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	   Abstract: Introduction: N6-methyladenosine (m6A) is one of the most common post-transcriptional 
modifications in RNA, which has been related to several biological processes. The accurate prediction of 
m6A sites from RNA sequences is one of the challenging tasks in computational biology. Several com-
putational methods utilizing machine-learning algorithms have been proposed that accelerate in silico 
screening of m6A sites, thereby drastically reducing the experimental time and labor costs involved.  
Methodology: In this study, we proposed a novel computational predictor termed ERT-m6Apred, for 
the accurate prediction of m6A sites. To identify the feature encodings with more discriminative capa-
bility, we applied a two-step feature selection technique on seven different feature encodings and iden-
tified the corresponding optimal feature set.  
Results: Subsequently, performance comparison of the corresponding optimal feature set-based ex-
tremely randomized tree model revealed that Pseudo k-tuple composition encoding, which includes 14 
physicochemical properties significantly outperformed other encodings. Moreover, ERT-m6Apred 
achieved an accuracy of 78.84% during cross-validation analysis, which is comparatively better than 
recently reported predictors.  
Conclusion: In summary, ERT-m6Apred predicts Saccharomyces cerevisiae m6A sites with higher 
accuracy, thus facilitating biological hypothesis generation and experimental validations. 

A R T I C L E  H I S T O R Y 

Received: November 01, 2019 
Revised: December 28, 2019 
Accepted: January 24, 2020 
 
DOI: 
10.2174/1389202921666200219125625 

Keywords: Extremely randomized tree, feature optimization, N6-methyladenosine sites, cross-validation, RNA sequences,  
Saccharomyces cerevisiae. 

1. INTRODUCTION 

 Post-transcriptional modifications in RNA are the varia-
tions that occur on a newly transcribed primary RNA tran-
script. To date, approximately 150 kinds of RNA modifica-
tions have been determined [1, 2]. The most abundant RNA 
modification is N6-methyladenosine (m6A), which is preva-
lent among viruses, plants, insects, mammals, and eukary-
otes such as yeast [3-7]. m6A denotes the methylation at N-6 
position of adenosine nucleotide catalyzed by a methyltrans-
ferase complex and this reaction is reversible by demethylas-
es (ALKBH5 and FTO). m6A modification has been in-
volved in a series of biological processes, such as mRNA 
exporting, nascent mRNA synthesis, splicing events, nuclear 
translation, and translocation [8-10]. Importantly, unusual 
modifications of m6A have been associated with several 
diseases, including prostate cancer, thyroid tumor, leukemia, 
etc. [11-13]. Therefore, accurate identification of m6A modi-
fication sites would be of great benefit for cell biologists to 
better understand the disease mechanism. 
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 Several experimental approaches, including high perfor-
mance liquid chromatography [14], next-generation sequenc-
ing technologies [15, 16], and two-dimensional thin layer 
chromatography [17] have been widely applied in the identifi-
cation of m6A sites. Particularly, next-generation sequencing 
is not available for large-scale genomic sequences’ m6A iden-
tification. Overall, these experimental approaches are time-
consuming and cost-ineffective, when applied on large-scale 
genome analysis. Therefore, the development of an accurate 
and efficient computational method for m6A identification is 
necessary to complement experimental approaches.  
 Previous decade has witnessed tremendous growth in the 
development of various machine-learning (ML)-based meth-
ods to predict m6A sites from RNA sequences in different 
species, such as Homo sapiens, Saccharomyces cerevisiae, 
Mus musculus, and Arabidopsis thaliana. In this study, we 
focused on S. cerevisiae because it has been widely recog-
nized as an attractive model organism. To date, 14 prediction 
models have been developed for this species to predict m6A 
sites. Chen et al., [18] proposed the first predictor, where 
they constructed a reliable benchmark dataset of 1307 posi-
tive samples (m6A sites) and an equal number of negative 
samples (non-m6A sites) for S. cerevisiae based on the ex-
perimental data [19]. They developed a predictor called 
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“iRNA-Methyl” by employing SVM and pseudo-nucleotide 
composition features, that achieved an accuracy of 65.59%. 
Notably, iRNA-Methyl benchmark dataset acted as a base 
for the development of other methods, including m6Apred 
[20], pRNAm-PC [21], RNA-MethylPred [22], TargetM6A 
[23], M6A-HPCS [24], RAM-ESVM [25], RAM-NPPS [26], 
M6APred-EL [27], iRNA(m6A)-PseDNC [28], iMethyl-
STTNC [29], BERMP [30], M6AMRFS [31], and iRNA-
Freq [32]. Researchers employed different approaches and 
feature encoding schemes to improve the predictive perfor-
mance. A detailed description of the performance of each 
method and their approaches have been provided in the re-
cent review [33]. Although substantial growth has been 
made, it still remains a challenging task to extract appropri-
ately useful features to accurately differentiate m6A sites 
from non-m6A sites. 
 In the current study, we proposed a novel computational 
approach called ERT-m6Apred. Firstly, 14 physicochemical 
properties (PCPs) were incorporated into Pseudo k-tupler 
composition (PseKNC) and were considered as the features 
to differentiate m6A from non-m6A samples. To optimize 
the feature space, we combined F-score and sequential for-
ward search (SFS) using extremely randomized tree (ERT) 
for enhancing the ability of the feature representation. Our 
benchmark result shows that the proposed method ERT-
m6Apred can achieve improved performance when com-
pared to the existing methods. 

