
ORIGINAL RESEARCH
published: 16 February 2018

doi: 10.3389/fninf.2018.00002

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2018 | Volume 12 | Article 2

Edited by:

Arjen van Ooyen,
VU University Amsterdam,

Netherlands

Reviewed by:

Mikael Djurfeldt,
Royal Institute of Technology, Sweden

Ján Antolík,
UMR7210 Institut de la Vision, France

Padraig Gleeson,
University College London,

United Kingdom

*Correspondence:

Jakob Jordan
j.jordan@fz-juelich.de

Received: 03 October 2017
Accepted: 18 January 2018

Published: 16 February 2018

Citation:

Jordan J, Ippen T, Helias M,
Kitayama I, Sato M, Igarashi J,

Diesmann M and Kunkel S (2018)
Extremely Scalable Spiking Neuronal

Network Simulation Code: From
Laptops to Exascale Computers.

Front. Neuroinform. 12:2.
doi: 10.3389/fninf.2018.00002

Extremely Scalable Spiking Neuronal
Network Simulation Code: From
Laptops to Exascale Computers
Jakob Jordan 1*, Tammo Ippen 1,2, Moritz Helias 1,3, Itaru Kitayama 4, Mitsuhisa Sato 4,

Jun Igarashi 5, Markus Diesmann 1,3,6 and Susanne Kunkel 7,8

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain
Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 2 Faculty of Science and Technology,
Norwegian University of Life Sciences, Ås, Norway, 3Department of Physics, Faculty 1, RWTH Aachen University, Aachen,
Germany, 4 Advanced Institute for Computational Science, RIKEN, Kobe, Japan, 5Computational Engineering Applications
Unit, RIKEN, Wako, Japan, 6Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen
University, Aachen, Germany, 7Department of Computational Science and Technology, School of Computer Science and
Communication, KTH Royal Institute of Technology, Stockholm, Sweden, 8 Simulation Laboratory Neuroscience – Bernstein
Facility for Simulation and Database Technology, Jülich Research Centre, Jülich, Germany

State-of-the-art software tools for neuronal network simulations scale to the largest

computing systems available today and enable investigations of large-scale networks

of up to 10 % of the human cortex at a resolution of individual neurons and synapses.

Due to an upper limit on the number of incoming connections of a single neuron,

network connectivity becomes extremely sparse at this scale. To manage computational

costs, simulation software ultimately targeting the brain scale needs to fully exploit

this sparsity. Here we present a two-tier connection infrastructure and a framework

for directed communication among compute nodes accounting for the sparsity of

brain-scale networks. We demonstrate the feasibility of this approach by implementing

the technology in the NEST simulation code and we investigate its performance in

different scaling scenarios of typical network simulations. Our results show that the

new data structures and communication scheme prepare the simulation kernel for

post-petascale high-performance computing facilities without sacrificing performance in

smaller systems.

Keywords: supercomputer, large-scale simulation, parallel computing, spiking neuronal network, exascale

computing, computational neuroscience

1. INTRODUCTION

Modern neuroscience has established numerical simulation as a third pillar supporting the
investigation of the dynamics and function of neuronal networks, next to experimental and
theoretical approaches. Simulation software reflects the diversity of modern neuroscientific
research with tools ranging from the molecular scale to investigate processes at individual synapses
(Wils and De Schutter, 2009) to whole-brain simulations at the population level that can be directly
related to clinical measures (Sanz Leon et al., 2013). Most neuronal network simulation software,
however, is based on the hypothesis that the main processes of brain function can be captured at
the level of individual nerve cells and their interactions through electrical pulses. Since these pulses

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00002
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00002&domain=pdf&date_stamp=2018-02-16
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.jordan@fz-juelich.de
https://doi.org/10.3389/fninf.2018.00002
https://www.frontiersin.org/articles/10.3389/fninf.2018.00002/full
http://loop.frontiersin.org/people/479695/overview
http://loop.frontiersin.org/people/132473/overview
http://loop.frontiersin.org/people/2031/overview
http://loop.frontiersin.org/people/503742/overview
http://loop.frontiersin.org/people/61259/overview
http://loop.frontiersin.org/people/630/overview
http://loop.frontiersin.org/people/8419/overview

Jordan et al. Scalable Neuronal Network Simulation Code

show little variation in shape, it is generally believed that
they convey information only through their timing or rate of
occurrence. Simulators in this area that follow a general-purpose
approach employ simplified models of neurons and synapses
with individually configurable parameters and connectivity
(Carnevale and Hines, 2006; Bower and Beeman, 2007; Gewaltig
and Diesmann, 2007; Bekolay et al., 2013; Goodman and Brette,
2013). In such simplified models, individual neuron and synapse
dynamics are typically described by a small number of coupled
differential equations. Besides, in order to address models of
learning in neuronal networks most simulators support a variety
of plasticity mechanisms such as short- and long-term plasticity
(Morrison et al., 2008), neuromodulated plasticity (Potjans et al.,
2010) and structural plasticity (Diaz-Pier et al., 2016).

It is widely believed that high-level brain function is not
solely the product of complex dynamics of isolated brain areas,
but involves coordinated interaction between multiple cortical
and subcortical areas (Kandel et al., 1991; Bressler and Menon,
2010). To gain insights into cortical information processing,
large-scale network models aim to account for several areas
and their interactions involving millions of neurons and billions
of synapses. A systematic reduction in neuron and synapse
density compared to biological tissue is severely limited as soon
as researchers strive to faithfully represent even just pairwise
coordinated neuronal activity (van Albada et al., 2015), making
the need for full-scale models apparent.While workstations allow
simulations of up to 105 neurons, corresponding to the number
of neurons under approximately 1mm2 of cortical surface, larger
networks require distributed simulations (Senk et al., 2015;
Schmidt et al., 2016). State-of-the-art simulation software allows
researchers to simulate about 10 % of the human cortex at a
resolution of individual neurons and synapses on contemporary
supercomputers (Kunkel et al., 2014). For these large-scale
simulations one of the main computational challenges is the high
connectivity of neuronal networks. The human cortex consists of
about 1010 cells, each receiving about 104 connections (Abeles,
1991; Stepanyants et al., 2009), which leads to an estimated 1014

synapses. Representing each of the connections by two double
precision numbers requires about 1.6 PB of main memory.
To complicate things further, neurons receive only about 50 %
of their connections from other nerve cells in their vicinity,
while the remainder are long-range connections from various
remote areas (Abeles, 1991; Braitenberg and Schüz, 1991). This
feature distinguishes neuronal simulations from simulations of
classical physical systems, for example by finite-element methods
exploiting the locality of physical interactions (see, e.g., Johnson,
1987), and poses severe difficulties for dynamic load balancing:
One cannot easily move computational units from one process
to the next without major changes to the fundamental data
structures.

Over a decade ago simulation codes started to store the
data that represent synapses exclusively on the compute node
where the target neuron resides (Morrison et al., 2005), in
the following referred to as the postsynaptic side. For typical
neuronal network models this approach enables parallel network
construction with none or little communication between the
compute nodes. Furthermore, in this scheme only the occurrence

of a spike in a particular source neuron needs to be transmitted
to other compute nodes, often in source-based address-event-
representation (AER; Boahen, 2000; Lansner and Diesmann,
2012). Typically all spikes generated in the network are gathered
on each compute node (Hines et al., 2011). Postsynaptic data
structures are then responsible for obtaining the relevant synapse
parameters from local memory and routing the spike to the
correct target. To distribute workload evenly across compute
nodes also for highly structured networks with heterogeneous
population properties, neurons are distributed across compute
nodes in a round-robin fashion. On small machines the number
of compute nodes participating in a simulation is smaller than the
number of synapses per neuron such that each neuron typically
has many targets on every compute node. In this setting it is
efficient to maintain on each compute node a resizable array
containing references to local target lists with one element for
each neuron in the network that could be indexed by the source
neuron’s identifier (Morrison et al., 2005). With growing network
size and the availability of a new generation of supercomputers,
the ratio between the number of compute nodes and the number
of synapses per neuron reversed. This led to a replacement of
the resizable array by a sparse table with subsequent target lists
implemented as dynamic container types that have little overhead
for a small number of local targets. The sparse table accounts for
the sparsity of large-scale networks by consuming only few bits
of memory for each empty entry (Kunkel et al., 2014). These data
structures enabled simulation codes that perform equally well
on small- to large-scale simulations, and scale well to the largest
supercomputers available today (“petascale” regime, 1015FLOPS)
(Kunkel et al., 2014). Over the next decade, exascalemachines will
be developed that will most likely show only a moderate increase
in the number of compute nodes but a significant increase in the
number of threads and amount of memory per compute node
(see, e.g., Dongarra et al., 2011). If neural simulators are able to
fully exploit the computational power of these new machines,
researchers, for the first time, will be able to simulate the full
human cortex at cellular resolution.

In the case of purely postsynaptic storage of connection
information, all spikes from the network are collected on all
compute nodes since only postsynaptic data structures are
responsible for routing the spikes to the correct targets. To
support efficient delivery of spikes, this requires the postsynaptic
data structures to store at least one bit per neuron in the network
signaling the presence or absence of local targets (Kunkel et al.,
2014). In this case memory usage per compute node scales with
the total number of neurons in the network, consuming a major
part of the available local memory from about 109–1010 neurons
on. However, networks in which each neuron receives a fixed
number of connections become extremely sparse at this scale.
In the following we assume a distributed setting in which each
compute node is running a single instance of the simulator
and that these instances communicate via the Message Passing
Interface (MPI). As customary, we refer to a single such instance
also as an “MPI process” or “rank” (Message Passing Interface
Forum, 2009). Assuming a fixed number of neurons per process
and 104 targets per neuron, most neurons have multiple targets
on every process for less than 103 MPI processes (Figure 1,

Frontiers in Neuroinformatics | www.frontiersin.org 2 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

FIGURE 1 | Probability of a model neuron to have a certain number of targets

on a randomly selected process in a weak scaling scenario. Probability of a

neuron to have zero (dark gray), one (medium gray), or more (light gray)

targets. Vertical dashed line marks maximal number of MPI processes, also

called ranks, on the K computer. Targets per neuron K = 104, number of MPI

processes M ∈ {32; . . . ; 1,048,575}. This number of connections is typical for

a pyramidal cell in cortex (Abeles, 1991).

light gray). This probability quickly decays to zero between 103

and 104 processes as it becomes more likely to find exactly one
target per process (Figure 1, medium gray). Beyond 104 MPI
processes it is overwhelmingly likely that a specific neuron has
no target on a randomly selected process (Figure 1, dark gray),
implying that most spikes collected on a compute node do not
have any local targets (see also Hines et al., 2011). This estimate
demonstrates that a communication scheme that relies purely on
postsynaptic routing of spikes cannot be efficient in the regime
of tens of thousands of MPI processes. Since each process needs
to check the existence of local targets for each spike, the total
runtime increases proportionally to the total number of spikes
generated in the network and hence with the total network
size, assuming constant firing rates per neuron. Hence, for large
networks this is a large contribution to the total runtime of the
simulation (cf. Schenck et al., 2014). Nevertheless, the probability
that at least one neuron on a randomly selected MPI process has
local targets on another randomly selected process, is not small.
Consequently all processes potentially need to communicate
spikes to each other at some point during a simulation, ruling
out communication schemes that only include subsets of nodes.

In this manuscript we describe a two-tier connection
infrastructure with a pre- and postsynaptic part that replaces
the above mentioned purely postsynaptic storage of connection
information and enables directed communication among
compute nodes. In particular we replace all data structures
that scale proportionally to the total number of neurons in
the network or the total number of MPI processes, because
they consume significant amounts of memory for simulations
of networks of 109 neurons or more. In addition to these
improvements, the directed communication of spikes makes
sure each MPI process only needs to process the spikes which are
required locally. While there is need for large-scale simulations,
many researchers investigate small to medium size networks.
Therefore, the new data structures and communication

framework should not lead to a penalty for simulations run
on laptops, workstations, and moderately sized clusters. We
consequently introduce additional optimizations to maintain
high performance in small- to medium-scale simulations. This
approach preserves a common codebase for laptops and HPC
systems, reducing maintenance costs and supporting quick
adoption of features designed for either use case.

