
Extremely low bit-rate nearest neighbor search

using a Set Compression Tree

Relja Arandjelović Andrew Zisserman

Department of Engineering Science, University of Oxford

{relja,az}@robots.ox.ac.uk

Abstract

The goal of this work is a data structure to support ap-

proximate nearest neighbor search on very large scale sets

of vector descriptors. The criteria we wish to optimize are:

(i) that the memory footprint of the representation should be

very small (so that it fits into main memory); and (ii) that the

approximation of the original vectors should be accurate.

We introduce a novel encoding method, named a Set

Compression Tree (SCT), that satisfies these criteria. It is

able to compress 1 million descriptors using only a few bits

per descriptor, and at high accuracy. The large compres-

sion rate is achieved by not compressing on a per-descriptor

basis, but instead by compressing the set of descriptors

jointly, i.e. if the set of descriptors is {x1, x2, . . . , xn}
then the compressed set is com{x1, x2, . . . , xn} rather than
{com(x1), com(x2), . . . , com(xn)}. We describe the en-

coding, decoding and use for nearest neighbor search, all

of which are quite straightforward to implement.

The method is compared on standard benchmarks

(SIFT1M and 80 Million Tiny Images) to a number of state

of the art approaches, including Product Quantization, Lo-

cality Sensitive Hashing, Spectral Hashing, and Iterative

Quantization. In all cases SCT has superior performance.

For example, SCT has a lower error using 5 bits than any

of the other approaches, even when they use 16 or more

bits per descriptor. We also include a comparison of all the

above methods on the standard benchmarks.

1. Introduction

Nearest neighbor search is ubiquitous in computer vi-

sion with numerous applications across the field. With ever

larger data sets generating millions or billions of vector de-

scriptors, two particular problems have become critical: (i)

how to keep all the original vectors in main memory, and

(ii) how to obtain the nearest neighbors of a query vector

as fast as possible. Recently there have been two quite dis-

tinct threads of work aimed at addressing problem (i), which

both proceed by obtaining a low dimensional representation

of the original vectors, such that the distance between two

low dimensional representations is a good approximation of

the distance between the original vectors. The consequence

is that the low dimensional vectors for the entire database

then fit in main memory which in turn alleviates problem

(ii) as no (expensive) hard disk access is required.

One thread is the product quantization of Jégou and col-

laborators [10]. This follows on from earlier work on Ham-

ming embedding [9]. Both were aimed at obtaining a more

accurate distance between SIFT [12] vectors than that ob-

tained by straight forward k-means vector quantization of

the entire vector and representation as visual words [20].

Product quantization divides the vector into sub-vectors,

and then vector quantizes each sub-vector (if there are

m sub-vectors each quantized independently into k clus-

ter centers, then there are km possible code words with

m · log2(k) bits required to represent each vector). It was

originally applied to SIFT vector matching, but has since

been employed in large scale category retrieval [17] and

used with inverted indexes for immediate retrieval [3, 16]

(again addressing problem (ii)).

The second thread is the binary string representation of

vectors used for retrieval in the 80Million tiny images series

of papers [7, 15, 21, 22, 23]. Here the goal is to represent the

original vectors by short binary strings, such that the Ham-

ming distance between the binary representations approx-

imates the distance between the original vectors (or more

accurately, that the ranking of Hamming distances equals

the ranking of distances between the original vectors).

Current methods achieve reasonable performance only

when 16 or 32 or more bits per descriptor are used, but

none is capable of functioning at the extremely low bit-rate

regime which is certainly needed for huge scale datasets. In

this paper we propose a Set Compression Tree (SCT) ap-

proach to lossy descriptor compression that is capable of

accurately representing vectors using only 4 to 7 bits per

vector. The key idea in SCT coding is not to store in-

formation directly on a per-descriptor basis, but instead to

store information jointly across sets of the descriptors in the

1

database. Because the code applies to a set of vectors, the

number of bits required for each vector is far less. The

coding is achieved through a simple and very fast scheme

where the feature space is partitioned into disjoint cells in

a k-d tree like manner using binary splits, such that each

descriptor is uniquely associated with one cell and approx-

imated by the centroid of that cell. The SCT coding is ex-

plained in section 2, and compared in section 3 to previ-

ous compression methods including: Product Quantization

of Jégou et al. [10], Locality Sensitive Hashing [2] (LSH),

Spectral Hashing of Weiss et al. [23], SIK of Raginsky and

Lazebnik [15], and Iterative Quantization (ITQ) of Gong

and Lazebnik [7]. As will be seen, in all cases SCT has

superior performance at the very low bit end of the com-

pression scale.

Such a low bit compression can find immediate applica-

tion in multiple places, and we mention two use cases here:

the first is direct representation of descriptors. These may

be descriptors of local image regions (such as SIFT) or de-

scriptors of the entire image (such as GIST [14], PHOW [4],

VLAD [11] etc). The second is in large scale object re-

trieval systems, where descriptors are first quantized and an

inverted index then used for fast access, and the residual

(the difference between the cluster center and original de-

scriptor) is compressed for finer descriptormatching [9, 10].

As far as we know there has been no scheme similar to

SCT proposed before. The closest work is Chandrasekhar

et al. [5], which, like SCT, exploits the fact that descriptor

ordering is not important. However, their method is aimed

at lossless compression for sets of binary vectors rather than

the approximation for real vectors targeted here. Note, k-d

trees have long been employed for efficient and approxi-

mate nearest neighbor algorithms [1, 13, 18]. Our objective

is very different though – we aim for compression, whereas

previous uses have stored all the original vectors (leading to

an increase in storage requirements as the parameters of the

tree must also be stored).