2. MATERIALS AND METHODS 

2.1. Dataset 

 Chen et al., [18] constructed a benchmark dataset con-
taining 2614 sequences from S. cerevisiae. Of those, 1307 
sequences are positive samples (m6A sites) and 1307 se-
quences are negative samples (non-m6A sites). Notably, 
both negative and positive samples are 51-base pair (bp) 
long with the adenosine in the center position. Furthermore, 
sequence similarity of this dataset is lower than 85%. This 
dataset has been widely used in the development of various 
prediction models [8, 21, 34]. For fair comparison with the 
existing methods, we also employed the same benchmark 
dataset for model development. The benchmark dataset can 
be downloaded from previous work: http://server.malab.cn/ 
M6APred-EL/. 

2.2. Feature Encoding Scheme 

2.2.1. Pseudo k-tupler Composition (PseKNC) 

 In this work, we utilized Type-II PseKNC to represent 
RNA samples, which has been widely applied in previous 
methods [34-36]. This encoding can efficiently capture 
short-range and long-range information of RNA sequences. 
For a given sequence, it is denoted by: 

! = [!!,!!,… ,!!!,!!!!!,…,!!!!!,!!!!!  ]   
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where ! denotes the counted rank of the correlations along 
an RNA sequence, !! is the normalized frequency of the uth 
k-tuple nucleotide in RNA segment, ! is the weight factor, 
and !! is defined as: 
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The correlation function ! !!!!!!,!!!!!!!!!!  is defined as: 
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1
!

[
!

!!!

!! !!!!!! − !! !!!!  !!!!!! ]! 

where ! = 14 physicochemical properties (PCPs), which 
includes 'Tilt', 'Roll', 'Rise', 'Shift', 'Slide', 'Twist', 'GC con-
tent', 'Adenine content', Uracil content', 'Stacking energy', 
'Bending stiffness', 'Electron_interaction', 'Enthalpy', and 
'Entropy.' We note that the above PCPs are based on DNA, 
which were modified accordingly to RNA sequence (replac-
ing one base pair from Uracil to Thymine). L is the sequence 
length. !! !!!!!!  is the numerical value of the vth physico-
chemical index of dinucleotide !!!!!! at position a and 
!!!!  !!!!!! denotes the corresponding value of the dinu-
cleotide !!!!  !!!!!! at position a+b. Based on our prelimi-
nary analysis of these three parameters (!,!, and  !), we set 
!=1.0, ! = 0.8, and k = 6 to calculate the Type-II PseKNC 
that generates 4098-dimensional feature vector.  