The remainder of this work is organized as follows: Section 2.1
describes an archetypal network model as the main use case
and section 2.2 introduces three scaling scenarios. Section 2.3
continues by describing the three supercomputing platforms
employed in this study. Section 2.4 gives a short overview of
the NEST simulator for which we provide an implementation of
the new connection infrastructure and communication scheme.
Subsequently section 2.5 adapts amodel ofmemory consumption
per compute node to predict the influence of the new data
structures. Section 3 first summarizes the limitations of the
connection infrastructure implemented in the previous kernel,
henceforth referred to as “4g”, and afterwards describes the
new two-tier infrastructure and the corresponding network
construction procedure of the new simulation kernel (“5g”)
in section 3.1. Section 3.2 introduces the new spike exchange
method and section 3.3 considers small-scale simulations and
corresponding optimizations. Finally section 3.4 and 3.5 discuss
the results of the model of memory usage and performance
measurements in the scaling scenarios. The study concludes
by discussing limitations of the new technology and future
extensions (section 4).

The technology described in the present article will be made
available to the community with one of the next releases of
the open-source simulation software NEST. The conceptual and
algorithmic work described here is a module in our long-term
collaborative project to provide the technology for neural systems
simulations (Gewaltig and Diesmann, 2007).

2. MATERIALS AND METHODS

2.1. Benchmark Network Model
To analyze the memory usage of the new data structures (see
section 2.5) and to measure the actual memory usage and
run time of the implementation (see section 2.2) we employ a
balanced random network model with plastic connections, also
used in previous publications on neuronal network simulation
technology (Helias et al., 2012; Kunkel et al., 2012, 2014; Ippen
et al., 2017; Kunkel and Schenck, 2017). The network consists
of two recurrently connected populations: one excitatory and
one inhibitory, where excitatory neurons outnumber inhibitory
neurons by a factor of four. To ensure stability of the network
the inhibitory connections are much stronger than the excitatory
connections. Neurons are modeled by single-compartment
leaky-integrate-and-fire neurons with alpha-shaped postsynaptic
currents and have homogeneous parameters within and across
the two populations. Connections are drawn randomly for
each neuron with a fixed number of incoming connections
per neuron independent of the network size. The excitatory-
excitatory connections exhibit spike-timing dependent plasticity
(STDP, see, e.g., Morrison et al., 2007), while all other connections

Frontiers in Neuroinformatics | www.frontiersin.org 3 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

are static. This model serves as a scalable version of a typical
neuronal network simulation. The results obtained with this
particular model generalize, as long as the total memory usage
of synapses is significantly larger than that of neurons, and
interactions are mainly mediated via chemical synapses. Due
to its random connectivity the network model represents a
worst-case scenario in terms of network structure: A single
neuron projects with equal probability to any other neuron in
the network such that local communication patterns cannot be
exploited by representing strongly connected subnetworks on
a subset of the available compute nodes. A detailed network
description and parameter values can be found in section A in
the Appendix and a variant of the simulation script is available
from the most recent NEST release as hpc_benchmark.sli
(Kunkel et al., 2017).

2.2. Measuring Scalability
To assess the scalability of the simulation code across MPI
processes and threads, we investigate three scaling scenarios.
For an in-depth discussion of the relevant scaling scenarios and
possible pitfalls, see van Albada et al. (2014). A single compute
node in a modern HPC system contains tens of cores. In order
to make optimal use of the available compute power and limited
amount of memory, a lightweight parallelization scheme, like
OpenMP (OpenMP Architecture Review Board, 2008), should
be used within a single compute node (Ippen et al., 2017). We
hence run a single MPI process with multiple OpenMP threads
per compute node in all simulations of this study. Accordingly
we use “MPI processes” and “compute nodes” interchangeably in
this manuscript.

In weak-scaling benchmarks, the problem size per compute
node is fixed while the number of compute nodes and thus
the total problem size is varied. In our case, we simulate a
constant number of neurons per compute node where all neurons
have a fixed in-degree, which leads to an increase in network
size with sparser connectivity as the number of compute nodes
grows. A weak-scaling experiment uncovers limiting factors for
scalability in terms of memory usage and runtime that increase
proportionally with the total network size (∼N) or the number of
MPI processes (∼M).

In strong-scalingmeasurements, the total problem size is fixed
while the number of MPI processes or threads per process is
varied. Here, we fix the total network size including the number
of connections. With an increasing number of MPI processes or
threads per process, this reduces the load per process or thread,
addressing the question of how fast a network of a particular
size can be simulated. While in our application a strong-scaling
test over MPI processes uncovers communication bottlenecks, a
strong-scaling test over threads mainly exposes serial parts of the
code.

In addition to weak-scaling and strong-scaling experiments,
we perform a maximum-filling scaling. For a given amount
of computational resources, in terms of available memory per
compute node, we determine the maximal problem size that
can be simulated. This is not necessarily identical to a weak
scaling if, for example, the memory usage of the application
changes with the number of MPI processes. In our case, we

determine the maximal number of neurons that just fits into the
available memory for a given number of compute nodes where
all neurons have a fixed in-degree. Since the maximum network
size is difficult to determine, we obtain a prediction from the
memory-usage model (see section 2.5) before performing a
full-scale run. The maximum-filling scaling scenario tests the
limits of the software in terms of memory usage and addresses
the issue of efficient use of available computational resources:
How many compute nodes does a specific network simulation
require at least?

2.3. Supercomputers
We run benchmarks on three HPC systems that are commonly
employed for (neuro)scientific research: the JUQUEEN
BlueGene/Q and JURECA systems at the Jülich Research Centre,
Germany, and the K computer at the Advanced Institute for
Computational Science in Kobe, Japan.

The JUQUEEN supercomputer (Jülich Supercomputing
Centre, 2015) consists of 28,672 compute nodes, each equipped
with a 16-core IBM PowerPC A2 processor running at 1.6 GHz
and 16 GB RAM, leading to a peak performance of about
5.9 PFLOPS and 448 TB of main memory in total. The
communication network is implemented as a 5D torus with a
bandwidth of 40 GBps. Applications are compiled using the IBM
XL compiler suite. JUQUEEN supports hybrid parallelism, with
multithreading via OpenMP within a single compute node and
MPI for distributed-memory computing. The GNU Scientific
library1 is available in version 2.1.

JURECA consists of 1872 compute nodes, each housing two
Intel Xeon E5-2680 v3 Haswell CPUs at 2.5 GHz for a total of
1.8 PFLOPS.Most of the compute nodes have 128 GiB ofmemory
available. The system provides 75 compute nodes equipped with
two NVIDIA K80 GPUs, which, however, were not used in this
study. Nodes are connected via Mellanox EDR InfiniBand. To
compile applications, we rely on the GNU Compiler Collection
(GCC) and link against the ParaStationMPI library for MPI
support.

The K computer (Miyazaki et al., 2012) features 82,944
compute nodes, each with an 8-core SPARC64 VIIIfx processor
operating at 2 GHz, with 16 GB RAM/node, leading to a peak
performance of about 11.3 PFLOPS and a total of 1377 TB
of main memory. The compute nodes are interconnected via
the “Tofu” (“torus connected full connection”) network with
5 GBps per link. The K computer supports hybrid parallelism
with OpenMP (v3.0) at the single node level and MPI (v2.1) for
inter-node communication. Applications are compiled with the
Fujitsu C/C++ Compiler.

2.4. NEST Simulator
NEST is an open-source software tool that is designed for
the simulation of large-scale networks of single-compartment
spiking neuron models (Gewaltig and Diesmann, 2007). It
is developed and maintained by the NEST initiative2 under

1https://www.gnu.org/software/gsl/
2http://nest-initiative.org/

Frontiers in Neuroinformatics | www.frontiersin.org 4 February 2018 | Volume 12 | Article 2

https://www.gnu.org/software/gsl/
http://nest-initiative.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

the GNU General Public License, version 23 and can be
freely downloaded from the website of the NEST simulator4.
The collaborative development of NEST follows an iterative,
incremental strategy derived from the requirements and
constraints given by the community (Diesmann and Gewaltig,
2002). Users can control simulations either via a built-in scripting
language (SLI) or a Python module (PyNEST; Eppler et al., 2009;
Zaytsev and Morrison, 2014). While the definition of the
network, in terms of the specification of neuronal populations
and connections, can be conveniently performed in procedural
form in an interpreted language, all compute-intensive tasks
such as the actual generation of connectivity or the propagation
of neuron dynamics are executed by the simulation kernel
implemented in C++. NEST supports a wide variety of
computing platforms, from laptops to moderately-sized clusters
and supercomputers using a common codebase. To optimally
use the available compute resources, NEST supports hybrid
parallelization employing MPI for inter-node communication
and multi-threading via OpenMP within each MPI process.
Running multiple threads instead of multiple MPI processes per
compute node makes better use of the available memory (Ippen
et al., 2017).

Neurons are distributed in a round-robin fashion across
all available threads according to their global id (GID), which
labels all neurons and devices in the network uniquely by
order of creation. The round-robin distribution of neurons
implements a simple form of static load balancing as it ensures
that neurons which belong to the same population and are
hence expected to exhibit similar activity patterns, are evenly
distributed across cores. Devices for stimulation and recording,
are duplicated on each thread and only send to or record from
thread-local neurons to avoid expensive communication of status
variables. Events between neurons are communicated between
processes by collective MPI functions (see section 3.2). Most data
structures are private to each thread within a compute node.
This separation is however relaxed during writing of events to
MPI buffers and reading of events from the buffers to improve
efficiency and reduce serial overhead (see sections 3.1.3 and
3.2). NEST offers a range of neuron and synapse models from
low to high complexity. Users can extend the range of available
models by employing a domain-specific model description
language (Plotnikov et al., 2016) or by providing an appropriate
implementation in C++. The simulation kernel supports further
biophysical mechanisms, for example neuromodulated plasticity
(Potjans et al., 2010), structural plasticity (Diaz-Pier et al., 2016),
coupling between neurons via gap junctions (Hahne et al., 2015),
and non-spiking neurons with continuous interactions, such as
rate-based models (Hahne et al., 2017).

2.5. Adaptation of Memory-Usage Model
Improving algorithms and data structures within an existing
software project requires first of all identification of the
main bottlenecks. This involves measurements of runtime and
memory usage (see, e.g., Hager and Wellein, 2011), since any

3https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
4http://www.nest-simulator.org/

intuitions about possible bottlenecks can be severely misleading
(see, e.g., Bentley, 1982). This is ever more the case when
redesigning algorithms and data structures that need to scale
to tens of thousands of processes. Measurements for large-
scale applications, however, consume time and resources. Kunkel
et al. (2012) therefore introduce a model that allows the
prediction of the memory usage of a neural simulator accounting
for contributions from different objects, such as neurons,
synapses, and the corresponding infrastructure. The model
considers only the leading order contributions to the overall
memory consumption and needs to be checked against actual
measurements to prove its sufficiency.

The model describes the memory consumption per MPI
process as a function of compute environment and network
parameters such as the number of MPI processes, the number
of threads per process, and the total number of neurons in the
network. Applying this model to NEST as a concrete use case
allows us to predict the effect of potential changes to code quickly,
without running simulations, and hence to target our efforts on
critical parts of the codebase. In addition the model enables us to
determine the limits, in our case in terms of network size, for a
particular amount of compute resources (see section 2.2). In the
following we only mention changes to the previous formulation
of the memory-usage model arising due to the introduction of
a two-tier connection infrastructure. For extensive discussions
of the memory-usage model, please refer to Helias et al. (2012);
Kunkel et al. (2012). See Kunkel et al. (2014) for the memory-
usage model describing the previous simulation kernel.

In the previous simulation kernel, all information about
connections is exclusively stored on the postsynaptic side, which
is the compute node on which the target neuron resides. The
main differences in the memory-usage model for the new
kernel are additional terms that describe the memory used for
constructing and storing the presynaptic part of the connection
infrastructure. Originally, the model was defined as a function
of the number of MPI processes M, the number of threads per
MPI process T, the total number of neurons N and the average
number of connections per neuron K. Since we keep K fixed
throughout this study, we will describe the memory usage as
a function of only three variables: M (M,T,N). Please refer to
section A in the Appendix for the numerical values of all other
parameters that appear in the equations below. The total memory
usage can be divided into three components: base memory
usage and MPI buffers M0 (M,T,N), memory usage of nodes
Mn (M,N), and memory usage of connections Mc (M,T,N).
The latter two components do not just contain the memory usage
of individual neuron and synapse objects, but also contributions
from infrastructure needed for efficient access to the individual
objects during simulation. This leads to the following definition
of the full model (cf. Kunkel et al., 2014):

M (M,T,N) = M0 (M,T,N) +Mn (M,N) +Mc (M,T,N) .

