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High-efficiency visible light emission in N-and-B-doped 6H-SiC epilayers was observed in

photoluminescence measurements at room temperature. The orange-yellow light emission due to the

recombination of donor-acceptor pairs �DAPs� has a broad spectrum with a peak wavelength of

576 nm and a full width at half maximum of 110 nm at 250 K. The high B concentration of more

than 1018 cm−3 improves the emission efficiency of the DAP recombination at a high temperature.

Compared with the photoluminescence spectrum of GaN at 10 K, a high quantum efficiency of

95% was estimated for the highly B-doped sample. From time-resolved photoluminescence

measurements, a DAP recombination time of 5.0 ms was obtained, which is in good agreement with

the calculated value by the rate equation with the assumption of a 95% internal quantum efficiency.

This is quite promising as a light-emitting medium by optical pumping, as well as monolithic light

sources combined with nitride-based light-emitting diodes grown on the DA-doped SiC epilayer.

© 2006 American Institute of Physics. �DOI: 10.1063/1.2195883�

I. INTRODUCTION

White light-emitting diodes �LEDs� are very promising

devices for such huge lighting applications such as the back-

light source of liquid crystal flat display panels, the head-

lights of automobiles, and general lighting equipment. Re-

cent advances in nitride-based LEDs have made it possible to

realize a white LED with a combination of a blue-LED chip

and a yellow phosphor such as yttrium aluminum garnet

�YAG�:Ce.
1

These LEDs are already used as a light source in

a variety of handheld equipment. The white LED is, in prin-

ciple, compact, robust, and an efficient light source. There-

fore, some people believe that all conventional light sources

will be replaced by white LEDs in the future. However, there

are still some problems with conventional white LEDs: a low

total flux, a low efficiency, and a low color rendering index.

These problems are delaying the expansion of white LED

applications.

Because the conventional white LED mentioned above

emits blue light and yellow light, the color rendering index is

very low due to the lack of red phosphors. Another white

LED comprising a UV-LED and three-color phosphors has

also been developed to improve the color rendering property.

However, this type of device has a low emission efficiency,

due to the low efficiency of red phosphors. Thus, the color

rendering index and emission efficiency are in a trade-off

relationship. In addition, the combination of a single-

spectrum LED and phosphors has an intrinsic instability of

color against temperature change and divergence angle varia-

tion. Moreover, complicated assembly processes are required

to set the phosphors uniformly on the LED chip.

Donor-and-acceptor �DA�-doped SiC seems to be appli-

cable to white LEDs, if it can work as a type of high-

performance phosphor, i.e., a light-emission medium by op-

tical pumping. It has many advantages such as a uniform

concentration of impurities, excellent thermal conductivity

for high-power-operated LEDs, and is a well-established

substrate material for nitride growth. Moreover, two types of

donor and acceptor pairs �DAPs�, N–B and N–Al DAPs, in

the 6H-SiC layers can cover almost all the visible spectral

range. Therefore, white LEDs with DA-doped SiC are alsoa�
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expected to provide an excellent color rendering index. The

key is how high the quantum efficiency of DAP recombina-

tion in the SiC epilayer is.

Many researchers believe that the efficiency of DAP

emission in semiconductors is considerably low. This pre-

conception may be proved by the fact that GaP-based red

LEDs using DAP emission have quite low external quantum

efficiencies on the order of 0.1%. Furthermore, a SiC-based

blue LED with a N �donor�-and-Al �acceptor�-codoped ac-

tive layer was studied more than 20 years ago,
2,3

and its ef-

ficiency was also very low. Thus, the success of nitride-based

blue LEDs at the end of the 1980’s �Ref. 4� stopped the

development of SiC-based blue LEDs. However, the quan-

tum efficiency of DAP emission itself has not been clarified.

Our idea that DA-doped SiC is used as a passive medium by

optical pumping is considerably different from LEDs. The

emission rate of DAP in SiC must be much lower than that of

an interband transition in direct band gap materials. There-

fore, to convert a large number of carriers to photons in the

DAP recombination, a large medium volume is indispensable

even with a high internal quantum efficiency. This condition

cannot be realized in LEDs which require very thin active

regions. On the contrary, the light-emission medium by op-

tical pumping basically has no limitation of volume. So, we

consider that DAP emission in SiC is still a promising

mechanism toward the realization of white LEDs, if it has a

high internal quantum efficiency.

In this paper, we investigated the optical properties of

the DAP emission in N-and-B-doped 6H-SiC epilayers. The

temperature dependence of the photoluminescence �PL�

measurements and time-resolved PL measurements of the

DAP recombination were carried out for the estimation of the

internal quantum efficiency.