2. Set Compression Tree (SCT) Encoding

The objective of the Set Compression Tree (SCT) is to

provide an extremely low bit-rate lossy compression of a

set of descriptors. It can be used for brute-force nearest

neighbor search by decompressing the descriptors from the

SCT encoded set one by one and comparing them to the

query vector. Section 4 explains how SCTs can be used for

approximate nearest neighbor search.

Current methods for obtaining a compressed representa-

tion of descriptors all focus on compressing each descriptor

individually. For very low bit-rate scenarios this approach

is infeasible as many descriptors get assigned to the same

value thus making it impossible to discriminate between

them. Nearest neighbor search in such a system would have

extremely low precision.

We instead focus on compressing all descriptors jointly

such that the amortized cost of storing a descriptor is ex-

tremely low. This is achieved by not storing any informa-

tion on a per-descriptor basis, but representing all descrip-

tors together via a single binary tree. All of the storage

requirements for descriptor representation are contained by

the encoding of this binary tree. The compression method,

i.e. tree building and encoding is described here, followed

by implementation details in section 2.1.

The method proceeds by dividing the descriptor space

by a sequence of binary splits that are predetermined and

independent of the data to be compressed. After a number

of divisions, a cell will only contain a single vector, and that

vector is represented by the centroid of the cell. The method

is best explained through an example, and Figure 1 shows

the compression and encoding steps for the case of seven

descriptors in a 2D space. The resulting representation uses

only 2.14 bits per descriptor.

The key idea underpinning SCT encoding is that a single

split contributes information to many descriptors; for the

example in figure 1(a) the first split, encoded with two bits,

halves the space for all seven descriptors, so for 0.29 bits per

descriptor their positional uncertainty is halved. If, instead,

every descriptor is encoded individually halving the feature

space would cost 1 bit per descriptor.

To summarize the method, the encoding algorithm starts

from a root bounding space which contains all descriptors

and proceeds by a sequence of binary space partitions. A

bounding space S is divided in a predefined manner inde-

pendent of the descriptors it contains, for example, an axis

aligned split is chosen such that the longest edge of the

space is divided in half (the split sequence is explained in

full in section 2.1). The split of the space S partitions it

into two spaces A and B (i.e. such that A ∪ B = S and

A ∩ B = Ø), then all that is recorded at each split is the

“outcome” of that split, i.e. information on the number of

descriptors inA andB, denoted as |A| and |B| respectively.
All outcomes fall into six categories that are recorded (fig-

ure 1(f)): (i) |A| = 0, |B| > 1, (ii) |A| > 1, |B| = 0, (iii)
|A| > 1, |B| > 1, (iv) |A| > 1, |B| = 1, (v) |A| = 1,
|B| > 1, (vi) |A| = 1, |B| = 1. Note, a space is split

only if the number of elements |S| is larger than one. Con-

sequently, options {|A| = 0, |B| = 1} and {|A| = 1,
|B| = 0} are not possible since, |S| > 1 and A ∪ B = S
thus |A|+ |B| > 1.

After the encoding, the entire data set is simply repre-

sented by the sequence of splits outcomes. This sequence

is all that is required to reconstruct the space partitions (and

thereby the centroid of the cell which represents the original

vector). Decoding is analogous to the encoding procedure:

the process starts from the root bounding space retracing the

same sequence of binary splits as the encoding. A bound-

ing space S is divided in the same predefined manner as

2

1:C

(a) 1st step; code = C

1:C

2:C

(b) 2nd step; code = C

1:C

2:C

���

(c) 3rd step; code = F

1:C

2:C

���

���
	��

��

���

(d) Final tree

1:C

2:C

��

��
��

��

��

(e) Reconstruction

Symbol Code
Number

in child 1

Number

in child 2

A 0000 = 0 > 1

B 0001 > 1 = 0

C 01 > 1 > 1

D 0010 > 1 = 1

E 0011 = 1 > 1

F 1 = 1 = 1

(f) Split outcomes and codes

Final tree encoding: CCFAFDF Set tree encoding: 01 01 1 0000 1 0010 1

Bitrate: 15/7 = 2.14 bits per vector

Figure 1: SCT encoding. The aim is to encode the seven 2-D vectors (black stars) by a sequence of binary partitions of

the space (delimited by the outside rectangle). In (a)-(e) the space splits are shown in blue, thicker lines correspond to splits

at levels closer to the root of the tree. (a)-(c) The first three steps in the tree construction. The construction (i.e. splitting

bounding spaces) stops once all regions contain at most one descriptor; the final tree separating all seven vectors is shown in

(d). Next to each split its ordinal number in the sequence of splits is shown together with the code recording the outcome of

the split. (f) The list of possible outcomes and their corresponding codes. For example, the second split (b) is shown as 2:C,

the table states that C means there is more than one vector in each of the newly created cells. (e) the vectors are represented

by the centroid (red circles) of the final cells. Vector decompression is based solely on the tree, which is encoded by the

sequence of split outcomes (15 bits, i.e. 2.14 bits per vector), and the centroids generate the reconstructed vectors.

used in the encoding (e.g. by halving the longest edge) and

the split outcome is obtained from the SCT. If any of the

children cells contains only a single descriptor, it is recon-

structed using the cell centroid. The splitting of remaining

cells which are known to contain more than one descriptor

is continued in the same fashion, until none remains and the

whole set of descriptors will then have been decompressed.