The first term contains the empirically measured base memory
usage Mb, including the memory required by the simulation
kernel just after startup as well as MPI and OpenMP overhead.
Furthermore this term additionally captures the memory usage

Frontiers in Neuroinformatics | www.frontiersin.org 5 February 2018 | Volume 12 | Article 2

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.nest-simulator.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

of MPI buffers for the communication data required for
constructing the presynaptic part of the two-tier connection
infrastructure (see section 3.1.3) and for the spike events during
simulation. This leads to the following definition ofM0:

M0 (M,T,N) = Mb +min(Bc,NM min(K,MT))mtd

+ min(Bs,NMνmaxmin(K,MT))msd ,

where we introduce the shorthand NM := N
M . Here mtd denotes

the memory consumption for a single entry in the MPI buffer
used for communication of connectivity data (section 3.1.2) and
msd denotes the memory consumption for a single entry in the
MPI buffer used for communication of spikes (section 3.2). The
particular forms of the latter two terms result from the following
considerations: Since we employ MPI_Alltoall (explained
in section 3), the buffer size for a single communication round
must be the same across all MPI processes. If more data need
to be communicated than a single communication round can
handle, we initiate another round of collective communication
and double the size of the respective buffers, up to a user-defined
maximal size, denoted by Bc and Bs, respectively (cf. sections
3.1.3 and 3.2). The (average) number of connections and spikes
can be estimated as NM min(K,MT) and NMνmaxmin(K,MT),
respectively, where νmax denotes the maximal firing rate in
the network. We assume that a single neuron has an average
out-degree of K, independent of the size of the network as
described in section 2.1 and consistent with biological data
(Abeles, 1991). The occurrence of the total number of threads
(MT) in min(K,MT) is due to adaptations for pre-petascale
machines as described in section 3.3.

As the redesign affects only the connection infrastructure and
communication framework, the contributions of neurons and
neuronal infrastructure are the same as in the memory-usage
model for the previous kernel. For a definition and discussion
of this second contribution Mn (M,N) to the overall memory
consumption please refer to Kunkel et al. (2014).

Finally, contributions of connections and corresponding
infrastructure in the new kernel are described by:

Mc (M,T,N) = Kstat
M mstat

c + K
stdp
M m

stdp
c + KNM ms

+ NM min(K,MT)mt.

The first two components describe the memory consumption of
the actual synapse objects, proportional to the local number of
synapses of a particular type and the size of an individual synapse

(mstat
c andm

stdp
c represent the memory usages of a single static or

STDP synapse, respectively). The third term is the contribution
of the data structure storing the sources of the respective Kstat

M +

K
stdp
M = KNM synapses (ms is the memory consumption of a

single source, see section 3.1.1). The fourth term accounts for
the presynaptic part of the two-tier connection infrastructure:
each local node needs to store a certain number of targets, each
of which consume mt bytes (see section 3.1.2). As above, the
appearance of min(K,MT) is due to adaptations for pre-petascale
machines (see section 3.3).

3. RESULTS

Before presenting the new simulation kernel, we shortly discuss
the main bottlenecks of the present technology for large-scale
neuronal networks simulations. It was previously suggested that
synapse objects should be stored on the compute node on
which their target neuron resides (Morrison et al., 2005). On
the one hand, this choice reduces the amount of information
to be communicated during simulation of the network, while
on the other hand it allows for completely parallel network
construction, a practical necessity for large-scale simulations.
The previous kernel of NEST uses a source-based address-
event-representation (AER) scheme (Boahen, 2000; Lansner and
Diesmann, 2012), employing MPI_Allgather (see Figure 3A,
Message Passing Interface Forum, 2009) to communicate spike
events among compute nodes: Each MPI process receives the
global ids (GIDs) of all neurons that emitted a spike since the
last MPI communication took place, and each thread needs
to determine the thread-local neurons to which it needs to
deliver the events. To this end, each thread is equipped with a
sparse table, a memory-efficient hashtable, for efficient lookup of
connection objects via the GID of the source (see Figure 2 and
Kunkel et al., 2014). This data structure requires few bits per
neuron in the network to signal presence or absence of targets for
every possible source. For each source with local targets it incurs
additional overhead besides the actual connection objects. For a
fixed number of connections per neuron and a large number of
MPI processes, a neuron typically has none or very few targets
on an arbitrarily selected process (Figure 1, cf. Kunkel et al.,
2014). Nevertheless, the sparse table occupies a major portion
of the available memory in the post-petascale regime (Figure 2,
dark orange area, cf. Figure 2 in Kunkel et al., 2014) as its
memory consumption grows proportional to the total number of
neurons in the network. This overhead limits the scalability of the
simulation kernel. In addition, the size of the MPI receive buffers
grows proportionally to the total number ofMPI processes due to
the MPI_Allgather communication scheme. The growth of
spike buffers requires not only an increasing amount of memory
(Figure 2, gray area) but it also has an impact on simulation
speed. For large-scale simulations over thousands of processes,
a significant amount of time is spent on skipping spikes in MPI
receive buffers from sources that do not have any local target
– a contribution to the wall-clock time that grows linearly with
the number of MPI processes (Schenck et al., 2014; Kunkel and
Schenck, 2017). To better exploit current supercomputers and to
ensure scalability of the simulation code beyond the petascale
regime, all data structures and runtime contributions that scale
either proportional to the number of MPI processes or to the
total number of neurons in the network need to be removed:
Every process should only store and receive information relevant
to local nodes.

Here we propose a solution that employs MPI_Alltoall
(see Figure 3B) to communicate spikes in a directed fashion,
combined with a two-tier connection infrastructure for spike
routing that consists of a presynaptic part, located on the
MPI process of the sending neuron and a postsynaptic part,
located on the MPI process of the receiving neuron. The

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

A

B

FIGURE 2 | Connection infrastructure and memory usage for state-of-the-art

purely postsynaptic storage of connections. (A) Connection infrastructure of

the previous NEST kernel (4g). Each MPI process maintains a resizable array

of pointers (top left; black) to thread-specific sparse tables (bottom left; dark

orange), which hold connectivity information for all neurons in the network with

local targets and enable efficient access to the corresponding connection

objects. Each sparse table consists of sparse groups, where each group is

responsible for 48 neurons: One bit per neuron indicates whether the neuron

has local targets or not (tiny dark orange squares). If a neuron has local

targets, the sparse group stores a pointer to a connector, which holds the

local target synapses (pink filled squares). Depending on the number of

synapses and the number of synapse types, the connector can hold (i) a small,

fixed number of synapses of a single type (top right; light orange), (ii) a variable

number of synapses of a single type (middle right; medium orange), or (iii) a

connector of type (i) or (ii) for each synapse type that is in use (bottom right;

medium orange). (B) Estimated memory usage per compute node by different

data structures of the 4g kernel as a function of the total number of threads for

a maximum-filling scaling with 1 MPI process, 8 threads and 13 GB of main

memory per compute node. From top to bottom: synapses (pink), fixed-size

connectors [light orange; case (i) in A], variable-size connectors and

heterogeneous connectors [medium orange; case (ii) and (iii) in (A),

respectively], sparse tables (dark orange) and MPI buffers (gray). The dashed

horizontal line marks the maximum memory available per compute node; the

dashed vertical line marks the maximum number of MPI processes on the K

computer.

connection infrastructure is constructed in two phases: First only
the postsynaptic part including the actual connection objects
is created and then, prior to simulation, the presynaptic
infrastructure is constructed based on the postsynaptic
connection information. In the following sections we discuss
this new connection infrastructure and its instantiation in
detail.

3.1. Two-Tier Connection Infrastructure
3.1.1. Postsynaptic Infrastructure
We first focus on the postsynaptic part of the connection
infrastructure. On each process, we maintain two identically
structured three dimensional resizable arrays implemented using
the vector container of the C++ Standard Template Library,
the first storing connections that have process-local targets and
the second their corresponding sources (Figure 4A, top). Upon
creation of a connection, the actual connection object and the
source GID are pushed-back into the innermost dimension
of these resizable arrays indexed by the thread of the target
neuron (first dimension) and type of the connection (“synapse
type,” second dimension). A single connection object contains
all parameters and status variables of a synapse as well as a
function to obtain a pointer to the target neuron. In these three
dimensional structures, a three-tuple consisting of three integers
describing local thread id, synapse id and local connection id,
uniquely identifies a connection object on a specific MPI rank
and can hence be used in a target-based AER scheme. In contrast
to the previous generation kernel, connections are no longer
separated according to source GID (cf. Figure 2), thus avoiding
overhead per potential source. The size of the data structure is
therefore independent of the total number of neurons in the
network. The removal of the separation by source also allows
us to allocate the majority of the memory required to store
all connection objects as a single chunk. To improve the size
to capacity ratio of the used resizable array, we use a resizing
strategy that does not double the capacity each time the maximal
capacity is reached, but allow the growth factor to be adjusted at
compile time, with a default that increases the size of the resizable
array by 50 %. The additional storage of the GIDs of all source
neurons in the second structure is required for the construction
of the presynaptic part of the connection infrastructure (see
section 3.1.3). This information also allows the user to query
connectivity without requiring extensive MPI communication
among all processes. Two additional flags are required within
the source objects for construction of the presynaptic part of the
connection infrastructure. They are implemented as bit fields to
reduce the memory footprint (Figure 4).

3.1.2. Presynaptic Infrastructure
We now turn to the presynaptic part of the connection
infrastructure required to implement directed communication of
spikes. To determine the target processes to which a spike needs
to be delivered, we need information about the locations of all
postsynaptic targets on the process of the sending neuron. The
presynaptic infrastructure consists of a single three dimensional
resizable array which stores the location of all targets from
outgoing connections of local neurons (Figure 4A, bottom). The
global location of a connection is uniquely given by the rank on
which the target neuron is located in combination with the three-
tuple for locating the connection in the postsynaptic structure
on the target rank, as described in the previous section. To
reduce the memory usage of this additional part of connection
infrastructure, we have combined this location information in
each object via bitmasks to fit into 8 B, which strictly limits the
maximal values of the individual fields (cf. Figure 4A, bottom).

Frontiers in Neuroinformatics | www.frontiersin.org 7 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

A B

FIGURE 3 | Communication of receiver-selective data using MPI_Allgather and MPI_Alltoall. The panels illustrate send and receive buffers for the example of

an MPI communication that involves three ranks. Squares represent single buffer entries. Both collective MPI calls require homogeneous data types and equal send

and receive buffer sizes for all ranks, which can entail sending empty buffer entries (unfilled squares). For the data that is sent by rank 0, colors indicate whether the

data is required only by rank 0 (green), rank 1 (yellow), rank 2 (red), or both rank 1 and 2 (orange). For clarity, desired destinations for data that is sent by rank 1 and 2

are not indicated. (A) MPI_Allgather: All ranks receive the complete send buffer from all ranks, which can include unneeded data (e.g., rank 1 and 2 both receive

the required orange entry but they also receive the unnecessary green entry). The receive buffer is a concatenation of all send buffers and the receive buffer size hence

scales with the total number of ranks taking part in the communication. (B) MPI_Alltoall: Send buffers consist of equally sized sections that are destined for

different receiving ranks, which allows each rank to define the data to be transmitted to any particular rank; for example, rank 0 sends the yellow entries only to rank 1.

Each rank has to send identically-sized buffer sections to each rank, which can entail sending empty buffer entries or even entirely empty buffer sections. Rank 2, for

example, sends an empty buffer section to rank 1. To send specific data to multiple ranks, the sending rank needs to copy the data to the send-buffer sections of all

intended receiving ranks, which leads to redundancy in the send buffer; rank 0, for example, sends the orange entry “x” to both, rank 1 and 2. The size of the receive

buffers is identical to the size of the send buffers and independent of the number of ranks participating in the communication.

The objects containing the location of all targets are stored
according to the thread of the source (first dimension) and the
thread-local id of the source (second dimension).

3.1.3. Construction of Presynaptic Connection

Infrastructure
We split network construction into two phases. The first
phase stores connections and source GIDs in the postsynaptic
connection infrastructure on the processes of the corresponding
target neurons. The second phase, initiated by the simulation
kernel just before the simulation starts, constructs the
presynaptic infrastructure on all processes (see Figure 5 for
an example). All processes containing neurons with outgoing
connections require information about the location of the
corresponding targets. This information is communicated using
MPI_Alltoall such that each rank receives only data about
targets of its process-local neurons. While constructing the
MPI send buffers on the postsynaptic side, each local thread
is responsible for gathering the relevant information from the
postsynaptic data structures for a consecutive range of ⌈M/T⌉
source ranks. This design choice removes the strict separation of
data structures by threads used in previous kernel versions. To
construct the send buffer, each thread reads through all sources,
determines the source rank for each connection based on the
source GID and the round-robin distribution of neurons, and,
if the source rank falls in the thread’s assigned interval of ranks,
creates an entry in the corresponding part of the MPI buffer
(see Figure 3B for an illustration of how different parts of the
MPI buffers are distributed across ranks by MPI_Alltoall).
A single entry in the MPI buffers comprises the thread and local
id of the source neuron, the rank of the target neuron and the
three-tuple identifying the corresponding connection in the
postsynaptic structure. After the buffers have been exchanged

via MPI_Alltoall, all threads read through the MPI receive
buffers, each considering only entries relevant for thread-local
neurons. From the relevant entries, the rank of the target
neuron and the three-tuple are inserted into the presynaptic
infrastructure. Prior to filling the send buffer, we use a collective
MPI call to determine the maximal number of buffer entries that
need to be communicated between any two ranks. This number
is used to determine the required size of the MPI buffers in order
to communicate all connection information in a single MPI call.
The maximal size of the MPI buffers can be limited to avoid
temporary peaks in memory consumption. In case this size is
smaller than the required size, additional communication rounds
are initiated until all connection information is communicated
among all ranks. The current maximal MPI buffer size for
communicating connection information is 128 MB, which
balances memory usage and number of communication rounds
for our benchmark model. Under different circumstances, users
might, however, want to reduce the number of communication
rounds at the expense of larger memory usage or vice
versa.

