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The sets of events that operators 1 and 2 can trigger are, respec-
tively, �t

1 = f�1; �1; 1g and�t
2 = f�2; �2; 2g. Similarly, the

sets of events operators 1 and 2 can disable are, respectively,�d
1 =

f�1; �1; 1g and�d
2 = f�2; �2; 2; 1g.

If user 1 wants to insure safety (i.e., prevent the system from reaching
any of the illegal states) and user 2 is not cooperative, then�s = �d

1 .
The legal language in this case is not controllable and the supremal
controllable sublanguage is empty. However, if user 2 is cooperative,
then�s = �, and the legal language is controllable. In contrast, If
user 2 wants to insure safety, then�s = �d

2 in case user 1 is uncoop-
erative, and�s = � in case user 1 is cooperative. In both cases the
legal language is controllable.

Let us now assume that the initial state IEI is the only marked state
of the system, and that in addition to safety, the controller must satisfy
the liveness condition specified by the marked language that consists
of all the event strings that lead the system to this marked state.

Let us now consider the two-user control problem with the require-
ment that both safety and liveness must be satisfied. In case user 1 wants
to achieve safety and liveness, only the situation where user 2 is coop-
erative with respect to safety is relevant. Let us further assume that user
2 is cooperative also with respect to liveness, in which case,EA = ;
andFA = f1; 2g.

In case 1 (where�l = �t
i�([j 6=i�

d
j )), we obtain�l = f�1; �1g.

By our synthesis algorithm, the resulting safe and live system consists
of states IEI and REI.

In case 2 (where�l = �t
i � ([j2EA�

d
j )), we obtain�l =

f�1; �1; 1g. By our synthesis algorithm, the resulting safe and live
system consists of states IEI and REI.

In case 3 (where�l = ([i2FA�
t
i) � ([j2EA�

d
j )), we obtain

�l = �. By our synthesis algorithm, the resulting safe and live system
consists of all the legal states.

In case 4 (where�l = �), we obtain�l = �. By our synthesis
algorithm, the resulting safe and live system consists of all the legal
states.

In a similar fashion, we can discuss how user 2 can achieve safety
and liveness.

VII. CONCLUSION

We have introduced an extended framework for discrete-event con-
trol where, in addition to the events that can be triggered by the en-
vironment, the user has at his/her disposal a set of events that he/she
can trigger. Both the user and the environment can each disable cer-
tain events of the other. We examined the control problem where both
safety and liveness requirements can be specified in a somewhat more
general setting than in the traditional discrete-event control framework.
A particularly interesting generalization is obtained when the environ-
ment consists of (or includes) one or more additional users. This leads
to a variety of interesting scenarios where the users have each their own
control objectives (specifications) and capabilities.
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Extremum Seeking Control for Discrete-Time Systems

Joon-Young Choi, Miroslav Krstic´, Kartik B. Ariyur, and Jin S. Lee

Abstract—We present an extremum seeking control algorithm for dis-
crete-time systems applied to a class of plants that are represented as a
series combination of a linear input dynamics, a static nonlinearity with
an extremum, and a linear output dynamics. By using the two-time scale
averaging theory, we derive a mild sufficient condition under which the
plant output exponentially converges to an ( ) neighborhood of the
extremum value, where is the magnitude of modulation signal. The suf-
ficient condition is related to positive realness of linear parts of the plant
but only at the modulation frequency. The algorithm is illustrated with a
brief simulation study.

Index Terms—Averaging, discrete-time systems, extremum seeking.

I. INTRODUCTION

Extremum seeking, a nonmodel based method of adaptive control,
deals with systems where the reference-to-output map is uncertain but
is known to have an extremum. The objective of extremum seeking is
to find the set point that achieves the extremum.

Krstić and Wang [1] presented the first stability analysis for an ex-
tremum seeking system applied to a general nonlinear dynamical plant.
Their analysis used averaging and singular perturbations. Krstic´ [2]
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Fig. 1. Extremum seeking control scheme for discrete-time systems.

presented a tighter linearized analysis and proposed dynamic compen-
sation for providing stability guarantees and fast tracking of changes in
the operating point. Several valuable extensions of extremum seeking
followed [3]–[6].

