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ARTICLE

Extremely rare variants reveal patterns of germline
mutation rate heterogeneity in humans
Jedidiah Carlson1, Adam E. Locke 2, Matthew Flickinger3, Matthew Zawistowski 3,

Shawn Levy 4, BRIDGES Consortium#, Richard M. Myers4, Michael Boehnke 3, Hyun Min Kang3,

Laura J. Scott3, Jun Z. Li1,5 & Sebastian Zöllner3,6

A detailed understanding of the genome-wide variability of single-nucleotide germline

mutation rates is essential to studying human genome evolution. Here, we use ~36 million

singleton variants from 3560 whole-genome sequences to infer fine-scale patterns of

mutation rate heterogeneity. Mutability is jointly affected by adjacent nucleotide context and

diverse genomic features of the surrounding region, including histone modifications, repli-

cation timing, and recombination rate, sometimes suggesting specific mutagenic mechan-

isms. Remarkably, GC content, DNase hypersensitivity, CpG islands, and H3K36

trimethylation are associated with both increased and decreased mutation rates depending

on nucleotide context. We validate these estimated effects in an independent dataset of

~46,000 de novo mutations, and confirm our estimates are more accurate than previously

published results based on ancestrally older variants without considering genomic features.

Our results thus provide the most refined portrait to date of the factors contributing to

genome-wide variability of the human germline mutation rate.
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G
ermline mutagenesis is a fundamental biological process,
and a major source of all heritable genetic variation (see
Segurel et al.1 for a review). Mutation rate estimates are

widely used in genomics research to calibrate variant calling
algorithms2, infer demographic history3, identify recent patterns
of genome evolution4, and interpret clinical sequencing data to
prioritize likely pathogenic mutations5. Although mutation is an
inherently stochastic process, the distribution of mutations in the
human genome is not uniform, and is correlated with genomic
and epigenomic features, including local sequence context6,7,
recombination rate8, and replication timing9. Hence, there is
considerable interest in studying the regional variation and con-
text dependency of mutation rates to understand the basic biology
of mutational processes and to build accurate predictive models
of this variability.

The gold standard for studying the germline mutation rate in
humans is direct observation of de novo mutations from family-
based whole-genome sequencing (WGS) data9–12. These studies
have produced accurate estimates of the genome-wide average
mutation rate (~1− 1.5 × 10−8 mutations per base pair per
generation) and uncovered some of the mutagenic effects of
genomic features. However, the inherently low-germline muta-
tion rate means family-based WGS studies detect only 40–80 de
novo mutations per trio sequenced9,10,12, making it difficult to
accumulate a dataset large enough to precisely estimate mutation
rates and spectrum at a fine scale and identify factors that explain
genome-wide variability in mutation rates.

Other data sources for studying mutation patterns
include between-species substitutions or within-species
polymorphisms7,8,13–16. However, because these variants
arose hundreds or thousands of generations ago, their distribu-
tion patterns along the genome have been influenced by many
evolutionary forces, such as natural selection and GC-biased gene
conversion (gBGC), a process in which recombination-induced
mismatches are preferentially repaired to G/C base pairs, result-
ing in an overabundance of common A/T-to-G/C variants11,17,18.
A further complication of estimating mutation rates with ances-
trally older variants is that the endogenous mutation mechanisms
themselves have likely evolved over time19. Hence, patterns of
variation observed among these data may not necessarily
reflect ongoing mutation processes in the present-day population.
To minimize the confounding effects of selection, studies
that estimated mutation rates from these data tended to focus
on intergenic noncoding regions of the genome, which are less
often the target of selective pressure. Nevertheless, even putatively
neutral loci may be under some degree of selection20–22,
and are susceptible to the confounding effects of gBGC and
evolving mutation processes. Consequently, these processes
bias the resulting distribution of variation, making it difficult
to determine which trends are attributable to the initial
mutation processes, and which to subsequent evolutionary
factors.

We, therefore, adopt an approach that relies exclusively on
extremely rare variants (ERVs) to study innate mutation patterns
across the genome. Here, we exploit a collection of ~35.6 million
singleton variants discovered in 3560 sequenced individuals from
the Bipolar Research in Deep Genome and Epigenome Sequen-
cing (BRIDGES) study of bipolar disorder (corresponding to a
minor allele frequency of 1/7120= 0.0001404 in our sample).
Compared to between-species substitutions or common SNVs,
these ERVs are extremely young on the evolutionary timescale (in
a comparably sized European sample, one study estimated the
expected age of a singleton to be 1244 years23), making them
much less likely to be affected by evolutionary processes other
than random genetic drift1,11,17,24. ERVs thus represent a rela-
tively unbiased sample of recent mutations and are far more

numerous than de novo mutations collected in family-based
WGS studies.

Our results show that mutation rate heterogeneity is primarily
dependent on the sequence context of adjacent nucleotides,
confirming the findings of previous studies7,9,25. However, we
demonstrate that our ERV-derived mutation rate estimates can
differ substantially from estimates based on ancestrally older
variants. Evaluating these differences in an independent dataset of
~46,000 de novo mutations, collected from two published family-
based WGS studies9,12, we find that ERV-derived estimates yield
a significantly more accurate portrait of present-day germline
mutation rate heterogeneity. We further refine these estimates of
context-dependent mutability by systematically estimating how
mutation rates of different sequence motifs are influenced by
genomic features in wider surrounding regions, including repli-
cation timing, recombination rate, and histone modifications.
Remarkably, we find that the direction of effect for some genomic
features depends on the actual sequence motif surrounding the
mutated site, underscoring the importance of jointly analyzing
sequence context and genomic features. Accounting for these
granular effects of the genomic landscape provides even greater
accuracy in describing patterns of variation among true de novo
mutations. Our results suggest that trends of variation throughout
the genome are shaped by a diverse array of context-dependent
mutation pathways. This high-resolution map of mutation rate
estimates, along with estimates of the mutagenic effects of
genomic features, is available to the community as a resource to
facilitate further study of germline mutation rate heterogeneity
and its implications for genetic evolution and disease.

