
Extrinsic and Intrinsic Evolution of Multifunctional Combinational
Modules

Lukas Sekanina, Tomas Martinek and Zbysek Gajda

Abstract— Multifunctional digital circuits are circuits com-
posed of polymorphic (multifunctional) gates. In addition to
its standard logic function (such as NAND), a polymorphic
gate exhibits another logic function (such as NOR) which
is activated under a specific condition, for example, when
Vdd, temperature or illumination reaches a certain level. This
paper describes the evolutionary design of multifunctional
combinational circuits at the gate level using a circuit simulator
and in a field programmable gate array (FPGA). The FPGA-
based implementation exhibits a significant speedup against a
highly optimized software simulator.

I. INTRODUCTION

Multifunctional digital circuits are circuits composed of
polymorphic (multifunctional) gates. In addition to its stan-
dard logic function (such as NAND), a polymorphic gate
exhibits another logic function (such as NOR) which is
activated under a specific condition, for example, when
Vdd, temperature or illumination reaches a certain level.
Examples of polymorphic gates are available in literature
[12], [14], [13]. It was shown that it is possible to consider
polymorphic gates as standard building blocks and to use
them, together with ordinary gates, to design multifunctional
digital circuits [9]. These multifunctional circuits exhibit
interesting behaviors not visible in standard digital circuits.
A circuit exists that operates as an adder in case that Vdd
= 3.3V and as a multiplier in case that Vdd = 1.8V [9].
Its topology is invariable; the only feature which is changed
with Vdd is the functionality of some gates.

Thus, having polymorphic and ordinary gates, the task
is to find a graph representing the digital circuit which
performs the first desired function under first condition and
the second desired function under second condition (see
Fig. 1). Unfortunately, standard methods for logic synthesis
are not able to solve this problem. In order to find simple
multifunctional circuits at the gate level, an evolutionary
approach has been utilized in the recent papers [9], [1]. The
evolved circuits have up to 5 inputs and outputs and consist
of a few tens of gates.

The objective of this paper is to compare two evolution-
ary approaches to the multifunctional combinational circuit
design at the gate level:

Lukas Sekanina is with the Faculty of Information Technology, Brno Uni-
versity of Technology, Brno, Czech Republic (email: sekanina@fit.vutbr.cz).

Tomas Martinek is with the Faculty of Information Technology, Brno Uni-
versity of Technology, Brno, Czech Republic (email: martinto@fit.vutbr.cz).

Zbysek Gajda is with the Faculty of Information Technology, Brno
University of Technology, Brno, Czech Republic (email: gajda@fit.vutbr.cz).

x1
x2

x3
AND/OR

y

x1
x2

x3

y
x1
x2

x3

y

(a) (b)

mode 1 mode 2

Fig. 1. Example of a polymorphic module with AND/OR gate: (a) y =
x1.x2.x3 (b) y = x1.x2 + x3

• Extrinsic evolution in which a software circuit simulator
is used to evaluate candidate circuits.

• Intrinsic evolution in which topology of a circuit is
sought using a hardware accelerator. The accelerator as
well as the evolution engine are implemented in a field
programmable gate array.

This terminlogy (extrinsic and intrinsic evolution) is used
in the field of evolvable hardware [3]. In both cases, polymor-
phic gates are considered as standard building blocks with
properties similar to ordinary gates (i.e. they are not modeled
at the transistor level). Digital multifunctional circuits will
be composed of these gates. It is assumed that the FPGA-
based implementation can provide a significant speedup of
the design process in comparison with a highly optimized
software simulator.

Section II introduces the area of polymorphic electronics.
In Section III, the design problem is formulated in terms
of graph theory. Section IV deals with extrinsic evolution
of multifunctional combinational circuits. The problem is
approached using Cartesian genetic programming that uti-
lizes parallel simulation to accelerate the evolutionary design
process. Results are given for two benchmark problems:
multiplier/sorting network circuit and Plus1/Plus7 circuit. A
complete FPGA implementation of multifunctional circuit
evolution is proposed in Section V. Results obtained using
both approaches (i.e. extrinsic and intrinsic evolution) are dis-
cussed in Section VI. Conclusions are given in Section VII.