In this note, we present an extremum seeking scheme for dis-
crete-time systems. The plant model and control algorithm have the
same structure as in [2]. Nevertheless, it turns out that the stability
analysis of the discrete-time case is quite different from that of the
continuous-time case. By applying the two-time scale averaging
theory [7] to stability analysis in the discrete time case, we derive
a sufficient condition under which the plant output exponentially
converges to anO(�2) neighborhood of the extremum value, where�
is the magnitude of modulation signal.

This note is organized as follows. Section II describes the dis-
crete-time extremum seeking algorithm. Section III gives several
preliminary lemmas on linear time-periodic systems. Section IV
organizes the equations of the closed-loop system in a way convenient
for stability analysis. Section V states and proves stability, and derives
ultimate bounds on error signals. Section VI provides simulation
results and discussions. Section VII offers conclusions.

II. DISCRETE-TIME EXTREMUM SEEKING CONTROL

The implementation is depicted in Fig. 1 and takes the same structure
as that of continuous time extremum seeking algorithm in [2]. Both of
the linear blocks,Fi(z) andFo(z), are required to be exponentially
stable. The high-pass filter((z�1)=(z+h)) is designed as0 < h < 1,
and the modulation frequency! is selected such that! = a�; 0 <
jaj < 1, anda is rational. Without loss of generality, the static nonlinear
blockf(�) is assumed to have a minimum at� = ��, and to be of the
form

f(�) = f� + (� � ��)2: (1)

Cubic and higher order terms are omitted for notational convenience as
they are negligible in local stability analysis via averaging.

III. PRELIMINARY LEMMAS

In the subsequent discussion, the following notation and definitions
will be used. A transfer function in front of a bracketed time function,
such asG(z)[u(k)], means a time-domain signal obtained as an output
ofG(z) driven byu(k). For a square matrixA; �min(A) and�max(A)
are the smallest and the largest eigenvalues, respectively."�k denotes
exponentially decaying terms. The following lemmas are used to facil-
itate the extremum seeking system analysis.

Lemma 1: If the transfer functionH(z) has all of its poles inside
the unit circle and real-valued impulse response, then, for any real 

H(z)[cos(!k�  )] = Re H(ej!)ej(!k� ) + "�k

= jH(ej!)j cos(wk �  +  H) + "�k

where H = (H(ej!)).

Lemma 2: If the transfer functionsG(z) andH(z) have all of their
poles inside the unit circle, the following statement is true for any real
� and any uniformly boundedv(k):

G(z)[(H(z)[cos(!k� �)])v(k)]

= Re ej(!k��)H(ej!)G(ej!z)[v(k)] + "�k: (2)

Proof: See the Appendix.
Lemma 3: For any two rational functionsA( � ) andB(�; �), the fol-

lowing is true:

Re ej(!k� )A(ej!) Re ej(!k��)B(z; ej!)[v(k)]

=
1

2
Re ej( ��)A(e�j!)B(z; ej!)[v(k)]

+
1

2
Re ej(2!k� ��)A(ej!)B(z; ej!)[v(k)] :

Lemma 4: For any rational functionB(�; �), the following is true:

Re ej(!k��)B(z; ej!)[v(k)]

= cos(!k� �)RefB(z; ej!)[v(k)]g

� sin(!k� �)ImfB(z; ej!)[v(k)]g:

Lemma 5: Suppose that the transfer functionsH(z) andG(z) have
all of their poles inside the unit circle, and have minimal state space re-
alizations(A1; B1; C1; D1) and(A2; B2; C2;D2), respectively. Then,
G(z)[cos(!k��)H(z)[v(k)]]can be represented in a state-space form
as

(A(k);B(k); C(k);D(k))

=
A1 0

c(!k)B2C1 A2
;

B1

c(!k)B2D1
;

[c(!k)D2C1 jC2]; c(!k)D2D1

wherec(!k) = cos(!k � �) andA(k) is exponentially stable.
Proof: See the Appendix.