II. EXPERIMENT

DA-doped 6H-SiC epilayers were grown on commercial

SiC substrates by a closed sublimation technique with a

growth temperature of 1900 °C.
5

The substrates are n-type

Si-face �0001� 6H-SiC with a 2° misorientation toward

�11-20�. Details of the epitaxial growth are shown in the

literature.
6

In two samples, N concentrations are constant at

approximately 4�1018 cm−3, and those of B are 2�1017 and

2�1018 cm−3. The concentrations of impurities were con-

firmed by secondary ion mass spectroscopy �SIMS� measure-

ments. We define the epilayer with a B concentration of

2�1017 cm−3 as sample 1 and the other with 2�1018 cm−3

as sample 2. The reason we used a donor concentration

higher than that of the acceptor is to avoid the ionization of

donors, which have a small ionization energy of 0.155 eV.

Due to the high growth rate of the closed sublimation tech-

nique, the thicknesses of the epilayers are both more than

100 �m, which are sufficiently thick compared with the pen-

etration depths of the excitation light sources used in this

study.

In the PL measurements, samples were mounted in a

cryostat and an unfocused 351 nm Ar laser was used as an

excitation source. The power of the Ar laser was 44 mW,

which corresponds to a power density of approximately

2.5 W/cm2 on the sample surfaces. The temperatures for PL

measurement were varied from 10 to 250 K. Figures 1�a�

and 1�b� show the PL spectra for two samples at different

temperatures, where Fig. 1�a� is for sample 1 and Fig. 1�b� is

for sample 2. When the B concentration is low �see Fig.

1�a��, the N–B DAP emission at approximately 630 nm and

the N–Al DAP emission at 460 nm were simultaneously ob-

served below 100 K. The additional impurity, Al, might be

unintentionally introduced from the atmosphere of the

growth reactor. Above 100 K, the N–Al DAP emission is

steeply quenched, and only the N–B DAP emission is ob-

servable. The peak wavelength of the N–B DAP emission is

approximately 630 nm at a low temperature, however, it

shifts to 576 nm with increasing temperature. On the other

hand, only the N–B DAP emission is observed even at a low

temperature in the case of sample 2 �see Fig. 1�b��. Although

the peak shift behavior of the N–B DAP with the temperature

variation is similar to the case of sample 1, the intensity

significantly increases at a high temperature.

From the PL spectra shown in Fig. 1, the integrated pho-

ton counts were calculated. These are shown as functions of

temperature in Fig. 2. The two samples exhibit different be-

haviors, i.e., the integrated photon count tends to decrease

with increasing temperature in sample 1, while it signifi-

cantly increases in sample 2. At 250 K, sample 2 with a

higher B concentration has a PL emission intensity approxi-

mately three times higher than sample 1. In addition, the

color of the N–B DAP emission in sample 2 seems to be

suitable for lighting applications because it is pure orange at

a low temperature, and orange yellow at a high temperature.

Moreover, the color of the emission of sample 1 at a low

temperature looks pure white because of the incorporation of

N–Al DAP emission.

As a reference, we also measured a 1.5-�m-thick GaN

FIG. 1. Photoluminescence spectra of

N-and-B-doped SiC epilayers. �a� is

for sample 1 with low B concentration

and �b� is for sample 2 with high B

concentration.
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epilayer grown on a sapphire substrate with the same mea-

surement setup, where a 244 nm laser was used for the ex-

citation because the absorption edge of the GaN is too close

to 351 nm at a low temperature. The GaN and sample 2 were

mounted simultaneously into the cryostat. Since the excita-

tion power of the 351 nm laser for sample 2 of 4.6 mW and

that of the 244 nm laser for GaN of 6.4 mW were used in

this measurement, they have almost the same excitation rate

�excitation photon number per second�. The light extraction

efficiencies for SiC and GaN seem to be equivalent because

of their comparable refractive indices, and the coupling effi-

ciencies of their emissions to the detection system were also

the same. Figure 3 shows the integrated photon count for

both samples as a function of temperature. The integrated

photon count for sample 2 at 250 K is almost the same as

that of GaN at 10 K. Because GaN grown on a sapphire

substrate contains threading dislocations at a density as high

as 2�109 cm−2, it has a very low quantum efficiency at

room temperature. However, the nonradiative recombination

caused by the dislocations could be eliminated when the tem-

perature is very low. Therefore, the internal quantum effi-

ciency of GaN at 10 K may be very high, approximately

100%.
7

Thus, it should be noted that the internal quantum

efficiency of sample 2 at 250 K is estimated to be 95%.

Time-resolved PL measurements were then carried out.

Here, the excitation source was a 355 nm frequency-tripled

YAG:Nd laser excited by a pulsed laser diode. A pulse width

of 5 ns and a power density of 38 mJ/cm2 pulse were used.