Figure 2 illustrates the benefit of using the SCT repre-

sentation. 400 2-D data points are generated by sampling

from a Gaussian mixture model with 16 Gaussian compo-

nents. Compressing this data with 4 bits per descriptor by

approximating a point with its closest cluster center, out of

24 = 16 clusters, yields very large quantization errors. The
centers in this example are obtained using k-means (note

that at such a low bit-rate product quantization [10] degen-

erates to simple k-means), but any division of the space into

16 regions is bound to do similarly poorly. This is because

on average 400/16 = 25 points are assigned the same 4-bit

code (corresponding to one region) and are thus completely

indistinguishable between each other. However, quantizing

the points jointly by sharing information between them per-

forms very well, achieving a 21 times smaller mean squared

error than k-means with only 3.05 bits per descriptor.

2.1. Implementation details

In this section technical details are discussed; they are

sufficient to fully reproduce the experiments. The summary

of all the steps of the SCT algorithm is given in figure 3.

In the case of nearest neighbor search there are three

datasets involved: a training set, the database to be encoded,

and the query set. The query set contains all the query vec-

tors, and the database set contains the vectors on which

nearest neighbor search will be performed, i.e. it contains

the vectors that should be compressed. The training set is

used to learn all the required parameters in an unsupervised

way (for example PCA) and, in general, should be distinct

3

400 data points

(a)

SCT, 3.05 bit, MSE= 0.011

(b)

SCT, 3.05 bit, final cells

(c)

K−means clustering, 4 bit, MSE= 0.231

(d)

SCT, 4 bit, MSE= 0.005

(e)

SCT, 4 bit, final cells

(f)

Figure 2: Compression example. All plots show a 2-D feature space, 400 synthetically generated 2-D points are shown

in blue, green lines show the displacement between the original point and the approximation, magenta lines depict cells

(i.e. uncertainties) associated with quantized descriptors. (a) The 400 points and the 16 GMM means (red circles) used to

generate them. (d) Representing the data with 4 bits per point by using the closest cluster center (16 clusters, red circles, are

obtained through k-means); the errors (depicted by long green lines) are large. (b) SCT encoding; with as little as 3.05 bits

per point the errors are very small, with MSE (mean squared error between the original and reconstructed points) being 21

times smaller than for k-means; (c) shows the cells associated with each point; the point is finally represented by the centroid

of the cell. (e) Tree encoding; at the same bit-rate (4 bits per point) as the k-means method; MSE is 46 times smaller. (f)

shows the cells associated with each point.

from the database to be encoded in order to avoid implicitly

storing database information in the learnt parameters. For

an extreme example, one could “compress” a database of 1

million vectors by “learning” a 1 million dictionary identi-

cal to the database, and then representing the database using

20-bits per vector word ID thus achieving perfect represen-

tation at quite a low bitrate.

Requirements. An important requirement for SCT is that

each component of the vector has a lower and an upper

bound. The requirement is not very restrictive as this is

the case with all commonly used descriptors, e.g. SIFT is

bounded by 0 and 255 in each dimension.

4

(a) Training

1. Compute PCA, keepD principal components for the training set V

2. Use a random rotation matrix R (D ×D) to rotate the training set to get Ṽ

3. For each dimension i in [1, D]:

Store the distribution of values Ṽ at dimension i, and lower (Li) and upper (Ui) bounds

(b) Encoding

1. Rotate theD principal components of database descriptors by R
2. Create the root bounding space, bounded by [Li, Ui] for dimension i, and associate all database descriptors with it

3. Find a bounding space S (depth-first) containing more than one descriptor; if none found go to step (7)

4. Set d = argmaxi(u
S
i − lSi) and s = median({Ṽi,d|i : Ṽi,d ∈ [lSi , u

S
i]})

5. Create cells AS andBS by splitting cell S at dimension d and position s, move each descriptor from S intoAS orBS depending

on which space they are bounded by

6. Encode the split outcome, see figure 1(f), and go to step (3)

7. Compute optimal Huffman coding for the recorded frequency of split outcomes, store it using 18 bits and re-encode the tree by

replacing old codes with new, optimal ones

8. Refine final non-empty bounding spaces by splitting them additionally, using one bit per split

(c) Decoding

1. Create the current cell C bounded by [lCi , u
C
i] = [Li, Ui] for dimension i. Set |C| to > 1

2. If |C| = 1, refine C by reading codes created in (b.8) and output its centroid rotated by R−1

3. If |C| ≤ 1, set C to be equal to its parent, go to step (2)

4. If this is the first time C is visited:

Create cells AC and BC by splitting dimension d at s, obtained in the same way as in (a.4)

Decode the split outcome and assign |AC | and |BC | to values 0, 1 or > 1 accordingly

5. If AC was not visited, set uC
d = s (i.e. C ← AC) and go to step (2)

6. If BC was not visited, set lCd = s (i.e. C ← BC) and go to step (2)

7. If parent exists, set C to be equal to it and go to step (2), otherwise exit as all nodes have been visited

(d) Nearest neighbor search

1. Project the query descriptor to the D principal components to obtain q

2. Use (c) to decode the tree, at step (c.2) compare q with the outputted value

Figure 3: SCT algorithm summary. Lower and upper bounds for cell S in dimension d are denoted as lSd and dSd , respec-
tively. Training data is referred to as V , the value of vector i at dimension d is Vi,d. Note that for nearest neighbor search

one would actually also rotate q in step (d.1) by R and modify step (c.2) not to rotate the outputted centroid by R−1, thus

improving the speed.

