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A promising generation of extremely low frequency magnetic field sensors, based on multilayer
composites (MLCs) of magnetostrictive Terfenol-D (Th,_,Dy,Fe,,) and piezoelectric
Pb(Mg1,3Nb,,3)Os—PbTiO;, has been developed. Our MLC magnetoelectric sensor presently shows
a limit in (i) working frequency of~5 X 1072 Hz; and(ii) magnetic field sensitivity of 10, 10°°,

and 10 T for frequencies of =102, 1, and 18 Hz, respectively. The results open up possibilities
for sensitive low frequency passive magnetic anomaly detectioB0@ American Institute of
Physics [DOI: 10.1063/1.1881784

The magnetoelectrigME) effect' in materials which are of all N piezoelectric layers and all+1 magnetostrictive
simultaneously ferromagnetic and ferroelectric has been anes constant, the ME voltage coefficient should be indepen-
research topic in recent years, offering potential for magneticent of the total number of layers. It is becauseNapiezo-
field sensors. ME materials of single phase, multiple phasesglectric layers are connected electronically in parallel. How-
and laminate composites have been repdf®&d.The ever, in applications as a sensor, a multilayer configuration
magnetostrictive-piezoelectric layered laminates have beewill increase the output signal, because the induced charge
shown to have much better ME properties than the other§rom the ME-MLC will be N times that from a laminate
Recently, laminate composite designs have been developedntaining only one piezoelectric layer.
that have higher induced ME voltag€s*? These laminates Since the layers are electrically connected in parallel and
consist of longitudinally magnetized and transversely polarthe Terfenol-D ones can be considered as good conductors,
ized (or L-T) layers of magnetostrictive Terfenol-D and pi- the total capacitance of the MLC is also increasedtimes
ezoelectric P&r, Ti)Os. (i.e., NC,, whereC, is the capacitance of an individual pi-

An important consideration in the design and operationezoelectric layer antl is the number of piezoelectric layers
of any magnetic field sensor is the frequency bandwidth ofAccordingly, we have approached lowerinfy,, by a
detectable magnetic fields. Different applications requiremultilayer design that increas€,. Assuming that the mag-
sensitivity over different bandwidths. For example, magnetimetic field to be sensed is sinusoidal, the cutoff frequency for
anomaly detectotd require sensitivity to frequencies as low detection isfcutzz—jﬂ_, where 7=NRG, is the time constant,
as 10°Hz, whereas magnetocardiography and andR is the less of either the laminate’s resistance or the
magnetoencephalograpfiy® require high sensitivity be- input resistance of an electrometer. As a result, the value of
tween 102 and 16 Hz. feutis decreased by a factor of M/by increasing the piezo-

Unfortunately, prior studies by Podryof ME lami-  electric layer number t&l. In addition, an electrometer with
nates of two or three layers have shown a roll-off of thehigh input resistancé>10° Q) is important to obtain a large
induced ME voltage with decreasing frequency, beginningime constant-
near a low frequency cutoff limit Otth 10 Hz. At this fre- Measurements of the induced ME V0|tage were per-
quency limit, the amplitude of the detected signal was reformed in a magnetically shielded environment madeuof
duced by a factor of 1y2. However, in this letter, we will metal, which had a noise rejection capability e.C°. Our
show that multilayer composite@MLCs) can detect mag- low frequency measurement system used an op-amp with
netic field variations of milli-Hz frequency. high input resistance to collect the charge from the sample

To lower the limit of the working frequency and to en-
hance the weak signal response, we have develdpdd

mode ME-MLCs. Figure 1 illustrates the 11-layer laminate ———
design that we focused on in this investigation. It consists of p—
five (00))-oriented PIEMgy/3Nby3)0:—30%PbTiQ (or PMN-P
PMN-PT) layers, each sandwiched between two Terfenol-D layer

(Th,_Dy,Fe,_,) ones. It uses the same L-T configuration as
our prior three-layer desigh;**> where the polarization of
each successive piezoelectric layer is reversed with respect to
the prior, along the thickness direction. The length and width P
of each layer is 12.7 and 6 mm, respectively; and the total Terfenol-D layer
laminate cross-sectional aréds 6x 8.5 mnt. Theoretically

from a mechanics perspective, by keeping the thickness rati®G. 1. Our long-type configuration of a L-T mode magnetoelectric

multilayer compositdi.e., ME-MLC). The laminate design consists of five

PMN-PT layers, each sandwiched between two Terfeonl-D ones. It uses the

dauthor to whom correspondence should be addressed; electronic maisame L-T mode configuration as previously reported for our prior three-
sdong@mse.vt.edu layer design(see Refs. 11,12
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FIG. 2. ME voltage and noise equivalent volta@¢EV) as a function of
magnetic field frequency in the range 6£5 mHz-100 Hz for 11-layer loa
laminate designs. Measurements were performed using constant ac magnetic .
fields of H,.=10"* T and dc magnetic bias ¢44.=0.04 T. - >J
8 o2 §
— =
Z 2
induced by a magnetic field, which could then eitligrbe 2 00w
displayed on an oscilloscope—i.e., a time domain measure- 3 B
ment without averaging; dii) be used in conjunction with a g’ --0.2§
lock-in amplifier, which could further reject noise. We will £
report results that demonstrate the ability to detect minute e N T IR
magnetic signal variations of low frequencies by metkiod Time (s)
and frequency spectra determined using a swept-sine mode
by (ii). All results to be shown were taken under a dc mag- ®)
netic bias ofHy.=0.04 T.

