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Abstract

Genome wide association studies (GWAS) have proven a powerful method to identify common

genetic variants contributing to susceptibility to common diseases. Here we show that extremely

low-coverage sequencing (0.1–0.5x) captures almost as much of the common (>5%) and low-
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The 1000 Genomes project, June 2011 phase 1 release:http://www.1000genomes.org/node/506

Beagle software: http://faculty.washington.edu/browning/beagle/beagle.html

MaCH software: http://www.sph.umich.edu/csg/abecasis/MACH/index.html

Picard utilities: http://picard.sourceforge.net/index.shtml

GATK suite: http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit

Epicentre sample preparation: http://www.epibio.com/item.asp?ID=566

NIMH Controls: https://www.nimhgenetics.org/available_data/controls/

Illumina Human1m duo array: http://www.illumina.com/products/human1m_duo_dna_analysis_beadchip_kits.ilmn

Illumina Network: http://investor.illumina.com/phoenix.zhtml?c=121127&p=irol-newsArticle&id=1561106

The International HIV Controllers Study: http://www.hivcontrollers.org/

Accession numbers:
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frequency (1–5%) variation across the genome as SNP arrays. As an empirical demonstration, we

show that genome-wide SNP genotypes can be inferred at a mean r2 of 0.71 using off-target data

(0.24x average coverage) in a whole-exome study of 909 samples. Using both simulated and real

exome sequencing datasets we show that association statistics obtained using ultra low-coverage

sequencing data attain similar P-values at known associated variants as genotyping arrays, without

an excess of false positives. Within the context of reductions in sample preparation and

sequencing costs, funds invested in ultra low-coverage sequencing can yield several times the

effective sample size of SNP-array GWAS, and a commensurate increase in statistical power.

Genome-wide association studies (GWAS) have identified over a thousand SNPs associated

to complex traits1. To date, these studies have been carried out using SNP arrays that assay

up to 2.5 million polymorphisms at a cost of hundreds of dollars per sample, often

augmented by imputation of untyped variants using HapMap or 1000 Genomes reference

panels2–5. At the same time, DNA sequencing has emerged as a powerful new

technology3,6,7, with the first major applications to disease gene discovery arising in the

course of exome sequencing8. Recent cost reductions raise the question of whether

sequencing might be a viable alternative for GWAS, analogous to RNA sequencing (RNA-

seq) in gene expression studies3,9,10. One limitation to using sequencing for GWAS has

been the cost of preparing each DNA sample, which historically has been at least as large as

the cost of SNP array genotyping. However, this is no longer the case; for example

Epicentre offers a high throughput sample preparation for roughly $100 per sample (see

URLs), and we have recently demonstrated that sequencing libraries appropriate for whole-

genome sequencing can be produced for approximately $15 per sample on a scale of

thousands of samples11. Below, we show that by sequencing such libraries at ultra-low

coverage (0.1–0.5x, at an effective sequencing cost of $10–$100 per sample) followed by

genotype calling using 1000 Genomes Project reference panels2, the effective sample size

per unit cost of this approach is several times greater than for the standard GWAS study

design using SNP arrays. This gap will increase if sequencing costs continue to drop more

quickly than genotyping costs.

Results

To explore the effectiveness of GWAS based on low coverage sequencing, we simulated

sequencing data at various coverage levels, accounting for sequencing errors as well as

variation in average coverage across samples and loci. We used the 762 haplotypes inferred

from the 381 European samples of the 1000 Genomes Project (phase 1, June 2011 release),

and restricted the analysis to 10 distinct 5Mb regions (total of 50 Mb, containing 150,261

SNPs) that were randomly chosen to represent the average genome-wide recombination rate

and SNP density (Supplementary Note, Supplementary Table 1). One-half of the haplotypes

were used to build simulated data, and the other half were used as an imputation reference

panel. Simulated data were used to infer genotype dosages at known SNPs using Beagle12,

an imputation engine appropriate for analysis of sequencing data. To assess the accuracy of

imputation, we used the squared correlation (r2) between imputed dosages and true

genotypes, which quantifies the reduction in effective sample size in GWAS due to

imperfect imputation13 (Online Methods).