Results
ERV data source and quality control. In the BRIDGES study, we
sequenced the genomes of 3716 unrelated individuals of Eur-
opean ancestry to an average diploid-genome coverage of 9.6×.
We identified and removed 156 samples which appeared to be
technical outliers, resulting in a final call set of 35,574,417 auto-
somal ERVs from 3560 individuals (Methods). Due to the rela-
tively low coverage of our sample, we likely failed to detect
millions more ERVs—a recent study26 estimated the discovery
rate for singletons in a sample of 4000 whole genomes at 10×
coverage to be ~65–85%. Quality control measures indicate that
the ERVs we detected are high quality, with a transition/trans-
version (Ts/Tv) ratio of 2.00, within the commonly observed
range for single nucleotide variants (SNVs) from WGS data27

(Supplementary Table 1). Application of the 1000G strict acces-
sibility mask28 (which delineates the most uniquely mappable
genomic regions) or a more stringent mapping quality score filter
(MQ > 56) did not appreciably change the Ts/Tv ratio (1.97–2.01)
(Supplementary Table 1). We estimate fewer than 3% of the
35,574,417 ERVs are false positives (Supplementary Note), similar
to the validated singleton error rates of other sequencing studies
using a similar technology28–30. In addition, we present evidence
that erroneous calls among the ERVs are unlikely to be biased by
motif-specific genotyping error, mapping error, or mispolariza-
tion (Supplementary Note).

Context-dependent variability in mutation rates. The nucleo-
tides surrounding a mutated site are a well-known predictor of
variability in mutation rates across the genome7,11,25. The most
detailed such analysis to date, by Aggarwala and Voight7, con-
sidered the nucleotides up to 3 positions upstream and down-
stream from a variant site (i.e., a 7-mer sequence context), and
estimated substitution probabilities per heptameric motif using
7,051,667 intergenic SNVs observed in 379 Europeans from phase
1 of the 1000 Genomes Project (hereafter referred to as the
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“1000G mutation rate estimates”). These estimates have the
potential problem of being derived from variants across the entire
frequency spectrum: among the intergenic SNVs used to estimate
these rates, singletons and doubletons account for only ~25%7, so
most variants occur at a higher frequency and thus likely arose
hundreds or thousands of generations in the past. Over such a
long time span, variants affected by cryptic selection, gBGC, or
other evolutionary processes are more likely to have been fixed or
disappeared, altering the distribution of observable variation.

Because ERVs are assumed to have occurred very recently in
human history, we asked if ERV-based mutation rate estimates
differed from the 1000G estimates, and if so, whether our revised
estimation strategy more accurately represents basal mutation
processes. To answer these questions, we first used the BRIDGES
ERVs to estimate mutation rates according to mutation type (e.g.,
A > C, A > G, and so on) and local sequence context, considering
the bases up to 3 positions upstream and downstream from each
variant site (Methods). We refer to a mutation of a given type
centered at a given sequence motif as a “mutation subtype” (e.g.,
C[A > C]G is a 3-mer subtype). Note that we are not estimating
an absolute per-site, per generation mutation rate, but rather the
relative fraction of each subtype containing an ERV within the
BRIDGES data. We refer to rates calculated in this manner as
“relative mutation rates,” and estimated these rates for all possible
1-, 3-, 5-, or 7-mer subtypes (Supplementary Data 1).

ERV-derived relative mutation rate estimates for the six basic
1-mer mutation types reflect the expected higher mutability for
transitions relative to transversions1. Splitting each mutation type
into more granular subtypes reveals how additional patterns of
mutation rate heterogeneity emerge as broader sequence contexts
are incorporated (Fig. 1; Supplementary Fig. 1). Our ERV-based
estimates confirm nearly all of the hypomutable or hypermutable
motifs previously reported by Aggarwala and Voight7 and
Panchin et al.13. A subset of these are highlighted in Fig. 1a,
including lower relative mutation rates for NNN[C > T]GCG
subtypes and A > G subtypes in motifs containing runs of four or
more A bases (shown in green boxes), and higher relative
mutation rates for N[A > G]T, N[C > T]G, and CA[A > G]TN
subtypes (pink boxes). Another notable example of context-
dependent hypermutability is the set of NTT[A > T]AAA
subtypes (Fig. 1b), also described previously7. Despite A > T
mutations having the lowest relative mutation rate among 1-mer
types, its NTT[A > T]AAA subtypes have a > sixfold higher rate
than the 1-mer A > T relative mutation rate.

Overall, the ERV-derived 7-mer relative mutation rates span a
>400-fold range from 0.0003 (CGT[A > T]CCG) to 0.1416 (ATA
[C > T]GCA). For every 3-mer subtype, we found overwhelming
evidence for heterogeneity in the relative mutation rates among
their 16 respective 5-mer constituents (chi-squared tests; all P <
10−231). Further, 1522 (99%) of the 1536 5-mer subtypes had
significantly heterogeneous rates among their respective 7-mer
constituents (chi-squared tests; P < 0.05) (Methods).

Mutation rate estimates differ between ERVs and common
SNVs. We next compared the 7-mer relative mutation rates,
estimated either from the BRIDGES ERVs or 1000G intergenic
SNVs, to determine if our ERV-based estimates differ from pre-
viously reported patterns of mutation rate heterogeneity. Across
all 24,576 7-mer mutation types, relative mutation rates were
highly correlated between the two sets of estimates (Spearman’s
r= 0.95; Fig. 2a). However, when stratified by mutation type,
these correlations were often much weaker (r= 0.42–0.92;
Fig. 2b). Considering differences in the estimated rates for each
individual 7-mer subtype, we found 13% of 7-mer subtypes had
differences of 50% or more between the two estimates after

normalization. These discrepancies did not occur randomly
across subtypes (Fig. 2c). For example, relative mutation rates for
CpG > ApG and CpG > GpG transversions were, respectively 26%
and 39% higher in the 1000G estimates compared to the ERV-
derived estimates. Sequence context also affects relative mutation
rate estimates for A > C and A > G subtypes: 1000G-derived
estimates were significantly higher than ERV-derived estimates
among GC-rich motifs (4–6 G/C bases in the ±3 bp flanking
sequence) compared to low-GC motifs (three or fewer flanking G/
C bases) (t- tests; P < 8.0 × 10−30) (Supplementary Fig. 2; Sup-
plementary Table 2). This observation is consistent with the
known correlation between GC content and biased gene
conversion18,31, though other evolutionary processes may also
have contributed.