3.2. Communication of Spikes
We now discuss the communication of spikes from the
presynaptic to the postsynaptic ranks, making use of the two-
tier connection infrastructure introduced above. Morrison et al.
(2005) observe that the dynamics of neurons are decoupled
from each other for the period of the minimal delay in
the network. The authors exploit this insight by introducing
a communication scheme that uses collective MPI calls for
exchanging spikes at regular intervals determined by the
minimal delay, instead of the typically much smaller simulation
resolution. Here we rely on the same causality constraints to
disentangle communication interval and simulation resolution,

Frontiers in Neuroinformatics | www.frontiersin.org 8 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

A

B

FIGURE 4 | Two-tier connection infrastructure and its memory usage

compared to purely postsynaptic storage of connection information.

(A) Two-tier connection infrastructure of the new NEST kernel (5g). Top: The

receiver side of the connection infrastructure consists of two identically

structured parts: The connection table (top left) and the source table (top

right). Connection table: Each MPI process maintains a resizable array of

pointers (black) to thread-specific resizable arrays of pointers to

variable-sized containers for every synapse type. If a synapse type is in use,

the corresponding container (orange filled rectangle) stores all thread-local

synapses of this type (pink filled squares) in a resizable array. Synapse

types can differ in memory consumption per object, indicated by different

sizes. In each container, synapse objects are sorted by GIDs of the

presynaptic neurons. Source table: Source objects (red filled squares) are

stored in a three-dimensional resizable array, with a one-to-one relation

between each source object and the synapse object in the same position in

the connection table. Sources contain the GIDs of the presynaptic neurons

and two markers (Source bit fields shown in dashed-line rectangle).

Sender side of the connection infrastructure (bottom): Each MPI process

maintains a target table, which is a resizable array of pointers (black) to

thread-specific resizable array of resizable arrays that store the Target

objects (green filled squares) for every thread-local neuron. The Target

objects contain the locations of the targets, in terms of the MPI ranks and

the three-tuple (tid, syn_id, lcid) that identifies the synapses on the

target side in the corresponding connection table (Target bit fields shown

in dashed line rectangle). (B) Estimated memory usage per compute node

by different data structures of the 4g (top) and 5g (bottom) kernel as a

function of the total number of threads for a maximum-filling scaling of the

5g kernel with 1 MPI process, 8 threads and 13 GB of main memory per

compute node. Color code for the 4g kernel as in Figure 2.

(Continued)

FIGURE 4 | Color code for the 5g kernel from top to bottom: synapses (pink),

targets (green) and sources (red). Memory usage of MPI buffers is not visible

due to the small buffer size. The dashed horizontal line marks the maximum

memory available per compute node; the dashed vertical line marks the

maximum number of MPI processes on the K computer.

butmodify the communication algorithm tomake use of directed
communication via MPI_Alltoall. During a communication
interval, spikes are buffered in a four dimensional resizable array
(Figure 6) and only transferred to the MPI send buffers at the
end of the interval, right before the MPI communication takes
place. In the four dimensional data structure, the first dimension
corresponds to the thread of the source neuron, the second
dimension corresponds to the thread responsible for writing the
respective entries to the MPI buffer (see below), and the third
dimension corresponds to the relative simulation step within
the current communication interval at which the spike occurred
(“lag”). In a similar way as in the collocation of the send buffer
during communication of connection information, each thread
is assigned a range of receive ranks for which it is responsible,
corresponding to particular sections in the MPI send buffer (see
Figure 3, cf. section 3.1.3). By splitting theMPI send buffer in this
fashion, buffers can be collocated in parallel, without requiring
additional checks to avoid that threads are writing to the same
memory address. When a neuron spikes, the corresponding
thread retrieves the locations of all its outgoing connections
from the presynaptic infrastructure (section 3.1.2). For each entry
the thread appends a copy of each target at a specific position
in the four dimensional spike buffer, determined by the thread
of the source neuron (first dimension), the id of the thread that
according to the rank of the target neuron will later create the
corresponding entry in the MPI buffer (second dimension), and
the current lag (fourth dimension). The second dimension is
introduced in order to read the spike buffer in parallel at the
end of the communication interval: Each thread only processes
its (private) share of the spike buffer and creates entries in
the MPI buffer accordingly. An entry comprises the three-tuple
identifying a connection on the receiving rank through which the
spike should be delivered to the target neuron, while the receiving
rank is implicitly encoded by the entry’s position in the MPI
send buffer. After the spike buffer has been completely processed
or in the case that only spikes are left that cannot anymore
be accommodated in the MPI buffer, buffers are exchanged
among all compute nodes via MPI_Alltoall. Directly after
the MPI communication, all threads read the process-local
MPI receive buffers and deliver spikes only via thread-local
connections. Several of such communication rounds may be
required until all MPI processes have completely exhausted
their spike buffers. Each additional communication round at the
end of a single communication interval increases the size of
the MPI buffer up to a certain, user adjustable, maximal size.
This dynamic resizing allows the MPI buffers to maintain the
minimal required size, reducing the total number of required
communication rounds. After all ranks have processed their spike
buffers, the simulation resumes with updating the nodes for the
next interval.

Frontiers in Neuroinformatics | www.frontiersin.org 9 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

A

BC

D

FIGURE 5 | Communication of connectivity data from postsynaptic to presynaptic side for the two-tier connection infrastructure. Example network of 5 neurons

(A) with global identifiers (GIDs) 1 to 5 (blue filled circles with white numbers) that are connected via two different types of synapses (pink arrows); for simplicity, the two

types have synapse-type index 0 and 1 (solid and dashed arrows, respectively). Neurons are distributed across 2 MPI processes (outer rectangles) and 2 threads per

process (inner rectangles); 4 threads in total. Synapses are hosted by the threads of their postsynaptic neurons. (B) From top to bottom: Connection table, source

table, and target table of the example network in (A) on rank 0 (left) and rank 1 (right). Color code as in Figure 4A: Synapses, sources, and targets shown as pink,

red, and green filled squares, respectively, where white numbers indicate target GIDs, source GIDs, and target GIDs again, respectively. The pink star indicates

redundant connection information that is absent in the optimization for small-scale simulations (cf. section 3.3). All tables are three-dimensional resizable arrays:

Outermost resizable arrays for threads (vertical axes), middle resizable arrays for synapse types or local neurons (horizontal axes), innermost resizable arrays that hold

the individual objects indicated by chevrons. When two neurons are connected, the thread of the postsynaptic neuron adds the new synapse to the connection table

and a corresponding Source entry to the source table. Connectivity data needs to be communicated to the presynaptic side at the beginning of the simulation in

order to construct the target table. (C,D) MPI send buffer (top) and receive buffer (bottom) that contain the TargetData of the example network, for rank 0 and rank

1, respectively; TargetData bit field shown in dashed line rectangle. Top rows (dark gray): Each field contains zero or two entries, which indicate the (source GID,

target GID)-tuple. Bottom rows (light gray): Flags in each TargetData used for communication of status values among all processes (0: default, 1: no more data to

send, 2: end of valid data in section, 3: skip this section).

3.3. Adaptations for the Pre-petascale
Regime
The two-tier infrastructure introduced above is designed for the
regime where each neuron has either no or only few targets
on each thread (K ≪ MT; “sparse limit,” Kunkel et al., 2014),
motivated by the sub-optimal memory usage of the previous
technology in this limit (Figure 2). However, in the pre-petascale
regime, neurons typically havemany targets per thread (K≫MT,
see Figure 1). This results in performance degradation of the new
simulation technology compared to the previous technology, due
to: (i) reduced memory locality in the postsynaptic infrastructure
as connections are not separated and stored sequentially by
source, leading to hardly predictable random memory access
during spike delivery and (ii) redundancy in communication of
spikes as each source sends an individual spike to each of its
targets and hence possibly multiple spikes to each thread (red
stars in Figure 6). In the extreme case of a single MPI process
with a single thread, each neuron generates K spikes prior to MPI

communication, instead of just a single packet that is multiplied

during delivery on the postsynaptic side as it was the case for
the previous technology. On these groundsMorrison et al. (2005)

argue that for a small number of processes, a sender-based AER

scheme is most efficient.
Here we solve both shortcomings by sorting connections in

the postsynaptic infrastructure by their corresponding source

GIDs (Figure 4). A spike delivered to the first connection

originating from a specific source can then (locally) be passed to

all subsequent connections of the same source, leading to linear
memory access patterns. The source neuron hence only needs
to send a single spike to each thread on which it has targets,
postponing some of the spike duplication to the postsynaptic
delivery. In addition to solving the above issues, this reduces the
memory usage of the presynaptic infrastructure in the regime
where neurons have multiple targets per thread, as a single
neuron only needs to store the location of MT targets instead
of K targets. During construction of the presynaptic connection

Frontiers in Neuroinformatics | www.frontiersin.org 10 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

A

C

B

FIGURE 6 | Communication of spike data using MPI_Alltoall for the example network in Figure 5A and an example activity (A), where a communication step

consists of four neuronal update steps (h-steps); spikes are shown as blue bars. (B) Spike register, which temporarily buffers spikes before they are collocated in the

communication buffers on rank 0 (left) and rank 1 (right). Numbers indicate target GIDs. Pink stars indicate redundant information, absent in the optimization for

small-scale simulations (cf. section 3.3). (C) MPI send buffers (top) and receive buffers (bottom) for rank 0 (left) and rank 1 (right) that contain SpikeData for the

example activity. SpikeData bit fields shown in dashed rectangle. Top rows: Each field contains zero or two entries, which indicate the (target GID, lag)-tuple. Bottom

rows: Flags in each SpikeData used for communication of status values among all processes (0: default, 1: no more data to send, 2: end of valid data in section, 3:

skip this section).

infrastructure each thread only communicates the location of
the first connection for each combination of source and synapse
type. Due to the organization of the data structure, sources can
only be sorted per synapse type. Therefore, this optimization is
only effective if a minimal number of different synapse types
necessary for a particular simulation is used. For example, in
the NEST simulation software the CopyModel mechanism is
a convenient way to create a synapse type that differs from the
original by the values of default parameters. This makes the
description of the network model in the simulation language
more compact and readable. The consequence, however, is
that the above optimization does not work as efficiently as
for a model description where varying synapse parameters
are explicitly set for different synapse instances of the same
type. As the number of MPI processes increases the benefit
of sorting connections by source diminishes. Not using the
optimization saves time during network construction for large-
scale simulations by avoiding the then superfluous sorting step
(section 3.5).

3.4. Memory Usage of the New Simulation
Kernel
The memory-usage model introduced in section 2.5 exposes
the differences between the previous (4g) and the new (5g)
simulation kernel in total memory usage per MPI process
of our reference network (section 2.1). Here we consider a
maximum-filling scenario (section 2.2) for the 5g kernel using
13 GB per MPI process. In the previous kernel, the sparse
tables and MPI buffers consume memory proportionally to the
total number of neurons in the network ultimately limiting
the scalability of the simulation code (Figure 2). Removing the

sparse table and the constant overhead for all sources with
local targets by introducing a two-tier connection infrastructure
significantly reduces the memory usage in the petascale regime
and beyond (MT > 105, see Figure 4). Additionally, replacing
MPI_Allgather with MPI_Alltoall reduces the size of
MPI receive buffers by eliminating their growth with the total
number of processes. These changes result in perfect scaling
of the postsynaptic data structures with respect to memory
usage. The new technology allows for simulations of larger
networks than the previous kernel using the same computational
resources in the regime of more than a few hundred MPI
processes (Figure 4). For more than 104 threads, also the
presynaptic infrastructure consumes constant memory as its
size is proportional to the average out-degree of the neurons
(∼K). In the regime up to 104 threads, we achieve decreased
memory usage of the presynaptic infrastructure due to the
optimizations described in section 3.3. In this regime, each
neuron typically has many targets on each thread, such that the
size of the presynaptic infrastructure is proportional to the total
number of threads (∼MT). Below approximately 103 threads,
the previous technology consumes less memory as it does not
require storage of the source GID for every connection. In
addition, the size of STDP synapse objects has increased, since
each STDP synapse now needs to store the time of the last
spike of its source, which previously only needed be stored once
per source neuron on each thread. To reduce the total memory
consumption, the stored source GIDs can optionally be removed
while constructing the presynaptic data structures. This however
implies that after the presynaptic infrastructure has been created,
network connectivity can neither be changed nor queried any
more.