IV. CLOSED-LOOPSYSTEM

The extremum seeking system depicted in Fig. 1 is governed by the
following equations:

y(k) = Fo(z)[f
� + (�(k)� ��)2] (3)

�(k) = Fi(z) � cos(!k)�


z � 1
[�(k)] (4)

�(k) = � cos(!k� �)
z � 1

z + h
[y(k)]: (5)

For the convenience of analysis, the following terms are defined:

�0(k) = Fi(z)[� cos(!k)] (6)
~�(k) = �� � �(k) + �0(k) (7)

~y(k) = y(k)� Fo(z)[f
�] (8)

where~�(k) is the tracking error and~y(k) is the output error. Substitu-
tion of (4) and (6) in (7) yields

~�(k) = �� +


z � 1
Fi(z)[�(k)]

which can be transformed into a difference equation

~�(k + 1) = ~�(k) + Fi(z)[�(k)]:

Further, substitution for� from (5) and fory from (3) yields

~�(k + 1)� ~�(k)

= Fi(z) �c(!k)
z � 1

z + h
Fo(z)[f

� + (� � ��)2]
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wherec(!k) = cos(!k��). Using���� = �0� ~� by rearrangement
of (7), we obtain

~�(k + 1)� ~�(k)

= Fi(z) �c(!k)
z � 1

z + h
Fo(z)[f

� + (�0 � ~�)2]

= �Fi(z) c(!k)
z � 1

z + h
Fo(z)[~�

2
� 2�0~�]

+ �Fi(z) c(!k)
z � 1

z + h
Fo(z) f� + �20 (9)

where� = �. Applying the modulation Lemmas 2, 3, 4 in succession
to the term containing2�0~� in (9), we obtain

�Fi(z) c(!k)
z � 1

z + h
Fo(z)[�2�0~�]

= �2��Fi(z) Re ej(!k��) z � 1

z + h

� Fo(z)[Fi(z)[cos(!k)]~�] (from (6))

= �2��Fi(z) Re ej(!k��)

� Refej!kM(z; ej!)[~�]g (from Lemma 2)

= ��Fi(z)[s(2!k)ImfM(z; ej!)[~�]g

� c(2!k)RefM(z; ej!)[~�]g]

� ��Fi(z)[Refe
j�M(z; ej!)[~�]g+ "�k];

(from Lemma 3 and 4 ) (10)

whereM(z; ej!) = Fi(e
j!)((ej!z � 1)=(ej!z + h))Fo(e

j!z);
s(2!k) = sin(2!k � �) and c(2!k) = cos(2!k � �). Finally,
substituting (10) in (9), we obtain the whole closed-loop system

~�(k + 1)� ~�(k) = �(L(z)[~�] + �1(k) + �2(k)) + �(k) (11)

where

L(z) = �
�

2
Fi(z)(e

j�M(z; ej!) + e�j�M(z; e�j!))

�1(k) = �Fi(z)[s(2!k)ImfM(z; ej!)[~�]g

� c(2!k)RefM(z; ej!)[~�]g]

�2(k) = Fi(z) c(!k)
z � 1

z + h
Fo(z)[~�

2]

�(k) = �Fi(z) c(!k)
z � 1

z + h
Fo(z) f� + �20 + "�k :

The various terms in (11) can be characterized in view of~� as fol-
lows:L(z)[~�] is the linear time-invariant;�1(k) is linear time-varying;
�2(k) is nonlinear time-varying; and�(k) is time-varying, indepen-
dent of~�, and found to satisfy the following property.

Lemma 6: �(k) exponentially converges to anO(��2) neighbor-
hood of zero:

j�(k)j � "�k + �1��
2 (12)

where�1 is a constant.
Proof: See the Appendix.

From Lemma 6, it is clear that the bound on�(k) can be adjusted by
the magnitude of the modulation signal� independently of�. By ex-
ploiting this property of�(k), we present a stability analysis for the
system (11) with two steps. At first, regarding�(k) as a perturbation,
we analyze the system (11) without�(k). Then, we consider the whole
system including�(k).

V. STABILITY ANALYSIS

First, we consider the homogeneous part of the~�-error system (11)

~�(k + 1)� ~�(k) = �(L(z)[~�] + �1(k) + �2(k)) (13)

which depends on timek periodically. The following theorem presents
a sufficient condition under which the~�-error system (13) is locally
exponentially stable at the origin:

Theorem 1: If Fi(1)Refe
j�Fi(e

j!)((ej! � 1)=(ej! +
h))Fo(e

j!)g > 0, then there exists a positive constant�� such
that the state-space realization of the~�-error system (13) is locally
exponentially stable at the origin for all0 < �(= �) � ��.