II. MULTIFUNCTIONAL DIGITAL CIRCUITS

The concept of polymorphic electronics was proposed by
Stoica et al [13]. In fact, polymorphic circuits are mul-
tifunctional circuits. The change of their behavior comes
from modifications in the characteristics of components (e.g.

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

9676

TABLE I

EXAMPLES OF EXISTING POLYMORPHIC GATES AND THEIR

IMPLEMENTATION COST (# OF TRANSISTORS)

Gate control values control trans. ref.
AND/OR 27/125◦C temperature 6 [13]
AND/OR/XOR 3.3/0.0/1.5V ext. voltage 10 [13]
AND/OR 3.3/0.0V ext. voltage 6 [13]
AND/OR 1.2/3.3V Vdd 8 [14]
NAND/NOR 3.3/1.8V Vdd 6 [12]

in the transistor’s operation point) involved in the circuit
in response to controls such as temperature, power supply
voltage, light, etc. [14], [13].

Research papers indicate many areas in which polymor-
phic gates could be utilized. The following list provides some
examples (see a thorough analysis in [13], [14]): (a) The
automatic control of power consumption when battery volt-
age decreases (a circuit realizes another function for lower
battery voltage; however, its structure remains unchanged).
(b) Implementation of a hidden function, invisible to the
user, which can be activated in a specific environment (e.g.
watermarking at the hardware level). (c) Intelligent sensors
for biometrics, robotics, industrial measurement, etc. (d)
Reverse engineering protection. (e) Implementation of low-
cost adaptive systems that are able to adjust their behavior
inherently.

A. Polymorphic Gates

In theory, it could be possible to build a polymorphic gate
that implements k different logic functions in k different
environments. Practically, k is 2 or 3 nowadays. If poly-
morphic gates were available as building blocks we could
develop polymorphic electronics. The main problem is their
design: All the existing polymorphic gates were discovered
by means of evolutionary design techniques. It seems that a
human designer is not able to accomplish this task at all.

Table I gives examples of the polymorphic gates reported
in literature. For instance, the NAND/NOR gate is the most
famous example [12]. The circuit consists of 6 transistors and
was fabricated in a 0.5-micron CMOS technology. The circuit
is stable for ±10% variations of Vdd and for temperatures
in the range –20◦–200◦C. No circuits more complex than
a single gate have been reported that are designed at the
transistor level.

B. Multifunctional Combinational Modules

The use of polymorphic gates as building blocks offers
an opportunity to design multifunctional digital modules at
the gate level. Table II surveys multifunctional combinational
modules reported in [9], [1]. For example, using the poly-
morphic NAND/NOR gate and the standard AND gate it
is possible to create a circuit which operates as a two-bit
multiplier in one environment and as a two-bit adder in the
second environment. Once the circuit is designed at the gate
level (abstracting thus from the electric level), it does not

TABLE II

EXAMPLES OF MULTIFUNCTIONAL COMBINATIONAL MODULES AND

THEIR IMPLEMENTATION COST (# OF GATES).

Circuit gates gates used
5b-parity/majority 14 NAND/NOR, XOR/XOR
5b-parity/majority 13 NAND/XOR, XOR/NOR
5b-boolsym/majority 13 NAND/NOR, XOR/XOR
Mult2b/sn4b 25 NAND/NOR, AND/AND
Mult2b/sn4b 27 (a ∨ b)/XOR, XOR/(a ∧ b)
2b-mult/add 20 NAND/NOR, OR/XOR
2b-mult/add 23 NAND/NOR, AND/AND
up/down sorting net – AND/OR, OR/AND

matter whether this circuit is “reconfigured” by Vdd or a
level of temperature or light.