Frontiers in Neuroinformatics | www.frontiersin.org 11 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

3.5. Performance of New Simulation Kernel
To investigate the performance of the new technology we next
carry out scaling experiments using the archetypal network
model outlined in section 2.1. In the following, we use the
terms “build time,” “init time,” and “sim time” to refer to the
measured wall-clock times of three successive phases of the
benchmark-network simulations. The build time is the wall-clock
time required to construct all nodes and the postsynaptic part
of the connection infrastructure. After the build phase a very
short simulation of 10 ms biological time is followed by the
actual simulation of 1 s biological time; the measured wall-clock
times are referred to as init time and sim time, respectively.
The init time accounts for the construction of the presynaptic
part of the connection infrastructure in 5g (see section 3.1.3),
but also for the initial resizing of MPI buffers in both 4g and
5g. Besides, initial transients of the network dynamics subside
during the pre-simulation. In principle, these two contributions
could be measured separately, but since the largest contribution
arises from the construction of the presynaptic part of the
connection infrastructure, we do not separate these any further.
In the following we refer to the 5g kernel version that uses the
adaptations for the pre-petascale regime described in section 3.3
as “5g-sort” and to the version without these adaptations as
“5g-nosort”; collectively we refer to both versions as “5g.”

3.5.1. Weak Scaling
In weak scaling benchmarks, the problem size per compute
node, or equivalently per MPI process, is fixed while the total
number of compute nodes increases (section 2.2). In this scenario
a perfectly scalable simulation kernel shows constant run time
for all phases and constant memory usage per compute node.
We simulate our benchmark-network model (section 2.1) on
JUQUEEN with NM = 18,000 neurons per compute node and
K = 11,250 incoming synapses per neuron while build time, init
time, sim time, and memory usage per compute node assess the
performance of the 4g, 5g-sort, and 5g-nosort variants.

The build time shows almost perfect scaling for both 4g and
5g, as construction of the postsynaptic part of the connection
data structures is completely parallel and does not involve
any communication among compute nodes (Figure 7A). While
the build time for nodes is negligible for both technologies,
construction of connections is about 25–30 % faster in the
new kernel. This is due to a more efficient memory allocation
for synapse objects in 5g: The major part of the memory that
is required to store all local connections of a specific type is
allocated en bloc (section 3.1.1). Ippen et al. (2017) discuss the
intricacies of memory allocation during network construction
in the previous kernel. Note that for simulations using the
previous kernel, we preload jemalloc (Evans, 2011) to replace the
default allocator. Jemalloc was specifically designed to improve
allocation for multi-threaded applications and significantly
reduces the build time for the previous simulation kernel in
multi-threaded environments compared to the default allocator
(Ippen et al., 2017).

In the following discussion we focus on the comparison of 4g
and 5g-sort, and afterwards consider the differences to 5g-nosort.
After construction of the postsynaptic data structures in the new

kernel, the connection information needs to be communicated
to the presynaptic side, leading to a significant increase in init
time compared to the previous kernel (Figure 7B). For a small
number of MPI processes (. 128) the init time is evenly spent on
sorting connections by the respective sources and on collocating
connection information to the MPI send buffers. To collocate
the MPI buffers, all threads in a single process need to read
through the whole postsynaptic data structures and therefore
the performance gain from multiple threads is small in this
phase. For a larger number of processes the contribution from
collocating buffers increases significantly over the investigated
range, dominating the init time in the regime of 104 MPI
processes and leading to a significant increase in init time over
the investigated range of MPI processes (Figure 7B). On the
one hand, the increase of work load is due to the growing
amount of connectivity data that needs to be exchanged between
processes, because targets of individual neurons are distributed
over more and more ranks (cf. section 3.3). On the other hand,
the increase is due to suboptimal usage of the available space
in the MPI buffers caused by the random out-degree of nodes.
The init time, however, is a constant contribution to the total
wall-clock time and therefore its relative impact decreases for
longer simulation times. The sim time is approximately equal
in the two kernel versions up to about 2048 compute nodes
(Figure 7C). For larger numbers of MPI processes, the sim time
in 4g increases approximately linearly with the number of MPI
processes due to the linearly increasing size of the MPI receive
buffers. Since the receive buffer size stays approximately constant
in 5g, sim time increases only slightly, leading to much better
scaling behavior and a decrease in sim time by more than
55 % for full JUQUEEN simulations. The main contribution to
the sim time are the delivery of spikes from the MPI buffers
via the respective connections to the target neurons, including
weight updates of plastic synapses, followed by the time spent on
propagating the neuronal dynamics. Over the investigated range
of MPI processes, communication time takes up only a small part
of the total simulation time (Figure 12). The relative contribution
of communication, however, depends on the minimal delay in
the network, which determines the communication interval (here
dmin = 1.5 ms). Communication can become a relevant factor in
simulations with small delays on the same order of magnitude
as the simulation resolution (dmin∼0.1 ms). The memory usage
per compute node is consistently smaller in the new kernel
than with the previous technology (Figure 7D); in particular it
is approximately constant above ∼2048 processes as predicted
by the memory-usage model (section 3.4), demonstrating its
perfect scaling behavior. In this regime, most memory is allocated
for the individual connection objects, followed by contributions
from the postsynaptic infrastructure responsible for storing the
source of each connection and a significant contribution from
the presynaptic infrastructure storing the targets of neurons. The
slight increase in memory usage for more than 104 processes is
most likely caused by an increased memory usage of the MPI
library. For a smaller number ofMPI processes, the optimizations
for small-scale simulations reduce the size of the presynaptic data
structures significantly and hence the memory usage of the new
kernel by about 20% compared to the case without optimizations

Frontiers in Neuroinformatics | www.frontiersin.org 12 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

A B

C D

FIGURE 7 | Weak scaling of an archetypal neuronal network simulation on a petascale computer. Runtime and memory usage per compute node for an increasing

number of MPI processes M ∈ {32; 64; 128; 256; 512; 1024; 2048; 4096; 8192; 16,384; 28,672} with one MPI process and T = 8 threads per compute node on

JUQUEEN. Each compute node hosts NM = 18,000 neurons with K = 11,250 incoming synapses per neuron. Network dynamics simulated for 1 s of biological real

time. Color code in all panels: 4g (orange), 5g without optimizations for pre-petascale (5g-nosort, light blue), and 5g with optimizations (5g-sort, dark blue). (A) Build

time of nodes (dashed lines) and connections (solid lines); 5g-sort data covered by 5g-nosort data. Gray triangles and dashed line show the total network size N (right

vertical axis). (B) Init time. (C) Sim time. 4g data partly covered by 5g-sort data. 5g-sort data partly covered by 5g-nosort data. (D) Cumulative memory usage for a

single MPI process after construction of neurons (dotted lines; < 140 MB), after construction of connections (dashed lines), and after simulation including

pre-simulation (solid lines). 5g-sort data partly covered by 5g-nosort data. Horizontal gray dotted line indicates the maximum memory available on a single compute

node of JUQUEEN.

(Figure 7, blue vs. light-blue). In addition to simulations on
JUQUEEN, we perform weak-scaling benchmarks on the K
computer. The results are very similar to the data obtained from
JUQUEEN (Figure 8), demonstrating the excellent scalability
of the simulation kernel to almost 105 MPI processes. The
increase in memory consumption between 16,384 and 82,944
MPI processes (Figure 8D) can be traced back to the increased
memory usage of the MPI library.

Without optimizations for small-scale simulations (5g-
nosort), the init time increases for a small number of
MPI processes (M < 103) compared to 5g-sort due to an
increased amount of connection information that needs to be
communicated among ranks. However, as the number of MPI
processes increases, a single neuron has a decreasing number
of targets on each process, diminishing the advantage of sorting
connections by source. In this regime, we save time by not sorting
connections without incurring a penalty, leading to 5g-nosort
having a smaller init time than 5g-sort from about 1024 MPI
processes on. Also the sim time for 5g-nosort is increased in the
regime of fewMPI processes, due to a larger amount of spikes that
need to be communicated: one for each target per thread, instead
of just one for the first target per thread. This disadvantage
diminishes with increasing number of MPI processes, and 5g-
sort and 5g-nosort exhibit similar sim times from about 2048MPI
processes on. In contrast to 5g-sort, memory usage for 5g-nosort
is constant since the size of the presynaptic data structures are
independent of the number of MPI processes also forMT < K.

3.5.2. Strong Scaling
Increasing the number of MPI processes in a strong scaling
scenario (section 2.2) shows perfect scaling of the build time for

both the old and the new simulation kernel since construction of
nodes and the postsynaptic part of the connection infrastructure
are entirely parallel and do not require any communication (see
Figure A5 in the Appendix). Also the init time shows almost
perfect strong scaling for the new kernel. For the previous
kernel, the sim time initially scales very well, but saturates
between 2048 and 4096 MPI processes; it even increases for
larger numbers (Figure 9), most likely due to the increasing
size of MPI receive buffers as reading of the buffers introduces
significant overhead during spike delivery. Using the new kernel,
the sim time scales well up to 8192 processes where it saturates,
simulating 1 s of biological real time in 16 s of wall-clock time
for a network with more than 106 neurons and almost 1010

plastic synapses (Figure 9). Deviations from perfect scaling can
mainly be traced back toMPI communication, which puts a strict
lower bound on potential optimization of the simulation time.
The memory consumption of the new kernel before construction
of the presynaptic infrastructure scales perfectly with increasing
number ofMPI processes. However, as targets of neurons become
distributed across more and more MPI processes, the size of
the presynaptic data structures increases, leading to slightly
higher memory usage for a large number of MPI processes
(Figure A5).

3.5.3. Maximum-Filling Scaling
The maximum-filling scaling scenario keeps the memory usage
per compute node approximately constant and close to the
maximal memory available. This exposes the limits of the
new technology in terms of the maximal network size on
a given hardware (section 2.2). Since without optimizations
the memory usage per compute node stays constant, weak

Frontiers in Neuroinformatics | www.frontiersin.org 13 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

A B

C D

FIGURE 8 | Comparison of weak scaling on two petascale systems, JUQUEEN and K computer. Color code in all panels: 5g-sort on JUQUEEN (dark blue), 5g-sort

on the K computer (dark red). See Figure 7 for details. Number of MPI processes: M ∈{32; 64; 128; 256; 512; 1152; 2048; 16,384; 28,672; 82,944} with a single MPI

process per compute node and T = 8 threads per process.

FIGURE 9 | Strong scaling of simulation time of an archetypal neuronal

network simulation on a petascale computer. Runtime for an increasing

number of MPI processes M ∈{64; 128; 256; 512; 1024; 2048; 4096; 8192;

16,384} and T = 8 threads per process on JUQUEEN. Same color code,

marker styles, and line styles as in Figure 7. Straight dotted lines indicate

perfect scaling. N = 1,152,000.

scaling and maximum-filling scaling are identical in that case.
Here we consider the case with optimizations (5g-sort). The
memory usage of the presynaptic connection infrastructure is
negligible for small-scale simulations and increases as the targets
of each neuron become more and more distributed across
different compute nodes. The number of neurons that fit on a
single compute node consequently decreases, up to about 2048
processes (Figure 10). For a larger number of MPI processes, the
number of neurons fitting on one compute node stays constant,
allowing us to simulate about 730 million neurons connected
with about 8 trillion synapses employing the entire JUQUEEN
supercomputer. Similar to the weak scaling scenario, simulation
time scales well across the investigated number of processes,
increasing by less than 45% for an almost 1000-fold increase

A

B

FIGURE 10 | Maximum-filling scaling of an archetypal neuronal network

simulation on a petascale computer. (A) Runtime and (B) memory usage per

compute node for an increasing number of MPI processes M ∈{32; 64; 128;

256; 512; 1024; 2048; 4096; 8192; 16,384; 28,672} with one MPI process

and T = 8 threads per compute node of JUQUEEN. Same color code, marker

styles, and line styles as in Figure 7. Gray solid line in (A) indicates network

size for perfect scaling. Light gray solid line with square markers in (B) is the

prediction of the memory-usage model.

in network size. The memory-usage model delivers a fairly
accurate prediction of the actual memory usage of a simulation
(Figure 10, compare light gray and dark blue solid lines) with a
deviation of about 5%. This mismatch is most likely caused by
dynamically resizing containers in the connection data structures
for which an accurate estimate of the actual memory usage is
difficult.

