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EXTREMIZING ALGEBRAIC CONNECTIVITY SUBJECT

TO GRAPH THEORETIC CONSTRAINTS�
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Dedicated to Hans Schneider on the occasion of his seventieth birthday.

Abstract. The main problem of interest is to investigate how the algebraic connectivity of a
weighted connected graph behaves when the graph is perturbed by removing one or more connected
components at a �xed vertex and replacing this collection by a single connected component. This
analysis leads to exhibiting the unique (up to isomorphism) trees on n vertices with speci�ed diameter
that maximize and minimize the algebraic connectivity over all such trees. When the radius of a
graph is the speci�ed constraint the unique minimizer of the algebraic connectivity over all such
graphs is also determined. Analogous results are proved for unicyclic graphs with �xed girth. In
particular, the unique minimizer and maximizer of the algebraic connectivity is given over all such
graphs with girth 3.

AMS subject classi�cations. 05C50, 15A48
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1. Introduction. A weighted graph is an undirected graph G with the additional
property that for each edge " in G, there is an associated positive number, w("), called
the weight of ". In the special (but important) case when all the weights are equal
to 1, we refer to G as an unweighted graph. Given any weighted graph G on vertices
1; 2; : : : ; n, we de�ne its Laplacian matrix L = (lij) as follows,

lij =

8>><
>>:

�w("); if i 6= j and " is the edge joining i and j;
0; if i 6= j and i is not adjacent to j;

�
X
k 6=i

lik; if i = j:

It is routine to verify that the LaplacianmatrixL of a weighted graphG is a symmetric
positive semide�nite M -matrix, and since the all ones vector is a null vector, L is
always singular. Fiedler [F1] showed that 0 is a simple eigenvalue whenever G is
connected. The second-smallest eigenvalue of L, called the algebraic connectivity (see
[F1]) has received much attention recently; see, e.g., [C, M2, M3, MO2] for surveys
and books, [GM1, GM2, KN, KNS, M1], for applications of the algebraic connectivity
of trees, and [FK, GMS, MO1], for applications of the algebraic connectivity of graphs.
As the name suggests, it seems to provide an algebraic measure of the connectivity
of a weighted graph. (See [F1] for a number of results which demonstrate reasons for
choosing such a name for this eigenvalue.)
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The eigenvectors corresponding to the algebraic connectivity, called Fiedler vec-
tors, also are of interest. Motivated by [F2, Thms. 3.12, 3.14] Fiedler vectors have
received much attention recently; see, e.g., [FK, KN, KNS]. Let G be a connected
graph with more than one vertex. A vertex v of G is called a point of articulation (or
cutpoint) if G n v, the graph obtained from G by removing v and all of its incident
edges, is disconnected. A graph with no points of articulation is called 2-connected,
and a block in a weighted graph G is a maximal 2-connected subgraph. Equivalently,
the blocks of the graph G are the subgraphs induced by the edges in a single equiv-
alence class, given via the following relation: any two edges are equivalent if and
only if there is cycle in the graph containing both edges; see also [F2]. We adopt the
following terminology from [F2]: for a weighted graph G and Fiedler vector y, we say
y gives a valuation of the vertices of G, and for each vertex i of G, we associate the
number yi, which is the valuation of vertex i. With this terminology in mind we now
state the following theorem of Fiedler [F2], which describes some of the structure of
a Fiedler vector. We note that the statement of this result in [F2] is for unweighted
graphs, but the proof carries over verbatim for the general case.

Theorem 1.1. [F2] Let G be a connected weighted graph, and let y be a Fiedler
vector of G. Then exactly one of the following two cases occurs.
Case A: There is a single block B0 in G which contains both positively and negatively
valuated vertices. Each other block of G has either vertices with positive valuation
only, vertices with negative valuation only, or vertices with zero valuation only. Every
path P which contains at most two points of articulation in each block, which starts
in B0 and contains just one vertex v in B0 has the property that the valuations at
the points of articulation contained in P form either an increasing, or decreasing,
or a zero sequence along this path according to whether yv > 0, yv < 0, or yv = 0,
respectively; in the last case all vertices in P have valuation zero.
Case B: No block of G contains both positively and negatively valuated vertices. There
exists a unique vertex z which has valuation zero and is adjacent to a vertex with
non-zero valuation. This vertex z is a point of articulation. Each block contains
(with the exception of z) either vertices with positive valuation only, vertices with
negative valuation only, or vertices with zero valuation only. Every path P which
contains at most two points of articulation in each block, and which starts at z has
the property that the valuations at its points of articulation either increase, in which
case all valuations of vertices on P are (with the exception of z) positive, or decrease,
in which case all valuations of vertices on P are (with the exception of z) negative,
or all valuations of vertices on P are zero. Every path containing both positively and
negatively valuated vertices passes through z.

We note here that Theorem 1.1, in either case, seems to identify a \middle" of
the graph G (i.e., the special block B0 in Case A, or the special vertex z in Case
B), such that as we move through points of articulation away from that middle, the
entries in the Fiedler vector behave monotonically. Throughout this paper we only
consider connected weighted graphs.

In the special and well-studied case when G is a weighted tree, every non-pendant
vertex is a point of articulation and the blocks are simply the edges of G. Conse-
quently, Theorem 1.1 gives plenty of information on the Fiedler vectors for a tree.
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For brevity, when Case B holds, the tree is called a Type I tree and the special vertex
z is the characteristic vertex; when Case A holds, the tree is said to be Type II and
the vertices which are the end points of the special block B0 (which is an edge) are
called characteristic vertices of the tree. Algebraic connectivity and Fiedler vectors
for trees have been well studied recently; see, e.g., [GM1, GM2, KN, KNS, M1].

A theme used throughout this paper is to consider the connected components
at a vertex and look at the inverses of the principal submatrices of the Laplacian
corresponding to those components; see also [FK, KN, KNS]. Each such inverse A
is entry-wise positive, and so by Perron's Theorem (see [HJ] for a discussion of the
Perron-Frobenius theory) A has a simple positive dominant eigenvalue, called the
Perron value and is denoted by �(A), and a corresponding eigenvector with all entries
positive, called the Perron vector.

To be more precise, let G be a weighted graph with Laplacian L. For a vertex
v of G, we refer to the connected components of G n v as the connected components
at v, and denote them by C1; C2; : : : ; Ck (note that k � 2 if and only if v is a point
of articulation); for each such component let L(Ci) be the principal submatrix of L
corresponding to the vertices of Ci. Similarly, if y is a vector and v is a vertex of G,
then we denote the entry in y corresponding to vertex v by y(v). For any connected
component Ci, we refer to L(Ci)�1 as the bottleneck matrix for Ci; see [KNS], where a
bottleneck matrix is de�ned in the case of trees. The Perron value of Ci is the Perron
value of the entry-wise positive matrix L(Ci)�1, and we say that Cj is a Perron
component at v if its Perron value is maximal among C1; C2; : : : ; Ck.

The following results, taken from [FK], demonstrate how the concepts of algebraic
connectivity and Fiedler vectors for weighted graphs can be reformulated in terms of
Perron components and bottleneck matrices. We let e denote the all ones vector, and
J denote the matrix of all ones (J = eeT ).

Proposition 1.2. [FK] Suppose G is a weighted graph with Laplacian L and
algebraic connectivity �, and that Case A of Theorem 1.1 holds. Let y be a Fiedler
vector, and let B0 be the unique block of G containing both positively and negatively
valuated vertices in y. If v is a point of articulation of G, then let C0 denote the set
of vertices in the connected component of Gnv which contains the vertices in B0, and
let C1 denote the vertices in GnC0. If necessary, permute and partition the Laplacian
(which we still denote by L) as

L =

2
664

0
L(C1)

��T

0 � � L(C0)

3
775

(here vertex v corresponds to the last row of L(C1)), and partition y as [yT1 ; y
T
0 ]

T . If
y(v) 6= 0, then

L(C1)
�1 +

�T y0
�T e(�T ey(v) � �T y0)

J

is a positive matrix whose Perron value is 1=� and whose Perron vector is a scalar
multiple of y1.
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Proposition 1.3. [FK] Let G be a weighted graph with algebraic connectivity �.
Case A of Theorem 1.1 holds if and only if there is a unique Perron component at
every vertex of G. Case B of Theorem 1.1 holds if and only if there is a unique vertex
z such that there are two or more Perron components at z. Further, in this case
the algebraic connectivity � of G is given by 1=�(L(C)�1) for any Perron component
C at z, and the algebraic multiplicity of � is one less than the number of Perron
components at z.