We considered the possibility that these patterns of dissim-
ilarity were simply due to technical differences between the
BRIDGES and 1000G samples. To address this concern, we
estimated 7-mer relative mutation rates using 12,088,037 variants
with a minor allele count ≥10 (MAC10+) in the BRIDGES
sample and compared these estimates to the ERV-derived and
1000G-derived estimates (Supplementary Note). Importantly, the
MAC10+ 7-mer relative mutation rates were more closely
correlated with the 1000G-derived estimates (overall: r= 0.98;
Supplementary Fig. 3a; type-specific: r= 0.87–0.98; Supplemen-
tary Fig. 3b), than with the ERV-derived estimates (overall: r=
0.95; Supplementary Fig. 4a; type-specific: r= 0.45–0.95; Supple-
mentary Fig. 4b). Like the 1000G estimates, the MAC10+
estimates also showed higher rates of CpG transversions and A >
G/A > C mutations in GC-rich motifs (Supplementary Fig. 4c),
but between the MAC10+ and 1000G estimates, these differences
were absent or much weaker (Supplementary Fig. 3c).

Collectively, these results suggest that the dissimilarities
between ERV-based and common SNV-based estimates are
driven not by differences in the data source or analysis pipeline,
but by differences in the allele frequencies of the variants used to
estimate the rates. There are two plausible explanations for these
differences: either (1) the ancestrally older variants included in
the 1000G data are under the influence of evolutionary processes
that have altered the relative frequencies among subtypes, or (2)
even after our careful data cleaning and filtering, certain sequence
motifs are enriched for false-positive or false negative sequencing
errors in the BRIDGES ERVs.

These scenarios can be tested by comparing which set of
estimates better describes the observed distribution of true de
novo mutations. We reasoned that if biased sequencing errors
have occurred, such spurious effects would occur more
frequently among BRIDGES ERVs, as errors must be present
in multiple individuals to manifest among the common variants
included in the 1000G data. In such a scenario, we would expect
the 1000G estimates to explain the distribution of true de novo
mutations more accurately. In contrast, if the relative mutation
rate estimates have been influenced by evolutionary processes,
such biases should have a stronger effect on the 1000G
estimates and the ERV-derived estimates would provide a
better fit.

ERVs accurately predict de novo mutations. We implemented
this validation strategy by comparing how accurately different
sets of relative mutation rate estimates predicted the incidence of
46,813 bona fide de novo mutations collected from two family-
based WGS datasets: The Genomes of the Netherlands (GoNL)
project9 and the Inova Translational Medicine Institute Preterm
Birth Study12 (ITMI) (Methods; Supplementary Fig. 5). We set
these de novo mutations against a randomly selected background
of 1 million nonmutated sites, then applied logistic regression
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models using each set of relative mutation rate estimates (either
ERV-based estimates at varying K-mer lengths, or 1000G-based
7-mer estimates) to predict the log-odds of observing a de novo
mutation at each of the 1,046,813 sites. We evaluated model
performance by two likelihood-based goodness-of-fit statistics:
the Akaike information criterion (AIC), and Nagelkerke’s
pseudo-R2 (Methods). Each model has one parameter, so the AIC
of each model is −2log-likelihood+2.

Among ERV-based K-mer models, goodness-of-fit improved
consistently with consideration for longer motifs, with the 7-mer
model producing the best fit overall (Table 1). These trends did

not change when varying the number of nonmutated sites
(Supplementary Table 3) nor when applied exclusively to either
the GoNL or ITMI mutations (Supplementary Table 4), indicating
the regression was not merely fitting to cryptic errors in the
validation data. To assess if our results are affected by mapping
artifacts, we also re-estimated the ERV-based 7-mer relative
mutation rates after applying the 1000 Genomes strict accessibility
mask (Supplementary Note). The masked and unmasked 7-mer
rates are highly concordant, and most discrepancies appear to be
an artifact of sampling variation due to fewer ERVs in the masked
data (Supplementary Fig. 6). When applied to predict the de novo
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mutations, the masked rates produced a worse fit than the
unmasked rates (Table 1), suggesting that the reduction in ERVs
caused by applying the mask has a larger effect on the precision of
our estimates than any mapping artifacts present in the unmasked
data. We next analyzed each mutation type separately to

determine if the same trend of improved goodness-of-fit using
longer K-mers held for different mutation types. In each of these
type-specific validation models, the ERV-based 7-mer relative
mutation rate estimates provided a significantly better fit than
estimates in smaller K-mers (Supplementary Table 5).
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Fig. 2 Discordance between ERV-estimated and common SNV-estimated mutation rates. a Relationship between 7-mer relative mutation rates estimated

among BRIDGES ERVs (x-axis) and the 1000G intergenic SNVs (y-axis) on a log-log scale. We note that the strength of this correlation is driven by

hypermutable CpG > TpG transitions. b Type-specific 2D-density plots, as situated in the scatterplot of a. The dashed line indicates the expected

relationship if no bias is present. c Heatmap showing ratio between the relative mutation rates for each 7-mer mutation subtype. Subtypes with higher
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Relative differences are truncated at 2 and 0.5, as only 2.5% of subtypes showed differences beyond this range
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We then compared the goodness-of-fit of the BRIDGES ERV-
based K-mer models with the 7-mer model based on 1000G
intergenic SNVs. Although Aggarwala and Voight7 demonstrate
that the 1000G 7-mer model significantly improves on 5-mer or
3-mer models, our results show that all ERV-based models
(except the 1-mer model) predict de novo mutations more
accurately than 1000G 7-mer model (Table 1). Considering each
mutation type separately (Supplementary Table 5), we find that
the performance of the 1000G 7-mer model is particularly weak
among certain mutation classes: for A > C and A > G types, the
1000G 7-mer models provide a worse fit than ERV-derived 5-mer
models, and for A > T and CpG > GpG types the fit is worse than
ERV-derived 3-mer models. In each of the other C > N types, the
1000G 7-mer model performs comparably to the ERV-derived 7-
mer model, indicating the inferred mutation patterns of these
types are mostly consistent between the two datasets. These
results thus support a scenario where, due to the influence of
gBGC17 or changing mutation processes19, type- and subtype-
specific patterns of variation among the 1000G-derived estimates
are less accurate than ERV-derived estimates in capturing
ongoing patterns of germline mutability.

