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EXTREMES OF THE INTERNAL ENERGY OF THE
POTTS MODEL ON CUBIC GRAPHS

EWAN DAVIES, MATTHEW JENSSEN, WILL PERKINS,
AND BARNABY ROBERTS

ABSTRACT. We prove tight upper and lower bounds on the internal en-
ergy per particle (expected number of monochromatic edges per vertex)
in the anti-ferromagnetic Potts model on cubic graphs at every temper-
ature and for all ¢ > 2. This immediately implies corresponding tight
bounds on the anti-ferromagnetic Potts partition function.

Taking the zero-temperature limit gives new results in extremal com-
binatorics: the number of g-colorings of a 3-regular graph, for any ¢ > 2,
is maximized by a union of K3 3’s. This proves the d = 3 case of a con-
jecture of Galvin and Tetali.

1. THE ISING AND POTTS MODELS

The Potts model is a probabilistic model of interacting spins on a graph.
Here, we use the term color instead of spin to highlight a connection to
extremal combinatorics which we cover in Section 2| Let G = (V, E) be a
graph and o € [¢]V(©) a coloring (not necessarily proper) of the vertices of
G with ¢ possible colors. Let m(o) denote the number of monochromatic
edges of G under . Then the g-color Potts model partition function is:

Z8p) = Y e,

o€lgV(®

The parameter (5 is the inverse temperature and the model is antiferromag-
netic if 5 > 0 and ferromagnetic if < 0. (For general statistical physics
terminology, we refer the reader to Chapter 2 of [17], for example). The
Potts partition function also plays an important role in graph theory as it
is an evaluation of the Tutte polynomial of G.

The Potts model [19] (with no external field) is a random g-coloring o of
V(G) chosen according to the distribution

efﬂm(g)
O —Sg v -

Z5(8)

Date: May 18, 2017.
Key words and phrases. Potts model, partition function, graph colorings, graph homo-
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Thus the partition function Z{ () is the normalizing constant that makes
this a probability distribution. When ( is positive, the model prefers color-
ings with fewer monochromatic edges, and the effect is intensified as [ gets
large. When f is negative (the ferromagnetic Potts model), the distribution
is biased towards colorings with more monochromatic edges.

The Potts model generalizes the Ising model [L0] (the case ¢ = 2). See [25]
for a survey of the Potts model.

The negative of the logarithmic derivative of Z, with respect to 3 gives
the expected number of monochromatic edges, or the internal energy of the
model. If we scale by the number of vertices, this gives the internal energy
per particle, UL(S):

UL(B) = — |V(1G)| ddﬁ(log ZE(B))
1 1 d

= V@ zi@as o)
1 Yoeqv@ m(o)e (@)
IV(lG)\ Z5(8)
~ ey el
When 3 = 0 there are no interactions in the model, and Z}(0) = gV
for all G. Starting from here, we can integrate the internal energy per

particle to obtain the scaled logarithm of the partition function, or the free
energy per particle, FL(B) := ﬁ log ZL(B).

1 B
) FO(8) = gy o5 Z6(8) = oga — | U1y ar

In this paper we derive tight bounds on U (f3) for cubic (3-regular) graphs
in the anti-ferromagnetic (5 > 0) regime. From these bounds immedi-
ately imply corresponding tight bounds on the free energy of the Ising and
Potts models and hence the respective partition functions. We determine,
for every ¢, the maximum and minimum of both the internal energy and the
free energy per particle as well as the family of graphs that achieve these
bounds.

Recall that K, 4 is the complete d-regular bipartite graph on 2d vertices
and K441 is the complete graph on d + 1 vertices.

Theorem 1. For any cubic graph G, any q > 2, and any 5 > 0,
Uk, ,(8) < U&(B) < UL, (B).

Furthermore, the respective equalities hold if and only if G is a union of
K33’s or a union of K4’s. As a corollary via , we have

Fi,(B) < F&(B) < F,, ,(B)-
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We conjecture that these bounds extend to higher regularity d (the case
d = 2 is simply a calculation, see Section .