These circuits were designed by means of evolutionary
design techniques. In some cases, the circuits contain hypo-
thetical polymorphic gates; in other cases they are composed
solely of physically existing polymorphic gates. Research
results indicate that it is very difficult to discover circuit
topologies for nontrivial polymorphic circuits and that human
designer is not able to accomplish this task because no
suitable conventional design method exists. It was shown that
it is useful to combine polymorphic gates with conventional
gates in order to obtain compact polymorphic circuits [9].

III. PROBLEM FORMULATION

Let Γ be a set of polymorphic gates. Each of them is
able to implement up to two functions according to a control
signal which can hold two different values. A gate is in mode
j (and so performing the j-th function) in the case that j-
th value of the control signal is activated. For purposes of
this paper, we will denote a polymorphic gate as X1/X2,
where Xi is its i-th logic function. For example, NAND/NOR
denotes the gate operating as NAND in mode 1 and as NOR
in mode 2. Note that some gates can perform only one
function; however, their functionality must be fully defined
for each mode. For example, the conventional NAND gate
considered for polymorphic circuits must perform NAND
function in all modes (denoted as NAND/NAND).

A polymorphic circuit can formally be represented by
graph G = (V, E, ϕ), where V is a set of vertices, E is
a set of edges between the vertices, E = {(a, b)|a, b ∈ V },
and ϕ is a mapping assigning a function (polymorphic gate)
to each vertex, ϕ : V → Γ. As usually, V models the gates
and E models the connections of the gates. A circuit (and
also its graph) is in the mode j in the case that all gates are
in the mode j.

Given Γ and logic functions f1 and f2 required in different
modes, the problem of the multifunctional circuit design at
the gate level is formulated as follows: Find a graph G
representing the digital circuit which performs functions f1 in
its mode 1 and f2 in its mode 2. Additional requirements can
be specified, e.g. to minimize delay, area, power consumption
etc.

9677

0

1

2

1
31

2
50

2
70

1

41
0

0
60 81

0

Fig. 2. An example of a 3-input circuit. CGP parameters are as follows:
L = 3, u = 3, v = 2, Γ = {AND (0), OR (1)}. Gates 5 and 7 are not
utilized. Chromosome: 1,2,1, 0,0,1, 2,3,0, 3,4,0 1,6,0, 0,6,1, 6, 8. The last
two integers indicate the outputs of the circuit.

IV. EVOLUTIONARY DESIGN USING SIMULATORS

Cartesian genetic programming (CGP) will be utilized to
solve the problem defined in the previous section.

A. Cartesian Genetic Programming

Miller and Thomson introduced CGP that has recently
been applied by several researchers especially for the evolu-
tionary design of combinational circuits [7], [6]. In CGP, the
reconfigurable circuit is modeled as an array of u (columns)
× v (rows) of programmable elements (gates). The number
of circuit inputs, ni, and outputs, no, is fixed. Feedback
is not allowed. Each gate input can be connected to the
output of some gate placed in the previous L columns or
to some of circuit inputs. The L parameter, in fact, defines
the level of connectivity and thus reduces/extends the search
space. For example, if L=1 only neighboring columns may
be connected; if L = u, the full connectivity is enabled. Each
gate is programmed to perform one of functions defined in
the set Γ. Figure 2 shows an example and a corresponding
chromosome. Every individual is encoded using u×v×3+no

integers.
The main advantage of CGP is that it uses the represen-

tation similar to real reconfigurable devices. However, the
problem is that the corresponding search space is usually
very rugged and thus difficult to search. Properties of CGP
were analyzed in [6], [8]. Numerous experiments performed
by Miller and others have shown that a very simple evo-
lutionary algorithm achieves the highest performance. The
main features of the algorithm can be summarized as: EA
operates with the population of λ individuals (typically,
λ = 5 − 20). The initial population is randomly generated.
Every new population consists of the best individual and
its mutants. The mutation operator modifies some randomly
selected genes of an individual. In case that evolution has
found a solution which produces correct outputs for all
possible input combinations, the number of gates is getting to
minimize. Delay is not optimized. The evolution is stopped
when the best fitness value stagnates or the maximum number
of generations were exhausted.