Subtype-specific mutagenic effects of genomic features. Family-
based sequencing studies have been instrumental in identifying
genomic features that are associated with variation in the germ-
line mutation rate9,11,25. However, these studies have only
described the marginal effects of features on the entire spectrum
of mutation, and have not assessed if the effect of a genomic
feature might vary according to the local sequence context. To
determine how the mutation distribution varies across the
genomic landscape, we selected 14 genomic features (Supple-
mentary Table 6) and estimated the joint effects of these features
on the mutation rate of each 7-mer subtype using multiple logistic
regression (Methods). Subtypes with few observed ERVs have
little power to detect significant associations, so we estimated the
effects of features only for the 24,396 of 24,576 (99.3%) 7-mer
subtypes with at least 20 observed ERVs, resulting in 392,128
parameter estimates (Supplementary Data 2; Supplementary
Fig. 7). We note that >84% of the 7-mer subtypes we evaluated
contained >10 times as many ERVs as parameters estimated, so
these estimates are unlikely to be an artifact of overfitting. To
identify significant effects among the many associations tested, we
applied a false discovery rate cutoff of 0.05 to the P- values for
each feature across all subtype-specific estimates. Of the 24,396 7-
mer subtypes analyzed, 3481 had at least one genomic feature
significantly associated with mutability, with 6152 significant
associations among 392,128 tests.

Three features (H3K9me3 peaks, recombination rate, and later
replication timing) were associated with higher relative mutation
rates across nearly all significantly associated 7-mer subtypes

(Fig. 3a), consistent with previously reported mutagenic effects of
these features: H3K9me3 marks are one of the strongest
predictors of somatic SNV density32,33, and recombination and
late replication timing are both correlated with higher germline
mutation rates8,9. In addition, four features (H3K36me3 peaks,
DNase hypersensitive sites [DHS], GC content, and CpG islands)
were each associated with both higher and lower relative
mutation rates, depending on the mutation type and, in some
cases, the sequence motif. These features have been previously
implicated in variation in germline or somatic mutation rates, but
only as marginal effects, not type- or subtype-specific. H3K36me3
has been shown to regulate DNA repair machinery in vivo34,35.
DNase hypersensitivity was previously reported to be associated
with increased germline mutation rates25, though cancer genome
studies have claimed DHS are susceptible to both increased and
decreased somatic mutation rates36,37. CpG islands were
associated with ~threefold lower mutation rates in 99% (1015/
1024) of CpG > TpG 7-mer subtypes, consistent with known
patterns of DNA hypomethylation in CpG islands38, but are
associated with higher relative mutation rates in subtypes of other
types.

Finally, for CpG > TpG transition subtypes, lamin-associated
domains were associated with higher relative mutation rates and
three histone marks (H3K4me1, H3K4me3, and H3K27ac) were
associated with lower relative mutation rates (Fig. 3b). These
results are consistent with published findings of correlations
between these features and DNA methylation: lamin-associated
domains were previously found to associate with focal DNA
hypermethylation in colorectal cancer39, and H3K4me1,
H3K4me3, and H3K27ac are known markers of DNA hypo-
methylation40–42. Exonic regions were associated with lower
relative mutation rates for ~26% of CpG > TpG subtypes (Fig. 3b),
consistent with findings of lower somatic SNV density in gene-
rich regions32, though it is unclear if this is also due to DNA
hypomethylation.

Estimated effects of features predict de novo mutations. We
applied these 7-mer+ features mutation rate estimates to predict
the GoNL/ITMI de novo mutations, using the same evaluation
framework described earlier. Model fit statistics indicate that the
rates estimated from 7-mer sequence context and genomic fea-
tures describe the distribution of de novo mutations significantly
better than the 7-mer-only estimates (Fig. 4). When partitioned
by mutation type, inclusion of genomic features improves model
fit for eight of the nine basic mutation types. These differences
tend to be weaker among transversion types, likely because there
were fewer de novo mutations of these types available (Fig. 4).
Including genomic features had the largest effect on the predic-
tion of CpG > TpG transitions, consistent with the expected
associations between certain features and DNA methylation.

Table 1 Goodness-of-fit statistics for mutation rate estimates applied to de novo testing data

Mutation rate estimation strategy AIC ΔAICa AIC rankb Nagelkerke’s R2

Subtype length Study Variant type

1-mers BRIDGES ERVs 353,896 21,575 7 0.088

3-mers BRIDGES ERVs 335,319 2998 4 0.118

5-mers BRIDGES ERVs 332,861 540 3 0.124

7-mers BRIDGES ERVs 332,321 0 1 0.126

7-mers BRIDGES ERVs (passing 1000G strict mask) 332,582 261 2 0.125

7-mers BRIDGES MAC10+ 342,886 10,565 5 0.103

7-mers 1000G Intergenic SNVs7 344,003 11,682 6 0.100

aDifference in AIC from the baseline BRIDGES 7-mer model
bLower AIC rank indicates better model performance
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Comparing the distribution of predicted mutations across basic
types under different models, we find that all models generally
recapitulate the observed distribution of de novo mutations, but
the 1000G 7-mer model predicts a notably higher proportion of
CpG > NpG mutations (Supplementary Fig. 8a). Stratifying by 3-
mer subtype, the 1000G 7-mer predictions also tend to be more
dissimilar from the de novo distribution than ERV-based 7-mer
+ features predictions (Supplementary Fig. 8b).

To further demonstrate that effects of genomic features
described in Fig. 3 are supported by bona fide de novo mutation
data, we pooled all subtypes found to be associated with each
feature in a positive or negative direction and respectively tested
for an enrichment or depletion of GoNL/ITMI de novo mutations
in regions covered by that feature (Methods). We found 10 of the
20 tests were statistically significant in the expected direction
(chi-squared tests; P < 0.05), confirming that, at a coarse level,

many of the subtype-specific effects of genomic features inferred
using ERVs are recapitulated among true de novo mutations
(Supplementary Table 7).

Germline mutation rates mirror somatic mutation processes.
The rate heterogeneity between mutations of the same type
suggests that distinct mutation mechanisms underlie some of the
feature-subtype associations detected by our model. However,
mechanisms for specific mutation signatures have mostly been
studied for somatic mutations in cancer, and the degree to which
these mechanisms affect germline mutations is generally
unknown. In the following, we show two examples where the
germline mutation rates from our data are consistent with
mutation mechanisms observed in cancer. Moreover, we hypo-
thesize a previously undescribed mechanism for germline point
mutations.
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In cancer genomes, H3K36me3-marked regions are targeted
by the error-prone DNA polymerase eta (POLH, also known as
pol η)35. Human POLH is particularly biased towards
generating A > G mutations at sites flanked by weak (A or T,
denoted as W) bases43; consequently, H3K36me3-marked
regions are enriched for W[A > G]W mutations in various
cancers35. In our data, among the 403 7-mer subtypes showing
significant positive associations with H3K36me3-marked
regions, a significant majority (270, or 67%) are A > G subtypes
(exact binomial test; P < 1.09 × 10−111). Within the 270
positively associated A > G subtypes, 175 (65%) are W[A > G]
W 3-mer subtypes, significantly more than expected by chance
(exact binomial test; P < 4.12 × 10−43).Thus, our results suggest
the H3K36me3-mediated POLH mutation signature also
appears in the germline.