Proof: In order to prove this theorem, we employ the two-time
scale averaging theory rather than the one-time scale averaging theory
because the right-hand side of (13) is related to dynamics with the
inputs ~�(k) and ~�2(k) [7]. Since�1(k) and�2(k) in (13) take the
same structure asG(z)[cos(!k � �)H(z)[v(k)]] in Lemma 5, we
can choose minimal state space realizations ofL(z);�1(k), and
�2(k) as (A1; B1; C1; D1); (A2(k);B2(k); C2(k);D2(k)), and
(A3(k);B3(k); C3(k);D3(k)), respectively. Moreover, since all
of the poles inL(z);�1(k), and�2(k) are inside the unit circle,
A1; A2(k), and A3(k) are exponentially stable. Now, the~�-error
system (13) can be transformed into a state-space form

x0(k + 1) = A(k)x0(k) + h(k; ~�(k)) (14)
~�(k + 1) = ~�(k) + �f 0(k; ~�(k); x0(k)) (15)

where

A(k) =

A1 0 0

0 A2(k) 0

0 0 A3(k)

h(k; ~�(k)) = [BT
1
~� jBT

2 (k)~� jB
T
3 (k)~�

2]T , andf 0(k; ~�(k); x0(k)) =
D1

~� +D2
~� +D3

~�2 + [C1jC2(k)jC3(k)]x
0(k). SinceA(k) is expo-

nentially stable, the state space form (14) and (15) is adequate for the
application of the two-time scale averaging theory [7]. Define the func-
tion

w(k; ~�) =

k�1

i=0

	(k; i+ 1)h(i; ~�)

where	(k; i) = k�1
l=i

A(i+ k � 1� l), and construct the transfor-
mation

x(k) = x0(k)� w(k; ~�):

Then, the transformed system is represented as

x(k + 1) = A(k)x(k) + �g(k; ~�; x) (16)
~�(k + 1) = ~�(k) + �f(k; ~�; x) (17)

where

�g(k; ~�; x)

= A(k)w(k; ~�(k)) + h(k; ~�(k))� w(k+ 1; ~�(k + 1))

= w(k+ 1; ~�(k))� w(k + 1; ~�(k + 1))

= �
1

0

@w

@~�
(k + 1; s~�(k + 1) + (1� s)~�(k))ds

� �f 0(k; ~�; x+ w(k; ~�))

f(k; ~�; x) = f 0(k; ~�(k); x+ w(k; ~�)):

The averaged system of (17) is defined by

~�av(k + 1) = ~�av(k) + �fav(~�av(k)) (18)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002 321

wherefav is calculated by the averaging operatorAVGf � g [7] de-
fined as

fav(~�) = AVGff(k; ~�; 0)g

= lim
T!1

1

T

s+T

k=s+1

f(k; ~�; 0):

On the other hand,f(k; ~�; 0) can be reconverted intoZ-domain as fol-
lows:

f(k; ~�; 0) = f 0(k; ~�; w(k; ~�))

= D1
~� +D2

~� +D3
~�2 + [C1jC2(k)jC3(k)]

�

k�1

i=0

	(k; i+ 1) BT
1
~�jBT

2 (i)~�jB
T
3 (i)~�

2
T

= L(z)[~�] + �1(k) + �2(k)

where~� is regarded as a constant. Hencefav(~�) can be reformulated as

fav(~�) = AVGfL(z)[~�] + �1(k) + �2(k)g: (19)

Using Lemma 1 and regarding~� as a constant lead to the following
derivations:

AVGf�1(k)g

= AVGfaFi(z)[s(2!k)ImfM(z; ej!)[us(k)]g

� c(2!k)RefM(z; ej!)[us(k)]g]~�g = 0

AVGf�2(k)g

= AVG Fi(z) c(!k)
z � 1

z + h
Fo(z)[us(k)] ~�2 = 0

whereus(k) denotes the unit step sequence,s(2!k) = sin(2!k �
�); c(2!k) = cos(2!k� �), andc(!k) = cos(!k � �). Hence

fav(~�) = AVGfL(z)[~�]g

= AVG �
�

2
Fi(z)(e

j�M(z; ej!)