2.2.2. Feature Optimization 

 In general, the feature vectors with higher dimensions 
(>100) have noisy and irrelevant information [37, 38]. There-
fore, it is necessary to exclude that information and improve 
classification accuracy, which is regarded as one of the key 
steps in ML-based model development. A two-step feature 
selection scheme was applied that has been widely used in 
computational biology [39-42]. Firstly, ranking the original 
features by F-score algorithm and generate a ranked feature 
list (from highest to the lowest ranked features) [43]. Second-
ly, two features were selected at each time from the ranked 
list, and added consecutively to ERT and developed their cor-
responding models by 10-fold cross-validation (CV). Eventu-
ally, the feature set equivalent to the model with the highest 
accuracy was considered as optimal features.  
The F-score of the kth feature is defined as: 
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where !!, !!
(!), and !!

(!) denote an average of the kth feature 
in the combined (both negative and positive), negative, and 
positive datasets, respectively. !! and !! represent the 
number of negative and positive samples, respectively.  !!,!

(!) 
and !!,!

(!) represent the kth feature of lth negative instance and 
kth feature of lth positive instance, respectively.  

2.2.3. Extremely Randomized Tree 

 Guertz et al. proposed ERT method in 2006 [44], which 
has been widely applied in various fields [45-51]. A brief 
description of how we implemented ERT in this study has 
been described previously [52, 53]. Grid search approach 
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was implemented to optimize three ERT parameters, which 
include the number of randomly selected features (mtry), 
number of trees (ntree), and minimum number of samples 
required to split an internal node (nsplit). The three parame-
ters search ranges were: 3≤ mtry ≤12 with a step size of 1, 
40≤ ntree ≤1000 with a step size of 20, and 4≤ nsplit ≤15 
with a step size of 1. 

2.2.4. Cross-validation 

 We carried out 10-fold CV test to assess model perfor-
mance. In 10-fold CV, the benchmark dataset was randomly 
separated into 10 subgroups with roughly equal size [54-64], 
with each subgroup containing the same number of m6A and 
non-m6A samples [65, 66]. One of the subgroups was con-
sidered as the validation set to assess the trained model and 
the remaining subgroups were used to train the model. This 
step was repeated 10 times by considering each one of the 
subgroups used at least once as a validation [67-69]. The 
performance of 10 validation sets was averaged and provided 
an assessment of the global performance.  

2.2.5. Performance Assessment 

 The commonly used four sets of metrics in the fields of 
computational biology and bioinformatics [57, 70-77] were 
utilized to quantitatively evaluate the performance of the 
proposed method. These metrics included Matthews correla-
tion coefficient (MCC), accuracy (ACC), sensitivity (SN), 
and specificity (SP), which were computed as follows: 

SN =   
TP

TP + FN

SP =   
TN

TN + FP

ACC =   
TP + TN

TP + TN + FN + FP

MCC =   
TP×TN − FP×FN

(TP + FN)(TP + FP)(TN + FP)(TN + FN)

 

 

Where TP and TN respectively represent the number of m6A 
samples and the number of non-m6A samples correctly pre-
dicted. FP and FN represent the numbers of m6A or non-
m6A samples wrongly predicted, respectively. 

3. RESULTS AND DISCUSSION 

3.1. Exploration of Different Feature Encodings in m6A 
Site Prediction 

 To identify the appropriate feature encoding in m6A site 
prediction seven feature encodings were explored, including 
PseKNC, k-mer (concatenation of mono-, di, tri-, tetra-, and 
penta-nucleotide composition), binary profile (BPF), electron-
ion interaction pseudo potential (PseEIIP), numerical repre-
sentation of nucleotides (NUM), ring-function-hydrogen-
chemical (RFHC) properties, and a combination of dinucleo-
tide binary encoding, and local position-specific dinucleotide 
frequency (DPE_LPF). A detailed description of the other six 
feature encodings (except PseKNC) has been provided in pre-
vious studies [68, 78, 79] and we modified according to RNA 
sequence. Seven prediction models were developed and the 
performances are shown in Fig. (1). As shown in Fig. (1), we 
observed that four encodings (BPF, RFHC, DPE_LPF, NUM) 
achieved a similar performance, whose ACC in the range of 
73.8-75.5%; (ii) the next two encodings (Kmer and PseKNC) 
achieved the same performance (ACC of 71.8%), which is 
significantly lower than the above four encodings, and EIIP 
achieved the worst performance. Finally, none of the featured 
encodings achieved significant performance over others. It 
should be noted that all these encodings (except NUM and 
EIIP) have greater than 100-dimensional feature vector. 
Hence, we applied SFS to see whether any encoding has an 
advantage over others in terms of performance. 