Figure 1 shows the accuracy of imputation either using just the sequencing reads to impute

genotypes or using the reads coupled with the 1000 Genomes Project reference panels2

(Online Methods). We observe high accuracies at ultra low-coverage (0.1–0.5x) when

reference panels are used (Figure 1, Supplementary Note, Supplementary Figure 1).

Sequencing at 0.2x coverage yields more than 90% of the effective sample size than is

achieved by Illumina Human-1M-duo array plus conventional imputation, as assessed by
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average r2 to SNPs in the 1000 Genomes Project dataset for both common (>5% minor

allele frequency) as well as low-frequency variants (1 to 5% minor allele frequency) (Figure

1). These simulations results suggest that sequencing at 0.1–0.5x coverage with imputation

using the 1000 Genomes Project datasets can in principle achieve power comparable to

high-density SNP arrays. These simulation results are robust to model assumptions and

parameter values (Supplementary Note, Supplementary Tables 1,2,3).

We investigated whether similar results could be achieved with real data by analyzing whole

exome sequencing data from 909 individuals of European ancestry, combining samples from

the International HIV Controllers Study (IHCS) (84), Swedish Schizophrenia Study (SCZ)

(503) and Autism NIHM Controls Study (AUT) (322) (Online Methods)14–18. Whole-exome

studies enrich the sample DNA for genic content prior to sequencing3,19,20 and usually

discard data from non-exonic regions. However, current DNA capture technologies do not

yield perfect enrichment and the “off-target” data can often be substantial given the high

coverage of many exome-sequencing studies. For example, in the 909 exomes, the average

coverage is 0.24x for non-exonic regions and more than 60x for exons (Supplementary Note,

Supplementary Figure 2). We explored whether the whole-exome data, coupled with

imputation based on the 1000 Genomes Project reference dataset, could support a GWAS.

We imputed genotypes at all polymorphic sites indentified in the European samples of the

1000 Genomes Project, using sequencing data together with the 762 haplotypes inferred

from the European samples of the 1000 Genomes Project phase 1 (Online Methods), and

quantified accuracy by comparing imputed calls with Illumina array genotyping calls

(Online Methods). To remove effects of high coverage at or near exons we removed data at

all SNPs covered at more than 4x (Supplementary Figure 2). At 0.24x coverage we observe

an average r2=0.71 (s.d. 0.15) to the genotype calls assayed by genome-wide SNP arrays,

roughly similar in average expected power to a conventional GWAS with 71% of the sample

size (see Supplementary Note, Supplementary Figure 3, Supplementary Table 4 for results

averaged by chromosome, minor allele frequency and coverage). We also quantified the

genome-wide accuracy achieved by using all data from the whole exome scan (off-target

and on-target); the average r2 increased to 0.77 when all data from the whole-exome study

was used.

To illustrate how this approach might be used in practice to carry out a GWAS, we used the

off-target exome data to compute association statistics at 103,977 SNPs across the genome

using simulated phenotypes starting from the genotype calls from the arrays (Online

Methods). We observed similar association statistics when imputed dosages were used as

compared to SNP arrays under both null (phenotype uncorrelated to the genotype) and true

nonzero effect sizes (Figure 2, Supplementary Figure 4,5,6, Supplementary Table 5),

indicating that our approach is robust to false positives while accurately recovering the

association signal when present. In addition, we also performed a case-control scan in which

the AUT samples were treated as “controls” and SCZ as “cases”. After adjusting for

differences in genetic ancestry between SCZ and AUT samples, we observed no genome-

wide significant association, thus further emphasizing the robustness of our approach