Frontiers in Neuroinformatics | www.frontiersin.org 14 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

3.5.4. Performance for Small-Scale Simulations
Although the data structures and algorithms presented in this
work are designed to improve the scalability of simulations
on large-scale HPC systems, optimizations for small-scale to
medium-scale systems (section 3.3) assure that the proposed
solution does not impair the performance on laptops,
workstations, and small clusters. A down-scaled version of
the network model used throughout this study (section 2.1)
assesses the performance of the new technology in light of the
old (Figure 11). The test system is a Lenovo X250 equipped
with an Intel Core i7-5600U processor running at 2.6 GHz with
8 GB of main memory. Simulations are performed using two
MPI processes with two threads each. Similar to the results
on HPC systems, the build time of nodes and postsynaptic
connection infrastructure decreases by 50% compared to the
previous technology (Figure 11). As before, the init phase is,
however, much longer due to the required construction of the
presynaptic part of the connection infrastructure. In total this
leads to comparable network construction time for the previous
and new technology (build time + init time). The sim time is
almost identical in 4g and 5g. This time is almost exclusively
spent on delivering spikes to neurons and on updating plastic
connections, both of which are of similar computational
complexity in the two technologies. Without optimizations for
small-scale simulations, the sim time increases by about 75 %,
explicitly demonstrating the necessity of these modifications.
Memory usage is also almost identical for the two technologies
in the presence of the optimizations. Otherwise, the presynaptic
part of the connection infrastructure consumes a significant
amount of additional memory.

4. DISCUSSION

Well-tested high-performance simulation tools are a prerequisite
for advancing neuroscientific modeling of large-scale networks

at cellular resolution. The complex connectivity of biological
neuronal networks poses a challenge for the numerical
simulation of such systems. Previous technologies scale neuronal
network simulations to the largest computing systems available
today. The work that we present here explores the scalability
of new data structures and communication schemes in terms
of memory usage and runtime on post-petascale systems and
proposes concrete implementations.

The investigation starts by identifying scalability bottlenecks
in the previous simulation kernel (4g) of the NEST simulator:
In large-scale simulations, a prohibitively large fraction of
the available memory on each compute node is taken up by
the connection infrastructure and MPI buffers. Therefore, we
subsequently design scalable alternative data structures that fully
exploit the sparsity of large-scale networks distributed over tens
of thousands of MPI processes. The goal of these technological
improvements is not to reduce memory consumption per se,
but to decouple memory consumption per MPI process from
the total network size and the total number of MPI processes.
In the new kernel (5g) we introduce a two-tier connection
infrastructure that combines a postsynaptic part located on the
same rank as the target neurons with additional presynaptic
data structures located on the ranks of the sending neurons.
The presynaptic structure allows us to introduce directed MPI
communication via MPI_Alltoall and to remove non-
essential information from the postsynaptic rank. This design
choice significantly improves the scalability of the simulation
kernel without sacrificing flexibility and generality. Through
the introduction of the two-tier connection infrastructure and
the direct communication via MPI_Alltoall, the new kernel
achieves perfect scaling in terms of memory consumption, which
prepares the simulation technology for next generations of large-
scale HPC facilities. The new data structures and communication
schemes enable the simulation of a network of 1.51 · 109 neurons
and 16.8·1012 synapses on the K computer (Figure 8), in terms of
connectivity slightly larger than the previously reported (Kunkel

A B

C D

FIGURE 11 | Performance of small-scale simulations. Comparison of (A) build time, (B) init time, (C) sim time and (D) memory usage for a down-scaled typical

network model on a laptop for 4g (orange), 5g-sort (dark blue) and 5g-nosort (light blue). N = 11,255 and K = 3750. Simulations run for 1 s of biological real time.

Frontiers in Neuroinformatics | www.frontiersin.org 15 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

et al., 2014) simulation with 11.1 · 1012 synapses. The simulation
using the new kernel does not require the full main memory
available on the K computer; the maximal network size could be
increased by about 20% before running out of memory.

Our work focuses on a decrease in memory usage for
post-petascale systems – yet the new data structures and
communication framework lead to significant performance
gains for large-scale simulations on current supercomputers.
Simulations employing the full supercomputer JUQUEEN now
run up to 55% faster than previously, mainly due to the fixed size
ofMPI receive buffers. The novel technology profits from sending
only the relevant spikes to each process: For more than 104 MPI
processes, most of the spikes arriving via MPI_Allgather

in the old scheme are not required locally, but still need to
be processed, leading to a large serial overhead during spike
delivery (Schenck et al., 2014; Kunkel and Schenck, 2017). The
constant size of the MPI receive buffer, independent of the
number of MPI processes, also significantly improves the strong
scaling behavior. For 1.1 · 106 neurons, previous simulation code
shows a reduction in wall-clock time only up to 2048 processes,
after which it increases again. Employing the new technology,
simulation speed increases up to 8192 processes, enabling the
simulation of more than one million neurons with plastic
synapses for 1 s biological time in 16 s wall-clock time. Although
the design of the new technology focuses on the regime beyond
104 MPI processes, optimizations for small-scale simulations on
laptops and workstations make sure that the alterations have
no negative impact on the overall performance. While without
these, performance of the new simulation kernel is reduced
for simulations involving less than about 2000 MPI processes,
including optimizations leads to almost identical performance
of the previous and new simulation kernel even in laptop-
scale simulations. The additional time spent on the init time
in the new kernel is compensated for by a reduced build time.
While this study considers the concrete use case of the NEST
simulator in order to obtain quantitative data, the concepts that
are presented here are of general nature: The new data structures
and algorithms can be implemented in any neural simulator that
abstracts neurons and synapses as individual objects allocated as
a whole on a single compute node.

The new simulation kernel also mitigates memory allocation
bottlenecks observed in the previous kernel when using non-
thread-aware allocators (Ippen et al., 2017). The previous
technology stores connections in dynamic containers separated
according to source neurons, each container storing very few
entries in the case of large networks (Kunkel et al., 2014). Due to
this separationmany small objects were allocated during network
construction. In the extreme case of a full JUQUEEN simulation
this means that each of the approximately 108 synapse objects
per compute node plus its container are allocated separately.
In the new technology, all synapse objects of the same type on
the same thread are stored in a single container irrespective
of their source neurons. Connection routines can thus predict
the total required memory and allocate it en bloc prior to
instantiating the individual connection objects, which leads to
a reduced build time, even with default allocators. However,
not all connection builders currently available in simulation

codes like NEST support this prediction and it needs to be
investigated for which connection routines such a strategy is
viable. The removed separation according to source neuron also
allows us to keep the new data structures simple, relying only on
resizable arrays, without the need for custom container types. The
memory-efficient containers developed for the previous kernel
might nevertheless become relevant in particular scenarios not
investigated in this manuscript.

For large-scale simulations employing thousands of MPI
processes, the previous technology does not exhibit good scaling
over threads (Figure A4). Themain reason for this is the scanning
of the largeMPI receive buffers, which need to be read completely
by all threads. The buffers in the new technology are independent
of the number of MPI processes and for a large number of
MPI processes hence much smaller than previously. The reduced
buffer size not only reduces the absolute time spent in this serial
section of the code but also increases the fraction of time spent
in fully parallelized sections. Therefore, the new kernel better
exploits the computational power of JUQUEEN when running
64 threads per compute node than the previous kernel, which
shows negligible speed-up from 8 to 16 threads in full JUQUEEN
simulations with 28,672 MPI processes (Figure A4). After speed-
up diminishes, 4g also reaches another limit on JUQUEEN:
From 32 threads on there is not enough memory available to
represent the required data structures. When running 8 threads,
5g reduces the wall-clock time required for the propagation of
network dynamics by about 55% for a full JUQUEEN simulation
compared to 4g. By increasing the number of threads to 64,
which is the maximal number of threads per compute node on
JUQUEEN, we achieve an additional reduction by about 60%.
In total this reduces the time required for the propagation of
network dynamics by more than 80% from 4g with 8 threads to
5g with 64 threads, although this was not an explicit optimization
target in the design of the new kernel. At a network size of half a
billion neurons, simulating 1 second of biological time requires
about 30 min of wall-clock time on JUQUEEN using the 4g
kernel. The new technology implemented in 5g reduces this time
to about 5 min on JUQUEEN. Support for massive threading will
become even more important with modern CPUs being able to
run hundreds of concurrent threads.

The new technology relies on MPI_Alltoall to deliver
spikes only to the ranks on which they are actually required
and it potentially uses multiple communication rounds to
communicate all spikes that accumulated in one communication
interval. Alternatively one could use MPI_Alltoallv to allow
ranks to communicate different chunk sizes to different ranks,
which would require only a single communication round per
communication interval. MPI_Alltoallv, however, requires
the communication of the respective chunk sizes for all ranks
prior to the communication of the actual data, incurring a
performance penalty for large-scale simulations (Thakur et al.,
2010). Due to the round-robin distribution of neurons across
compute nodes and a high number of neurons per compute
node, the number of spikes generated per compute node in a
single communication interval is fluctuating very little. Using
MPI_Alltoall with a fixed size of MPI buffers and initiating
an additional communication round only when necessary is

Frontiers in Neuroinformatics | www.frontiersin.org 16 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

hence most likely superior to using MPI_Alltoallv, which
always requires an additional communication step. While
MPI_Alltoall is feasible at this scale, it relies on global
communication, which means that every compute node needs
to take part in every MPI communication. An alternative to
this scheme would be the definition of communicators that
only include a subset of nodes, thereby possibly reducing
communication time. For the round-robin distribution of
neurons and the random connectivity in our benchmark model
it is unlikely that a randomly picked neuron has a target on a
randomly picked process for simulations involving 105 compute
nodes (cf. section 1). But the probability that any of the neurons
on a process has at least one target on a randomly picked process
is still close to one; so each process needs to communicate to each
other process at some point during the simulation. So far it is
hence unclear how to exploit communication patterns involving
only a subset of nodes, for example neighborhood collectives,
to improve performance of the simulator. In particular one
needs to investigate how to map the spatial structure of a
neuronal network to the topology of modern HPC systems.
This is not an obvious design choice as the currently employed
round-robin distribution scheme is crucial for load balancing.
Any non-random distribution of neurons could incur significant
performance penalties due to unbalanced work load.

Regarding alternative data structures for spike routing, two
other options could be considered. The sparse table essentially
allows quick access to all connections originating from a single
source via a globally valid index, which is the source GID. To
reduce memory usage at the expense of computation time, one
could replace the sparse table with a resizable array in which
the containers that hold the connections are sorted by source.
This resizable array would only contain entries for the sources
which have local targets and would hence not scale with the total
number of neurons in the network. Upon receiving a spike one
could then use a binary search on this structure to access all
relevant connections. Although the complexity of this operation
is only ∼logN for a sorted resizable array, it nevertheless
becomes prohibitively expensive for large networks, as this search
is required for every spike to be delivered. Instead of a sorted
resizable array, one could use a hash map with O(1) lookup
complexity. This fast access, however, comes at the expense of
increased memory usage. The new technology presented here
combines the lean memory usage of plain resizable arrays with
fast lookup (O(1)) by employing the additional presynaptic data
structure.

Future work can further improve the connection
infrastructure in several aspects. One of the main drawbacks
of not storing connections separated according to their source
neurons is the increased size of STDP connection objects. Each
of them needs to store the time of the previous spike (8 B),
required to perform weight updates. Previously, this information
only needed to be stored once per source neuron. This overhead
leads to an increased memory footprint of connection objects for
simulations in which the total number of threads is much smaller
than the in-degree of a neuron (MT ≪ K). One possible remedy
is to introduce a new type of spike event that not only includes
information to identify the postsynaptic target, but also the time
of the previous spike of the presynaptic neuron. This, however,

requires changes to the presynaptic data structures responsible
for buffering spikes between communication intervals.

The data structures that hold connection information are
separated according to threads. In the case that neurons on
different threads on the same rank receive connections from the
same source, this source needs to send one spike per thread
on the target rank; the number of spikes a single neuron emits
therefore scales with MT instead of just the number of MPI
processesM. This leads to an increase in the amount of data to be
communicated and to a growth of the presynaptic data structure
with the number of threads per process. To fully exploit the large
number of threads supported by modern CPUs, one needs to
investigate whether this strict separation of data by threads on
a single rank can be relaxed.