In case of combinational circuit evolution, the fitness
function is constructed to minimize the Hamming distance
between output vectors of a candidate circuit and the re-
quired output vectors. Typically, all possible input vectors
are applied to obtain the set of output vectors. This approach

x1 = 1010101010101010

x3 = 1111000011110000

x4 = 1111111100000000

0110011001100110

1111000000000000

y = 1111011001100110

x2 = 1100110011001100

r = 1111011001100101

16 x

16 x

16 x

fitness = 14/16

Fig. 3. Parallel simulation of a combinational circuit. y is the result of
simulation, r is the required output

is tractable only for small circuits (i.e. this approach is not
scalable [15]).

B. Parallel Simulation

In a circuit simulator working at the gate level, a single
gate is usually modeled using a logic function. A technique,
called parallel simulation, was proposed to accelerate the
evaluation time of a candidate circuit when the evolutionary
design process is carried out in software. The idea is to utilize
bitwise operators operating on multiple bits in a high-level
language (such as C) to perform more than one evaluation
of a gate in a single step. Therefore, when a combinational
circuit under simulation has four inputs and it is possible
to concurrently bitwise operations over 24 = 16 bits in
the simulator then this circuit can completely be simulated
by applying a single 16-bit test vector at each input (see
encoding in Fig. 3). In contrast, when it is impossible then
sixteen four-bit test vectors must be applied sequentially.
Practically, current processors allow us to operate with 64
bit operands, i.e. it is possible to evaluate the truth table of
a six-input circuit by applying a single 64-bit test vector at
each input. Therefore, the obtained speedup is 64 against the
sequential simulation. In case that a circuit has more than 6
inputs (which is not our case) then the speedup is constant,
i.e. 64. The concept of parallel simulation is utilized in CGP.

C. The Proposed Method

In contrast to the paper [9], in which parameter L was
set to the maximum value (i.e. L = u), in this research,
only neighboring columns of programmable gates may be
connected, i.e. L = 1. This restriction is proposed in order to
make hardware implementation efficient (as it will be shown
in Section V). However, in order to allow interconnections
of distant gates, programmable elements were equipped with
the identity function (i.e. the gate can implement a wire).

Thus, the task is to find using CGP graph G representing
the digital circuit which performs the function f1 in its
mode 1 and f2 in its mode 2. The proposed algorithm
operates with the population of 15 individuals; every new
population consists of mutants of the best individual. Only
a mutation operator has been utilized that modifies one
randomly selected gene of an individual. In case that the
evolution has found a solution which produces the correct
outputs for all possible input combinations, the number of
gates is getting to minimize. Delay is not optimized. The
computation is terminated in case that no improvement of

9678

the best fitness value has been reported in a given number
of recent generations (typically in 50,000 generations). The
fitness value is defined as follows:

fitness = B1 + B2 + (u.v − z) (1)

where B1 (resp. B2) is the number of correct output bits
for f1 (resp. f2) obtained as response for all possible input
combinations, z denotes the number of gates utilized in a
particular candidate circuit and u.v is the total number of
programmable gates available. The last term is considered
only if the circuit behavior is perfect in the both modes;
otherwise uv − z = 0.

D. Results

In order to illustrate the performance of the proposed
design tool, two circuits of four inputs and four outputs are
presented here:

• 2-bit Multiplier/4-bit Sorting Network which multiplies
2-bit numbers in the first mode and sorts the input 4-bit
vector in the second mode. It is a typical benchmark
circuit from [9].

• 4-bit Plus1/Plus7 circuit which adds ”1” to the input
vector in the first mode and adds ”7” to the input vector
in the second mode. The circuit could by used in a
counter to adaptively change its behavior.

These circuits were chosen because: (1) Their implemen-
tations exist and so it is possible to compare the obtained
results with them. (2) These circuits belong to the most
complex circuits that have been evolved so far, i.e. the
problem is reasonably difficult.