Figure_ 2 shows the induced ME voltage of our ME-MLC 2 [©tomHz] H, 04
as a function of frequendgwept-sine modeof the magnetic ‘ = -
field for 103<f<10° Hz. These data were taken under a g T 192 <
constant ac magnetic field ¢,,=10* T. In this figure, it = 00 g
can clearly be seen that our ME-MLC has a very flat fre- 5o T e
guency response: no significant roll of the induced voltage g _ME
was observed with decreasing measurement frequency over 5 | ’ §
the investigated bandwidth from an extremely low frequency o 1o 413
of ~5%x 1072 Hz to those in excess of 1Mz. The results 2 ) ) ) ) -
clearly demonstrat@) the lack of anf ., for the ME-MLC, at -50 0 50 100 150 200
least until the milli-Hz range; and accordingliy) that our Time (S)

ME-MLCs have the potential to function as a low frequency
(quasistatit and compact magnetic field sensor. Clearly, a ©

higherR and a ME laminate with more piezoelectric Iayers FIG. 3. Time domain response of the ME sensor to sinusoidal magnetic
will have a longerr, or a lowerf,, thus, a “quasistatic” fields ofH,.=10* T (a) f=1 Hz; (b) f=0.1 Hz; and(c) f=0.01 Hz. The dc
magnetic field can be detected. magnetic bias 0H4=0.04 T.

Next, to illustrate the potential for detection of small
magnetic field variations at low frequencies, we determineq,ansiates into a sensitivity limit of~10°-107 T at
the equivalent noise floor in our magnetically shielded envi-_q g2 5.

ronment. This was done by setting the ac magnetic drive 0 Next, we performed studies to demonstrate the ability of
Hac=0 and the dc magnetic bias ky.=0.04 T, and subse- the ME-MLC to operate in a time-domain capture mode.
quently measuring the noise-equivalent voltay&V) of the  Figure 3 shows the ME voltage induced by an ac magnetic
sample as a function of frequency. Without using a chargeield (1 Oe, rm$ as a function of time for various frequencies
amplifier, we found the NEV of the specimen in the shieldedof (3) 1 Hz; (b) 0.1 Hz; and(c) 0.01 Hz. These low frequency
environment to be quite small. In the frequency range ofesults were taken by directly inputting the signal into the
10'-10" Hz, the NEV was about 6 mV, which is about a  oscilloscope, without the use of averaging or phase locking.
factor of ~107 less than that of the corresponding ME sig- The induced ME voltage signals were about 110 mV rms that
nal in Fig. 2; whereas in the range of&L03-10" Hz, it  exactly followed the magnetic signal changes. The results
was about 10-10* mV, or ~107%-107 of the signal. Upon  demonstrate the ability of our ME-MLC to detect low fre-
inserting a charge amplifier, the noise floor was increased iquency magnetic fields in a time-domain capture mode, simi-
the low frequency range, but remained a factor oflar to that which will be required in the operational field as a
1072-10°5x smaller than that of the ME signal, as can bedeployable magnetic anomaly detector.

seen in Fig. 2. For example, &102 Hz, the NEV was Finally, we illustrate that the ME-MLC sensor can detect
~10* mV without the amplifier, and I8 mV with it. With much more minute magnetic fields at low frequencies. Figure
respect to the data in Fig. 2 taken und¢r=10“ T, this 4 shows the induced ME voitage as a functionHf. for
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FIG. 4. Demonstration of ability of MLC-ME sensor to detect low fre-
quency minute magnetic field variations at frequencies 1072, 1, and
10? Hz. The dc magnetic bias ¢14,,=0.04 T.

frequencies of 1%, 1, and 18 Hz. Inspection of this figure
will reveal the ability to detect minute field variations on the
order of 107, 10°°, and 10! T for frequencies of =107,

1, and 16 Hz, respectively. Assuming that the signal-to-
noise (S/N) ratio can be lowered to that shown in Fig. 2, it
should be possible to achieve sensitivities of Q0 T
and below in the milli-Hz frequency range. Preliminary in-

Appl. Phys. Lett. 86, 102901 (2005)

frequency that can operate in a passive mode enabling long-
term deployment. Our findings open this possibility of—and
with future enabling improvements in S/IN—developing a
small passive magnetic anomaly detector with pico-T resolu-
tion in the frequency domain of 1< f<10° Hz.

In summary, we have significantly lowered the limit of
the working frequency of a MLC ME laminate by increasing
7. Our results demonstrate that small magnetic field varia-
tions of milli-Hz frequencies can be detected by ME-MLCs
in a time-domain capture mode. This opens up the possibility
of developing ME-MLC magnetic anomaly detectors in the
near future.
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