Conjecture 1. For any d-regular graph G, any q > 2, and any 8 > 0,
Uk, ,(8) <U&PB) < Uk, (8),

and in particular,

Fi.,. (8) < F3(B) < F., (8).

If we restrict ourselves to bipartite regular graphs, then Galvin (building
on [9, 11]) proved that the maximizer of the free energy is Ky 4.

Theorem 2 (Galvin [6]). For any d-regular bipartite G, any  and any
q=2,

FL(8) < FL., (B).

For lower bounds on the ferromagnetic Ising and Potts free energy over
regular, bipartite graphs, where the infimum is the ‘Bethe free energy’, or the
free energy of the infinite d-regular tree, see Ruozzi [20} 21] and Csikvari [2].

A bound such as Theorem [2] was known without the bipartite restriction
in one case previously: in the anti-ferromagnetic Ising model. An extension
of Galvin’s result by Zhao [26] using the ‘bipartite swapping trick’ gives the
following.

Theorem 3 (Zhao [26]). For any d-regular graph G, 5 >0, and ¢ = 2 (the
Ising model),

FL(8) < FL., (8).

Zhao’s method does not work for ¢ > 3, and in the ferromagnetic phase
Galvin’s result cannot be extended to all G; K4 is not the maximizer. The
clique K441 has a higher free energy for any d when 8 < 0. It is natural to
conjecture that K41 is in fact extremal in this case, and also that Galvin’s
result can be extended to triangle-free graphs.

Conjecture 2. For any d-regular G, any q > 2, and any 5 < 0,
UL(B) < UL, ().

and in particular,
FL(8) < FL,. (8).

Moreover, if in addition G is triangle-free, then for any 3
UL(B) <UL, (8).

and in particular,

FL(8) < F, (B).
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The main contribution of this paper is to prove Theorem We do so
by considering the following experiment. Fix ¢, 5 and a d-regular graph G.
Choose a vertex v uniformly from V(G) and independently sample a coloring
o € [¢]V(@ from the Potts model. Now for each neighbor u of v, record the
number of its ‘external’ neighbors (neighbors outside v U N(v)) receiving
each color; record also any edges within N(v) (see Figure [1] for examples).
This gives a local view of o from v. Note that although we have sampled a
coloring o of the whole graph, the colors of v and its neighbors do not form
part of the local view. In fact it is best to think of these colors as having
not been revealed. An important part of the method is that, conditioned
on the local view, the distribution of colorings of v and its neighbors can
be determined. For fixed d and ¢ there are only a finite number of possible
local views; call this set of local views L4,. Each d-regular graph G and
inverse temperature 8 induces a probability distribution on Lg.

Not all probability distributions on L4, can arise from a graph; there are
certain consistency conditions that must hold. For example, the expected
number of monochromatic edges incident to v must equal the expected num-
ber of monochromatic edges incident to a uniformly chosen neighbor of v.
Moreover, we can compute both of these expectations given a probability
distribution on Ly 4; in fact they are both linear functions of the probabili-
ties. For d = 3 this constraint is sufficient, but for larger d more are required.
Another family of consistency conditions are that for every multiset S of size
d from g colors, the probability N(v) is colored by S must be the same as
the probability N(u) is colored by S for a uniformly chosen neighbor u of v.
Finally, the quantity we wish to optimize, UL(8) is also a linear function of
the probabilities in the distribution on Lg,.

So instead of maximizing or minimizing U () over all d-regular graphs,
we relax the problem and instead optimize over all probability distributions
on Lg 4 that satisfy the above consistency conditions. This is simply a linear
program over |Lg,| variables. For some values of d, ¢ and 8 we know this
linear program is not tight although we conjecture it to be tight whenever
g>d+1>3and g8 > 0.