Split choice. For a given cell, splits are determined in the

following manner: The dimension to be split is chosen to

be the one with the largest difference between the upper and

lower bounds. It is straightforward to see that choosing to

split the cell across its largest extent minimizes the expected

approximation error for a descriptor (for example, imagine

a degenerate 2-D cell where the extent in the x direction

is long while the extent in the y direction is infinitesimal –

splitting y would not be beneficial). Experiments confirm

that pseudo-randomly choosing splitting dimensions (and

recording the random seed in order to be able to reconstruct

the tree) yields an inferior MSE to our scheme. The order

of the splits is determined by always choosing the left child

region first.

For a given cell and splitting dimension, the place of

the split is determined with the aim of balancing the tree;

a balanced tree is likely to produce similar sized cells for all

descriptors thus resulting in similar magnitudes of recon-

struction errors. The split is chosen according to the median

value of the training data in the splitting dimension (clipped

by the cell). Alternatively one can simply split the space in

half, however this choice could lead to an unbalanced tree

5

depending on the data distribution. A histogram for each

component is retained to efficiently compute the median.

In summary, only the following information is stored

from the training data in order to generate the split se-

quence: (i) upper and lower bounds for each dimension (in

order to create the first, root cell); (ii) a histogram of train-

ing data values for each dimension (e.g. for SIFT, 128 his-

tograms are stored).

Note, it is essential to have a cell splitting strategy that

does not depend on the data inside the cell (as above). Oth-

erwise the sequence of splits needs also to be stored, as one

would do with a k-d tree, and this will incur a considerable

storage cost.

Optimal binary encoding. The six outcomes of splits are

encoded using optimal variable length binary codes. To

achieve this tree encoding is performed in two stages. In the

first stage splits are simply encoded using predefined sub-

optimal binary codes. During this stage, occurrence counts

for each of the six outcomes are obtained. In the second

stage, the tree is re-encoded by replacing the initial subopti-

mal codes with optimal ones. Huffman coding [6] is used to

obtain optimal variable length binary codes by utilizing the

recorded frequency of the six split outcomes. Storing the

Huffman tree requires 18 bits in total and is certainly worth

the reduced storage requirement for the tree representation.

Finer representation. It is simple to obtain a finer rep-

resentation of a descriptor by increasing the bit-rate: the

cell associated with it can be additionally split with a rate

of 1 bit per split, encoding on which side of the split the

descriptor is. Based on the desired bit-rate, the additional

available bits can be equally distributed to refine each of

the final bounding spaces, however, it is better to bias the

refinement towards large bounding spaces (i.e. descriptors

which have been represented poorly).

Dimensionality reduction. SCT encoding is not appro-

priate to use when the dimensionality of the descriptor vec-

tor is large compared to log2N , where N is the number of

descriptors to be compressed. For example, compressing 1

million descriptors is expected to yield a tree of depth 20

(log2(1M)), as it is approximately balanced, meaning that

at most 20 dimensions will be split in order to obtain a fi-

nal bounding space for each descriptor. Trying to compress

128-D SIFT descriptors with 20 splits would result in large

approximation errors as at least 108 dimensions would re-

main unchanged and thus not convey any information about

the value of the descriptor in any of the 108 dimensions. For

this reason it is recommended to first perform dimensional-

ity reduction on the data. We chose to zero-center the data

followed by principal component analysis (PCA), keeping

only D dominant directions. Since the variance of different

components is not balanced we subject the D-dimensional

vectors to a random rotation [7, 11], otherwise one would

need to bias the choice of splitting directions towards the

components which carry more information.

Obtaining the ID corresponding to a vector. As decom-

pressing the SCT permutes input vectors according to the

depth-first traversal of the tree, one might wonder how can

one preserve the identity of the decompressed vectors with-

out storing additional (costly) information. For example,

in an image retrieval system, a retrieved feature vector (e.g.

GIST [14], VLAD [11]) must be associated with its original

image.

Here we distinguish two cases based on the nearest

neighbor search strategy: (a) linear traversal, and (b) large

scale retrieval using indexing.

In case (a), existing compression methods produce com-

pressed vectors in the same sequence as input vectors, by

for example product quantizing each vector in turn, and thus

do not need to store any additional meta information to pre-

serve the compressed vector identity (the original order may

simply be alphabetical from file names). For example, re-

turning the third compressed image descriptor means the

system should return the third image in the image database.

Thus the correspondence between compressed vector and

original image is stored implicitly.

For SCT, the order of the reconstructed vectors depends

on the order of the tree traversal and not the original order,

thus SCT seemingly requires extra information to store the

permutation of the vectors. However, this is not the case,

for example the original images can simply be permuted so

that the ‘canonical ordering’ of the images is the same as

that of the decompression order.

More practically, the correspondence between the recon-

structed vector order number can be stored in a look up ta-

ble (LUT) that maps from order number to identity (e.g. its

URL). All existing methods employ a LUT or some prede-

fined ordering of the data. For example, an image retrieval

system which represents each image using a single descrip-

tor needs to be able to identify an image in some way from

the retrieved descriptor. For images of Flickr or the web, a

LUT is used to map between feature descriptor and URL.