The EA operates with the following parameters: u = 10,
v = 12, L = 1, population size = 15 and 1 mutation is
performed per chromosome. Each programmable gate can be
programmed to perform one of functions from Γ = {c = a
NAND/NOR b, c = a AND b, c = a, c = b} where the last two
functions denote the identity operation. After reaching the
perfect functionality, the number of gates is being minimized.
In total, 1M generations are produced in each run which takes
80 seconds at Athlon64 3200+ processor. CGP has utilized
the parallel simulation.

Table III summarizes the obtained results. In can be
seen for the Mult/SN problem that all runs were successful
and 52,580 generations were needed on average to obtain
a perfect circuit. Figure 4 shows the best implementation
utilizing 23 gates (18 polymorphic NAND/NOR gates and 5
conventional AND gates). This circuit utilizes 74 out of 120
programmable elements; however, 51 gates are configured to
operate as the identity. This implementation has 2 gates less
than the best known solution [9]. Note that a conventional
implementation of 2-bit multiplier requires 5 AND gates and
5 XOR gates and a conventional implementation of 4-bit
sorter requires 9 AND gates and 9 OR gates.

In case of Plus1/Plus7 circuit, Table III shows that all
runs were successful and 41,543 generations were needed on
average to obtain a perfect circuit. The best solution utilizes
73 programmable elements out of 120 elements; however,

TABLE III

EVOLUTIONARY DESIGN USING SIMULATOR

Mult/SN Plus1/Plus7
Runs 10 10
Succ. Runs 10 10
Generation – average 52,580 41,543
Generation – std. dev. 25,364 44,799
Gates 23 – 31 14 – 23

Fig. 4. The best evolved 2b-Multiplier/4b-Sorter. Functions: (0)
NAND/NOR, (1) AND, (2) c = a, (3) c = b

59 gates were configured to perform the identity function.
Therefore, the circuit consists of 14 gates (6 NAND/NOR
gates, 8 XOR gates).

V. EVOLUTION IN AN FPGA

In order to speed up the evolutionary design process, a
complete implementation of CGP is proposed for FPGA.
Figure 5 provides overall view of the system which consists
of Virtual Reconfigurable Circuit (VRC), Genetic Unit and
Fitness Unit.

A. Virtual Reconfigurable Circuit

1) The Concept of VRC: Most FPGA families can be con-
figured only externally. The internal reconfiguration means
that a circuit placed inside the FPGA can configure the pro-
grammable elements of the same FPGA (which is important
for evolvable hardware). Although the internal configuration
access port (ICAP) has been integrated into Xilinx Virtex II
family [2], it is still too slow for our purposes. As soon
as the reconfiguration time should be much shorter than
the evaluation time (to make the approach reasonable), we
need to reconfigure the circuit in tens of nanoseconds—but
it is not possible using the existing configuration subsystems
of FPGAs. In order to overcome the problem of internal
reconfiguration, we have developed virtual reconfigurable
circuits [8]. The use of VRCs has allowed us to introduce a

9679

Memory
Fitness

Mutation

Unit

Population

Memory

T1 Table

T2 Table

conf.

QT1A

B QT2

conf.

QT1A

B QT2

conf.

QT1A

B QT2

...

conf.

QT1A

B QT2

conf.

QT1A

B QT2

conf.

QT1A

B QT2

...

conf.

QT1A

B QT2

conf.

QT1A

B QT2

conf.

QT1A

B QT2

...

conf.

QT1A

B QT2

conf.

QT1A

B QT2

conf.

QT1A

B QT2

...

conf.

QT1A

B QT2

conf.

QT1A

B QT2

conf.

QT1A

B QT2

...

Random number
Generator

Fitness

Conf.

Virtual Reconfigurable Circuit Genetic Unit

vrc_col(i) vrc_col(i)

...

...

vrc_col(i) vrc_col(i)vrc_col(i)

value

Interface

Initialization

Unit

Computation
GA

Controller

Fitness

Fitness Unit

Generation
VRC Input

Fig. 5. Hardware implementation of multifunctional circuit evolution

novel approach to the design of complete evolvable systems
in a single FPGA [8], [10], [5].