3.2. Optimal Feature Selection of Each Encoding and 
their Performance Comparison 

 Fig. (2A) shows the ACC curves with gradual increment 
of features for seven encodings. The result shows that all

 
Fig. (1). Performance comparison of seven different feature encodings in terms of the Matthews Correlation Coefficient (MCC), Accuracy 
(ACC), Sensitivity (SN), Specificity (SP) and the Area Under the Curve (AUC). (A higher resolution / colour version of this figure is available 
in the electronic copy of the article). 
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Fig. (2). (A) Sequential forward search for distinguishing between m6A and non-m6A sites for seven different encodings. (B) Comparison of 
the original and optimal features dimension. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 
Fig. (3). Performance comparison of seven different feature encodings based on optimal feature set encodings in terms of Accuracy (ACC), 
the Matthews Correlation Coefficient (MCC), Sensitivity (SN), Specificity (SP) and the Area Under the Curve (AUC). (A higher resolution / 
colour version of this figure is available in the electronic copy of the article). 

encodings follow the same pattern, where ACC curve gradu-
ally improved, reached its highest point and then deteriorated 
upon the increment of features. Remarkably, two-step fea-
ture selection procedure significantly improved the predic-
tion performance in two encodings (Kmer and PseKNC), 
slight improvement in four encodings (BPF, DPE_LPF, 
RFHC and NUM), and no improvement in EIIP encoding 
when compared to their control (using all features). Next, we 
examined the highest ACC achieved by each encoding corre-
sponding optimal features. Result shows that Kmer, 
PseKNC, BPF, RFHC, LPDF, and NUM encodings respec-
tively considered 26.60%, 18.7%, 82.36% 50.98%, 70.0%, 
and 47.1% as the optimal features when compared to their 
original dimension (Fig. 2B). It appears that all features are 
equally important in case of EIIP encoding, because of its 
best performance with all features. 

 Next, we compared the optimal feature-based perfor-
mances. Fig. (3) shows that PseKNC achieved the ACC of 
78.84%, which is 3.17-10.74% higher than other encodings, 
thus indicating that PseKNC has more discriminative capa-
bility to identify m6A sites. Hence, we selected PseKNC-
based model namely, ERT-m6Apred, as the final one.  

3.3. Comparison with the Existing Methods 

 To see whether our proposed method is better than the 
existing predictors, we compared our method with the four 
recent methods, namely M6AMRFS, BERMP, iMethyl-
STTNC and iRNA-Freq. Notably, all these methods were 
trained and validated on the same benchmark dataset as em-
ployed in this study, indicating a fair comparison. As shown 
in Table 1, our method ERT-m6Apred achieved an ACC of 
78.84% and MCC of 0.578. Explicitly, ACC and MCC were 
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1.7-9.0% and 2.8-20% higher than the existing methods, thus 
indicating that our predictor ERT-m6Apred is more accurate 
and balanced than the existing predictors in m6A site predic-
tion.  

CONCLUSION 

 In this study, we reported a novel predictor for m6A site 
prediction from RNA sequence. To the best of our 
knowledge, this is the first instance where ERT and PseKNC 
were employed in m6A site prediction. Comparative analysis 
of CV results shows that the proposed predictor is better than 
existing predictors. Although our proposed method showed 
improved performance over other methods, it still has room 
for improvement. Recently, several novel computational 
approaches have been proposed in computational biology 
[68, 78, 80-85] to identify function from the sequence. 
Hence, developing a novel prediction model by utilizing 
such approaches may improve the prediction performance. 
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