In case (b), large scale retrieval, the situation is differ-

ent, as the data is typically not traversed linearly. Instead,

the dataset feature vectors may be grouped in some fash-

ion, for example by vector quantizing, or accessed via an

inverted index [20] (an example is discussed in more detail

in section 4). In such cases an explicit LUT is required (e.g.

between the entries of a posting list and the URLs of the im-

ages). Again, this requirement applies to any compression

method.

To summarise, in spite of permuting the order of the in-

put vectors, the SCT is capable of preserving vector identi-

ties without any additional storage requirements over those

of other compression methods.

6

3. Evaluation and results

In this section we compare the compression, accuracy

and retrieval speed of SCT to a number of other standard

methods.

3.1. Datasets and evaluation procedure

We evaluate the performance of the SCT on two stan-

dard datasets: (i) the SIFT1M dataset of Jégou et al. [10],

and (ii) the 580k GIST descriptors used by [7], which is a

subset of the 80M Tiny Images dataset [21]. For both we

follow the standard evaluation procedure of the authors, as

summarized next.

1M SIFT descriptors (SIFT1M) [10]. This dataset is

commonly used for evaluating approximate nearest neigh-

bor methods, with an emphasis on low bit-rate descriptor

representations for image search, as it consists of SIFT [12]

descriptors. It contains 10k query descriptors, 100k descrip-

tors used for training, and 1 million database descriptors.

The descriptors are from the Holidays dataset [9] and Flickr

images. Search quality is evaluated as the average recall of

the first nearest neighbor at R retrievals (usually set to 100)

for each query, i.e. the proportion of query vectors for which

the Euclidean nearest neighbor using SIFT is ranked within

the first R retrievals using the approximating method.

580k Tiny Images (Tiny580k) [7]. This dataset contains

580k images and is a subset of the Tiny Images dataset [21];

the images are represented by 384-DGIST descriptors [14].

It is randomly split into 1k query descriptors and 579k

database descriptors which are also used for training; per-

formance is measured across five different random splits of

the data.

For this dataset the search performance is evaluated in

three different ways, we will refer to them as mAP-50NN,

AP-thres and mAP-thres. The first method (mAP-50NN), is

based on the precision-recall curves proposed by the cre-

ators of the Tiny Images dataset [21]. The 50 true nearest

neighbors for each query are labelled as positives, and the

performance is evaluated as mean average precision (mAP)

across the queries.

The latter two criteria (AP-thres and mAP-thres) con-

centrate on measuring distance preservation from the orig-

inal descriptor space (in this case GIST) to the new space,

thus measuring the effectiveness of hashing schemes to pre-

serve neighborhood relations. For these cases, a set of

“good neighbors” is determined by choosing a global dis-

tance threshold T (obtained by taking the mean distance to

the 50th nearest neighbor), and labelling a descriptor as a

positive for a particular query if its Euclidean distance from

the query is lower than the threshold T . This method for

ground truth generation was proposed by [23] and adopted

by [7, 15]; they measure the performance as average preci-

sion (AP) of retrieval of “good neighbors” across all queries

simultaneously, and we refer to it as AP-thres.

However, the test data associated with AP-thres is ex-

tremely unbalanced, such that 50% of the queries have less

than 22 positives, while 7% have more than 30k positives.

This means that as long as a system performs well on the

7% of the queries (i.e. these are retrieved correctly and first)

then it will reach a “good” AP value, regardless of its poor

performance on 93% of the queries. For example, if all of

the 7% of the queries and their respective positives belong

to a single cluster counting 30k descriptors, a simple 1-bit

encoding being the indicator of the descriptor cluster mem-

bership (1: in the cluster, 0: out of the cluster) would yield

a large AP.

To account for this imbalance we propose to also mea-

sure performance in terms of mean average precision

(mAP), i.e. the mean of the average precision for each

query, and refer to this as mAP-thres. The 1-bit encoding

example would correctly perform poorly under this mea-

sure.

In summary, the mAP-50NN criterion is the most use-

ful one of the three when evaluating image retrieval as it

directly measures the ability of a system to return relevant

results for any query image.

3.2. Baselines

SCT is compared to several state-of-the-art methods at

various bit-rates, we briefly summarize them here.

(i) Product Quantization (PQ) [10]: Each descriptor is split

intom parts and each part is vector quantized independently

using k cluster centers, thus having a m · log2(k) bit code
per descriptor.

(ii) Locality Sensitive Hashing (LSH) [2]: The code is com-

puted by taking the signs of descriptor projections onto ran-

dom hyperplanes (normals are sampled from an isotropic

Gaussian) with random offsets, the Hamming distance be-

tween descriptors encoded in such a way is closely related

to the cosine similarity between the original vectors.

(iii) Shift Invariant Kernels (SIK) of Raginsky and Lazeb-

nik [15]: The code is computed by taking the signs of ran-

dom Fourier features with random offsets.

(iv) PCA with random rotation (RR) [7, 11]: Data is zero-

centered and the most significant D principal components

are kept and randomly rotated. The D dimensional code is

obtained by taking signs of each dimension.

(v) Iterative quantization (ITQ) [7]: Gong and Lazebnik

use the RR method and then proceed to iteratively find the

rotation which minimizes quantization errors.