During construction of the presynaptic data structures,
the strict separation of data by threads is not respected
(cf. section 3.1.2), leading to a bottleneck during collocation
of connectivity data in the MPI buffers, which contributes
significantly to the init time. The algorithm responsible for
collocation can potentially be improved to process these data
structures in parallel. Such improvements require detailed
profiling of the current implementation and the design of specific
thread-parallel memory access patterns for the MPI send buffer.

In total, each process needs to communicate about KNM

individual objects of connectivity data to all other ranks, which
totals approximately 1.5 GB for a full JUQUEEN simulation.
To reduce the amount of data that need to be communicated,
the simulation engine can compress the information prior to
the MPI call. Since compression needs to be done separately
for each rank, the resulting data generally have different sizes.
This requires the use of MPI_Alltoallv, because the sizes
of the compressed data need to be communicated in addition
to the actual data. Also on the presynaptic side, there is a
potential benefit for compressing connection information, as the
target lists consume a significant portion of the total available
memory for large-scale simulations (cf. Figure 7; see Morrison
et al., 2005 for a simple type of compression). Instead of a
resizable array storing the targets of each neuron, one could
use a dynamically compressing container that only decompresses
target information when needed. Assuming that neurons have
average firing rates of 1 Hz, the algorithm only needs information
about a neuron’s targets once in 1000 communication steps for a
min delay of 1 ms, or, equivalently, once in 10,000 update steps
for a simulation resolution of 0.1 ms. The reduction in memory
usage could hence outweigh the costs of having to compress
and decompress the corresponding data. To accommodate for
the bursty firing of some neuron models, this container should
provide efficient caching.

Synapse models that adapt their weights in response to the
precise timing of pre- and postsynaptic spikes need to take
into account that the spikes of pre- and postsynaptic neuron
take effect on the synapse after different delays, which are
referred to as axonal and dendritic delay, respectively. Different
partitions of axonal and dendritic delay can result in systematic
depression or systematic potentiation of synaptic weights in
network simulations with STDP (Morrison et al., 2008). The new
connection infrastructure is the prerequisite for the introduction
of models of synaptic plasticity such as STDPwith predominantly

Frontiers in Neuroinformatics | www.frontiersin.org 17 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

axonal delays. In previous kernel versions, only fractions of up
to 50 % axonal delay can be implemented in a straight-forward
fashion (see Morrison et al., 2007) as spikes are delivered through
the synapses to the postsynaptic targets at the beginning of
every communication interval. The contributions of the spikes
are then directly incorporated in the ring-buffers of the target
neurons. Axonal fractions of the delay of more than 50 % could
require altering some of the spike contributions retrospectively.
With the additional information on the presynaptic side, one can
introduce axonal delays by postponing the time when spikes are
added to the MPI send buffer. This extension requires changes
to the presynaptic data structures and also entails changes to the
user interface, which currently only supports the definition of
synaptic transmission delays but not of an axonal fraction; by
default the delay is assumed to be purely dendritic.

With the introduction of the new technology,
implementations of further biophysical mechanisms such as
structural plasticity and the support of continuous interactions
between neurons needed to be adapted, as they are tightly
coupled to the connection infrastructure. The new kernel of the
NEST simulation code encompasses all biophysical mechanisms
of the previous kernel.

The new technology supports the creation and deletion of
synapses at runtime, which is a prerequisite for models of
structural plasticity. However, since connectivity information is
now spread over two data structures instead of one, an efficient
implementation of particular models of structural plasticity can
becomemore challenging. For the particular case of the structural
plasticity described by Diaz-Pier et al. (2016), the new simulation
kernel is slightly faster for simulations that employ less than
about one hundred MPI processes (section 5.4). For larger
simulations, the performance degrades faster than previously
since the implementation destroys the presynaptic part whenever
connections are created or removed. As this structural plasticity
model is updated on a time grid much larger than the simulation
resolution, typically on the order of seconds, the impact of this
naive implementation on the runtime is acceptable. However,
the algorithm on which the model is based is not well scalable
to thousands of processes, as it collects global information
about possible connections on each compute node (Diaz-
Pier et al., 2016). The new two-tier connection infrastructure
opens the possibility of improved implementations that do not
require communication betweenMPI processes during structural
plasticity updates and only operate on the locally available data
structures. Further work is required to provide a common
framework for scalable structural plasticity models.

Continuous coupling between units, for example via gap
junctions, requires the communication of large amounts of data
between compute nodes. The large sizes of the MPI buffers
lead to significant scaling issues limiting the maximal network
size that can routinely be simulated (see, for example, Figure
13 in Hahne et al., 2015). The directed communication of the
new technology reduces the size of the MPI buffers. Although
a detailed investigation of continuous coupling is outside the
scope of the present study, directed communication potentially
improves the scalability of simulations employing models with
continuous interaction.

As memory consumption is now under control for post-
petascale systems, the focus of future technological developments
needs to be on accelerating network construction and simulation
for large-scale networks in the presence of various forms of
network plasticity in order to make such simulations more
attractive for neuroscientific modeling and robotics applications.
Large, distributed simulations currently run at a fraction of real
time, with one second of biological time requiring hundreds of
seconds of compute time (Figure 12) prohibiting fast model-
development cycles and studies of plasticity and learning. Most
simulation time is currently spent on delivering spikes from the
MPI receive buffers to the target neurons through the connection
infrastructure and synapse objects (Figure 12, also see Lytton
et al., 2016) and is composed of two main contributions. First,
plasticity rules in their current implementation require frequent,
expensive computations of exponential functions as they employ
low-pass filtered spike trains. Second, spikes need to be delivered
to ring-buffers of the target neurons. The latter operation requires
frequent random memory access and consequently suboptimal
cache usage. Performance could potentially be improved by
removing the spike buffers from the individual neuron objects
and using a single buffer for all spikes that need to be delivered
to thread-local neurons, thereby improving memory-locality. In
addition, all neuron objects are currently allocated by a single
thread, which, in systems with non-uniform memory access,
can lead to increased memory-access latencies (see also Ippen
et al., 2017). To avoid this, neurons and connections need to
be created by the thread that will most frequently access the
corresponding objects. Since the contribution of delivery to the
sim time is almost independent of the number of MPI processes
(Figure 12), any optimization involving the delivery of spikes will
have significant impact for simulations at all network scales.

For our benchmark networks the time required for
communication of spike data is small compared to the time
required for spike delivery (Figure 12). Since the minimal delay
in the network is 1.5 ms, communication takes place on a rather

FIGURE 12 | Contributions to wall-clock time for a network simulation on

different numbers of MPI processes. Total wall-clock time required for

propagation of network dynamics (black), time spent on update of neurons

and population of spike register from target lists (red), collocation of MPI send

buffer (blue), MPI_Alltoall communication (green), reading of MPI buffers

and distribution of spikes via synapses to targets (purple) on the JUQUEEN

supercomputer. Timings obtained via manual instrumentation of the respective

parts of the source code. Same network configuration as in Figure 7.

Frontiers in Neuroinformatics | www.frontiersin.org 18 February 2018 | Volume 12 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

coarse time grid. However, when considering other network
models, especially models including randomly distributed
delays (e.g., Potjans and Diesmann, 2014), the minimal delay
can be of the same order of magnitude as the simulation
resolution, significantly increasing the relative contribution of
communication time to the total wall-clock time. To address
these modeling scenarios, alternative communication schemes
need to be explored that possibly interleave communication and
delivery of spikes by using non-blocking MPI calls.

The network model we consider here represents a worst-
case scenario in terms of connectivity, since all pairs of neurons
have the same probability of forming a connection. Biological
neuronal networks larger than the cortical microcircuit, however,
exhibit spatial organization on multiple levels. In a local area
for example, the connection probability for a pair of neurons
decreases with their distance and long-range connections have
a longer transmission delay than short-range connections
(Hellwig, 2000; Stepanyants et al., 2009; Markov et al., 2014).
Thus, at the brain scale there is indeed the biophysical basis
for the idea indicated above, to map the spatial organization
of structured neuronal network models (e.g., Senk et al., 2015;
Schmidt et al., 2016) to the topology of the networks of HPC
systems. Whether this would allow, for example, the use of MPI
neighborhood collectives needs to be investigated. Kozloski and
Wagner (2011) take the idea to the extreme and abandon the
concept of a dynamics on a graph. They decompose neural
tissue into regular blocks in three-dimensional space and allow
communication only between adjacent surfaces of blocks. So far,
however, it remains unclear whether a similar strategy can be
used for more efficient simulations of large-scale networks of
simple neuron models.

As the scale of HPC systems increases toward the exascale,
so does the probability of device failure (Thakur et al.,
2010; Dongarra et al., 2011; Cappello et al., 2014). To avoid
wasting precious computational resources upon device failure,
fault-tolerant communication options need to be explored. In
particular support for malleability, the possibility of changing
the number of MPI processes or threads per process during a
running simulation, would improve the fault tolerance of the
application upon failure of a single core and should be considered
in future developments. Since for large-scale simulations, one
typically uses the whole available memory per compute node, it
is most likely not possible to recover from failure of a complete
compute node, even with a malleable program. To cope with this
type of failure, one needs to explore options for regularly storing
the progress of the simulation, called checkpointing, in order to
be able to restart the simulation from a given point after the crash.

While in our particular network model the propagation
of single-cell dynamics only accounts for a small fraction
of the total wall-clock time required for the simulation
(Figure 12), this ratio can change if one considers more
complex neuron models, for example models with non-linear

sub-threshold dynamics or multiple compartments. To address
this issue, the possibility of using accelerators available in
modern HPC systems, for example general-purpose graphics
processing units or field-programmable gate arrays, needs to be
investigated. Here, efficient memory access of the accelerator

to main memory is critical. Recent developments of the
NEURON simulator core (Carnevale and Hines, 2006) include
optimizations to exploit vectorization support of modern CPUs
(Kumbhar et al., 2016), leading to a significant reduction of
wall clock time for the investigated scenarios. It remains to
be shown in how far these optimizations can be efficiently
ported to other network models, simulators, and computer
architectures.

The simulation technology presented in this manuscript
exploits the available main memory of contemporary
supercomputers and shows perfect scalability of memory
usage in a weak-scaling scenario. Now the focus lies on
accelerating simulations in the presence of various forms of
network plasticity.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

We are grateful to our colleagues in the NEST developer
community for continuous collaboration. Use of the JUQUEEN
supercomputer in Jülich was made possible by the JARA-HPC
Vergabegremium and provided on the JARA-HPC Partition
(VSR computation time grant JINB33). Partly supported by
Helmholtz Portfolio Supercomputing and Modeling for the
Human Brain (SMHB), the Helmholtz young investigator
group VH-NG-1028, the European Union Seventh Framework
Programme under grant agreement no. 604102 (Human Brain
Project, HBP) and the European Union’s Horizon 2020 research
and innovation programme under grant agreement no. 720270
(HBP SGA1). This research used resources of the K computer
at the RIKEN Advanced Institute for Computational Science.
Supported by the project Exploratory Challenge on Post-K
Computer (Understanding the neural mechanisms of thoughts
and its applications to AI) of the Ministry of Education,
Culture, Sports, Science and Technology (MEXT). All network
simulations carried out with NEST (http://www.nest-simulator.
org).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2018.00002/full#supplementary-material

REFERENCES

Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex, 1st Edn.

Cambridge: Cambridge University Press.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen,

D., et al. (2013). Nengo: a python tool for building large-scale functional

brain models. Front. Neuroinformatics 7:48. doi: 10.3389/fninf.2013.

00048

Frontiers in Neuroinformatics | www.frontiersin.org 19 February 2018 | Volume 12 | Article 2

http://www.nest-simulator.org
http://www.nest-simulator.org
https://www.frontiersin.org/articles/10.3389/fninf.2018.00002/full#supplementary-material
https://doi.org/10.3389/fninf.2013.00048
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

Bentley, J. L. (1982). Writing Efficient Programs. Englewood Cliffs, NJ: Prentice-

Hall, Inc.

Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic chips

using address events. IEEE Trans. Circ. Syst. II Analog Digit. Signal Process. 47,

416–434. doi: 10.1109/82.842110

Bower, J. M., and Beeman, D. (2007). GENESIS (simulation environment).

Scholarpedia 2:1383. doi: 10.4249/scholarpedia.1383

Braitenberg, V., and Schüz, A. (1991). Anatomy of the Cortex: Statistics and

Geometry. Berlin; Heidelberg, NY: Springer-Verlag.

Bressler, S. L., and Menon, V. (2010). Large-scale brain networks in cognition:

emerging methods and principles. Trends Cogn. Sci. 14, 277–290.

doi: 10.1016/j.tics.2010.04.004

Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., and Snir, M. (2014).