Active transcription factor binding sites (i.e., occurring in
DHS) are also prone to elevated somatic mutation rates in various
cancers, likely because bound transcription factors make DNA
inaccessible to nucleotide excision repair (NER) machinery37,44.
For example, the CCAAT motif is a highly specific binding target
for the trimeric nuclear factor Y (NF-Y) complex45, and active
NF-Y binding sites show a >3.2-fold enrichment for somatic
mutations in melanomas37. Our results indicate that transcription
factor binding may also explain motif-specific hypermutability in
the germline. Among the 7-mer subtypes positively associated
with DHS, CCA[A > G]TNN subtypes show a 1.1–1.3-fold
enrichment (Wald test; P < 2 × 10−4), and the CCA[A > G]TNN

de novo mutation rate in the GoNL/ITMI dataset is 1.7-fold
higher when occurring within DHS versus non-DHS regions (1-
df chi-squared test; P < 0.0055).

Finally, we and others7 observed that NTT[A > T]AAA
subtypes have >sixfold higher mutation rates than other A > T
subtypes (Fig. 1b). We note that the TTAAAA hexamer is the
canonical insertion target for Long Interspersed Element 1
(LINE-1, or L1) retrotransposons, and is nicked by the L1-
encoded ORF2p endonuclease at the antisense 3′-ApT-5′

dinucleotide46. These nicks produce T-rich 3′ flap structures,
which can be recognized and removed by NER machinery,
inhibiting L1 insertional mutagenesis, but leaving an A-rich
single-strand break47. In transcriptionally active regions of the
genome, such lesions are usually repaired by high-fidelity NER
pathways48, but in nucleosomal DNA, where NER activity is
impaired, the lesions are likely bypassed by error-prone
translesion synthesis (TLS) polymerases37. Our results show
NTT[A > T]AAA mutations are reduced >threefold when occur-
ring in DHS (Wald test; P < 2.0 × 10−26). We hypothesize that the
context-dependent mutation signature in our data is the result of
damage induced by L1 retrotransposons and subsequent errors of
the TLS polymerase. This model is consistent with observing
higher NTT[A > T]AAA mutation rate outside of DHS, where
NER activity may be impaired and lesions must be bypassed by
error-prone TLS during replication. Additionally, according to
the “A-rule”49, TLS polymerases preferentially pair abasic sites
with adenine. Hence, mutations generated by errors of the TLS
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polymerase explain the preponderance of A > T (but not A > G or
A > C) mutations at the NTTAAAA motif.

Discussion
The main motivation of our study is to understand the genome-
wide variation of germline mutation rates in humans. We bring to
this task two innovations: first, we take advantage of large-scale
WGS data, focusing on ERVs as a potentially more powerful data
source than currently available collections of de novo
mutations9,10,12,25 or common variants7,13. Second, building
upon previous attempts to holistically model the relationship
between sequence context, genomic features, and mutation rate,
we estimate fine-scale mutagenic effects of multiple genomic
features. Unlike previous studies, which estimated the impact of
genomic features by treating all single-nucleotide mutation sub-
types in aggregate25, we allow for the possibility that mutation
rates of sequence motifs are differentially affected by these
features.

Our results not only confirm the previously reported hyper-
mutable effects of specific sequence contexts and genomic fea-
tures, but also demonstrate that many feature-associated effects
previously only described in somatic cells are present in the
germline. Moreover, our approach identifies certain genomic
features, including H3K36me3 peaks, DNase hypersensitive sites,
and CpG islands, that may act to both suppress and promote
mutability depending on the mutation type and sequence context,
providing insight into the causal mechanisms of germline
mutation rate heterogeneity across the genomic landscape.

The subtype-specific effects of genomic features we report
likely represent only a fraction of the effects across the genome,
due to the limited power of detecting associations among rarer
subtypes. A larger dataset of ERVs will likely reveal additional
cases of association and will enable further study of mutation
patterns among longer sequence motifs, additional genomic fea-
tures, and interactions or nonlinear effects thereof. We also note
several of the genomic features used in our study were assayed in
somatic cell lines or aggregated over multiple cell types. The
currently available data for these features only crudely approx-
imates the true genomic variation in germ cells, so the effects we
estimated have likely regressed toward the mean. Generating
precise maps of genomic features within male and female germ
cell lineages may further uncover mutagenic mechanisms unique
to the germline. Despite these limitations, the fine-scale effects of
sequence context and genomic features reported here provide the
most accurate map to date of germline mutation variation, as
demonstrated by their improved ability to predict genuine de
novo mutation patterns.

Even without accounting for the effects of genomic features,
our ERV-derived mutation rate estimates for 7-mer subtypes are
consistently more accurate than those based on mostly common
SNVs from 1000 Genomes Project data7. Remarkably, even
coarser estimates—the ERV-derived 5-mer and 3-mer rates—
predict the spectrum of de novo mutations more accurately than
the 1000G 7-mer estimates, demonstrating the merit of ERVs as a
refined data resource for studying innate mutation patterns. Some
of the improvement is likely the result of reduced sampling error,
as our ERV dataset is larger than the 1000G dataset. Nevertheless,
this result has two important implications. First, it suggests that
high-frequency variants in presumably neutral genomic regions
are influenced by biased evolutionary processes, such as selection
and gBGC, or these variants arose via past mutational processes
that are now inactive19. Second, this reaffirms the high quality of
ERVs in our data: the potential errors due to calling or mapping
biases among these ERVs are likely weaker than the evolution-
driven biases affecting the older variants. The larger sample,

young allelic age, and high quality of ERVs together result in a
demonstrably more accurate appraisal of recent or ongoing pat-
terns of mutability than common SNVs.