(Supplementary Note, Supplementary Figure 7). To assess the power of detecting true

positives, in addition to simulated phenotypes, we also carried out a case-control study

comparing HIV-1 controllers (61) and progressors (23) from the IHCS data set (Online

Methods). The higher off-target coverage (0.5x) in the IHCS data leads to an average of

r2=0.82 to the genotype calls at the 398,098 SNPs assayed by arrays in the IHCS data14. A

similar λGC (genomic control)21 value of 1.05 for imputed data as compared to 1.04 for

typed data was observed (Supplementary Note, Supplementary Figure 4). We specifically

looked at SNPs previously reported to be significantly associated with HIV-1 controller

status14 and observed similar association statistics and effect sizes as compared to SNP

arrays, both for the entire set of 47 previously associated SNPs (Supplementary Note,
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Supplementary Table 5) and for the subset of 10 SNPs with nominal P<0.05 in the SNP

array data (Table 1). The association statistics obtained using extremely low-coverage

sequencing did not exhibit the 9% drop that might have been expected given r2=0.91

imputation accuracy at these SNPs (ratio between the average −log 10 p-values at imputed

versus typed data of 1.04), but this can be explained by statistical fluctuation (Table 1 and

Supplementary Note).

We also evaluated empirical results at lower coverage (0.005x to 0.5x) by sub-sampling

reads with corresponding probability. Due to the large number of experiments and the higher

non-exome coverage of the IHCS data as compared to all the 909 samples, we restricted this

analysis to the 10 distinct 5Mb regions (total of 50Mb) described above in the IHCS data set

(84 samples). As coverage decreases, we observe a reduction in accuracy, analogous to our

simulations based on the 1000 Genomes Project dataset, restricted to the same set of 6,070

SNPs from the array (Figure 3). At 0.5x coverage we observe a mean r2 of 0.82, standard

deviation of 0.03 and standard error of 0.01 across the 10 regions. However, the accuracy of

imputation in the IHCS sequencing data is lower than in simulations for any level of

coverage (Figure 3). The discrepancy between simulations and real data could be an effect

of increased similarity across haplotypes inferred from the 1000 Genomes Project phase 1

data due to the genotype calling and phasing procedure from 4x sequencing data that

aggregated information across samples (Supplementary Note, Supplementary Table 6).

Other possible explanations include nonuniform error rates in base-calling and alignment of

reads across the genome or simulation parameters that do not perfectly model aspects of the

empirical data such as variance in coverage across samples and loci, although our

experiments suggest that these are unlikely to be the primary explanation (Supplementary

Note).

Discussion

To explore the economic ramifications of sequencing-based GWAS, we considered the

trade-off between the number of samples sequenced and the average coverage (which affects

accuracy). We evaluated the expected effective sample size attained with different strategies

and compared this with the effective sample size that would be obtained by genotyping

using standard genotyping arrays (e.g. Illumina Human-1M-duo). We derived all results

from empirical accuracies using sequencing data sets sub-sampled from the IHCS data, so

that results do not rely on any simulation assumptions. We compared accuracies only at

SNPs typed on the array, a conservative computation that ignores the potentially greater

benefit at SNPs not present on the array. We assumed a fixed total budget of $300,000, an

arbitrarily large number of samples available, a sample preparation cost of $30

(conservatively double the cost that we have recently demonstrated11), and DNA sequencing

cost of $133 per 1x sequencing (based on the Illumina Network cost of $4,000 for 30x

sequencing of 50 samples or more, which scales linearly with lower coverage). We

calculated the effective sample size of a sequencing-based GWAS as a function of average

coverage, which determines the number of samples sequenced under a fixed budget (Online

Methods). Under zero sample preparation cost and ignoring the benefit of imputation, the

optimal study design involves sequencing a maximal number of samples at minimal

coverage22,23. However, when sample preparation cost and imputation are taken into

account, there exists an optimal number of samples to sequence for any budget. For a fixed

budget of $300,000, the highest effective sample size (roughly equivalent to more than

4,600 typed individuals) is achieved at an average coverage of 0.1x (6,800 samples

sequenced at $45 total cost per sample, r2=0.65) (Figure 4a). The optimal value of average

coverage varies as function of sample preparation and sequencing costs, but we obtained

qualitatively similar results for other cost assumptions (Supplementary Note). We note that a

sequencing-based approach can attain a higher effective sample size than SNP arrays even
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when constraints on sample availability limit the space of available study designs (Figure

4a).