+ e�j�M(z; e�j!))[us(k)]~�

= ��2�~� (20)

where �2 = (1=2)Fi(1)Refe
j�Fi(e

j!)((ej! � 1)=(ej! + h))
Fo(e

j!)g = (1=2)Fi(1)jFi(e
j!)((ej! � 1)=(ej! + h))Fo(e

j!)j
cos( M +�) and M = 6 (Fi(e

j!)((ej!� 1)=(ej!+h))Fo(e
j!)).

Substituting (20) into (18) results in the averaged system

~�av(k + 1) = (1� �2��)~�av(k)

where if�2 > 0; ~�av is exponentially stable for all0 < � < (2=�2�).
Consequently, according to Theorem 2.2.4 in [7], this theorem is
proved.

It is observed from the sufficient condition of Theorem 1 that the
local exponential stability of (13) is closely related to positive realness
of linear parts of the plant but only at the modulation frequency!. This
is a very mild condition.

Now, we consider the stability of the overall system (11). For this
purpose, it is necessary to investigate the perturbed averaged system

~�av(k + 1) = (1� �2��)~�av(k) + �(k): (21)

Sincej�(k)j � "�k + �1��
2 from the Lemma 6, it is obvious that

~�av(k) in (21) exponentially converges to anO(�) neighborhood of

Fig. 2. Responses for! = (�=1:1) rad/sample and = 0:6.

zero. On the other hand, it is known from [7] and [8] that the exponen-
tial convergence rate of~� in the original system (11) tends to that of~�av
in the averaged system, as� tends to zero. Therefore, we can conclude
the following theorem.

Theorem 2: Suppose that the conditions of Theorem 1 are satisfied.
Then, for sufficiently small�, there exists��1; 0 < ��1 � ��, such that~�
in the original system (11) locally exponentially converges to anO(�)
neighborhood of zero for all0 < � � ��1 .

With the result of Theorem 2, the convergence property of the output
error ~y(k) is described as:

Corollary 1: Under the conditions of Theorem 2, the output error
~y(k) defined in (8) locally exponentially converges to anO(�2) neigh-
borhood of zero.

Proof: We have that

~y(k) = Fo(z)[(�� ��)2] = Fo(z)[(~� � �0)
2] (22)

where~� locally exponentially converges to anO(�) neighborhood of
zero from Theorem 2 and�0 exponentially converges to anO(�) neigh-
borhood of zero. Hence,~y(k) locally exponentially converges to an
O(�2) neighborhood of zero.

VI. SIMULATION RESULTS

In order to test the feasibility of the proposed extremum seeking al-
gorithm, we conduct a simulation study for a plant with the transfer
functions

Fi(z) =
z + 0:4

(z + 0:5)(z+ 0:6)
and Fo(z) =

z � 0:2

z + 0:6
:
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Fig. 3. Responses for! = (�=1:5) rad/sample and = 2:1.

Other design parameters are selected as:�� = 3; f� = 2; h =
0:9; � = 0:05; � = 0:05, and� = 0. Simulation is conducted
for ! = (�=1:1) and! = (�=1:5), so that it can be calculated
that jM(ej(�=1:1))j = 4:57; (M(ej(�=1:1))) = �0:75 rad,
jM(ej(�=1:5))j = 2:68; (M(ej(�=1:5))) = 0:93 rad, andFi(1) =
0:58, whereM(ej!) = Fi(e

j!)((ej! � 1)=(ej! + h))Fo(e
j!).

Sincecos( (M(ej(�=1:1)))) > 0; cos( (M(ej(�=1:5)))) > 0, and
Fi(1) > 0, the sufficient condition of Theorem 1 is satisfied for
both ! = (�=1:1) and (�=1:5). Accordingly, it is certain that the
system is exponentially stable, which is illustrated in Figs. 2 and 3.
It is also shown from Figs. 2 and 3 that�(k) converges to�� with
larger magnitude of oscillation than that in the convergence ofy(k) to
Fo(z)[f

�]. This observation illustrates the results of Theorem 2 and
Corollary 1 that~�(k) and ~y(k) locally exponentially converge to an
O(�) andO(�2) neighborhood of zero, respectively.