Proposition 1.4. [FK] Let G be a weighted graph. Then one of the following is
always satis�ed.
(i) If Case A of Theorem 1.1 holds with B0 as the unique block of G containing both
positively and negatively valuated vertices, then for every vertex v of G, the unique
Perron component at v is the component containing vertices in B0.
(ii) If Case B of Theorem 1.1 holds with vertex z as the unique vertex which has
valuation zero and is adjacent to a vertex with non-zero valuation, then for any vertex
v 6= z, the unique Perron component at v is the component containing z.

We illustrate Proposition 1.3 with the following example.

Example 1.5. Let G be an unweighted connected graph with cut-point v, and
connected components C1; C2; : : : ; Ck, at v. Then the algebraic connectivity of G is
at most one. This can be seen as follows: form ~G from G by adding edges so that v is
adjacent to every other vertex, and so that within each connected component Ci at
v, all possible edges are present. A result of Fiedler ([F1]) implies that the algebraic
connectivity ~� of ~G, is at least �, the algebraic connectivity of G. A straightforward
calculation shows that each connected component at v (in ~G) has Perron value one.
Thus by Proposition 1.3, Case B holds for ~G, and ~� = 1 (with algebraic multiplicity
k � 1). Hence � � 1, as desired.

In Section 2 of this paper we investigate the behaviour of the algebraic connec-
tivity of weighted graphs when one or more connected components of the weighted
graph is replaced by a single connected component. In the next section we use the
results of Section 2, and others to determine the unweighted trees on n vertices with
a speci�ed diameter which maximize and minimize the algebraic connectivity over all
such trees. These results are then used to determine the minimizer of the algebraic
connectivity over all connected graphs with speci�ed radius and number of vertices.
Finally, in Section 4 we prove analogous results (as in Section 3) for unicyclic graphs
with �xed girth. In particular, when the girth is 3, we exhibit the unique minimizer
and maximizer over all such unicyclic graphs.

2. Graph Perturbation Results. We begin with some notation. For square
entry-wise nonnegative matrices A and B (not necessarily of the same order), we use
the notation A � B to mean that there exist permutation matrices P and Q such
that PAPT is entry-wise dominated by a principal submatrix of QBQT , with strict
inequality in at least one position in the case A and B have the same order. Note
that if A� B, then for all " � 0 such that both A� "J and B � "J are positive, we
have �(A � "J) < �(B � "J). For any symmetric matrixM we let �1(M ) denote the
largest eigenvalue of M . We begin with two lemmas.
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Lemma 2.1. Suppose G is a weighted graph with Laplacian L, and that Case A
of Theorem 1.1 holds. Let B0 be the unique block of G containing both positively and
negatively valuated vertices. Suppose v is a point of articulation of G. As before let
C0 denote the set of vertices in the connected component of G n v which contains the
vertices in B0, and let C1 denote the vertices in G n C0. Assume (without loss of
generality) that L is partitioned as

L =

2
664

0
L(C1)

��T

0 � � L(C0)

3
775 :

If there exists an x > 0 such that

1

�
= �(L(C1)

�1 �
1

�T e
J +

x

�T e
J) = �1(L(C0)

�1 �
x

�T e
J);

then � is an eigenvalue of L.
Proof. Let y1 and y0 be eigenvectors corresponding to 1

�
for the matrices

L(C1)�1 � 1
�T e

J + x
�T e

J and L(C0)�1 � x
�T e

J , respectively. If eTy0 = 0, then

1

�
y0 = (L(C0)

�1 �
x

�T e
J)y0 = L(C0)

�1y0;

so that 1
�
�T y0 = �TL(C0)�1y0 = eT y0. Hence �T y0 = 0. It follows that [0T ; yT0 ]

T is
an eigenvector of L corresponding to the eigenvalue �.

So suppose eTy0 6= 0, and normalize y1 and y0 so that eTy0 = �eT y1. We have

L(C1)
�1y1 �

1

�T e
Jy1 +

x

�T e
Jy1 =

1

�
y1;(1)

which yields �y1 = L(C1)y1 � (x � 1)�eveTy1, since L(C1)e = (�T e)ev , where ev is
the standard basis vector with a unique 1 in the entry corresponding to v. Also

L(C0)
�1y0 �

x

�T e
Jy0 =

1

�
y0;(2)

which implies �y0 = L(C0)y0 +
�xeTy0
eT �

�. Now (2) implies �TL(C0)
�1y0 � xeT y0 =

1
�
�Ty0, which in turn implies (1�x)eTy0 =

1
�
�T y0. Thus L(C1)y1�(x�1)�eveT y1 =

L(C1)y1 � (�T y0)ev. Hence �y1 = L(C1)y1 � (�T y0)ev . Also multiplying on the left
of (1) by eTv gives x

�T e
eTy1 =

1
�
y(v). Thus �y0 = L(C0)y0�y(v)�. We now have that

[yT1 ; y
T
0 ]

T is an eigenvector of L corresponding to �.
Lemma 2.2. Suppose G is a weighted graph with Laplacian L and algebraic

connectivity �, and that Case A of Theorem 1.1 holds. Let B0 be the unique block
of G containing both positively and negatively valuated vertices. Suppose v is a point
of articulation of G. As before let C0 denote the set of vertices in the connected
component of G n v which contains the vertices in B0, and let C1 denote the vertices
in G nC0. Assume (without loss of generality) that L is partitioned as
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L =

2
664

0
L(C1)

��T

0 � � L(C0)

3
775 :

Then there exists an x > 0 such that

1

�
= �(L(C1)

�1 �
1

�T e
J +

x

�T e
J) = �1(L(C0)

�1 �
x

�T e
J):

Proof. Let y be a Fiedler vector and suppose y(v) 6= 0. By Proposition 1.2,

L(C1)
�1 +

�Ty0
�T e(�T ey(v) � �T y0)

J has Perron value 1=�. Now L(C0)y0 = �y0+�y(v),

and since eTL(C0) = �T , it follows that 1
�
y0 = L(C0)�1y0+

y(v)
�
e. Also eTL(C0)y0 =

�T y0 = �eT y0 + eT �y(v). Note that eT y0 6= 0, and therefore 1=� = eT y0=(�
T y0 �

�T ey(v)). Then �
L(C0)

�1 +
y(v)

�T y0 � �T ey(v)
J

�
y0 =

1

�
y0:

Next observe that
y(v)

�Ty0 � �T ey(v)
+

�T y0
�T e(�T ey(v) � �Ty0)

= �1=�T e, so setting x =

��T e(
y(v)

�T y0 � �T ey(v)
), we have

1

�
= �(L(C1)

�1 �
1

�T e
J +

x

�T e
J) = �i(L(C0)

�1 �
x

�T e
J);(3)

for some i. Now if �i(L(C0)�1� x
�T e

J) < �1(L(C0)�1� x
�T e

J), then there exists ~x > x
such that

�(L(C1)
�1 �

1

�T e
J +

~x

�T e
J) = �1(L(C0)

�1 �
~x

�T e
J) =

1

�
;

since the left-hand side of (3) is increasing in x and the right-hand side of (3) is
nonincreasing in x, and so � is an eigenvalue of L (by Lemma2.1). But then 0 < � < �
a contradiction. Hence i = 1 as desired.

Finally, suppose that y(v) = 0. Then, by Theorem 1.1, y1 = 0 and eT y0 = 0,
so that �T y0 = 0 also. We then have that L(C0)

�1y0 = 1
�
y0 and for all x > 0,

L(C0)
�1y0 � x

�T e
J = 1

�
y0, so that �1(L(C0)

�1 � x
�T e

J) � 1
�
, for all x > 0. Now

�(L(C1)
�1 �

1

�T e
J +

x

�T e
J) < �1(L(C0)

�1 �
x

�T e
J)

at x = 0, since C0 is the unique Perron component at v; the left-hand side goes to 1
as x!1, while the right-hand side is nonincreasing in x, so for some x,

�(L(C1)
�1 �

1

�T e
J +

x

�T e
J) = �1(L(C0)

�1 �
x

�T e
J) =

1

�
;
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and � is an eigenvalue of L. Necessarily � � �, from which we conclude � = �.
Since we may wish to replace more than one connected component at a single ver-

tex by a new single connected component we need the following result which describes
the general form of a bottleneck matrix for more than one connected component.