This method builds on previous work on independent sets and match-
ings [4, [5, 18] and the Widom-Rowlinson model [I], but here we generalize
the previous approach in two ways: 1) we deal with ¢-spin models instead
of 2-spin models; 2) we deal with soft and hard constraints instead of just
hard constraints. The family of linear programs in [4] for matchings was an
infinite family of LP’s indexed by two parameters - the vertex degree d and
a fugacity parameter A\ > 0 - and the entire family could be solved analyti-
cally with a single proof via LP duality. Here the situation is worse: we have
an infinite family of LP’s indexed by d, g, 5. Moreover, while the number
of constraints for the matching LP grew linearly in d, here the number of
constraints needed can grow like the integer partition number of d. In this
paper we solve the program for d = 3 where there are 35 variables.
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In Section |3| we solve the LP (both the maximization and minimization
problem) for d = 3, ¢ > 2, and all § > 0, and we solve it in a somewhat
mechanical way that does not reveal much about generalizations to higher
d.

Nevertheless, we suspect that the LP is tight for a much wider set of
parameters, including for ¢ > d + 1 and § > 0. For some other parameter
values the constraints described above are not enough to solve the internal
energy minimization problem for all d,q, 5 > 0. It is easy to find values
of B so that if d > 4 and ¢ < d, the minimizer of the LP is smaller than
U}](d,d(,é’). Two challenges for future work are:

(i) Solve the infinite family of LP’s with d > 4,q > d + 1, § > 0 that
we conjecture is tight.

(ii) Find additional consistency conditions (constraints) that can further
tighten the LP for g < d.

It is worth comparing this method to the entropy method used in [6] [, 1T,
26]. The entropy method has the great virtue of generality - the theorems
encompass many models all at once. The method we employ here has the
virtue that the results are stronger—we show optimality on the level of the
internal energy, which is both a physical observable and the derivative of
the free energy—and that it can be used to prove tight bounds in a wide
variety of situations, albeit with much model-specific work required.

In another direction, extremal bounds in the Potts model on graphs of
maximum degree d are given by Sokal [22], proving that all zeros of the
chromatic polynomial, Pg(q), have modulus bounded by 7.963907d. The
complete graph K1 shows that a linear bound in d is best possible. Given
our results here, it would be interesting to find the sharp constant in the
upper bound; that is, over all d-regular graphs G what is the supremum of
R(G) where

R(G) = max{|r| : r € C, Pg(r) = 0}.

In particular, for d > 4, do we have R(G) < R(K44)? And for d =3 do we
have R(G) < R(K,) = 37 For more, see the discussion in Section 9 of [23].

2. MAXIMIZING THE NUMBER OF ¢-COLORINGS OF d-REGULAR GRAPHS

If we take 8 — oo in the Potts model, we bias more and more against
monochromatic edges, and thus if a proper g-coloring of G exists, the ‘zero-
temperature’ anti-ferromagnetic Potts model is simply the uniform distri-
bution over proper g¢-colorings of G. The limit of the partition function
limg_,o Z&(8) = Cy(G), the number of proper g-colorings of G. Maxi-
mizing Cy(G) over different families of graphs has been the study of much
work in extremal combinatorics. Linial [15] asked which graph on n vertices
with m edges maximizes Cy(G). After a series of bounds by Labeznik and
coauthors [12] 13, [14], Loh, Pikhurko, and Sudakov [16] gave a complete
answer to this question for a wide range of parameters ¢, n, m, using the
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Szemerédi’s Regularity Lemma to reduce the maximization problem over
graphs to a quadratic program in 2¢ — 1 variables.

A similar question in a very different setting is to ask which d-regular,
n-vertex graph maximizes the number of g-colorings; or, given that Cj is
multiplicative when taking disjoint unions of graphs, which d-regular graph
maximizes ﬁ log Cy(G)? Although neither question specifies the sparsity
of the graph, one can think of Linial’s question as a question about dense
graphs and this question as one about sparse graphs (and the techniques
of [16] and this paper reflect this: the Regularity Lemma primarily concerns
dense graphs, while statistical mechanics is primarily concerned with sparse,
regular graphs).

For regular graphs, Galvin and Tetali [9] conjectured that K 4 maximizes
the normalized number of g-colorings over all d-regular graphs.