VII. CONCLUSION

We have presented an extremum seeking control algorithm for dis-
crete-time systems. By using the two-time scale averaging theory [7],
we derived a very mild sufficient condition under which the system
output exponentially converges to anO(�2) neighborhood of the ex-
tremum value. The sufficient condition is related to positive realness of
linear parts of the plant but only at the modulation frequency!. The
simulation study demonstrates the validity of the extremum seeking al-
gorithm.

Future study subjects include: development of a method to improve
and analyze the transient performance; rejection of measurement

noises; tracking of time-varyingf� and ��; and practical design
guidelines for selecting modulation signal frequency!, phase shift of
demodulation signal�, and various other gains.

APPENDIX

Proof of Lemma 2:The lemma is proved using the following
straightforward calculation:

G(z)[(H(z)[cos(!k� �)])v(k)

= G(z) Re H(ej!)ej(!k��) v(k) + "�k

(by Lemma 1)

= Refe�j�Z�1fG(z)H(ej!)V (e�j!z)gg+ "�k

= Re ej(!k��)H(ej!)Z�1fG(ej!z)V (z)g + "�k

= Re ej(!k��)H(ej!)G(ej!z)[v(k)] + "�k:

Proof of Lemma 5:Let x1(k) andx2(k) be the state vectors of
H(z) andG(z) respectively. Then,G(z)[cos(!k� �)H(z)[v(k)]] is
represented in the state-space form as

x1(k + 1) = A1x1(k) +B1v(k)

y1(k) = C1x1(k) +D1v(k)

x2(k + 1) = A2x2(k) +B2 cos(!k� �)y1(k)

y2(k) = C2x2(k) +D2 cos(!k� �)y1(k)

wherey1(k) = H(z)[v(k)] andy2(k) = G(z)[cos(!k � �)y1(k)].
Combining the above two state-space forms yields

x(k + 1) = A(k)x(k) +B(k)v(k)

y2(k) = C(k)x(k) +D(k)v(k)

wherexT (k) = [xT1 (k) j x
T
2 (k)]

A(k) =
A1 0

c(!k)B2C1 A2

B(k) = [(B1=(c(!k)B2D1))];C(k) = [c(!k)D2C1 jC2]; D(k) =
c(!k)D2D1, and c(!k) = cos(!k � �). Therefore,
(A(k);B(k); C(k);D(k)) can be a state space realization of
G(z)[cos(!k � �)H(z)[v(k)]].

SinceA1 andA2 in A(k) are exponentially stable, given anyQ1 =
QT

1 > 0 andQ2 = QT
2 > 0, there existP1 = P T

1 > 0 and
P2 = P T

2 > 0, which are the unique solutions of the following linear
equations, respectively:

A
T

1 P1A1 � P1 = �Q1 and A
T

2 P2A2 � P2 = �Q2:

(23)

By constructing a block diagonal matrixP = [
P1 0

0 P2
]; P =

P T > 0, we obtain

A
T (k)PA(k)� P =

�Q11(k) RT (k)

R(k) �Q2

(24)

where Q11(k) = Q1 � c2(!k)CT

1 B
T

2 P2B2C1 and R(k) =
c(!k)AT

2 P2B2C1. For any givenQ2, we can chooseQ1 such that

�min(Q1) > �max c
2(!k)CT

1 B
T

2 P2B2C1

+
�max(R(k)R

T (k))

�min(Q2)

for all k > 0. This Q1 enables�Q11(k) and �Q2 +
R(k)Q�1

11
(k)RT (k) to be negative definite for allk > 0, and

we obtain the following decomposition of (24):

A
T (k)PA(k)� P =

I 0

�R(k)Q�1
11

(k) I

�
�Q11(k) 0

0 �
I �Q�1

11
(k)RT (k)

0 I
(25)
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where� = �Q2 + R(k)Q�1
11

(k)RT (k) < 0 for all k > 0. Conse-
quently,AT (k)PA(k)� P < 0 for all k > 0, andA(k) is exponen-
tially stable from the Lyapunov stability theory.