Proposition 2.3. Let G be a connected graph, and suppose that v is a point
of articulation of G, with connected components C1; C2; : : : ; Ck+1 at v. Let D be
a proper subset of the vertices of Ck+1. Without loss of generality, we can write
L(C1 [C2 [ � � � [ Ck [D [ fvg) as2

666664

L(C1) 0 0 0 �L(C1)e

0
.. . 0

...
...

0 0 L(Ck) 0 �L(Ck)e
0 � � � 0 L(D) ��

�eTL(C1) � � � �eTL(Ck) ��T d

3
777775 ;

where d �
kX

i=1

eTL(Ci)e. Then (L(C1 [C2[ � � �[Ck [D [fvg))�1 can be written as

2
4 M + �J �e�T (L(D))�1 �e

�(L(D))�1�eT (L(D))�1 + �(L(D))�1��T (L(D))�1 �(L(D))�1�
�eT ��T (L(D))�1 �

3
5 ;

where � = 1=(d�
kX
i=1

eTL(Ci)e� �T (L(D))�1�), and

M =

2
64

(L(C1))�1 0 0

0
.. . 0

0 0 (L(Ck))�1

3
75 :

Proof. This will follow from a direct computation, provided that we can establish

that d �
kX
i=1

eTL(Ci)e � �T (L(D))�1� is positive. Note that the entire Laplacian

matrix can be written as2
66666664

L(C1) 0 0 0 �L(C1)e 0

0
.. . 0

...
...

...
0 0 L(Ck) 0 �L(Ck)e 0
0 � � � 0 L(D) �� �X

�eTL(C1) � � � �eTL(Ck) ��T d �yT

0 � � � 0 �XT �y L(Ck+1 nD)

3
77777775
:

Now L(D)e = �+Xe, so that �T (L(D))�1� = �T e� �T (L(D))�1Xe. Since each row

sum of L is zero it follows that d =
kX

i=1

eTL(Ci)e+�
T e+yT e. Hence d�

kX
i=1

eTL(Ci)e�
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�T (L(D))�1� = yT e + �T (L(D))�1Xe. Observe that yT e > 0 if and only if there's
an edge from v to some vertex in Ck+1 nD, while �T (L(D))�1Xe > 0 if and only if
there is a walk from v to a vertex in Ck+1 nD going through a vertex in D. Since G
is connected, we see that yT e + �T (L(D))�1Xe is positive, as desired.

We are now in a position to prove our main perturbation results. We divide this
result into two separate statements in accordance with Theorem 1.1.

Theorem 2.4. Suppose G is a weighted graph with Laplacian L and algebraic
connectivity �, and that Case B of Theorem 1.1 holds with vertex z as the unique
vertex which has valuation zero and is adjacent to a vertex with non-zero valuation.
Let v be any point of articulation, with connected components C1; C2; : : : ; Ck at v. Let
Ci1 ; Ci2; : : : ; Cij be any collection of connected components at v such that the vertex

set C = [jl=1Cil does not contain the vertex set of every Perron component at v.

Form a new graph ~G by replacing C by a single connected component ~C at v. Suppose
that the bottleneck matrix of ~C is denoted ~M . Denote the algebraic connectivity of ~G
by ~�. If (L(C))�1 = M � ~M , then ~� � �.

Proof. Firstly, suppose v = z. If �( ~M ) � 1=�, then there are still two or more
Perron components at z, and so (by Proposition 1.3) Case B still holds for ~G, with
~� = �. So suppose �( ~M ) > 1=�. Then in ~G, the unique Perron component at z is ~C.
If Case B holds for ~G, then there exists a cut-point ! 2 ~C such that �(D) = 1=~�, for
some Perron component at ! with bottleneck matrix D. But if C0 is the component
at ! containing z, with bottleneck matrix D0, then

1

~�
= �(D) � �(D0) > �(D0) =

1

�
;

where D0 is the bottleneck matrix for some Perron component at z inG not containing
!. (The last inequality follows from the fact D0 � D0.) In this case � > ~�. Finally,
if Case A holds for ~G, note that at z, ~C is the unique component at z with both
positive and negative valuated vertices in any Fiedler vector. If we let �C = ~G n ~C,
then by Lemma 2.2 there exists an x > 0 such that

1

~�
= �(L( �C)�1 �

1

�T e
J +

x

�T e
J) > �(L( �C)�1 �

1

�T e
J) � �(D0) =

1

�
;

where D0 is the bottleneck matrix for some Perron component at z inG not containing
the vertices in ~C. Hence again � > ~�.

Finally, suppose v 6= z and assume without loss of generality that z 2 Ck. By the
de�nition of C it follows that z 62 C. Let C0 be the component at z containing v, and
let D = C0 \Ck. Observe that

(L(C))�1 = M =

2
64

(L(Ci1))
�1 0 0

0
.. . 0

0 0 (L(Cij ))
�1

3
75 ;

Consider the following matrix N = (L(C1 [ � � � [ Ck [ D [ fvg))�1, which is the
bottleneck matrix for the component at z containing v. Using Proposition 2.3 and
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the assumption that M � ~M we obtain corresponding entry-wise domination for the
matrix N . Thus the result follows from the analysis above.

Theorem 2.5. Suppose G is a weighted graph with Laplacian L and algebraic
connectivity �, and that Case A of Theorem 1.1 holds. Let B0 be the unique block
of G containing both positively and negatively valuated vertices. Let v be a point of
articulation of G, with connected components at v being C0, A1; A2; : : : ; Ak, where C0
is the unique Perron component at v (containing the vertices in B0). Let C = [jl=1Ail ,

where i1; i2; : : : ; ij 2 f1; 2; : : :; kg. Form a new graph ~G by replacing C by a single

connected component ~C at v. Suppose the bottleneck matrix of ~C is denoted ~M .
Denote the algebraic connectivity of ~G by ~�. If (L(C))�1 =M � ~M , then ~� � �.

Proof. By Lemma 2.2, there exists an x > 0 such that

1

�
= �(L(C1)

�1 �
1

�T e
J +

x

�T e
J) = �1(L(C0)

�1 �
x

�T e
J);

where C1 = G n C0. Suppose that �( ~M ) = �(L(C0)�1). Then Case B holds for ~G,
with special vertex v, so

1

~�
= �(L(C0)

�1) > �1(L(C0)
�1 �

x

�T e
J) =

1

�
;

so ~� < �.
Suppose �( ~M ) < �(L(C0)�1). Then the Perron component at v is still C0, and

the Perron component at every other vertex contains vertices in B0 (by Proposition
1.4). Hence there exists ~x > 0 such that

1

~�
= �(L( ~C1)

�1 �
1

�T e
J +

~x

�T e
J) = �1(L(C0)

�1 �
~x

�T e
J);(4)

where ~C1 = ~GnC0. Now �(L( ~C1)
�1 �

1

�T e
J +

~x

�T e
J) > �(L(C1)

�1 �
1

�T e
J +

~x

�T e
J)

so necessarily we �nd that ~x < x, since the left-hand side of (4) is increasing in x and
the right-hand side of (4) is nonincreasing in x. Consequently,

1

~�
= �1(L(C0)

�1 �
~x

�T e
J) � �1(L(C0)

�1 �
x

�T e
J) =

1

�
;

so ~� � �.
Finally, suppose that �( ~M ) > �(L(C0)

�1). Then in ~G, if Case B holds for some
z 2 ~C, then 1

~� = �(D) � �(L(V )�1), where D is the bottleneck matrix of some Perron

component at z in ~G and V is the component at z containing v. But C0 � V , so
�(L(V )�1) > �(L(C0)

�1) � �1(L(C0)
�1 � x

�T e
J) = 1=�; hence ~� < �. In ~G if Case

A holds, then at v, ~C is now the component containing positively and negatively
valuated vertices. Thus there exists a t > 0 such that

1

~�
= �1(L( ~C)

�1 �
t

�T e
J) = �(L( ~G n ~C)�1 �

1

�T e
J +

t

�T e
J) > �(L(C0)

�1);
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where the last inequality follows from the fact that ~G n ~C contains C0 [ fvg, so that

by Proposition 2.3
�
L( ~G n ~C)�1 � 1

�T e
J
�
� L(C0)�1 . Note that �(L(C0)�1) �

�1(L(C0)
�1 � x

�T e
J) = 1=�. Again we have ~� < �.