A striking finding is that the effective sample size achieved using sequencing-based GWAS

with current costs11 is more than six times higher than SNP-array genotyping at $400/

sample, corresponding to a large increase in power (Figure 4b, Supplementary Note,

Supplementary Figure 8). Only if SNP array typing is less than $70 per sample, or if sample

preparation and sequencing costs are much higher (e.g. greater than $120 per sample for

sample preparation or $1,000 for 1x sequencing) does sequencing-based GWAS lose its

advantage in terms of statistical power to associate variants. If sequencing technology—both

in the efficiency of library preparation and the cost of sequencing—continues to improve

more quickly than genotyping technology, the advantage of sequencing-based GWAS will

increase. We note that a critical ingredient for attaining high accuracy at ultra low-coverage

is the availability of large panels of reference haplotypes. As additional reference haplotypes

over larger numbers of SNPs become available from 1000 Genomes Project and other

projects, we expect the accuracy attained by ultra low-coverage sequencing to further

increase.

We conclude with several caveats. First, computational methods for sequencing-based

GWAS are still under development3,7,22,24, whereas SNP-array based GWAS is a proven

method that produces high quality data that can be analyzed using readily available

computational tools. Second, sequencing data requires additional computational resources

beyond what is necessary to analyze conventional GWAS as the analysis pipeline of

sequencing data is typically more demanding than for genotyping data. Third, sequencing-

based GWAS of the type described here does not involve sufficient coverage to discover

rare variants and to associate them with disease; thus, as with SNP arrays, the power of this

approach is limited to common and (to a lesser extent) low-frequency variants. Fourth,

although results from our empirical IHCS sequencing data are encouraging, no study to date

has used sequencing-based GWAS to identify new disease risk variants. A priority for future

work should be to carry out studies that demonstrate that this approach can discover new

associations between genetic variants and common diseases.

Online Methods

Simulation of sequencing data based on 1000 Genomes Project dataset

For our simulations we used the 381 diploid European individuals from the phase 1 release

of the 1000 Genomes Project (June 2011)2. The 381 individuals include 87 CEPH

individuals of North European ancestry (CEU), 93 Finnish individuals from Finland (FIN),

89 British individuals from England and Scotland (GBR), 98 Tuscan individuals (TSI), and

14 individuals from the Iberian peninsula (IBS). Genotype calls and haplotypic phase was

inferred from low-coverage sequencing (4x) using an imputation strategy that borrowed

information across samples and loci. The 762 haplotypes were split at random between two

panels of 381 haplotypes; one panel was used to build simulated data, and the other was

used as an imputation reference panel. We simulated data for 100 samples by randomly

sampling (without replacement) pairs of haplotypes from the simulation panel. All

simulation results were generated over 10 distinct 5Mb regions (total of 50Mb) across the

genome, randomly chosen to represent the average genome-wide recombination rate and

SNP density (Supplementary Note). Reads spanning polymorphic sites identified in the 1000

Genomes Project were simulated assuming a fixed error rate of 1%, per-locus coverage

multipliers were drawn from a Gamma distribution Γ(α,β) with shape parameters α = 4 and

β =1/α and mean 125 and per-sample coverage multipliers were drawn from a normal

distribution N(1,0.2) (matching the empirical IHCS sequencing data) with negative values

set to 0. Reads were sampled assuming a Poisson distribution with mean equal to the
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average coverage times per-locus multiplier times per-sample multiplier. Results were

generally insensitive to the choice of simulation parameters (with the exception of average

coverage per sample) (Supplementary Note).