Because the germline mutation rate is a critical parameter in
the study of genetic variation, we envision a wide range of
applications that stand to benefit from incorporating our
genome-wide map of mutation rate estimates. Currently, many
methods that rely on simulating “baseline” mutations, such as the
pathogenicity scoring algorithm CADD50 and coalescent simu-
lator ms51, do not account for context-dependent mutation rate
differences. Likewise, clinical applications for differentiating
disease-causing mutations from background variation require a
precise estimate of the expected de novo mutation rate, but even
the most advanced of these only consider differences in 3-mer or
7-mer sequence contexts, and are based on intergenic SNVs from
1000 Genomes data7,52. Incorporating more accurate sequence-
and feature-dependent estimates of mutation rates may lead to
more realistic simulations and greater confidence in the infer-
ences made by these methods. Another relevant area of research
where our results might be applicable is the study of how
germline mutation mechanisms have evolved over time19,53,54. If
mutator phenotypes have frequently arisen throughout the evo-
lutionary history of humans (as hypothesized by Harris and
Pritchard19), the effects of mutational modifiers have likely been
extremely subtle, manifesting as granular context-specific muta-
tion signatures. Our results, which describe the present-day pat-
tern of mutation rate heterogeneity in Europeans, provide a
wealth of potential hypotheses for investigating how these
mutation processes have been shaped via past evolution.

To facilitate the use of our genome-wide mutation rate esti-
mates in other analysis and simulation pipelines, we have created
a genome browser track to visualize these estimates at a single-
base resolution alongside other genomic data. Ultimately, the
refined mutation patterns from ERVs and the detailed dissection
of context-feature effects serves as a quantitative foundation for
better understanding the molecular origins of mutation rate
heterogeneity and its consequences in heritable diseases and
human evolution.

Methods
Sample description. The BRIDGES sample contains 3927 unrelated European
American bipolar disorder cases and controls. The cases and controls from the
Centre for Addiction and Mental Health (CAMH) in Toronto (n= 830), the
Institute of Psychiatry, Psychology and Neuroscience (IoPPN) and King’s College
London in London, UK (n= 845)55, the Genomic Psychiatry Cohort (GPC) (n=
1151)56, and the Prechter Repository (n= 363)57 were collected as previously
described, as were the STEP-BD cases (n= 304), obtained from the NIMH repo-
sitory58, and the Minnesota Center for Twin and Family Research (MCTFR) study
controls (n= 434)59. In all studies, DNA was extracted from blood-based samples.
All human research was approved by the relevant institutional review boards and
conducted according to the Declaration of Helsinki. All participants provided
written informed consent.

Sample library preparation. The concentration of each DNA sample was mea-
sured by fluorometric means (PicoGreen, Thermo Fisher, Woburn, MA, USA)
followed by agarose gel electrophoresis to verify the integrity of DNA. Six-hundred
nanograms of DNA was sheared with acoustic shearing (Covaris, Woburn, MA,
USA) to an average size of 400 nt. Following shearing, the samples are transformed
to a sequencing library using standard protocols to create a paired-end library.
Briefly, sheared DNA was end-repaired, A-tailed and ligated with Illumina adap-
tors (New England Biolabs, Ipswitch, MA, USA). Following ligation, indexed pri-
mers were used to amplify the final libraries for each sample. Each sample received
two indexes: 96 i7 indexes were used to identify each sample in each 96-well
reaction plate while a single i5 index was used for each plate. This combination of
indexes uniquely coded all samples in the project when both the i7 and i5 indexes
were read during sequencing. Following six cycles of PCR (Kapa Biosystems,
Wilmington, MA, USA), libraries were purified and quality controlled by assaying
the final library size using the Agilent Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA) and quantitating the final library via real-time PCR (Kappa
Biosciences). A single peak between 300 and 400 bp indicates a properly con-
structed and amplified library ready for sequencing. PCR cycles for amplification
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are kept to a minimum to minimize PCR duplication rate and maximize library
complexity.

Sequencing. Sequencing was performed per Illumina protocol, essentially as
described by Bentley et al.41. Libraries were pooled in sets of 12 samples and each
pool sequenced on a single lane of a HiSeq 2500 flowcell using version 3 Illumina
chemistry at paired-end 100 nt read lengths. Each library pool was loaded at 13 pM
to generate 160–180M paired reads per lane. Multiple flowcells of the library pools
were performed to generate a final data set with an average coverage of 9.6× per
sample.

Sample filtering and data quality control. Among the 3927 samples attempted,
three failed library preparation and were not sequenced. We removed an additional
162 samples due to quality issues: five with imbalanced read counts between read 1
and read 2, four with improperly generated BAM files, 16 that had an average
coverage <3×, and 137 due to high contamination (FREEMIX or CHIPMIX score
>3% using VerifyBAMID60). For samples that failed for multiple reasons, we report
a single category for simplicity.

Among these 3762 samples, reads were mapped to Build 37 of the human
reference genome (including decoy sequence28), with alignment and variant calling
performed using the GotCloud pipeline61. After variant calling, we applied
additional sample-level filtering as described below to obtain the 3716 included in
our analysis. We first excluded 10 case samples that were not phenotyped as type 1
bipolar disorder (removed solely for consistency with ongoing analyses of the
BRIDGES data that do require phenotypes). We identified and removed an
additional 23 samples that showed evidence of sample swaps in VerifyBAMID60,
but had not been excluded from variant calling. We next computed continental-
ancestry PCA coordinates by projecting BRIDGES samples in the coordinate space
of the 1000 Genomes phase 1 samples62. We dropped 11 samples identified as PC
ancestry outliers, defined by PC1 < 0.01 or PC2 < 0.025. We then checked for
relatedness using the π̂ statistic (i.e., estimation of pairwise identity-by-descent
based on LD-pruned SNPs), computed in plink63. Nearly all pairwise sample
comparisons were consistent with being unrelated, with π̂<0:05 for 99.9% of
sample pairs. Two samples were dropped due to relatedness, as the π̂ between these
was 0.5, indicating the two were full siblings.