Example 2.6. Suppose G is an unweighted connected graph with algebraic
connectivity �, having cut-point v which is adjacent to k pendant vertices 1; 2; : : : ; k.
Form ~G fromG by replacing vertices 1; 2; : : : ; j, by a single tree on j vertices. Denoting
the algebraic connectivity of ~G by ~�, we have ~� � �. This follows from the fact that
if M is the bottleneck matrix for vertices 1; 2; : : : ; j in G, and ~M is the corresponding
bottleneck matrix in ~G, then M = I � ~M ; see also [KNS]. Consequently Theorems
2.4 and 2.5 apply to G in all but one situation: Case B holds for G, v = z, k = j, and
the only Perron components at v are the single vertices 1; 2; : : : ; k. But in this case
we have � = 1 � ~�, the inequality following from the fact that ~G has a cut-point and
Example 1.5.

3. Unweighted Trees with Fixed Diameter. Recall that in any connected
graph G on vertices 1; 2; : : : ; n, the distance between vertices i and j, d(i; j) is de�ned
to be the length of the shortest path from i to j. (For convention, we take d(i; i) = 0
for all i.) The diameter of G is given by max

i;j
d(i; j), while the radius of G is given by

min
i

max
j

d(i; j). It is straightforward to show that if G has diameter d and radius r,

then r � d � 2r.

....

..

.

1 2 3 1

k l

dd-. . .
{ }

T(k,l,d)

Figure 1.

In this section we consider unweighted trees with a speci�ed number of vertices
and diameter. Our goal is to determine attainable bounds for the algebraic connec-
tivity of a tree in terms of the number of vertices and the diameter. Of course there
has been much analysis done in attempting to provide bounds on the algebraic con-
nectivity in terms of n, the number of vertices, and d, the diameter of G. Speci�cally,
[MO1] proved that the algebraic connectivity of an unweighted graph on n vertices
with �xed diameter d is bounded below by 4=nd. In [M2], it is noted that for trees
with n vertices and �xed diameter d the algebraic connectivity is bounded above by
2(1� cos( �

d+1 )). More recently, in [C] it was shown that the algebraic connectivity of
a graph on n vertices with diameter d, and maximum degree � is bounded above by

1� 2
p
��1
� (1� 2

d
) + 2

d
. In [KN] the authors apply their Perron component approach

for trees to obtain the following result. First we need some notation. Let T (k; l; d) be
the unweighted tree on n vertices constructed by taking a path on vertices 1; 2; : : : ; d,
and adding k pendant vertices adjacent to vertex 1 and l pendant vertices adjacent
to vertex d (n = k + l + d); see also Figure 1.

Lemma 3.1. [KN] For all unweighted trees on n vertices with �xed diameter d+1,
the algebraic connectivity is minimized by T (k; l; d), for some 0 � k � n� d.
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Our next result re�nes the above lemma and determines explicitly (up to isomor-
phism) the graph which minimizes the algebraic connectivity of trees on n vertices
and �xed diameter.

Theorem 3.2. Among all unweighted trees on n vertices with �xed diameter
d+ 1, the minimum algebraic connectivity is attained by T (dn�d2 e; bn�d2 c; d).

Proof. Using Lemma 3.1 it is su�cient to restrict our attention to those trees
isomorphic to T (k; l; d). The Laplacian matrix of such a tree is

L =

2
666666666664

Ik �e 0 0 � � � 0 0
�eT k + 1 �1 0 � � � 0 0

0 �1 2 �1 0 0
...

0 0
.. .

. . .
. . . 0 0

0 0 0 �1 2 �1 0
... � � � 0 0 �1 l + 1 �eT

0 � � � 0 0 0 �e Il

3
777777777775
;

and it is easy to see that the eigenvalues of L are: 1, with algebraic multiplicity
k + l � 2, along with the eigenvalues of the (d+ 2) � (d+ 2) matrix

Mk;l;d =

2
666666666664

1 �1 0 0 � � � 0 0
�k k + 1 �1 0 � � � 0 0

0 �1 2 �1 0 0
...

0 0
.. .

. . .
. . . 0 0

0 0 0 �1 2 �1 0
... � � � 0 0 �1 l + 1 �l
0 � � � 0 0 0 �1 1

3
777777777775
:

Let pk;l;d denote the characteristic polynomial of Mk;l;d. We want to consider the
expression pk;l;d � pk�1;l+1;d. Using the fact that the determinant is multilinear, it
follows that

pk;l;d � pk�1;l;d = ��det

2
66666664

� � 2 1 0 0 0 0
1 � � 2 1 0 0 0

0
. . .

. . .
. . . 0 0

0 0 1 �� 2 1 0
0 0 0 1 �� l � 1 l
0 0 0 0 1 �� 1

3
77777775
;
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where the above matrix is of order d. Similarly, we �nd that

pk�1;l;d � pk�1;l+1;d = �det

2
66666664

� � 1 1 0 0 0 0
k � 1 � � k 1 0 0 0
0 1 �� 2 1 0 0

0 0
.. .

. . .
. . . 0

0 0 0 1 �� 2 1
0 0 0 0 1 � � 2

3
77777775
;

which is also equal to (after applying the permutation similarity: i goes to d� i+ 1,
for 1 � i � d)

�det

2
66666664

�� 2 1 0 0 0 0
1 �� 2 1 0 0 0

0
.. .

. . .
. . . 0 0

0 0 1 �� 2 1 0
0 0 0 1 � � k k � 1
0 0 0 0 1 �� 1

3
77777775
:

Thus

pk;l;d � pk�1;l+1;d = �2(l + 1� k)det

2
66664

�� 2 1 0 0

1
.. .

. . . 0

0
.. .

. . . 1
0 0 1 �� 2

3
77775

(the latter matrix has order d� 2).
Now the linear term in det(�I�L) is the sum of all the (n�1)� (n�1) principal

minors of �L. By the matrix tree theorem (see [BM, p. 219]), this sum is equal to
(�1)n�1n (recall here that n = k+l+d). Furthermore, det(�I�L) = (��1)k+l�2pk;l;d.
Since pk;l;d has a factor of �, we �nd that the linear term of pk;l;d is (�1)d+1n.

Let �k;l;d and �k�1;l+1;d be the appropriate algebraic connectivities and note that
each is at most 2(1�cos( �

d+2 )); see [M2]. It is well known that the smallest eigenvalue
of the (d� 2)� (d� 2) matrix2

66664
2 �1 0 0

�1
.. .

. . . 0

0
.. .

. . . �1
0 0 �1 2

3
77775 ;

is 2(1� cos( �
d�1 )). Hence if 0 < � < min(�k;l;d; �k�1;l+1;d), then we have that

sgn

0
BBBB@det

2
66664

� � 2 1 0 0

1
.. .

. . . 0

0
.. .

. . . 1
0 0 1 �� 2

3
77775

1
CCCCA = (�1)d�2:
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Suppose that 0 < � < �k;l;d, and note that pk;l;d is increasing (respectively, decreas-
ing) at 0 when d is odd (respectively, even), as is pk�1;l+1;d. But for such �,

sgn(pk;l;d � pk�1;l+1;d) = sgn((l + 1� k)�2(�1)d�2):

Suppose that k < l+1. Then sgn(pk;l;d�pk�1;l+1;d) is negative (respectively, positive),
and it follows that �k;l;d < �k�1;l+1;d. A similar argument shows that �k;l;d >
�k�1;l+1;d, when k > l+1. Thus we may conclude that for a tree of diameter d+1 with
n vertices, the minimum algebraic connectivity is attained for T (dn�d

2
e; bn�d

2
c; d).

Corollary 3.3. Let T be any tree on n vertices with diameter d+ 1, and with
algebraic connectivity �. Then

� � �dn�d
2

e;bn�d
2

c;d;

where equality holds if T is isomorphic to T (dn�d2 e; bn�d2 c; d).
Consider graphs on n vertices with �xed radius. We begin with a few lemmas.

Let ei denote the ith standard basis vector.
Lemma 3.4. Let G be the graph obtained from a path on the vertices 1; 2; : : : ; j+1

(where j � 1), by adding k pendant vertices adjacent to vertex 1, and let Fk;j be the
bottleneck matrix for the (only) component at vertex j + 1. Then Fk;j � Fk�1;j+1.