Proof of Lemma 6:The term�20(k) in �(k) is calculated as

�20(k) =
1

2
�2jFi(e

j!)j2(1 + cos(2k! + 2 1)) + "�k (26)

where 1 = (Fi(e
j!)). Then,�(k) is rearranged as

�(k) = �1(k) + �2(k) (27)

where

�1(k) = �Fi(z) cos(!k� �)
z � 1

z + h

� Fo(z) f� +
1

2
�2jFi(e

j!)j2 + "�k

�2(k) =
1

2
��2jFi(e

j!)j2Fi(z)

� cos(!k� �)
z � 1

z + h
Fo(z)[cos(2k! + 2 1)] :

Since the high-pass filter(z � 1=z + h) has zero DC gain,�1(k) in
(27) contains only exponentially decaying terms. On the other hand, by
using Lemma 1,�2(k) is calculated as

�2(k) =
1

2
��2c1Fi(z)[cos(!k� �) cos(2!k+  2)]

=
1

4
��2c1Fi(z)[cos(3!k� �+  2)

+ cos(!k+ �+  2)]

=
1

4
��2c1(jFi(e

j3!)j cos(3!k� �+  3)

+ jFi(e
j!)j cos(!k+ �+  4))

� �1��
2;

wherec1 = jFi(e
j!)j2j((ej2! � 1)=(ej2! + h))jjFo(e

j2!)j;  2 =
2 1 + (Fo(e

j2!)) + (ej2! � 1=ej2! + h);  3 =  2 +
(Fi(e

j3!));  4 =  2+ (Fi(e
j!)) and�1 = (1=4)c1(jFi(e

j3!)j+
jFi(e

j!)j). Q.E.D.
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Analyzing Wide-Band Noise Processes With Application to
Control and Filtering

Agamirza E. Bashirov and Sevin Uğural

Abstract—In this note, the concept of wide-band noise is analyzed via a
certain integral representation. It is proved that there are infinitely many
wide-band noise processes represented in integral form which correspond
to the same autocovariance function. Based on this integral representation,
a technique of reduction of a wide-band noise driven system to a white noise
driven system is presented. This technique is used to modify the separation
principle and the Kalman–Bucy filtering to wide-band noise driven sys-
tems.

Index Terms—Linear stochastic system, optimal control, white noise,
wide-band noise.

I. INTRODUCTION

The modern stochastic optimal control and filtering theories use
white noise driven systems. The results such as the separation principle
and the Kalman–Bucy filtering are based on the white noise model.
Indeed, white noise being a mathematical idealization gives only an
approximate description to real noise. In some fields the parameters
of real noise are near to the parameters of white noise and, so, the
mathematical methods of control and filtering for white noise driven
systems can be satisfactorily applied in them. However, in many fields
white noise is a crude approximation to real noise. Consequently,
the theoretical optimal controls and the theoretical optimal filters for
white noise driven systems become not optimal and, indeed, might
be quite far from being optimal. It becomes important to develop the
control and estimation theories for the systems driven by noise models
which describe real noise more adequately.

The issue is that real noise has a property which ensures the corre-
lation of its values within a small time interval, i.e., if we denote it by
', then

cov('(t+ s); '(t)) =
�(t; s); 0 � s < "

0; s � "
; t � 0

(1)

where" > 0 is a small value and� is a nonzero function. A random
process' with the property (1) is called a wide-band noise process and
it is said to be stationary (in wide sense) if the function� depends only
on s (see Fleming and Rishel [1]). If" is so small that it is normally
assumed to be 0, then the wide-band noise process' is transformed
into white noise. As it was mentioned, in many fields, for example, in
gravimetry (see Bashirovet al.[2]) such a substitution of wide-band
noise by white noise gives rise to tangible distortions.

Kushner has applied an approach to wide-band noise that is based
on approximations (see [3] and the references there). A different ap-
proach which is based on a certain integral representation was sug-
gested in Bashirov [4]. Using this approach, in [4] and [5] different
estimation problems were studied for linear partially observable sys-
tems disturbed by wide-band noise. The respective proofs in [4] and
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