(vi) Spectral Hashing (SH) [23]: The coding scheme is

obtained deterministically by trying to ensure that similar

training descriptors get hashed to similar binary codes. This

is a NP-hard problem so their approach is to solve a relaxed

7

4 6 8 12 16 32 64 96
0

0.2

0.4

0.6

0.8

1

Bits per descriptor

re
c
a

ll@
1

0
0

BCT
PQ

ITQ
RR
SIK

LSH
SH

(a) SIFT 1M

2 4 8 16 32 64

0.001

0.01

0.05

0.25

m
A

P
−

5
0

N
N

Bits per descriptor

SCT
PQ

ITQ
RR
SIK

LSH
SH

(b) Tiny 580k

2 4 8 16 32 64
0.01

0.02

0.05

0.1

0.25

0.6

m
A

P
−

th
re

s

Bits per descriptor

SCT
PQ

ITQ
RR
SIK

LSH
SH

(c) Tiny 580k

2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
P

−
th

re
s

Bits per descriptor

SCT
PQ
ITQ
RR
SIK
LSH
SH

(d) Tiny 580k

Figure 4: Comparison of SCT with state-of-the-art. Best viewed in color; note the log scale for mAPs in (b) and (c). The

different curves associated with PQ correspond to different numbers of sub-quantizers (from left to right: 1, 2, 4, 8), the

combinations of settings reproduce the ones used in the original paper [10]. SCT outperforms all methods at low bit-rates for

both datasets and all evaluation measures apart from AP-thres, where the test data is extremely unbalanced and the measure

inappropriate (see the discussion in section 3.1). SCT continues to dominate all competing methods at higher bit-rates as

well.

optimization problem.

Methods (ii)-(vi) rank descriptors based on their Ham-

ming distance from the query which is binarized in the same

fashion. For product quantization (i) the asymmetric dis-

tance computation method [10] is used since Jégou et al.

report it to be superior; the distance between the query and

a database vector is approximated by the distance between

the raw (non-quantized) query and the quantized represen-

tation of the database vector.

We use publicly available code for all of the baseline

methods and replicate the results in [7, 10], these two pa-

pers together cover all the baseline methods.

3.3. Results and discussion

Figure 4 shows the comparison of SCT with the baseline

methods. SCT clearly outperforms all competing methods

at very low bit-rates on both datasets and using all evalu-

ation metrics. For example, on the SIFT 1M dataset SCT

achieves a recall@100 of 0.344 at 4.97 bits per descriptor,

while the next best method, product quantization, achieves

0.005 at 6 bits, i.e. 69 times worse. Even at 16 bits, i.e. 3.2

times larger, PQ only reaches 55% of SCT performance at

4.97 bits per descriptor. The next best method after SCT is

PQ, and PQ is then superior to all other methods.

Despite the very low bit-rate, SCT by construction rep-

resents all database descriptors distinctly, thus making it

possible to distinguish between them and rank them ap-

propriately. In contrast, all other methods, by quantizing

each descriptor individually into a small number of bits, ef-

fectively identically represent a (possibly very large) set of

database descriptors, as previously illustrated in Figure 2.

This means that, for example, using the Tiny 580k dataset

and four bits per descriptor, on average a descriptor has the

same representation as another 36k ones; it is impossible

to rank the first 36k results for a given query, as any of the

36k factorial permutations is equally likely under these rep-

resentations. This argument also shows that performance

evaluation based on AP-thres is very misleading. For ex-

ample, PQ under AP-thres achieves an AP of 0.459 with 4

bits per descriptor. The reason for such a “good” perfor-

mance is the fact that the test data associated with AP-thres

is extremely unbalanced, as explained in section 3.1.

Figure 5 shows qualitative retrieval results on the Tiny

580k dataset. As expected from the quantitative evalua-

tion shown in figure 4, SCT performs much better than the

state-of-the-art methods while representing descriptors us-

ing three times fewer number of bits.

Dimensionality reduction. Figure 6 shows the perfor-

mance of SCT as a function of the number of principal com-

ponents (PC) used and bit-rate. It can be seen that, as ex-

pected, at extremely low bit-rates performance drops with

increasing number of PCs due to increasing approximation

errors. However, increasing the bit-rate by further splitting

final bounding spaces makes it again appropriate to use SCT

with this larger number of PCs, which in turn improves the

performance as the underlying data is represented more ac-

curately using more PCs.

For a given number of PCs, it is also important to note

that the SCT performance reaches the upper bound (i.e. the

performance that is obtained by using raw descriptors with

the same number of PCs) at quite low bit-rates. For example

this point is reached at 32 bits per descriptor for 16 PCs, so

only two bits per dimension are sufficient to encode a value

which would commonly be represented using 32 or 64 bits

(single or double floating point number).

8

Queries Queries

Raw GIST, 16 PCs Spectral Hashing (SH), 16 bits

Set Compression Tree (SCT), 5.35 bits Product Quantization (PQ), 16 bits

Set Compression Tree (SCT), 16 bits Iterative quantization (ITQ), 16 bits

Figure 5: Retrieval quality on Tiny 580k dataset. Best viewed in color. First row shows twelve example queries, each

of the remaining six blocks show the top five retrieved images for each of the queries. Set Compression Tree (SCT) at only

5.35 bits per descriptor outperforms state-of-the-art methods, namely Spectral Hashing, Product Quantization and Iterative

Quantization, while using three times less storage for descriptor representation. Using SCT with 16 bits per descriptor further

improves retrieval quality. Note that other methods are not capable of even finding near-duplicate images at such low bit-rates.