Conjecture 3 (Galvin—Tetali [9]). For any ¢ > 2, d > 1, and all d-regular
graphs G,

) Col @V < Cy(Kga) 2.

In the same paper they prove that holds for all d-regular, bipartite
G. In the language of graph homomorphisms, Cy(G) counts the number of
homomorphisms from G into K, and their results holds for the number of
homomorphisms of a d-regular bipartite G in to any target graph H.

Before this work, Conjecture |3| was not known for any pair (q,d) apart
from the trivial cases d = 1, d = 2, and ¢ = 2 (see Section . However,
significant partial progress was made in addition to the bipartite case. Em-
ploying the bipartite swapping trick, Zhao [26] showed that for ¢ > (2n)%"~2,
the bipartiteness restriction could be removed for graphs on n vertices.
Galvin [7] then reduced the lower bound on ¢, showing that ¢ > 2(””51/ 2)
suffices. Dependence on n in the number of colors is of course not ideal, as
it does not prove Conjecture (3| for any pair (g,d), but it does restrict the
class of possible counterexamples. In another direction of partial progress
on Conjecture [3| Galvin [§] gave an upper bound on Cy(G) for all d-regular
G, that is tight, asymptotically in d, on a logarithmic scale.

The following lemma relates bounds on internal energy per particle to
bounds on the number of g-colorings.

Lemma 1. Fizd,q. If for all d-reqular G, and all 8 > 0, UL(B) > U}Z(dd(ﬁ),
then holds.
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Proof. Let G be any d-regular graph. If Cy(G) = 0 then clearly holds.
Otherwise, we take logarithms and write

1 1
logC,(G) = lim log ZL(B
i) sl = i s Ze )
=logg— [ ULB)dB
<logg— [ UL, (8)dp
1
= ﬁ log Cq(Kd,d) . O

As a corollary of Theorem [I] and Lemma [, we prove Conjecture [3] for
d =3 and all q.

Corollary 1. For any 3-regular graph G, and any q > 2,
Co( @)V < Cy(K55)1/°,
with equality if and only if G is a union of K33’s.

We remark that in a similar fashion, Theoremgives that C,(G)Y/ V(@I >
C'q(K4)1/ 4 for all cubic graphs G, but this result was recently proved for all
d by Csikvari (see [27]).

Theorem 4 (Csikvari). For all d, all ¢ > 2, and all d-reqular G,
Cq(g)l/lV(G)\ > C’q(Kd+1)1/(d+1).
Csikvéri and Lin [3] also proved that for any d-regular, bipartite G,

A2
Co(@VIV O > ¢ (“) ,
N q
a result that, for ¢ large enough as function of d, is tight asymptotically for
a sequence of bipartite graphs of diverging girth.

3. PrRooF oF THEOREM [I]

In this section we prove Theorem [I] by formulating and solving the LP
described in the introduction. For brevity we drop the superscripts in no-
tation for partition functions and internal energy of a graph G, writing Zg
and Ug for these quantities.

Recall the experiment which defines the local view: draw a coloring o €
[q]V(G) according to the g-color Potts model with inverse temperature 8 and
independently, uniformly at random choose a vertex v € V(G). The local
view consists of the induced subgraph of G on v U N(v), together with, for
each u € N(v), the multiset of colors that appears in N(u) \ ({v} U N(v)).
Four examples are pictured in Figure [ As noted in the introduction, our
calculations depend only on the number of ‘external neighbors’ of vertices
u € N(v) which receive each color, and not the graph structure between
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(b) Local view Cy

(c) Local view with 1 triangle  (d) Local view with 2 triangles

Figure 1. Example local views. Figures @ and show, up
to permutations of the colors, the only local views which can
arise in K3 3. The colored, numbered vertices are represen-
tations of the multiset of colors that appear in the boundary

N(u)\ ({v} UN(v)) for u € N(v).

these external neighbors. For clarity we draw the vertices themselves. Let
Cq4 denote all possible local views for the g-color Potts model on cubic graphs.