These filters reduced the sample to 3716 individuals, in which we called
37,470,516 autosomal singleton SNVs in the mappable genome (i.e., non-N
reference bases in the GRCh37 reference genome) that passed the variant-level
filtering criteria implemented in the GotCloud pipeline61. Prior to performing our
analyses, we examined how these 37.5 million ERVs were distributed across
individual samples to identify and remove individuals that showed abnormal
patterns of variation due to systematic sequencing errors or batch effects. In brief,
we adapted the nonnegative matrix factorization (NMF) technique described by
Lawrence et al.64 to summarize the distribution of ERVs unique to each individual
as a composite of three distinct “signatures.” For each of the 3716 individuals in our
sample, we calculated a vector of 96 3-mer relative mutation rates (described
below) using only the ERVs observed in that individual, generating a 3716 × 96 rate
matrix. Decomposition of this matrix via NMF produces a 3716 × 3 matrix
describing the relative contribution of each signature to the observed mutation
spectrum per individual. Because we assume the relative mutation rate of any given
subtype should be similar across individuals, it follows that the contribution of a
given NMF signature should also be similar. We removed 156 individuals where
one or more signatures had a contribution >2 standard deviations away from the
mean contribution of that signature calculated across all individuals, reasoning that
ERVs observed in these individuals are more likely to be errors. The final sample
used in our analyses thus consists of 3560 individuals, in which we identified
35,574,417 singletons. Additional details of this filtering strategy are described in
the Supplementary Note.

Mutation subtypes and calculation of relative mutation rates. Each of the
35,574,417 singletons can be classified into one of 6 basic mutation types, defined
by the reference and alternative allele: A > C, A > G, A > T, C > T, C > G, and C > A.
The notation of A > C includes both A-to-C mutations and complementary T-to-G
mutations. For each mutation type, we further define a set of mutation subtypes by
the bases flanking the variant site. Since there are 4 possible bases at both the +1
position and the −1 position, there are 4 × 4= 16 possible 3-mers containing each
basic mutation type at the central position, producing 6 × 16= 96 3-mer subtypes.
Likewise, there are 6 × 44= 1536 5-mer subtypes, and 6 × 46= 24,576 7-mer sub-
types. To simplify notation, we denote a subtype by the sequence motif containing
either an A or a C as the reference base at the central position (e.g., either CGT[A >
X]TCG or CGT[C > X]TCG).

For each K-mer subtype, we divided the number of ERVs observed at the
central position of the K-mer by the number of times the K-mer is seen in the
mappable autosomal regions of the reference genome; we term this proportion the
estimated relative mutation rate. K-mers in the reference genome were counted by
a 1-bp sliding window, so that every possible occurrence of that K-mer was
accounted for (e.g., a run of 4 As is counted as two AAA 3-mers shifted by one
base). For example, we observed 7548 C >T or G > A autosomal singletons
occurring in an ATACGCA or TGCGTAT 7-mer motif (the underlined base

indicates the variant site) and there are 53,314 such motifs in the autosomal
reference genome where this subtype of mutation could be observed, yielding a
relative mutation rate estimate of 7548/53,314= 0.1416 for the ATA[C > T]GCA
subtype.

Testing for heterogeneity of relative rates. As each K-mer can be split into 16
possible (K+ 2)-mers that share the same internal motif but differ in their terminal
bases, the relative mutation rate for each K-mer subtype is the weighted mean of
the rates found among its 16 possible (K+ 2)-mer constituent subtypes. To assess
the heterogeneity of relative mutation rates among each set of 16 (K+ 2)-bp
constituent subtypes that share the same K-bp motif, we performed a chi-squared
test for uniformity of these rates, with each test having 15 degrees of freedom.

Mutation prediction model and validation. To evaluate the accuracy of different
mutation rate estimation strategies, we applied the estimated rates to predict the
incidence of 46,813 de novo mutations using logistic regression. These de novo
mutations were published by two independent studies: 11,020 de novo mutations
detected in 258 Dutch families by the GoNL project9, and 35,793 de novo muta-
tions from 816 families sequenced by the ITMI Premature Birth Study12. We
combined the observed mutations with 1 million randomly selected sites from the
mappable autosomal regions of the reference genome to serve as a nonmutated
background, reasoning that ~20 nonmutated sites for each actual de novo mutation
would be sufficient to minimize sampling noise in the set of nonmutated sites; we
also repeated this procedure with 500,000, 2 million, and 3 million randomly
selected sites to tell if the trends we observed were affected by the size of the
nonmutated background. Because each nonmutated site can be ambiguously
considered as the background for three different mutation types, we divided the 1
million nonmutated sites into three nonoverlapping sets. We designated A/T and
C/G reference bases in the first set (consisting of 333,334 unique sites) as non-
mutated A > G and C > T types, respectively, and so on for the second set (A > C or
C > G types), and the third set (A > T or C > A types), each of which contained
333,333 unique sites. Hence, we considered a total of 1,046,813 testing sites
(1,000,000 unmutated sites and 46,813 de novo mutations), each with one possible
mutation event, in our prediction models.

Now let i ¼ 1; ¼ ; 1046813f g be an index for the 1,046,813 testing sites. We
coded di= 1 if site i is a de novo mutation and di= 0 otherwise. If a set of
estimated relative mutation rates reflects the underlying mutation process, we
expect that the odds of a given site for carrying a de novo mutation increases with
the estimated relative mutation rate of that site. To assess this expectation for all
sets of mutation rate estimation strategies (e.g., ERV-based or 1000G-based 7-mer
estimates), we annotated each testing site i with the relative mutation rate estimated
under strategyM (ri,M), and used logistic regression to model the probability of a de
novo mutation at each site as a function of these rate estimates, where α0 is the
intercept term and α1 is the regression coefficient:

ln
Pr di ¼ 1ð Þ

Pr di ¼ 0ð Þ

� �

¼ α0 þ α1ri;M ð1Þ

The probability of a mutation at each testing site can then be calculated as:

Pr di ¼ 1ð Þ ¼
1

1þ eα0þα1ri;M
ð2Þ

The overall likelihood of modelM, given the observed data, is the product of the
probability values over all 1,046,813 sites:

LM ¼
Y

di¼1

1

1þ eα0þα1ri;M

Y

di¼0

eα0þα1ri;M

1þ eα0þα1ri;M ð3Þ

Using this likelihood, we evaluated model fit by the Akaike Information
Content (AIC), where p is the number of parameters in Eq. (1) (because all models
are based on a single covariate of mutation rates, p= 1 in all cases):

AICM ¼ 2p� 2 ln LMð Þ ð4Þ

For each model, we also calculate Nagelkerke’s R2:

R2
M ¼

1� L0
LM

n o2=N

1� L0f g2=N
ð5Þ

Here, L0 is the likelihood of a null intercept-only model with no covariates.
Because these likelihood-based goodness-of-fit statistics are calculated across all

the basic mutation types combined, they do not provide information about which
types benefit most strongly from using expanded sequence motifs. For example, it
is possible that any improvement to the overall goodness-of-fit is elicited by
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context-dependent heterogeneity of a single mutation type, whereas other types
might not be significantly affected by using longer sequence motifs, and do not
contribute to the improved model fit. To identify these type-specific trends, we
stratified our testing data by each of the basic mutation types. To account for the
known hypermutability of cytosine at CpG dinculeotides, we separated C > T, C >
G, and C > A mutations into CpG and non-CpG types, for a total of 9 basic
mutation types. For each type, we repeated the 3-mer, 5-mer, and 7-mer models on
only the sites of that type. Within each set of type-specific models, we again
compared the goodness-of-fit using AIC and Nagelkerke’s R2. Note that because
the absolute values of AIC and Nagelkerke’s R2 are a function of the number of
data points included in the model, these statistics cannot be directly compared
between type-specific models, where the number of data points vary.

Estimating effects of local genomic features. We estimated the effect of 14
genomic features (data sources for these features are described in Supplementary
Table 6) on the relative mutation rate of each 7-mer subtype using the following
logistic regression framework. Let K be the index across all 7-mer subtypes with 20
or more observed singletons K 2 1; ¼ ; 24396f gð Þ. Let jk be the index across all
sites that are centered at the 7-mer motif that could produce a mutation of subtype
K, and let ZjK

¼ 1 if the site carries a singleton of subtype K and ZjK
¼ 0 otherwise.

We annotated each site of the considered subtype for 14 genomic features, gen-
erating predictors F jK ;1

; ¼ ; F jK ;14
: We treated 11 of these features as binary vari-

ables (seven histone marks, lamin-associated domains, CpG islands, DNase
hypersensitive sites, exons), setting the predictor FjK ;g

¼ 1; g 2 1; ¼ ; 11f g if the
central site of the motif was inside the specified regions and FjK ;g

¼ 0 otherwise.
For the 3 continuous features (recombination rate, replication timing, surrounding
GC content), we set the predictor F jK ;g

; g 2 12; 13; 14f g to the mean value of that
feature in a 10 kb window centered at the site. Because the inferred effect of some
features may be confounded by correlation with read depth and calling rates (e.g.,
GC content65), we included read depth at the central site of the 7-mer as covariate
FjK ;DP

: For each 7-mer subtype K, we then evaluated the effect of the genomic
predictors on the log odds of mutability for each site ZjK

using the following logistic
regression equation:

ln
Pr ZjK

¼ 1
� �

Pr ZjK
¼ 0

� �

0

@

1

A ¼ βK0 þ βK1 FjK ;1
þ ¼ þ βK14FjK ;14

þ βKDPFjK ;DP
ð6Þ

where βK1 ; ¼ ; βK14
� �

are effects of the 14 considered genomic features on the
mutation rate of subtype K, and βKDP is the effect of the local sequencing depth. The
intercept of this model, βK0 , represents the feature-adjusted relative mutation rate
for the considered 7-mer subtype. We performed this logistic regression and
obtained parameter estimates in R v3.2.3 using the speedglm() function from the
speedglm package. We performed this procedure for each of the K 2
1; ¼ ; 24396f g 7-mer subtypes; the resulting beta values and standard errors for

16 × 24,396 estimated parameters are provided in Supplementary Data 2. Note that
we did not consider estimating interaction effects between the 14 genomic features,
as estimating all 2-way interactions would require an additional 14*(13–1)/2= 91
parameters per subtype-specific regression, which would lead to overfitting
concerns.

To generate a map of mutation rates across the genome, we used the estimated
regression coefficients to predict the relative mutation rate (i.e., probability of
observing a singleton) at each site j where a mutation of a given 7-mer subtype
could occur:

Pr ZjK
¼ 1

� �

¼
exp βK0 þ βK1 FjK ;1

þ ¼ þ βK14F jK ;14
þ βKDPFjK ;DP

� �

1þ exp βK0 þ βK1 FjK ;1
þ ¼ þ βK14F jK ;14

þ βKDPFjK ;DP

� � ð7Þ

Because there are three possible mutations at every site, we predict three
independent mutation probabilities (one for each possible alternative allele). For
example, for a site centered at a ACGATTG motif, we predict probabilities for A >
C, A > G, and A > T alleles, using the parameters estimated from those models.
This prediction uses all estimated effects, not just the effects determined to be
statistically significant. We note that we did not generate predictions for sites
within 5 Mb of the start/end of a chromosome, because recombination rate data
were not available for these regions66.

To assess if inclusion of these genomic features improved upon the 7-mer
mutation rate estimates in describing the true distribution of germline mutability,
we again tested this model’s ability to predict the known de novo mutations from
the GoNL9 and ITMI12 studies. We annotated each of the i ¼ 1; ¼ ; 1046813f g
testing sites with the predicted mutation rate, PrðZiK

¼ 1Þ, and calculated the
goodness-of-fit using equations 1–5 with this parameter as the predictor. Note that
the GoNL/ITMI data included de novo mutations within the 5Mb telomeric
regions where we could not estimate effects of genomic features. Rather than
excluding sites in these regions from our goodness-of-fit comparison, we simply
assigned the marginal 7-mer relative mutation rate as the predicted value for these
sites, to ensure models were compared using identical data.

Code availability. All custom scripts used in downstream data processing and
analyses are available at https://github.com/carjed/smaug-genetics. A web-based
utility and command-line code for annotating a variant call format (VCF) file of
genetic variants with estimated 7-mer mutation rates can be accessed at http://
www.jedidiahcarlson.com/mr-eel/.

Data availability
We are in the process of submitting the BRIDGES sequence-based genotypes to dbGaP.

K-mer-based relative mutation rate estimates are provided in Supplementary Data 1. The

complete input data for our logistic regression models, containing feature annotations for

the singletons and non-singletons of each 7-mer motif, are available at https://zenodo.

org/record/1296396, and the parameter estimates are provided in Supplementary Data 2.

Predicted mutation rates based on sequence context and genomic features at each site

have been formatted as a UCSC Genome Browser track, which can be accessed at http://

mutation.sph.umich.edu. All additional data generated and analyzed in this study are

available from the authors upon request.
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