Imputing genotypes from sequencing data—Genotypes can be inferred from

sequencing data by either (1) inferring genotypes independently at each SNP in each

individual, (2) making use of allele frequencies inferred from all sequenced individuals, (3)

making use of linkage disequilibrium (LD) patterns inferred from sequenced individuals, or

(4) making use of LD patterns inferred from sequenced individuals as well as reference

panels of haplotypes7,22,24,26. Here we focus on (3) and (4), using a two-step imputation

approach (see Supplementary Note for details and results of other approaches). In the first

step, we computed genotype likelihoods at all polymorphic loci identified in the 1000

Genomes Project dataset independently for each individual. We disregarded all observed

alleles that did not match either the reference or alternate allele identified in the 1000

Genomes Project dataset and computed likelihoods of 0,1,2 copies of the 1000 Genomes

Project dataset “reference” allele at all SNPs identified in the phase 1 release of the 1000

Genomes Project. Reads that did not overlap any polymorphic sites were discarded. In the

second step, the genotype likelihoods for all loci in all samples (with or without the

reference panel of haplotypes, 381 in total for simulations) were passed to the Beagle

imputation software12 with default parameters (i.e. “like” for the genotype likelihoods and

“phased” for the reference haplotypes).

Imputing genotypes from GWAS arrays—Imputation from the Illumina Human-1M-

duo array was simulated by masking all genotypes at SNPs (in the 50Mb simulated region)

not present on the array followed by imputation at all polymorphic loci identified in the

European samples of the 1000 Genomes Project phase 1 dataset using the remaining

reference panel of haplotypes (381 in total). We used the MaCH27 imputation software with

default parameters “--rounds 40 --greedy --mle --mldetails”.

Metric for imputation accuracy—Imputation accuracy was measured using the r2

(squared Pearson correlation coefficient) between imputed dosages and typed genotypes.

Simulated phenotypes—Starting from the typed genotype calls, we simulated

continuous randomly ascertained phenotypes Y ~ gβ + ε, with ε ~ N(0,1). β = 0 represents

the null model of no association between genotype and phenotype.

IHCS whole-exome data set—Genome-wide SNP genotyping and whole-exome

sequencing data for 84 samples were obtained from the International HIV Controllers

Study14, of which 43 were genotyped on the Illumina HumanHap 650Y and 41 on the

Human-1M-duo array. Of the 84 samples, 61 are HIV-1 controllers enrolled by the IHCS

and 23 enrolled by the AIDS Clinical Trials Group. Only unrelated samples of European

ancestry with high genotyping rates (>95%) were included, after filtering out SNPs with low

minor allele frequency (MAF < 1%), >2% missing data, or departure from Hardy-Weinberg

equilibrium (P < 10−6). The SNP sets were intersected to obtain 398,098 SNPs genotyped in

all samples. Imputation was performed using all the 762 available 1000 Genomes phase 1

haplotypes as opposed to 381 for simulations using non-overlapping regions of size 2.5Mb

with 250Kb flanking regions on either side.

Combined whole-exome dataset—Exome sequencing of the Autism NIMH Controls

(AUT, 322 samples), for the Swedish Schizophrenia control data (SCZ, 503 samples) and

IHCS data (IHCS, 84 samples) was carried out at the Broad Institute14–18. We only used

samples ascertained as controls in the AUT and SCZ data (i.e. no presence of disease).
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Exons were captured using the Agilent 38Mb SureSelect v2 Libraries and sequenced using

either an Illumina HiSeq2000 or Illumina GenomeAnalyzerII instrument. All samples met

the criterion of >90% of targeted bases having >10x coverage and >80% of targeted bases

having >20x coverage. Reads were mapped to hg19 using BWA and processed with Picard

and GATK (see URLs). The SCZ samples were genotyped on the Affy 5.0 or 6.0 platforms.