Fast and low memory footprint of coding and decod-

ing. All timings are measured on a laptop using a sin-

gle 2.66 GHz processor. The un-optimized program com-

presses 1 million SIFT descriptors using 32 principal com-

ponents in 14 seconds, while decompression and nearest

neighbor search take 0.5 seconds. The search time scales

linearly with the number of database descriptors, search-

ing 580k GIST descriptors (again using 32 principal com-

ponents) takes 0.26 seconds. In the decoding stage not all

of the cells need to be stored in memory at once – the tree is

traversed depth-first, so only a single cell representing the

“current” node is kept at any one time. Once a leaf node

or a node with already visited children is encountered, the

current bounding space is reverted to its parent’s bounding

space. For this to be possible only a small amount of addi-

tional information needs to be maintained for each previous

split in the current path from the root node, which is quite

short as for 1 million descriptors the depth of a balanced

tree is equal to 20.

9

4 6 8 16 32 64 96
0

0.2

0.4

0.6

0.8

1

Bits per descriptor

re
c
a
ll@

1
0
0

SIFT 1M

#PC=8

#PC=12

#PC=16

#PC=32

#PC=64

Figure 6: Influence of the number of principal compo-

nents (PC) on SCT performance with varying bit-rates.

At extremely low bit-rates performance drops with increas-

ing number of PCs due to increasing approximation errors.

However, increasing the bit-rate by further splitting final

bounding spaces makes it again appropriate to use SCT with

this larger number of PCs, which in turn improves the per-

formance as the underlying data is represented more accu-

rately using more PCs. The performance for each scenario

(number of PCs) saturates at “large” bit-rates, each of the

saturation levels has been verified to be equal to the actual

performance when using raw database descriptors with the

same number of PCs. This shows that SCT reaches max-

imal possible performance at what is actually quite a low

bit-rate (see figure 4(a)).

4. Discussion and recommendations

In this section we discuss the properties of SCT, its ad-

vantages and disadvantages compared to other encoding

methods, and three use cases for it.

Unique description. Every descriptor is assigned a

unique bounding space, and all bounding spaces are dis-

joint. This means that even in areas of high descriptor den-

sity it is still possible to discriminate between descriptors, a

characteristic which does not exist in any of the competing

methods. This could potentially be used to disambiguate be-

tween descriptors using a second nearest neighbor test [12].

Asymmetric in nature. As noted by [11], it is beneficial

not to have to quantize query vectors when performing near-

est neighbor search, as this obviously discards relevant in-

formation. SCT is asymmetric at its core as query vectors

are compared directly to the reconstructed database vectors.

Making the representation finer. As described in sec-

tion 2.1, by increasing the bit-rate: the cell associated with

it can be additionally split with a rate of 1 bit per split, en-

coding on which side of the split the descriptor is. Other

schemes are certainly possible, e.g. representing the resid-

ual (the difference between the original descriptor and the

reconstruction) with any of the other methods such as prod-

uct quantization, LSH or ITQ.

Small dimensionality requirement. As discussed in sec-

tion 2.1, SCT is not applicable when the number of splits per

descriptor is smaller than the data dimensionality, since in

this case many of the dimensions are not split thus causing

large approximation errors. To compress vectors of large

dimensionality using the SCT requires dimensionality re-

duction via PCA. Note that the requirement for “small” de-

scriptor dimensionality is not as limiting as it might seem

as PCA is commonly used for compacting descriptors such

as VLAD [11] or even SIFT [17]. There are many cases

where “small” descriptors are used, e.g. Google’s CONGAS

descriptors are 40-D [24], Simonyan et al. [19] achieve im-

pressive performancewith 60-D, while Jégou and Chum [8]

demonstrate very good performancewhen reducing 130k-D

VLAD vectors using PCA down to 128-D.

Furthermore, all baselines apart from PQ perform di-

mensionality reduction: RR and ITQ start from PCA (bi-

trate equals the number of PCs), LSH and SIK use random

projections or Fourier features (bitrate equals the number

of projections), and SH learns the projections from train-

ing data (bitrate equals the number of projections). Thus all

methods apart from PQ actually suffer from a much worse

problem than SCT since, for example, for 8 bits ITQ is

forced to use only 8 PCs.

Adding descriptors to the database. For applications

where the image database grows in time it is important to

be able to add descriptors efficiently to the SCT. Adding

a single descriptor does not disturb the tree structure much

(e.g. imagine the example in figure 1 where a point is left out

and added to the tree after the tree is built) as the sequence

of splits is independent of the compressed data. Thus, all

the split outcomes will remain the same (i.e. the tree does

not need to be re-encoded) apart from the split that creates

the leaf node (cell) that contains the new descriptor. By

construction, if the cell is not empty then it contains exactly

one descriptor and new splits are added in the same man-

ner as when the original tree was built, i.e. until a split is

encountered which discriminates between the two descrip-

tors, namely the “old” and the “new” one. Thus, adding

a descriptor to the SCT is very efficient and only requires

access to at most one original database descriptor (zero if

the relevant leaf cell is empty). Note that for the same op-

eration none of the baselines requires access to the original

descriptors. However, this limitation is not significant as the

original descriptors do not need to be stored in RAM but can

be stored on disk.