As ¢ grows larger the number of possible local views grows like g@=1).
However, if we consider equivalence classes of the local views under permu-
tations of the colors (as detailed below), the number of possible local views
is bounded in terms of d. This makes the LP finite for any fixed d. For a
complete list of local views (up to equivalence) for d = 3 see Appendix

Suppose that the local view C arises from selecting the coloring o and
the vertex v. We refer to the colored ‘external neighbors’ at distance two
from v as the boundary, and write Vo for the set of uncolored vertices in
C, so that the set of g-colorings of these vertices is [¢]"¢. The coloring o
induces a local coloring x € [q]"¢ that, by the Markov property of the Potts
model, is distributed according to the Potts model on C. For x € [q]V(),
write m(x) for the total number of monochromatic edges in C' (including any
monochromatic edges between Vi and the boundary), and given a vertex
u € Vo write my,(x) for the number of monochromatic edges in C incident
to u. Then, with the local partition function defined as

Zo(q, B) =Y, e Pm,
x€lq)¥e
a local coloring x € [¢]"¢ is distributed according to
e—Bm(x)
XH— ————.
ZC(Q» 6)
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This fact means that we can interpret the internal energy per particle as
an expectation over the random local view C and local coloring x. Each
edge of G is incident to exactly two vertices, hence

1
UG(IB) = |V(G)|E0[m(0)]
1
R — P, (uv monochromatic)
2‘V(G)’ UE;(G) ue%(v)

1
= 5IEE,C [ P(uv monochromatic\C)}
uEN (v)
1

= §EC:X [my(X)] -

Moreover, since G is regular, a neighbor of v chosen uniformly at random is
distributed uniformly over V(G), giving

1

Ua(f) = gEex[; Y mul)].
u€EN(v)

Given these observations, for a local view C' we define
1 _
U=y 3 mule 0,

x€lq]Ve

1 —fAm
Ué'v = 62 Z Z mu(X)e A (X)7
c Xe[q}VC ’LLEN(U)

so that
Uc(B) = EclU¢] = Ec[UF],

giving us a constraint on probability distributions on local views that holds
for all distributions arising from graphs.
We can now define the two LP’s for the g-color Potts model,

{Umin, Um**} = {Minimum, Maximum} of Z pcU& subject to

ey
pc > 0VC € Cy,

> pe=1,

cec,

Z pc(Ug«—Ué«V) =0,
Cec,

The final constraint is an example of a consistency condition that holds for
all distributions on local views which arise from the experiment on a graph
defined at the beginning of this section.
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3.1. Minimizing. For the minimization problem, the dual program (with
variables A, A) is

U™ — max A subject to

A AUE-UY) <UL  vCeg,.

For a given 8 > 0 and ¢ > 2, to show that U™ = U, K33 Via linear program-
ming duality, we must find A* so that the assignment A = Uk, ,, A = A* is
feasible for the dual. That is,

(3) Uk, s + A" (UL - UY) < U

for all C € C,.
In fact it suffices to show on a subset of C;. We say C,C’ € C, are
equivalent if

UG = UG and UY = UL

as functions of ¢ and . For instance if C' is obtained from C’ by a per-
mutation of the g-colors, then C' and C’ are equivalent by symmetry. This
equivalence relation partitions C, into equivalence classes. Call this set of
equivalence classes C;. We always choose a representative member of the
equivalence class that has an initial segment of the colors [¢] on its bound-
ary, and write go for the total number of colors on the boundary of a local
view C. For d = 3 and arbitrary g there are 35 non-isomorphic equivalence
classes which we list in Appendix [A]

We give the local views that arise in the optimizing graphs names, writing
Cy and Cy (see Figure for representatives of the only two equivalence
classes of local views are that can appear with positive probability when
G = K33. In Ky, the only local view that can arise is isomorphic to Ky
itself.

To find a value of A* we solve the dual constraint corresponding to local
view Cy (Figure to hold with equality when A = Uk, ,:

Uk, s + A" (UE, —UE) =Ug, .
Writing A = e (so that 0 < A < 1), we find

Zoy =N 4+q—134+ (-1 +X+q—2)3,

Y = 22301 (W14 A% 4 (g DA+ A+ - 2)?)
vl = 22101 (3331422 + (g = DA+ 222 (A2 + A+ ¢ — 2)?)
and hence
UY — U8 = 2 A1—- Mg - 1D+ A+q—2)°.