Genotype data across all samples (SCZ, AUT and IHCS, 909 in total) was merged with

SNPs filtered by missing data and departure from Hardy-Weinberg equilibrium. Genotype

likelihoods obtained using GATK28 software were passed to Beagle in windows of 1Mb

with 250Kb to impute all SNPs identified as polymorphic in the haplotypes of the European

1000 Genomes Project phase 1 data. 103,977 genome-wide SNPs both genotyped and

imputed from sequencing across all 909 samples were used in all experiments over

combined data (Supplementary Note). To remove effects of high coverage at or near exons

we removed data at all SNPs covered at more than 4x.

Association statistic for GWAS—A standard test for association in GWAS is the

Armitage trend test21,29, equal to N times the squared correlation between genotypes G (0, 1

or 2) and phenotypes Φ (0 or 1), where N is the number of samples. This statistic extends to

imputed data by using genotype dosages. The value of the statistic decreases by a factor of r2

if computed at a genotyped or imputed SNP in partial LD with the causal SNP13. To

estimate the expected association statistic in a GWAS over a set of N samples sequenced at

average coverage c, we first estimate the accuracy r2(c) attained at coverage c by sub-

sampling IHCS data. We then estimate the expected association statistic as Nρ2(G, Φ) r2(c).

Data access—The analyses presented here make use of genetic data from Autism NIMH

Controls (AUT, 322 samples), the Swedish Schizophrenia control data (SCZ, 503 samples)

and the International HIV Controllers Study (IHCS, 84 samples). AUT and SCZ datasets are

available from dbGaP under accession numbers phs000298.v1.p1 and phs000473.v1.p1. The

IHCS data is available by direct request from Pamela Richtmyer (prichtmyer@partners.org);

investigators can submit a concept sheet detailing their study design, research questions and

other needs in order to request access to IHCS genetic data. The concept sheet with detailed

instructions can be downloaded from: http://cfar.globalhealth.harvard.edu/fs/docs/

icb.topic938249.files/Harvard%20CFAR%20Concept%20Sheet%20Template%20.docx.

Requests will be reviewed on the basis of scientific merit, feasibility and potential overlap

with accepted concept sheets or ongoing investigations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Genotype imputation accuracy as function of coverage in 1000 Genomes Project

simulations. Accuracy as function of coverage is displayed using solid lines for common

SNPs (MAF >5%) and dashed lines for low-frequency SNPs (MAF<5%).
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Figure 2.

Observed versus expected association minus log 10 p-values at 103,977 SNPs across the

genome in simulated null data sets over 909 samples of the combined data set. We observe

r2 of 0.64 between p-values computed in typed versus imputed data, similar to simulations

of association statistics at imputed versus genotyping calls (Supplementary Note). Results

for alternate hypothesis of association can be found in Supplementary Note.
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Figure 3.

Genotype imputation accuracy in IHCS whole-exome data as a function of coverage.

Illumina 1M genotype calls were used as a gold standard, restricting to 6070 SNPs in 10

distinct 5Mb regions (total of 50Mb) of the genome (see main text). Dotted lines denote

results attained in 1000 Genomes simulations on the same SNP set.
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Figure 4.

Coverage (and corresponding number of samples) for fixed budget of $300,000. (a)

Effective sample size in sequencing-based GWAS as function of number of samples and

resulting coverage. Cost assumptions: $30 per sample preparation cost, $133 per 1x

sequencing cost (see main text).

(b) Ratio of expected association statistic (effective sample size) in sequencing-based

GWAS vs. array-based GWAS at $400/sample, as a function of sample preparation and

sequencing costs. Expected association statistics for sequencing-based GWAS are based on

optimum coverage and number of samples (assuming arbitrarily large number of samples

available) subject to budget constraint. The optimum coverage and number of samples varies

at different points on the graph (not shown). Black dot denotes $30 sample preparation cost

and $133 per 1x.
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