Proof. For Fk;j, label the pendant vertices adjacent to vertex 1 �rst, then Fk;j
can be written as �

Ik + jJ eeT1 Pj
Pje1e

T Pj

�
;

where

Pj =

2
666666666664

j j � 1 j � 2 � � � 2 1

j � 1 j � 1 j � 2 � � � 2 1

j � 2 j � 2
.. .

. . .
...

...
...

...
. . .

. . .
...

...

2 2 � � � � � � 2 1

1 1 � � � � � � 1 1

3
777777777775
:

For Fk�1;j+1, also label the pendant vertices adjacent to vertex 1 �rst, then

Fk�1;j+1 =

2
664

Ik�1 + (j + 1)J (j + 1)e eeT1 Pj

(j + 1)eT j + 1 eT1 Pj

Pje1e
T Pje1 Pj

3
775 :

Evidently, Fk;j � Fk�1;j+1.
Lemma 3.5. Fix n and consider the tree T (k; l; d) of diameter d+ 1. Let Fk;j be

the bottleneck matrix for the component at vertex j + 1 containing vertex j. Let �d
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be the algebraic connectivity of T (bn�d2 c; dn�d2 e; d). Then �d is a strictly decreasing
function of d.

Proof. There are several cases to consider: (i) d odd, n odd; (ii) d odd, n even;
(iii) d even, n odd; (iv) d even, n even.

(i) If both d and n are odd, then T (bn�d2 c; dn�d2 e; d) is a Type I tree with char-

acteristic vertex d+1
2 , and by Theorem 2.4 (see also [KN, Thm. 1]), we �nd that

�d =
1

�(Fn�d
2

; d�1
2

)
:

Also T (n�d�22 ; n�d2 ; d+1) is easily seen to be a Type II tree with characteristic vertices
d+1
2 and d+3

2 . Hence, by Theorem 2.5 (see also [KN, Thm. 1]), for some � 2 (0; 1) we
have

�d+1 =
1

�(Fn�d�2
2

; d+1
2

� �J)
=

1

�(Fn�d
2

; d+1
2

� (1� �)J)
;

since �(Fn�d

2
;
d+1

2

� J) = �(Fn�d

2
;
d�1

2

) we deduce that �d > �d+1.

(ii) For d odd and n even, T (n�d�1
2 ; n�d+12 ; d) is a Type II tree with characteristic

vertices d+1
2 and d+3

2 , so for some � 2 (0; 1),

�d =
1

�(Fn�d�1
2

; d+1
2

� �J)
=

1

�(Fn�d+1
2

; d�1
2

� (1� �)J)
:

On the other hand, T (n�d�12 ; n�d�12 ; d+ 1) has the property that the Perron compo-

nent at d+1
2 is isomorphic to the Perron component at d+3

2 . It follows that

T (n�d�12 ; n�d�12 ; d + 1) is a Type II tree with characteristic vertices d+1
2 and d+3

2 ,
and that

�d+1 =
1

�(Fn�d�1
2

; d+1
2

� 1
2J)

:

If � > 1=2, then

�d =
1

�(Fn�d�1

2
; d+1

2

� �J)
> �d+1;

while if � � 1=2, then

�d =
1

�(Fn�d+1

2
;
d�1

2

� (1� �)J)
�

1

�(Fn�d+1

2
; d�1

2

� 1
2J)

>
1

�(Fn�d�1
2

;d+1
2

� 1
2J)

= �d+1;

where the last inequality follows from Lemma 3.4.
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(iii) When d is even and n is odd, T (n�d�12 ; n�d+12 ; d) is a Type II tree with

characteristic vertices d
2 and d+2

2 , so for some � 2 (0; 1)

�d =
1

�(Fn�d�1

2
; d
2

� �J)
=

1

�(Fn�d+1

2
; d
2

� (1� �)J)
:

However, T (n�d�12 ; n�d�12 ; d+ 1) is a Type I tree with characteristic vertex d+2
2 , so

that

�d+1 =
1

�(Fn�d�1
2

; d
2

)
<

1

�(Fn�d�1
2

; d
2

� �J)
= �d:

(iv) When both d and n are even, T (n�d2 ; n�d
2
; d) is a Type II tree with charac-

teristic vertices d
2
and d+2

2
and isomorphic Perron components at the characteristic

vertices, so we �nd that �d =
1

�(Fn�d
2

; d
2

� 1
2
J)
. But T (n�d�22 ; n�d2 ; d+ 1) is a Type II

tree with characteristic vertices d+2
2 and d+4

2 . So for some � 2 (0; 1),

�d+1 =
1

�(Fn�d�2

2
; d+2

2

� �J)
=

1

�(Fn�d

2
; d
2

� (1� �)J)
:

If � > 1=2, then we have

�d+1 =
1

�(Fn�d
2

; d
2

� (1� �)J)
<

1

�(Fn�d
2

; d
2

� 1
2J)

= �d;

while if � � 1=2 then we have

�d+1 =
1

�(Fn�d�2
2

;
d+2
2

� �J)
�

1

�(Fn�d�2
2

; d+2
2

� 1
2J)

<
1

�(Fn�d
2

; d
2

� 1
2J)

= �d;

by the entry-wise domination of the bottleneck matrices. Thus in all four cases, we
�nd that �d+1 < �d.

Theorem 3.6. Among all graphs on n vertices with �xed radius r, the minimum

algebraic connectivity is attained by T (bn�(2r�1)2 c; dn�(2r�1)2 e; 2r� 1).
Proof. It is easily seen that there is a spanning subtree of G, T with diameter

d satisfying r � d � 2r. Hence �(G) � �(T ) � �d�1, where �(G) denotes the
algebraic connectivity of G. Note the last inequality follows from Theorem 3.2. But
by Lemma 3.5, �d�1 � �2r�1 (with equality holding if and only if d = 2r). Observing

that T (bn�(2r�1)2 c; dn�(2r�1)2 e; 2r � 1) is indeed a graph with radius r, the proof is
complete.

Consider maximizing the algebraic connectivity of trees on n vertices with �xed
diameter. Note that if T is any tree on n vertices with �xed diameter d+ 1, then its
algebraic connectivity is at most 2(1�cos( �

d+2 )); see, e.g., [CDS, p. 187]. Furthermore,
if d is odd, then (by considering Perron components) the tree constructed by taking a
path on vertices 1; 2; : : : ; d+2, and adding n�d�2 pendant vertices to vertex d+3

2 , is a
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Type I tree with characteristic vertex d+3
2 and algebraic connectivity 2(1� cos( �

d+2 )).
This completely solves the problem when d is odd.

Throughout the rest of this section, we take d to be even. Let Pl;d be the tree
constructed by taking a path on vertices 1; 2; : : :; d+2, and adding l pendant vertices
to vertex d+2

2 and n � l � d� 2 pendant vertices to vertex d+4
2 ; see Figure 2.

l n-l-d-

d+dd+d+. . . . . .

. . . . . .

l,d
P

2

1 2 3 2 4 2d+1
2 2

Figure 2.

Lemma 3.7. For all unweighted trees on n vertices with �xed diameter d+ 1, the
algebraic connectivity is maximized by Pl;d, for some 0 � l � n� d� 2.

Proof. Let T be any tree on n vertices with �xed diameter d + 1, and with
algebraic connectivity �. Label the vertices on a path of length d+ 1, 1 up to d+ 2.
Suppose that there are d+4

2 + l vertices in the component at vertex d+4
2 containing

vertex d+2
2 , and n � l � (d+42 ) vertices in the component at vertex d+2

2 containing

vertex d+4
2 . It is easily seen (by considering Perron components; see also [KNS]) that

the characteristic vertices of Pl;d are d+2
2 and d+4

2 . Form ~T from Pl;d by replacing

the component at d+4
2 containing d+2

2 by the corresponding component of T . There
is entry-wise domination of the corresponding bottleneck matrices, so by Theorem
2.5 (see also [KN, Thm. 1]), the algebraic connectivity ~� of ~T , is at most �l;d, the

algebraic connectivity of Pl;d, and using [KN, Thm. 1] the characteristic vertices of ~T

lie in the new component, or are still d+22 and d+4
2
. Now form T from ~T by replacing a

component at a characteristic vertex containing d+4
2 by the corresponding component

of T . Again we have entry-wise domination of the bottleneck matrices, so that � � ~�.
(We note here that Prop. 1 of [KNS] may be used to explicitly compute the entries
of the bottleneck matrices that appear in this proof.) Hence � � ~� � �l;d. We
conclude that over trees on n vertices with diameter d+ 1, the algebraic connectivity
is maximized by Pl;d for some l.