27¢,
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Then we calculate
Ziys =a(X +q—1)° +3¢(q — 1)(A2 + X+ ¢ —2)°+
alg—1)(q—2)(BX+ ¢ —3)%,

3
Uk, s = 4 ()\3()\3+q—1)2+)\(q—1)(q—2)(3)\+q—3)2+
! 2ZK3’3

(= D)\ + N2+ A+ q— 2)2> ,

B 3¢(1 - \)?
2002 + XN +q—2)2Zx, ,

P ()\2 LN 1) ¢+ (/\5 130 2003 — 410 + 17) O+

(2 (A4 9A% + 2207 4+ 270 + 13) (A — 1)°+

(8M"+ 3145 + 91X 47X — 57) (A - 1)%¢°+

(2541 + 82X° + 14632 + 220 — 95) (A — 1)¢*+

(22° + 36T+ 87X° 4 93)% — 314 — 79) (A - 1)4q> .
Claim 1. For all ¢ > 2 and all 8 > 0, the function

SLACK(C) = Ug + A*(UY — U8) — Uk,

with A* given by is tdentically O for C € {C1,C2} and strictly positive
for all other C € Cy.

Claim [1limmediately proves that Ug(8) > Uf. . (8). To show uniqueness,
observe that strict positivity of the slack function implies via complemen-
tary slackness that the support of any distribution achieving the optimum
must be contained in {C1, Ca}; K33 is the only connected graph whose dis-
tribution satisfies this. To see this note that, for any other connected cubic
graph, there exists a vertex v with two neighbors w1, us such that the ex-
ternal neighborhoods of u; and ug are distinct. Then there exists a coloring
such that the external neighbors of u; are monochromatic, whilst those of
ug are not. This means a local view not isomorphic to C; or Cy appears
with positive probability.

In order to prove Claim [I, we change variables and multiply the slack
by a positive scaling factor, carefully chosen to result in a polynomial with
positive coefficients. Write r = ¢ — 3 and t = ef — 1 = 1/A —1, so that for
any ¢ > 3 and 8 > 0 we have r > 0 and ¢t > 0. It then suffices to show that
the following scaling of the slack is non-negative:

s AQ+D)T(r(1+1)* + % + 3t + 3)?
(5) Sc= 1+ ((?j_+)r)t—; +3t+3) Zis 320 - SLACK(C).
In fact something stronger is true:
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Claim 2. For all C € C;, Sc is a bivariate polynomial in v and t with
all coefficients positive. The polynomial is identically 0 if and only if C' €
{Cy,Cs}.

For the case ¢ = 2 we do something slightly different.

Claim 3. For all C € Cj (which necessarily use at most 2 colors on the
boundary), evaluating Sc at r = —1 yields a polynomial in t with positive
coefficients. The polynomial is identically O if and only if C' € {C1,Cy}.

Claims [2{and |3 are proved by simply computing the functions S¢ for each
of the 35 equivalence classes in C(’], simplifying and collecting coefficients.

We include in Appendix [B] an explanation of a computer program used
to compute S¢ for each local view C'. A version of the program in the Sage
mathematical language and its output are available as ancillary files in the
arXiv submission of this paper. Each of the steps the program performs are
readily achievable by hand, though the number of steps and the size of the
polynomials involved make this unappealing.

The output shows a list of S¢ for all 35 non-isomorphic local views,
demonstrating that it is zero for C; and C3 and a non-zero polynomial
in 7 and t with non-negative coefficients for all other C. It also shows S¢
evaluated at » = —1 for local views C' which use at most 2 colors on the
boundary, yielding a non-zero polynomial in ¢ with non-negative coefficients
for all such C except C7 and (5, as desired.