The detection was performed using a streak camera with a

time resolution of 10 ps. Figure 4 shows semilogarithmic

decay curves at room temperature for the monochromatic

photon energy of 2.15 eV, corresponding to the peak of DAP

emission. Similar to the case of interband recombination, the

monochromatic DAP emission should follow the single ex-

ponential decay, because it is caused by the recombination of

the electrons at the donor states and holes at the acceptor

with a constant distance. We observed several decay time

components from the submicrosecond order to the millisec-

ond order. Because of the very high excitation rate in this

measurement compared with the static PL measurements, the

fast decay component may be due to the nonradiative recom-

bination at the band edge or overlap of another DAP recom-

bination. Approximately 5 ms after the drop in excitation,

the PL intensities follow single exponential decay. These

ranges might be under equivalent excitation conditions as

those of the static PL measurements shown in Fig. 4. From

the decay curves in these ranges, we obtained the DAP re-

combination times of 2.5 ms for the low-doping sample and

5.0 ms for the high-doping sample.

Details about the relationship between the DAP recom-

bination time and the internal quantum efficiency will be

discussed in the next section.

III. RATE EQUATION ANALYSIS

To evaluate the validity of the high internal quantum

efficiencies obtained in Fig. 3, rate equation analysis was

carried out in this section. For the consideration of the inter-

nal quantum efficiency and rates of carrier relaxations, the

band diagram shown in Fig. 5 is useful. Under the thermal

equilibrium condition in DA-doped SiC �ND�NA�, almost

all the acceptor states are ionized, as shown in Fig. 5�a�. The

interband recombination time �n is determined by the nonra-

FIG. 2. Integrated photon count of PL spectra as function of temperature.

FIG. 3. Integrated photon count of PL spectra for both samples as function

of temperature.

FIG. 4. Semilogarithmic decay curves at room temperature for monochro-

matic photon energy of 2.15 eV. Dotted lines are guides for the eye.
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diative recombination, because SiC is an indirect band gap

material. The DAP recombination time �DA is only deter-

mined by the relaxation of holes from the valence band to the

acceptor state whose relaxation time is �A, because of the

excess doping of donors in our case. Therefore, the internal

quantum efficiency �int and the interband relaxation time �BE

are represented by

�int =
1

1 + �A/�n

, �1�

�BE =
�A�n

�A + �n

. �2�

From the comparison of integrated PL photon counts, the

internal quantum efficiencies of 20% for sample 1 and 95%

for sample 2 were assumed. Then, we obtained the relation-

ships

�BE = 0.2�A, �3�

for sample 1, and

�BE = 0.95�A, �4�

for sample 2.

The rate equations for the hole density in the valence

band, p
v
, and that in the acceptor state, pA, are represented by

dp
v

dt
=

I�1 − 1/e�

h�d
−

p
v

�BE

, �5�

dpA

dt
=

p
v

�A

−
pA

�DA

, �6�

where I is the excitation power density of excitation

�W/cm2�, h is the Planck constant, � is the frequency of

excitation light, and d is the penetration depth of the excita-

tion. The first term in Eq. �5� represents the average excita-

tion rate within the penetration depth. Under the experimen-

tal conditions of the static PL measurements in Fig. 3, I was

0.41 W/cm2 and d was estimated to be 10 �m. From the

equilibrium in Eq. �5�,

p
v

= 4.6 � 1020�BE, �7�

was derived. Because the hole density at the acceptor states,

pA, must be very close to the acceptor concentration NA un-

der the excitation, we assumed that pA is equal to NA. By

substituting Eqs. �3� or �4� and �7� into Eq. �6�, we finally

obtained the DAP recombination times of 2.2 ms for sample

1 and 4.6 ms for sample 2. These values are in good agree-

ment with those obtained in the time-resolved PL measure-

ments shown in Fig. 4.

This agreement means that our estimation of internal

quantum efficiencies from the integrated PL photon counts

is fairly appropriate. Accordingly, the DAP emission in

6H-SiC has a very low recombination rate, compared with

the interband recombination in direct band gap semiconduc-

tors. Therefore, it is necessary to use a large volume of

donor-and-acceptor-doped medium for a high internal

quantum efficiency, which is impossible to realize in current

injection devices such as LEDs. The N-and-B-doped

6H-SiC with optimum doping concentrations is a very prom-

ising light-emission medium for optical excitation.

IV. CONCLUSION

By static and time-resolved PL measurements, the opti-

cal properties of a N-and-B-doped 6H-SiC epilayer were in-

vestigated. When the B concentration is high, exceeding

1018 cm−3, the integrated intensity of the DAP emission in-

creases, in particular, at high temperatures up to 250 K. At

250 K, the observed DAP spectrum has a broad spectrum,

where the peak wavelength is 576 nm and the full width at

half maximum is 110 nm. Compared with the integrated PL

intensity of GaN at 10 K, that of N-and-B-doped SiC at

250 K was estimated to be 95%. From time-resolved PL

measurements, the DAP recombination time was obtained to

be 5.0 ms. This value is in good agreement with that ob-

tained from the rate equation analysis with the assumption of

a 95% internal quantum efficiency. The DA-doped 6H-SiC is

promising for a light-emitting medium using optical pump-

ing, as well as monolithic light sources combined with

nitride-based light-emitting diodes.
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