As before, we now explicitly determine (up to isomorphism) the tree which attains
the maximum algebraic connectivity over trees on n vertices with diameter d+ 1.

Theorem 3.8. Among all unweighted trees on n vertices with �xed diameter
d + 1, the maximum algebraic connectivity is attained by Pn�d�2;d (i.e., the path on
vertices 1; 2; : : : ; d+ 2, with n� d� 2 pendant vertices adjacent to vertex d+2

2 ).

Proof. For simplicity of notation let Ll;k be the Laplacian matrix for Pl;d, where
k = n � l � d� 2. We �nd that Ll;k has the eigenvalue 1 with multiplicity k + l � 2,
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and the other eigenvalues of Ll;k correspond to the eigenvalues of

Ml;k =

2
666666666666664

0 0 0 0 0 0 0
P 0 0 0 0 0 0 0

�1 0 0 0 0 0 0
0 0 �1 l + 2 �l 0 �1 0 0 0
0 0 0 �1 1 0 0 0 0 0
0 0 0 0 0 1 �1 0 0 0
0 0 0 �1 0 �k k + 2 �1 0 0
0 0 0 0 0 0 �1
0 0 0 0 0 0 0 DPD�1

0 0 0 0 0 0 0

3
777777777777775

;

where P is the d
2 �

d
2 matrix

2
66666664

1 �1 0 0 0

�1 2 �1 0 0

0
.. .

. . .
. . . 0

0 0 �1 2 �1

0 0 0 �1 2

3
77777775
;

and D = [dij] is the
d
2 �

d
2 permutation matrix in which

dij =

(
1; if j = d

2 � i+ 1;

0; otherwise:

Let ql;k be the characteristic polynomial of Ml;k, so that det(�I � Ll;k) = (� �

1)k+l�2ql;k. Note that the constant term of det(�I � Ll;k) is equal to (�1)d+2+k+l�1

(d + 2 + k + l); but this is the same as (�1)k+l�2 � fconstant term of ql;kg, so

that the constant term of ql;k is (�1)d�1(d + 2 + k + l) = �(d+ 2 + k + l) since d is

even. As before we consider the expression ql;k � ql�1;k+1. Using similar calculations

as those in the proof of Theorem 3.2 it follows that

ql;k � ql�1;k+1 = �(l � k � 1)(�2)(det(�I � P ))2:

Let �l;k be the algebraic connectivity of Ll;k. Firstly, suppose that l < k + 1.

Then ql;k� ql�1;k+1 > 0, for all � > 0, and since both ql;k and ql�1;k+1 are decreasing

at 0, it follows that �l;k < �l�1;k+1. A similar argument applies when l > k+1 (since

�l;k = �k;l), and we �nd that when l+ k is �xed and l; k � 1, then �l;k is maximized
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by �1;l+k�1. Finally, let q0;k+1 be the characteristic polynomial of2
666666666666666666664

0 0 0 0 0 0 0

P 0 0 0 0 0 0 0

�1 0 0 0 0 0 0

0 0 �1 2 0 0 �1 0 0 0

0 0 0 �1 1 0 0 0 0 0

0 0 0 0 0 1 �1 0 0 0

0 0 0 �1 0 �k � 1 k + 3 �1 0 0

0 0 0 0 0 0 �1

0 0 0 0 0 0 0 DPD�1

0 0 0 0 0 0 0

3
777777777777777777775

:

Then, again using a similar calculation it follows that

q1;k � q0;k+1 = k(�2)(det(�I � P ))2:

As above, we now �nd that �0;k+1 > �1;k. Thus for trees on n vertices with diameter
d+ 1, Pn�d�2;d maximizes the algebraic connectivity.

Corollary 3.9. Let T be any tree on n vertices with �xed diameter d+ 1, and
algebraic connectivity �. Then

� � �0;n�d�2

where equality holds if T is isomorphic to Pn�d�2;d.

4. Graphs with Fixed Girth. In this section we consider unweighted con-
nected graphs containing a cycle of length 3 or more. Recall that the girth of such a
graph G is the length (number of vertices, or edges) of the shortest cycle in G. For a
graph G, suppose that we have an edge fi; jg which is not on any cycle (hence this
edge is also a block). We say that vertices i and j have mutual Perron components
if the unique Perron component at vertex i contains vertex j and the unique Per-
ron component at vertex j contains vertex i. As was the case in Section 3, we are
concerned with describing the graphs which extremize the algebraic connectivity over
all graphs on n vertices, with speci�ed girth s. First we consider the graph which
minimizes the algebraic connectivity over the set of such graphs. In [F1] it was shown
that the algebraic connectivity is monotone on spanning subgraphs, hence it is clear
that the minimum algebraic connectivity of graphs on a �xed number of vertices, and
with speci�ed girth s is attained for a unicyclic (i.e., exactly one cycle in the graph)
graph with girth s. Note that we may think of a unicyclic graph as a cycle, with
trees hanging o� some (or all) of the vertices on that cycle. Recall that in [KNS] it
is shown that the bottleneck matrix for a path entry-wise dominates (after a suitable
simultaneous permutation of the rows and columns) the bottleneck matrix of any
other tree on the same number of vertices. We begin with the following proposition.
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Proposition 4.1. Let G be a connected graph, and suppose that C is a connected
component at some vertex of G; let M denote the principal submatrix of the Laplacian
matrix of G corresponding to the vertices in C. Modify C to form ~C as follows:
Choose vertices 1; 2; : : :; k in C, and add one or more connected components at vertex
i, 1 � i � k. For each 1 � i � k, let Bi denote the collection of new vertices added at
vertex i, and suppose that in Bi, vertices vj1(i); vj2(i); : : : ; vjmi

(i) are adjacent to vertex

i. Let the new graph be ~G, with Laplacian matrix L. Then we have the following
expression for (L( ~C))�1,2
666664

(L(B1))�1 + (M�1)11J (M�1)12J � � � (M�1)1kJ eeT1 M
�1

(M�1)21J
.. .

. . . (M�1)2kJ eeT2 M
�1

..

.
.. .

. . .
..
.

..

.
(M�1)k1J � � � (M�1)k;k�1J (L(Bk))

�1 + (M�1)kkJ eeT
k
M�1

M�1e1e
T M�1e2e

T
� � � M�1eke

T M�1

3
777775 ;

where (M�1)ij denotes the (i; j)th entry of M�1.
Proof. Note that L( ~C) can be written as2

6666664

L(B1) 0 � � � 0 �(
Pm1

p=1
ejp(1))e

T
1

0 L(B2)
. . .

... �(
Pm2

p=1
ejp(2))e

T
2

.

..
.. .

. . . 0
.
..

0 � � � 0 L(Bk) �(
Pmk

p=1
ejp(k))e

T
k

�e1(
Pm1

p=1
eT
jp(1)

) �e2(
Pm2

p=1
eT
jp(2)

) � � � �ek(
Pmk

p=1
eT
jp(k)

) M +
Pk

p=1
mpepe

T
p

3
7777775
:

The result can now be easily veri�ed by direct computation, and recalling that

L(Bi)e =
miX
p=1

ejp(i).

Corollary 4.2. Let G be a connected unicyclic graph with Laplacian matrix L,
and let C be a connected component at some vertex u, which contains vertices on the
cycle. For each vertex i on the cycle, suppose that there are mi components at vertex
i not including the vertices on the cycle. Let Bi be the collection of vertices of the
mi components at vertex i. Modify C to form ~C by replacing those mi components
by a single path on jBij vertices at vertex i. Let the new graph be denoted by ~G, and
suppose the Laplacian matrix for ~G is denoted ~L. Then (L(C))�1 � (~L( ~C))�1.