Use cases. SCT has been demonstrated to perform well

for the problem of large scale image retrieval (section 3.3),

searching a database of 580k images (represented by GIST

descriptors) in 0.26 seconds. Since query-time speed is lin-

ear in the number of descriptors, with no changes to the

10

system up to 7 million images images can be searched im-

mediately (3 seconds per query) on a single core. SCT can

easily be parallelized, thus enabling 30 million images to be

searched on a typical quad-core computer. Note that storing

30 million descriptors at 6 bits per descriptor requires only

23 MB.

For larger scale databases with billions of images mem-

ory requirements would still remain low, however process-

ing power would be the limiting factor as a linear scan

through the data is infeasible. In this case one can, in the

manner of Jégou et al. [9, 10], vector quantize the database

descriptors coarsely and use SCT to compress the residual.

At search time the query descriptor is vector quantized and

only compared to database descriptors quantized to the clus-

ter through the use of an inverted index [20], while the SCT

encoded residual is used for refining the matches. Search-

ing 1 billion images quantized into 1k clusters would thus

take about half a second using a single core processor (i.e.

to decompress a single cluster containing 1M descriptors).

The same system can be used for large scale object re-

trieval where database images are typically represented us-

ing 1k local descriptors (e.g. SIFT [12]). For this use case

a query image is also represented using 1k descriptors, thus

the same number of nearest neighbor searches would need

to be issued. Searching 1 million images by quantizing the

1 billion database descriptors into 100k clusters and using 4

processing cores would yield results in 1.25 seconds (i.e. to

decompress 1k clusters each containing 10k descriptors).

Summary. The Set Compression Tree (SCT) hugely out-

performs all competing methods at extremely low bit-rates,

making it the only tool of choice for very large scale re-

trieval purposes, where it is critical for fast retrieval that all

the relevant data fits in RAM.

Acknowledgements. We are grateful for financial sup-

port from ERC grant VisRec no. 228180.

References

[1] Y. Amit and D. Geman. Shape quantization and recog-

nition with randomized trees. Neural Computation,

1997.
[2] A. Andoni and P. Indyk. Near-optimal hashing algo-

rithms for approximate nearest neighbor in high di-

mensions. Comm. ACM, 2008.
[3] A. Babenko and V. Lempitsky. The inverted multi-

index. In Proc. CVPR, 2012.
[4] A. Bosch, A. Zisserman, and X. Munoz. Image clas-

sification using random forests and ferns. In Proc.

ICCV, 2007.
[5] V. Chandrasekhar, S. Tsai, Y. Reznik, G. Takacs,

D. Chen, and B. Girod. Compressing feature sets with

digital search trees. In InternationalWorkshop onMo-

bile Vision, 2011.
[6] C. Cormen, T.and Leiserson, R. Rivest, and C. Stein.

Introduction to Algorithms. McGraw-Hill, 1990.
[7] Y. Gong and S. Lazebnik. Iterative quantization: A

procrustean approach to learning binary codes. In

Proc. CVPR, 2011.
[8] H. Jégou and O. Chum. Negative evidences and co-

occurrences in image retrieval: the benefit of PCA and

whitening. In Proc. ECCV, 2012.
[9] H. Jégou, M. Douze, and C. Schmid. Hamming em-

bedding and weak geometric consistency for large

scale image search. In Proc. ECCV, 2008.
[10] H. Jégou, M. Douze, and C. Schmid. Product quanti-

zation for nearest neighbor search. IEEE PAMI, 2011.
[11] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Ag-

gregating local descriptors into a compact image rep-

resentation. In Proc. CVPR, 2010.
[12] D. Lowe. Distinctive image features from scale-

invariant keypoints. IJCV, 2004.
[13] M. Muja and D. G. Lowe. Fast approximate nearest

neighbors with automatic algorithmic configuration.

In Proc. VISAPP, 2009.
[14] A. Oliva and A. Torralba. Modeling the shape of the

scene: a holistic representation of the spatial envelope.

IJCV, 2001.
[15] M. Raginsky and S. Lazebnik. Locality sensitive bi-

nary codes from shift-invariant kernels. InNIPS, 2009.
[16] M. Rastegari, C. Fang, and L. Torresani. Scal-

able object-class retrieval with approximate and top-k

ranking. In Proc. ICCV, 2011.
[17] J. Sánchez and F. Perronnin. High-dimensional signa-

ture compression for large-scale image classification.

In Proc. CVPR, 2011.
[18] C. Silpa-Anan and R. Hartley. Localization using an

image-map. In Australasian Conf. on Robotics and

Automation, 2004.
[19] K. Simonyan, A. Vedaldi, and A. Zisserman. De-

scriptor learning using convex optimisation. In Proc.

ECCV, 2012.
[20] J. Sivic and A. Zisserman. Video Google: A text re-

trieval approach to object matching in videos. In Proc.

ICCV, 2003.
[21] A. Torralba, R. Fergus, and W. T. Freeman. 80 million

tiny images: a large dataset for non-parametric object

and scene recognition. IEEE PAMI, 2008.
[22] Y. Weiss, R. Fergus, and A. Torralba. Multidimen-

sional spectral hashing. In Proc. ECCV, 2012.
[23] Y. Weiss, A. Torralba, and R. Fergus. Spectral hash-

ing. In NIPS, 2008.
[24] Y.-T. Zheng, M. Zhao, Y. Song, H. Adam, U. Bud-

demeier, A. Bissacco, F. Brucher, T.-S. Chua, and

H. Neven. Tour the world: building a web-scale land-

mark recognition engine. In Proc. CVPR, 2009.

11