3.2. Maximizing. To show that K is the unique maximizer of the LP is
somewhat more straightforward. Since the distribution yielding K4 as a
local view with probability one is feasible in the LP, it suffices to show that
Uk, > Ug for all C # Ky,

Claim 4. Let
(6) Dg = 201+ )" Zx, Zet > (UY, — US).

Then for all C € Cq, D¢ is a polynomial t = e —1=1/A—1ands =
q —max{3, gc} with all positive coefficients, and identically O if and only if
C=Kjy.

Since local views with go > ¢ cannot occur, for ¢ > 3 and 8 > 0 we have
s> 0 and t > 0 and hence Claim E| implies Uy, > Uy for all C' # K. The
quantity D¢, is listed for all 35 non-isomorphic local views in Appendix @
Again, for ¢ = 2 we must do more; for C' € C) we list D¢ evaluated at ¢ = 2,
observing that it is a polynomial in ¢ with non-negative coefficients, except
for K4 where it is zero.

As with the computations for S, we use a computer to multiply polyno-
mials and obtain D¢ for each local view, see Appendix @
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4. EXTENSIONS TO d > 47

How might we extend Theorem [I| to graphs of larger degree? The min-
imization program defined above in Section [3] is not tight in general: we
can in fact see that it is underconstrained by comparing the number of con-
straints (2) to the number of equivalence classes of local views in the support
of the distribution induced by Kg 4, which is the partition number of d — 1
when ¢ > d — 1, and always more than 2 if d > 4 and ¢ > 2.

There is a large family of constraints that we can add to the program.
Let 84,4 be the set of all g-partitions of size d; that is, partitions of d into at
most g parts which we represent by vectors of length ¢ with non-negative in-
teger entries that sum to d, written in non-decreasing order. Any g¢-coloring
x of d vertices induces a g¢-partition; for instance if x assigns the colors
{1,4,2,2,1,2}, then the g-partition H(x) = {3,2,1,0} € Ss6. Our family
of constraints will be that for every S € S, 4, the probability that the neigh-
bors of v receive a coloring with g-partition S equals the average probability
of the same for a neighbor of v.

Both of these probabilities can be computed as expectations over the
random local view. For a local view C' and a g-partition S € S, 4 we define

1
e = Zc Y Lmeavey=sy € 7",
x€lq)¥e

Ns 11 o
w0 i=go D Y Laava=sy e Y.
Xe[q]VC u€N (v)

Observe that for any graph and any g-partition S, we must have

S N,S
Eclye]l =Eclve™]
Our minimization program becomes
U™ = Minimum of Z pcU¢ subject to

C
pc > 0VC,

ch =1,

C

ch(fyg’s — fyév’s) =0 forall S €S, 4.
C

This program is at least as strong as the one used in Section the
g-partition constraints together imply the constraint Ec[Ug] = Ec[UZ].

We can solve this program for small values of d and fixed 8, which leads
us to the following conjecture.

Conjecture 4. The above minimization LP is tight ford > 3,q > d+1 and
all 8 >0, and shows that

UL, (8) < UL(B)
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for all d-regular G.

However we can also find values of 3 for d > 4, ¢ < d so that U™ < U}J{d 2
and so we believe that this program is not tight in these cases.

5. 2-REGULAR GRAPHS AND OTHER EASY CASES

Theorem |I| shows that K33 is optimal on the level of internal energy per
particle in the Potts model, and by Corollaryit maximizes WIGH log Cy(G)
over cubic graphs G. For arbitrary d, in the case ¢ = 2, the fact that
K44 maximizes WIGM log Cy(G) over d-regular G follows simply from the
observation that K4 is the smallest bipartite d-regular graph. Indeed for
q = 2, if G is not bipartite then Cy(G) = 0 and if G is bipartite Cy(G) =
2# connected components of G‘

For d = 2, the only d-regular connected graphs are cycles, and there is an
explicit formula for the g-color Potts partition function of the n-cycle. In
the language of statistical physics the 1-dimensional Potts model (including
the O-temperature Potts model) is exactly solvable:

Z& (B)=(qg—1)(e P —1)"+ (P +q—1)"

One way to obtain this formula is to use the mapping of the Tutte polynomial
T'(x,y) to the Potts partition function, given in e.g. [24], and then using the
formula T¢, (z,y) = 5 +v.

