85 29.88 30.19 32.26 37.39

RBF(10,0) 69.39 74.1 83.18 84.54 69.68 29.7 37.14 41.71 69.39 74.1 83.18 84.54

RBF(10,0.0001) 66.72 68.27 79.23 79.13 64.83 31.32 34.26 42.33 66.72 68.27 79.23 79.13

RBF(10,0.001) 65.84 68.22 76.30 75.47 65.68 29.7 37.17 42.87 65.84 68.22 76.30 75.47

SEA(50) 85.63 87.37 86.43 89.04 85.01 70.41 82.52 83.51 85.63 87.37 86.43 89.04

SEA(50000) 85.65 87.33 86.45 88.70 85.01 70.41 82.52 83.44 85.65 87.33 86.45 88.70

HYP(10,0.001) 79.02 79.54 89.04 88.92 75.55 50.06 63.25 65.25 79.02 79.54 89.04 88.92

HYP(10,0.0001) 67.95 76.97 78.76 87.08 60.04 49.95 55.56 56.36 67.95 76.97 78.76 87.08

LED(50000) 43.92 47.62 68.64 72.60 40.04 15.95 24.52 26.47 43.92 47.62 68.64 72.60

CovType 75.72 76.87 79.19 83.98 71.63 76.67 75.97 75.53 75.72 76.87 79.19 83.98

Electricity 67.91 68.26 80.31 82.29 64.84 66.24 62.4 69.83 67.91 68.26 80.31 82.29

Poker 68.09 59.16 76.06 66.64 69.51 68.97 61.43 58.56 68.09 59.16 76.06 66.64
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Figure 3: Accuracy comparing di�erent numeric attribute

class observers on the Forest Covertype dataset

the decision trees with only the majority class classi�er at

the leaves.

• The accuracy of CVFDT depend on the size of the window,

and the optimal size window is di�erent for each dataset.

• The Hoe�ng Adaptive Tree outperforms the Hoe�dingTree

and CVFDT.

4.4 Numeric Attribute Handlers

streamDM-C++ contains several numeric attribute handlers, in

contrast to VFML that contains only one. Figure 3 shows the results

of a prequential evaluation using a sliding window of 1,000 exam-

ples, on the Forest Covertype dataset, comparing the following

attribute class observers: Gaussian approximation, VFML, Exhaus-

tive Binary Tree, and Greenwald and Khanna Quantile Summaries.

For this dataset, we observe that the di�erent numeric attribute

handlers perform di�erently, and that for this speci�c dataset the

Gaussian approximation is the one with highest accuracy. Hav-

ing several numeric attribute handlers is an important feature of

streamDM-C++ that can help to improve accuracy, as it is shown

in this example.
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Figure 4: Accuracy comparing the Hoe�ding Tree, Hoe�d-

ing Adaptive Tree and Random Forests on the Forest Cover-

type dataset

4.5 Random Forests

Random Forests is a very powerful ensemble method combining a

set of decision trees; the Random Forest usually outperforms the

single best classi�er in the ensemble. Figure 4 shows a comparison

of the Hoe�ding Tree, Hoe�ding Adaptive Tree and Random Forests

on the Covertype dataset. We see that the Hoe�ding Adaptive Tree

has better accuracy than the Hoe�ding Tree. More interestingly,

the Random Forest classi�er outperforms both, con�rming that it

is an extremely good method for classifying data streams.
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5 RELATEDWORK

The algorithms in streamDM-C++ are sequential and they are

not distributed. There is room for improving the framework using

parallelism. Other open source softwares for data streammining are

available that are distributed and work in the Hadoop Ecosystem

using Apache Spark, Apache Flink, and Apache Storm.

Apache Scalable Advanced Massive Online Analysis (Apache

samoa) [19] is a framework that provides distributed machine learn-

ing for big data streams, with an interface to plug-in di�erent stream

processing platforms that run in the Hadoop ecosystem.

Apache samoa can be used in two di�erent modes: using it as a

running platform to which new algorithms can be added, or devel-

opers can implement their own algorithms and run them within

their own production system. Another aspect of Apache samoa is

the stream processing platform abstraction where developers can

also add new platforms by using the available API. With these sep-

aration of roles the Apache samoa project is divided into SAMOA

API layer and DSPE-adapter layer. The SAMOA API layer allows

developers to develop for Apache samoa without worrying about

which distributed stream processing engine (SPE) is going to be

used. In the case of new SPEs being released or the interest in inte-

grating another platform, a new DSPE-adapter layer module can

be added. Apache samoa supports four SPEs that are currently the

state or the art: Apache Flink [7], Storm, Samza, and Apex. Apache

SAMOA has a parallel VFDT implementation called Vertical Ho-

e�ding Tree [18].

StreamDM for Spark Streaming [5] is an open-source project for

mining big data streams using Spark Streaming [22], an extension

of the core Spark API that enables scalable stream processing of

data streams.

One of the �rst software available for mining data streams, was

the data stream plugin (formerly: concept drift plugin) [17] for

RapidMiner (formerly: YALE (Yet Another Learning Environment)),

a freely available open-source environment for machine learning,

data mining, and knowledge discovery, extends RapidMiner with

operators for handling real and simulated concept drift in time-

varying data streams.

The data stream mining and concept drift handling operators

provided in this plugin can be combined with all other RapidMiner

operators. For example, the audio and text preprocessing of the

RapidMiner package can be used to detect and handle concept

changes in audio and text data streams and all machine learning

methods for classi�cation available in RapidMiner (and WEKA) can

be combined with the concept drift handling frameworks. However,

some of these frameworks require the learners to be able to estimate

their classi�cation performance.

6 CONCLUSIONS

In this paper we presented streamDM-C++, a new system for

mining evolving streams using decision trees and ensembles in C++.

We explained the design choices for the solution, the deployment

challenges, and lessons learned. Our experimental validation shows

that streamDM-C++ outperforms VFML in the three dimensions

of data stream mining processing: time, memory and accuracy.

streamDM-C++ is available as open source software1, so that

practitioners and researchers in industry can bene�t of using this

new extremely fast implementation in C++ of decision trees for

evolving data streams.
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