Proof. Suppose (without loss of generality) that the vertices on the cycle are
labeled 1; 2; : : :; k, with vertex 1 being the vertex closest (in distance) to u. Let
M�1 ( ~M�1) denote the bottleneck matrix for the collection of vertices C n [ki=2Bi

( ~C n [ki=2Bi). For brevity, let S = C n [ki=2Bi and ~S = ~C n [ki=2Bi. From [KNS,
Thm. 5] we have (L(Bi))�1 � (~L(Bi))�1, for i = 1; 2; : : : ; k, so in particular, if u = 1,
by Proposition 4.1, we obtain our result. If u 6= 1, then we need only show that
M�1 � ~M�1. Suppose v is the vertex in C (and ~C) which is adjacent to u. By [FK,
Lemma 2],

M�1 = (L(S))�1 =
�
(L(S n v))�1 0

0 0

�
+ J:
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It is now a straightforward induction to show that (L(S n v))�1 � (~L( ~S n v))�1. This
completes the proof.

Proposition 4.3. Among all connected graphs on n vertices with �xed girth
s, the algebraic connectivity is minimized by a unicyclic graph with girth s, with the
following property: There are at most two connected components at every vertex on
the cycle, and the component not including the vertices on the cycle (if one exists), is
a path.

Proof. Let G be any connected unicyclic graph on n vertices with girth s. Suppose
the vertices on the cycle are labeled 1; 2; : : :; s. For each vertex j (1 � j � s) the
connected components at j not containing the vertices on the cycle are trees (possibly
empty). In other words, the union of these components is, by de�nition, a forest.
Hence let Fj be the union of the connected components at j, not containing the other
vertices on the cycle. Fix j (1 � j � s) and suppose Fj is not a path. If Case A holds
for G and B0 6� Fj, or Case B holds and z 62 Fj [ fjg, then replace Fj by a path
on jFjj vertices and apply Theorems 2.5 and 2.4 to produce a unicyclic graph whose
algebraic connectivity is at most that of G. If Case A holds and B0 is an edge fu; vg
(with d(u; j) < d(v; j)) in Fj, then since Fj is not a path, either the component at u
containing v is not a path, or in the component at v containing u, the tree at j not
containing the vertices on the cycle is not a path. In either case we can replace the
corresponding components by a path and apply Theorem 2.5 (and Corollary 4.2 in
the latter case). If Case B holds and z 2 Fj [ fjg, then either some component at
z not containing the vertices on the cycle is not a path (in which case we can apply
Theorem 2.4), or z 6= j and in the component at z containing the cycle, the tree at j
containing z is not a path (in which case we can use Theorem 2.5 and Corollary 4.2),
or all components at z have one of the above two forms, and the degree of z is at least
three (otherwise Fj is a path). In this case at least one Perron component at z is a
path, so by replacing the remaining components at z by a single (unicyclic) graph in
which each of the remaining paths are adjoined to the end of the path connected to
the cycle, we form an unicyclic graph whose algebraic connectivity is at most that of
G (by Theorem 2.4). This completes the proof.

We conjecture that the unique minimizer for girth s, will be isomorphic to an
s-cycle with a path of length n� s joined at exactly one vertex on the cycle. In what
follows, we verify this conjecture for the case s = 3.

3 2

1

. . . 
n- n-

n-

n
1 2

Figure 3.

Lemma 4.4. Let G be the graph as in Figure 3. Then vertices n
2 and n+2

2 have
mutual Perron components, if n is even, otherwise vertices n�1

2 and n+1
2 have mutual

Perron components.

Proof. First we note that the Perron value of the bottleneck matrix for the
component at vertex k (k = 1; 2; : : :; n�2) containing the triangle is the same as that
for the component at k containing vertex n of the graph G with the edge f(n� 1); ng
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deleted (this is because in the latter, vertices n � 1 and n are isomorphic, hence the
entries in the Perron vector are equal, from which it follows that the Perron vector
also serves as a Perron vector for the former). For even n, the components at vertex
n
2 are a path on n�2

2 vertices, as seen in Figure 4.

2 4
2 2

3 2

1

. . .
n+ n+ n- n-

n-

n

Figure 4.

The Perron value of the second component remains the same even if the edge f(n�
1); ng is deleted. But this component (with the deleted edge) is a tree which contains
a path on n�2

2 vertices. It follows that the Perron component at vertex n
2 contains

vertex n+2
2 . At vertex n+2

2 , the components are a path on n
2 vertices, and a graph on

n�2
2 vertices; applying similar arguments as in the case above for vertex n

2 it follows
that the path on n

2 vertices is a Perron component, so the Perron component at vertex
n+2
2 contains vertex n

2 . The argument for the case n odd is similar.

Corollary 4.5. Let Pk be the bottleneck matrix of order k for a component
which is a path on k vertices. Let G be as in Figure 3, with algebraic connectivity
�. If n is even, then � = 1

�(Pn
2
�tJ) for some t 2 (0; 1), while if n is odd, then

� = 1
�(P n�1

2

�tJ) for some t 2 (0; 1).

1 2 1 1 2

1

2

1

...

. . . . . .
k- k k+ k+ k+l- k+l

k+l

k+l

n-

n

1

+

+

G
k,l

Figure 5.

Lemma 4.6. Consider the graph Gk;l as in Figure 5. Suppose that some Fiedler
vector gives vertices k + l + 1; k + l + 2; : : : ; n a 0 valuation, vertices 1; 2; : : : ; k a
positive valuation and vertices k+ 1; k+2; : : : ; k+ l a negative valuation. Then k = l
and the algebraic connectivity of Gk;k is given by � = 1

�(Pk� 2
3
J)
.
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Proof. We may partition the Laplacian for Gk;l as

L =

2
4 P�1

k + eke
T
k �eke

T
l �eke

T
n�l�k

�ele
T
k P�1

l + ele
T
l �ele

T
n�l�k

�en�l�keTk �en�l�keTl P�1
n�l�k + en�l�keTn�l�k

3
5 ;

and the Fiedler vector as

L =

2
4 u
�v
0

3
5 ;

where u and v are entry-wise positive. Then P�1
k u + (uk + vl)ek = �u, so that

Pku� (uk+vl
�

)e = 1
�
u. Similarly, Plv� (uk+vl

�
)e = 1

�
v. Further, eTP�1

k u+(uk+ vl) =

�eTu, so that 2uk + vl = �eTu, and similarly uk + 2vl = �eT v. Thus we have�
2 1
1 2

��
uk
vl

�
= �

�
eTu
eTv

�
;

yielding �
uk
vl

�
=

�

3

�
eTu
eTv

�

(since eTu = eT v). Consequently, uk+vl
�

= 2
3
eTu, so that

(Pk �
2

3
J)u =

1

�
u; and (Pl �

2

3
J)v =

1

�
v:

Since u and v are Perron vectors, and the corresponding Perron values are both 1
�
, it

follows that k = l and � = 1
�(Pk� 2

3
J)
.

Corollary 4.7. Suppose that we have the graph Gk;k with algebraic connectivity
�, and let �0 be the algebraic connectivity of G, the graph in Figure 3. Then �0 < �.

Proof. If n is even (hence n� 2k � 2), then

� =
1

�(Pk �
2
3
J)

�
1

�(Pn�2
2

� 2
3
J)

>
1

�(Pn
2
� tJ)

;

for all t 2 (0; 1). Thus �0 < �. If n is odd, then

� =
1

�(Pk �
2
3J)

�
1

�(Pn�1
2

� 2
3J)

;

while �0 = 1
�(Pn�1

2

�tJ) , for some t 2 (0; 1). Evidently, we obtain the result if 0 < t < 2
3 .

Suppose that t � 2
3 , and note that then �0 = 1

�(B�(1�t)J) , where B is the bottleneck

matrix for the component at vertex n+1
2 containing vertex n. But then a principal

submatrix of B dominates Pn�1
2
, and the result follows.
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Theorem 4.8. Let Gk;l be as in Figure 5. Suppose that Case A holds for Gk;l,
and that some Fiedler vector has all nonzero entries, with the triangle being the unique
block with both positive and negative valuations. If � is the algebraic connectivity of
Gk;l, then �0 < �, where �0 is the algebraic connectivity of G (as in Figure 3).