Taking the logarithmic derivative gives:

n—1
(7) U, (8) = = (z:qul))n ++ q-1
e P_1 q—1
Proposition 1. If 5 > 0 then
U (B) > UL (B) forn >3 odd,
UL (8) <UL ., (B) forn >4 even.

If B < 0 then
U¢ (B) > Ugnﬂ(ﬁ) for all n > 3.

Proof. Let 8 > 0 and suppose that n > 3 is odd. Let z := 1+ e,g_l. By
(@, we then have that UZ (8) > Ugn+

if and only if

2
(8) 2" + xn—&-l > xn—l + $n+2.

Since n is odd, holds if and only if  + z? > 1 + 23 which holds since
x < —1. For even n > 4, the proof is the same.

Suppose now that 5 < 0 and n > 3. Defining x as before, we have that
& > 0. In this case, the inequality UZ, (8) > Ug’n+1 (8) simply reduces to the

inequality 2" (1 — z)? > 0. O
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Letting Z; denote the infinite line we have that

(9)

676
= lim U (B).

q —
UZ1(B)_€—B_|_Q_1 n—00

Taking the limit here is justified as the Potts model on Z; is in the Gibbs
uniqueness regime for all ¢, 5 > 0.

Corollary 2. Conjectures[1}, [3, and[3 hold for d = 2. Moreover, If 3 > 0

then
Ug, (8) > U (B) forn >3 odd,
Ugn(’B) < Ugl (B) forn >4 even.
If B <0 then
UL (B) > U (B) for alln > 3.
Proof. This follows from Proposition [I] and @ 0
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APPENDIX B. COMPUTING PROPERTIES OF LOCAL VIEWS

The verification that, for each of the local views shown in Appendix [A]
the scaled slack and the scaled difference (6)) are non-negative (and zero
where required) was done with the aid of a computer. Here we describe some
additional considerations required to perform this verification for arbitrary
q and (3.

As noted in Section [3] the number of equivalence classes of local views
we must consider is bounded independently of ¢, and we only consider rep-
resentatives of each equivalence class that use an initial segment of colors
from {1,...,6} on the boundary. In order to compute the partition function
and other properties of a local view C, one is required to consider the ¢*
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possible local colorings of Vo. This too can be done in a way that is bounded
independently of ¢ by considering equivalence classes of local colorings.

Let C be a local view (that uses an initial segment of {1,...,6} on the
boundary) and recall that g¢ is the largest color appearing on the boundary
of C. Then given a local coloring x of V¢, we can only see at most go + 4
colors. After permuting colors not used on the boundary, we may assume
that y consists only of colors in [g¢] and initial segment of {gc+1,...,qc+4}
(which may be empty). This means we are considering equivalence classes
of local colorings and choosing a representative y of each class such that,
together with the colors on the boundary, we only ever color C' with an
initial segment of [go + 4].

Then for arbitrary ¢ it suffices to consider at most go + 4 < 10 colors in
the calculations for Z¢, U4, and Uév . Given the set Q¢ C [gc + 4]VC of
representative local colorings x such that x uses an initial segment (which
may be empty) of the colors {gc+1,...,q9c+4}, and writing ¢ for the largest
color used in y, the Potts model on C induces the distribution
e (1790) i £ > go
e—Bm(R)

Zc

X —

otherwise

on x € Qc.

The consideration of these equivalence classes of local colorings means
that for any 3, ¢, and C, the quantities Z¢, U, and Uév may be computed
by summing over Q¢ whose size is bounded independently of ¢q. Using this
simplification, we used a SageMathﬂ computer program (hosted with the
arXiv version of this paper) to compute the scaled slack function Sc and
the scaled difference D¢ for each of the 35 local views. The program can be
used to generate a document (included as a supplementary file) containing
all the required polynomials so that the reader may verify the proof. In
addition the program can check itself for non-negative coefficients and print
these observations on request.
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