VRC is in fact a second reconfiguration layer developed
on the top of an FPGA in order to obtain fast recon-
figuration and application-specific programmable elements
(PEs). Fig. 5 shows that VRC consists of an array of
programmable elements. The routing circuits are created
using multiplexers. The configuration memory of the VRC
is typically implemented as a register array. All bits of the
configuration memory are connected to multiplexers that
control the routing and selection of functions in PEs. Because
the array of PEs, routing circuits, configuration memory, style
of reconfiguration and granularity of the new VRC can be
designed exactly according to the requirements of a given
application, designers can create an optimized application-
specific reconfigurable device. Furthermore, the VRC is
described in HDL, i.e. independently of a target platform. It
is crucial from our perspective that the VRC can directly be
connected to a hardware implementation of the evolutionary
algorithm placed on the same FPGA. If the structure of the
chromosome corresponds to the configuration interface of the
VRC then a very fast reconfiguration can be achieved (e.g.
consuming a few clock cycles only)—which is impossible
by means of any other technique.

2) VRC for Multifunctional Circuit Evolution : Figure 5
shows that VRC consists of u × v PEs. Each of them is
equipped with a register to allow pipelined processing (that
is possible because L = 1). Thus, a PE gets its inputs from
the outputs of PEs placed in the previous column or from

the primary inputs. The values coming from primary inputs
are synchronized with the computation of PEs via a set of
registers.

Figure 6 shows the implementation of a single PE. Every
PE has got two outputs in order to calculate results of both
modes of a polymorphic gate in one clock cycle. In order
to utilize the concept of “parallel simulation” in FPGA,
PEs operate with two four-bit operands and four-bit outputs.
Thus, they are able to accelerate the evaluation of a candidate
configuration four times. As both modes of a polymorphic
gate are processed in parallel and PEs operate over four bits,
we can obtain the resulting data 8 times faster than by using
a naive sequential implementation. Table IV provides a list
of functions implemented by PE for Plus1/Plus7 problem.

The function and connection of a single PE is defined
using 10 bits; 4 bits determines the connection of its first
input, 4 bits determines the connection of its second input
and 2 bits are utilized to select one of four functions given
in Table IV. VRC is reconfigured column by column.

TABLE IV

FUNCTIONS IN PROGRAMMABLE ELEMENTS

Configuration Function Description
00 x nand/nor y bitwise nand/nor
01 x xor y bitwise xor
10 x x to output
11 y y to output

9680

QT1

QT2Y

X
F1/T1

F1/T2

F2/T1

F2/T2

CONF

Fig. 6. Programmable element operating with 4-bit inputs and outputs and
calculating both modes of a polymorphic gate in parallel

B. Genetic Unit

Various hardware implementations of evolutionary algo-
rithms have been proposed in the recent years, see, for
example, [11]. In order to make FPGA implementation
reasonably complex, the proposed EA is based only on a
single mutation operator (bit inversion). The population is
stored in a memory whose size is configurable. Another
memory is used to store fitness values. Every new population
is always generated from the best members of the previous
one. EA operates in following steps:

• Initialization Unit generates the first population at ran-
dom. We use a linear feedback shift register seeded from
PC via PCI bus.

• Mutation Unit changes a given number of genes (bits)
of a population member (this number is configurable)
and the modified member is loaded into the VRC. The
reconfiguration of VRC is pipelined in order to overlap
the reconfiguration by useful computation. Simultane-
ously, the chromosome is copied into a FIFO memory.

• Genetic Unit is waiting for the evaluation performed
by Fitness Unit. If the fitness value is better than the
parent’s fitness then the chromosome replaces its parent
(the chromosome is copied from FIFO to the population
memory). Otherwise, the chromosome is removed from
FIFO.

• This is repeated until an appropriate number of gener-
ations are produced.

This loop is in fact divided into two parts executed
concurrently. Because of the partial reconfiguration of VRC,
we can send the next population member to VRC although
the previous one has not been evaluated yet.