Toward exascale resilience: 2014 update. Supercomput. Front. Innov. 1, 5–28.

doi: 10.14529/jsfi140101

Carnevale, T., and Hines, M. (2006). The NEURON Book. Cambridge: Cambridge

University Press.

Diaz-Pier, S., Naveau, M., Butz-Ostendorf, M., and Morrison, A. (2016).

Automatic generation of connectivity for large-scale neuronal network models

through structural plasticity. Front. Neuroanat. 10:57. doi: 10.3389/fnana.2016.

00057

Diesmann, M., and Gewaltig, M.-O. (2002). “NEST: an environment for

neural systems simulations,” in Forschung und wisschenschaftliches Rechnen,

Beiträge zum Heinz-Billing-Preis 2001, Volume 58 of GWDG-Bericht, eds

T. Plesser and V. Macho (Göttingen: Ges. für Wiss. Datenverarbeitung),

43–70.

Diesmann, M., Gewaltig, M.-O., and Aertsen, A. (1995). SYNOD: An Environment

for Neural Systems Simulations. Language Interface and Tutorial. Tech. Rep.

GC-AA-/95-3, Weizmann Institute of Science, The Grodetsky Center for

Research of Higher Brain Functions, Israel.

Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.-C., et al.

(2011). The international exascale software project roadmap. Int. J. High

Perform. Comput. Appl. 25, 3–60. doi: 10.1177/1094342010391989

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M. (2009).

PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.

2:12. doi: 10.3389/neuro.11.012.2008

Evans, J. (2011). Scalable memory allocation using jemalloc. Notes Facebook Eng.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Goodman, D., and Brette, R. (2013). Brian simulator. Scholarpedia 8:10883.

doi: 10.4249/scholarpedia.10883

Hager, G., andWellein, G. (2011). Introduction to High Performance Computing for

Scientists and Engineers. Boca Raton, FL: CRC Press.

Hahne, J., Dahmen, D., Schuecker, J., Frommer, A., Bolten, M., Helias,

M., et al. (2017). Integration of continuous-time dynamics in a spiking

neural network simulator. Front Neuroinform. 11:34. doi: 10.3389/fninf.2017.

00034

Hahne, J., Helias, M., Kunkel, S., Igarashi, J., Bolten, M., Frommer, A., et

al. (2015). A unified framework for spiking and gap-junction interactions

in distributed neuronal network simulations. Front Neuroinform 9:22.

doi: 10.3389/fninf.2015.00022

Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J. M., Ishii, S., et al.

(2012). Supercomputers ready for use as discovery machines for neuroscience.

Front Neuroinform 6:26. doi: 10.3389/fninf.2012.00026

Hellwig, B. (2000). A quantitative analysis of the local connectivity between

pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybernet. 2,

111–121. doi: 10.1007/PL00007964

Hines, M., Kumar, S., and Schürmann, F. (2011). Comparison of neuronal spike

exchange methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci.

5:49. doi: 10.3389/fncom.2011.00049

Ippen, T., Eppler, J. M., Plesser, H. E., and Diesmann, M. (2017). Constructing

neuronal network models in massively parallel environments. Front

Neuroinformatics 11:30. doi: 10.3389/fninf.2017.00030

Johnson, C. (1987). Numerical Solution of Partial Differential Equations by the

Finite Element Method. Cambridge: Cambridge University Press.

Jülich Supercomputing Centre (2015). JUQUEEN: IBM Blue Gene/Q R©

supercomputer system at the Jülich Supercomputing Centre. J. Large-Scale Res.

Facil. 1. doi: 10.17815/jlsrf-1-18

Kandel, E. R., Schwartz, J. H., and Jessel, T. M. (1991). Principles of Neural Science,

3rd Edn. New York, NY: Elsevier.

Kumbhar, P., Hines, M., Ovcharenko, A., Mallon, D. A., King, J., Sainz, F., et al.

(2016). “Leveraging a cluster-booster architecture for brain-scale simulations,”

in International Conference on High Performance Computing (Cham: Springer),

363–380.

Kozloski, J., and Wagner, J. (2011). An ultrascalable solution to large-scale

neural tissue simulation. Front. Neuroinform. 5:15. doi: 10.3389/fninf.2011.

00015

Kunkel, S., Morrison, A., Weidel, P., Eppler, J. M., Sinha, A., Schenck, W., et al.

(2017). Nest 2.12.0.

Kunkel, S., Potjans, T. C., Eppler, J. M., Plesser, H. E., Morrison, A., and Diesmann,

M. (2012). Meeting the memory challenges of brain-scale simulation. Front.

Neuroinform. 5:35. doi: 10.3389/fninf.2011.00035

Kunkel, S., and Schenck, W. (2017). The nest dry-run mode: efficient dynamic

analysis of neuronal network simulation code. Front. Neuroinform. 11:40.

doi: 10.3389/fninf.2017.00040

Kunkel, S., Schmidt, M., Eppler, J. M., Masumoto, G., Igarashi, J., Ishii, S.,

et al. (2014). Spiking network simulation code for petascale computers. Front.

Neuroinform. 8:78. doi: 10.3389/fninf.2014.00078

Lansner, A., and Diesmann, M. (2012). “Virtues, pitfalls, and methodology

of neuronal network modeling and simulations on supercomputers,” in

Computational Systems Neurobiology, ed N. L. Novére (Dordrecht: Springer),

Chapter 10, 283–315.

Lytton, W. W., Seidenstein, A. H., Dura-Bernal, S., McDougal, R. A., Schürmann,

F., and Hines, M. L. (2016). Simulation neurotechnologies for advancing

brain research: parallelizing large networks in neuron. Neural Comput. 28,

2063–2090. doi: 10.1162/NECO_a_00876

Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A. R., Lamy, C., Magrou, L.,

Vezoli, et al. (2014). A weighted and directed interareal connectivity matrix

for macaque cerebral cortex. Cereb. Cortex. 24, 17–36. doi: 10.1093/cercor/

bhs270

Message Passing Interface Forum (2009). MPI: A Message-Passing Interface

Standard. Knoxville, TX: Version 2.2. Tech rep.

Miyazaki, H., Kusano, Y., Shinjou, N., Fumiyoshi, S., Yokokawa, M., and

Watanabe, T. (2012). Overview of the K computer System. Fujitsu Sci. Tech.

J. 48, 255–265.

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent

plasticity in balanced random networks. Neural Comput. 19, 1437–1467.

doi: 10.1162/neco.2007.19.6.1437

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike-timing. Biol. Cybern. 98, 459–478.

doi: 10.1007/s00422-008-0233-1

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann,

M. (2005). Advancing the boundaries of high-connectivity network

simulation with distributed computing. Neural Comput. 17, 1776–1801.

doi: 10.1162/0899766054026648

Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible

descriptions of neuronal network models. PLoS Comput. Biol. 5:e1000456.

doi: 10.1371/journal.pcbi.1000456

OpenMP Architecture Review Board (2008). OpenMP Application Program

Interface. Available online at: http://www.openmp.org/wp-content/uploads/

spec30.pdf (Accessed September 27, 2016).

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Morrison, A., and Rumpe, B.

(2016). “NESTML: a modeling language for spiking neurons,” in Modellierung

2016 Conference, Vol. 254 of LNI (Bonn: Bonner Köllen Verlag), 93–108.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: Relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Potjans, W., Morrison, A., and Diesmann, M. (2010). Enabling functional

neural circuit simulations with distributed computing of neuromodulated

plasticity. Front. Comput. Neurosci. 4:141. doi: 10.3389/fncom.2010.

00141

Sanz Leon, P., Knock, S., Woodman, M., Domide, L., Mersmann, J., McIntosh, A.,

et al. (2013). The virtual brain: a simulator of primate brain network dynamics.

Front. Neuroinform. 7:10. doi: 10.3389/fninf.2013.00010

Schenck, W., Adinetz, A. V., Zaytsev, Y. V., Pleiter, D., and Morrison, A.

(2014). “Performance model for large–scale neural simulations with NEST,”

Frontiers in Neuroinformatics | www.frontiersin.org 20 February 2018 | Volume 12 | Article 2

https://doi.org/10.1109/82.842110
https://doi.org/10.4249/scholarpedia.1383
https://doi.org/10.1016/j.tics.2010.04.004
https://doi.org/10.14529/jsfi140101
https://doi.org/10.3389/fnana.2016.00057
https://doi.org/10.1177/1094342010391989
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.4249/scholarpedia.10883
https://doi.org/10.3389/fninf.2017.00034
https://doi.org/10.3389/fninf.2015.00022
https://doi.org/10.3389/fninf.2012.00026
https://doi.org/10.1007/PL00007964
https://doi.org/10.3389/fncom.2011.00049
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.17815/jlsrf-1-18
https://doi.org/10.3389/fninf.2011.00015
https://doi.org/10.3389/fninf.2011.00035
https://doi.org/10.3389/fninf.2017.00040
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1162/NECO_a_00876
https://doi.org/10.1093/cercor/bhs270
https://doi.org/10.1162/neco.2007.19.6.1437
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1371/journal.pcbi.1000456
http://www.openmp.org/wp-content/uploads/spec30.pdf
http://www.openmp.org/wp-content/uploads/spec30.pdf
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.3389/fncom.2010.00141
https://doi.org/10.3389/fninf.2013.00010
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

in Extended Poster Abstracts of the SC14 Conference for Supercomputing (New

Orleans, LA).

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Hilgetag, C.-C., Diesmann, M., et al.

(2016). Full-density multi-scale account of structure and dynamics of macaque

visual cortex. arXiv preprint arXiv:1511.09364v4.

Senk, J., Hagen, E., van Albada, S., and Diesmann, M. (2015). “From randomly

connected to spatially organized multi-layered cortical network models,” in

11th Goettingen Meeting of the German Neuroscience Society (Göettingen).

Stepanyants, A., Martinez, L. M., Ferecskó, A. S., and Kisvárday, Z. F. (2009). The

fractions of short- and long-range connections in the visual cortex. Proc. Natl.

Acad. Sci. U.S.A. 106, 3555–3560. doi: 10.1073/pnas.0810390106

Thakur, R., Balaji, P., Buntinas, D., Goodell, D., Gropp,W., Hoefler, T., et al. (2010).

Mpi at exascale. Proc. SciDAC 2, 14–35.

van Albada, S. J., Helias, M., and Diesmann, M. (2015). Scalability of

asynchronous networks is limited by one-to-one mapping between

effective connectivity and correlations. PLoS Comput. Biol. 11:e1004490.

doi: 10.1371/journal.pcbi.1004490

van Albada, S. J., Kunkel, S., Morrison, A., and Diesmann, M. (2014).

“Integrating brain structure and dynamics on supercomputers,” in Brain-

Inspired Computing, eds L. Grandinetti, T. Lippert, and N. Petkov (Cham:

Springer), 22–32.

Wils, S., and De Schutter, E. (2009). STEPS: modeling and simulating

complex reaction-diffusion systems with Python. Front. Neuroinformatics. 3:15.

doi: 10.3389/neuro.11.015.2009

Zaytsev, Y. V., and Morrison, A. (2014). CyNEST: a maintainable Cython-

based interface for the NEST simulator. Front. Neuroinform. 8:23.

doi: 10.3389/fninf.2014.00023

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer MD declared a shared affiliation, with no collaboration, with

one of the authors, SK, to the handling Editor.

Copyright © 2018 Jordan, Ippen, Helias, Kitayama, Sato, Igarashi, Diesmann and

Kunkel. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 21 February 2018 | Volume 12 | Article 2

https://doi.org/10.1073/pnas.0810390106
https://doi.org/10.1371/journal.pcbi.1004490
https://doi.org/10.3389/neuro.11.015.2009
https://doi.org/10.3389/fninf.2014.00023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers
	1. Introduction
	2. Materials and Methods
	2.1. Benchmark Network Model
	2.2. Measuring Scalability
	2.3. Supercomputers
	2.4. NEST Simulator
	2.5. Adaptation of Memory-Usage Model

	3. Results
	3.1. Two-Tier Connection Infrastructure
	3.1.1. Postsynaptic Infrastructure
	3.1.2. Presynaptic Infrastructure
	3.1.3. Construction of Presynaptic Connection Infrastructure

	3.2. Communication of Spikes
	3.3. Adaptations for the Pre-petascale Regime
	3.4. Memory Usage of the New Simulation Kernel
	3.5. Performance of New Simulation Kernel
	3.5.1. Weak Scaling
	3.5.2. Strong Scaling
	3.5.3. Maximum-Filling Scaling
	3.5.4. Performance for Small-Scale Simulations

	4. Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