Proof. Without loss of generality, we can write the Laplacian matrix of Gk;l as2
4 P�1

k + eke
T
k �ekeT1 �ekeT1

�e1eTk P�1
l + e1e

T
1 �e1eT1

�e1e
T
k �e1e

T
1 P�1

n�l�k + e1e
T
1

3
5 ;

and the Fiedler vector as

L =

�
u
�v

�
;

where u is of order k + l, and v is of order n � k � l and both are positive vectors.
From the eigenvalue/eigenvector equation, we have��

P�1
k 0
0 P�1

l

�
+ (ek � ek+1)(ek � ek+1)

T

�
u+ v1(ek + ek+1) = �u;(5)

and

P�1
n�k�lv + (v1 + uk + uk+1)e1 = �v:(6)

From (6), we �nd that Pn�k�lv �
(v1 + uk + uk+1)

�
e =

1

�
v, and that eTP�1

n�k�lv +

v1 + uk + uk+1 = �eTv, hence 2v1 + uk + uk+1 = �eT v. Thus we �nd that�
Pn�k�l �

�
v1 + uk + uk+1
2v1 + uk + uk+1

�
J

�
v =

1

�
v:

Therefore � = 1=�(Pn�k�l � tJ) for some t 2 (12 ; 1). In particular, if

n � k � l �

�
n�2
2 ; if n even;

n�3
2 ; if n odd;

then �0 < �. Now consider (5) and observe that

��
P�1
k 0
0 P�1

l

�
+ (ek � ek+1)(ek � ek+1)

T

��1

=

�
Pk 0
0 Pl

�
�

1

3

�
J �J
�J J

�
:

From (5) we �nd that��
Pk 0
0 Pl

�
�

1

3

�
J �J
�J J

��
u�

v1
�
e =

1

�
u;
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so that ��
Pk 0
0 Pl

�
�

1

3

�
J �J
�J J

�
�

v1
2v1 + uk + uk+1

J

�
u =

1

�
u:

In particular,

� = 1=�

��
Pk 0
0 Pl

�
�

1

3

�
J �J
�J J

�
� tJ

�

for some t 2 (0; 12). Note that

�

��
Pk 0
0 Pl

�
�

1

3

�
J �J
�J J

��
� �

��
Pk 0
0 Pl

��
:

If follows then that if

max(k; l) �

�
n�2
2 ; if n even;

n�3
2 ; if n odd;

then �0 < �. On the other hand, if

max(k; l) �

�
n
2 ; if n even;
n�1
2 ; if n odd;

then we have

n� k � l � n� 1�max(k; l) �

�
n�2
2 ; if n even;

n�1
2 ; if n odd:

From our work above, we see that the only case in which we can have � < �0 is n
odd, min(k; l) = 1 and max(k; l) = n�1

2 . In this case it is not di�cult to see that
every Fiedler vector yields a valuation of 0 for the vertex on the triangle which is not
a point of articulation, contrary to our hypothesis. Consequently, we have �0 < �, as
desired.

k+l+ k+l+ k+ k+n n- k+l- k+l

k k- 121

1 2 1 1 2 1
. . .

. . .

. . .

Figure 6.

Lemma 4.9. Consider the graph H given in Figure 6 with Laplacian matrix L,
and let C = f1; 2; : : : ; k+lg. Consider also the graph G as in Figure 3, but relabeled via
i! n� i+1, for 1 � i � n, with Laplacian matrix M . Then (L(C))�1 � (M (C))�1.

Proof. We have

L(C) =

�
P�1
k 0
0 P�1

l

�
+ (ek � ek+1)(ek � ek+1)

T ;
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so that

(L(C))�1 =
�
Pk �

1
3J

1
3J

1
3J Pl �

1
3J

�
:

Also

(M (C))�1 = F �
1

3
F (e1 � e2)(e1 � e2)

TF;

where

F =

2
664

k + l � 1 k + l � 2
eeT1 Pk+l+2

k + l � 2 k + l � 1
Pk+l+2e1e

T Pk+l+2

3
775

so that (M (C))�1 = F � 1
3(e1 � e2)(e1 � e2)T : It's now straightforward to verify that

(L(C))�1 � (M (C))�1.
Theorem 4.10. The graph on n vertices with girth 3 of minimum algebraic

connectivity is G as in Figure 3.
Proof. From Proposition 4.3 we have that the graph of girth 3 with minimum

algebraic connectivity has the form of Gk;l as in Figure 5. If some Fiedler vector
valuates the 3-cycle with both positive and negative valuations, then the algebraic
connectivity for Gk;l exceeds that for G, by Theorem 4.8 and Lemma 4.6. It follows
that the minimizer either falls under Case B, or that there is an edge o� the 3-cycle
in which the endpoints of that edge have mutual Perron components. In either case,
there is a vertex x on the 3-cycle with the property that we may replace the component
containing the other vertices on the 3-cycle at x by the corresponding component at
x of G, which will lower the algebraic connectivity, by Lemma 4.9 and Theorem 2.4.
Hence G has minimum algebraic connectivity.

Determination of the graph on n vertices with �xed girth s that maximizes the
algebraic connectivity appears to be more di�cult. However, in the case of unicyclic
graphs we can say the following. The proof of the next result is similar to the proof
of Corollary 4.2, and employing the fact that the bottleneck matrix for k pendant
vertices is entry-wise dominated (after a suitable simultaneous permutation of the
rows and columns) by the bottleneck matrix of any other tree on k vertices; see
[KNS].

Lemma 4.11. Let G be a connected unicyclic graph with Laplacian matrix L,
and let C be a connected component at some vertex u, which contains vertices on the
cycle. For each vertex i on the cycle, suppose that there are mi components at vertex
i not including the vertices on the cycle. Let Bi be the collection of vertices of the mi

components at vertex i. Modify C to form ~C by replacing those mi components by
jBij pendant vertices at vertex i. Let the new graph be denoted by ~G, and suppose the
Laplacian matrix for ~G is denoted ~L. Then (~L( ~C))�1 � (L(C))�1.

Proposition 4.12. Among all connected unicyclic graphs on n vertices with
�xed girth s, the algebraic connectivity is maximized by a graph with girth s, with the
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following property: Each vertex on the cycle is adjacent to a nonnegative number of
pendant vertices.

Proof. Suppose G is a connected unicyclic graph with girth s, and algebraic
connectivity �. Assume the vertices on the cycle are labeled 1; 2; : : : ; s. As in the
proof of Proposition 4.3, let Fj denote the union of the connected components at
vertex j (1 � j � s) except for the unique component at j which contains the vertices
on the cycle. Fix j (1 � j � s). Suppose Fj is not the union of jFjj pendant vertices.

Form ~G by replacing Fj with jFjj pendant vertices each adjacent to vertex j, and

denote the algebraic connectivity of ~G by ~�. In ~G, if any of the jFjj pendant vertices
adjacent to j is a Perron component at j, then it follows that ~� � 1. This inequality
follows directly from Proposition 1.3 if Case B holds for ~G, otherwise it follows from
Lemma 2.2 in the event Case A holds for ~G. Since G has a cutpoint (jFjj � 1),
using Example 1.5, it follows that � � 1. Hence � � ~�. Otherwise, none of the jFjj

pendant vertices each adjacent to vertex j in ~G is a Perron component at j, in which
case we can use the entry-wise domination of the bottleneck matrices for Fj and the
jFjj pendant vertices, and apply Theorems 2.4 and 2.5 to obtain � � ~�.

In the case when the girth is 3, we can prove the following result.
Lemma 4.13. Let G be the unicyclic graph on n vertices with girth 3, by taking

a 3-cycle and appending n� 3 pendant vertices to a single vertex on the cycle. Then
the algebraic connectivity of G is equal to 1.

Proof. Let x denote the vertex of degree n � 1 in G. Then it is clear that there
are n� 1 Perron components at x, each with Perron value 1. Hence Case B holds for
G and by Theorem 2.4, the algebraic connectivity of G is equal to 1.

Theorem 4.14. The unique unicyclic graph on n vertices with girth 3 of maxi-
mum algebraic connectivity is the graph G as in Lemma 4.13.

Proof. Note that we may assume n � 4. It follows from Example 1.5 that any
such unicyclic graph with girth 3 has algebraic connectivity at most 1, and by Lemma
4.13, the algebraic connectivity of G is equal to 1. Now we show that G is the unique
(up to isomorphism) such unicyclic graph with algebraic connectivity 1. Let H be
any unicyclic graph with girth 3, and note that by Proposition 4.12, we need only
consider the case in which each vertex not on the 3-cycle is pendant. If there are two
vertices on the 3-cycle which are adjacent to pendant vertices, then by considering
Perron components, we �nd that Case A holds, with the 3-cycle as the unique block
containing both positively and negatively valuated vertices. Applying Lemma 2.2,
reveals that the algebraic connectivity of H is strictly less than 1. Hence G is the
unique unicyclic graph with girth 3, and algebraic connectivity 1.
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