C. Fitness Unit

Fitness unit generates input vectors for VRC and compares
the outputs of VRC with the required values that are stored
in table T1 (for f1) and table T2 (for f2). The fitness value
is sent to Genetic Unit. Figure 7 shows its implementation.

D. Target Platform and Results of Synthesis

As a target platform, COMBO6 card was utilized [4].
COMBO6 is a PCI card primarily dedicated for a dual-stack
(IPv4 and IPv6) router hardware accelerator. The proposed
system was described in VHDL, simulated using Model-
Sim and synthesized using Precision Synthesis and Xilinx
ISE tools to Virtex FPGA XC2V3000bf957 chip which is
available on the COMBO6 card. Host PC and COMBO6
communicate via PCI interface that allows the user to specify
the values in tables T1 and T2, parameters of EA and to read
configurations of VRC from FPGA. Table V summarizes
results of synthesis for three different sizes of VRC.

TABLE V

RESULTS OF SYNTHESIS FOR XC2V3000

VRC Size Func. Gens. Dffs BRAMs IOB
Avail 28,672 28,672 96 684

8x8 9,178 2,333 3 41
Util. 32% 8% 3% 5%

9x10 13,335 2,862 6 41
Util. 46% 9% 6% 5%

12x10 17,614 3,391 8 41
Util. 61% 11% 8% 5%

The design can run at fmax = 115.7 MHz; however, we
have used f =50 MHz only to make easier the commu-
nication with the PLX chip running also at 50 MHz that
connects COMBO6 with PC via PCI bus. The following
formula determines the time of evaluation teval of a candidate
circuit in the proposed implementation (u = 10, ni = 4):

teval = Max[
2ni

DW
, u].

1
f

= Max[4, 10].
1

50.106
= 200ns

where DW is the number of bits which the PE operates over.
Running the system at fmax yields teval = 86.4ns. Time of
evolution is given by formula:

te = tinit + g.q.teval,

where tinit is the initialization time (which can be neglected),
g is the number of generations and q is the population
size. Note that the configuration overhead is included into
teval. The proposed system is able to speed up the evolution
61.7 times in comparison with the simulator discussed in
Section IV-D (calculated for fmax = 115.7 MHz, g =
1, 000, 000, q = 15).

E. Experimental Results

In order to evaluate the FPGA implementation, the evo-
lutionary design of the Plus1/Plus7 circuit was performed
10,000 times. The evolution was stopped when the best
fitness value has stagnated for 50k generations. Parameters
of VRC and EA are as follows: u = 10, v = 12, config-
uration bitstream = 1200 bits, Γ = {NAND/NOR, XOR,
c = a, c = b}, population size = 16, five mutations per
chromosome. The evolution has stagnated in the generation
27,856 in average. Figure 8 shows an example of evolved
Plus1/Plus7 circuit. Note that the number of utilized gates is
not optimized in this implementation.

9681

+ QD

WE

FDD

reg_fitval

MX

mx_fitval

/=

D

LOAD

CE

Q

cntr

cnt_addr

"0"

VRC

DI DO

=

=
QD

WE

FDD

reg_fitval_en

ADDRB DOB

DP_DISTMEM

TT_T1

ADDRB DOB

DP_DISTMEM

TT_T2

=

=

SUM
ONEs

WAIT FOR WAIT FOR
FITEVAL LAST

FSM_ENABLE=0 FSM_ENABLE=1

FSM_ENABLE=1

FITEVAL=0

CMP_LAST=1

CMP_LAST=0

FITEVAL=1

FSMcmp_last
CU_FITEVAL fsm_enable

"0"

"1010"

"1100"

VRC_OUTVRC_IN

DODI

SH_REG

cmp_last_m3 CU_LASTM3

"0"

"3"

"1"

"1"

DATA_WIDTH*2

GU_FVAL_EN

GU_FVAL

cmp_fstitem

cmp_lstitem

fsm_enable

cmp_last_m3

"1"

cmp_last

DATA_WIDTH
*VRC_OUTPUTS

DATA_WIDTH
*VRC_OUTPUTS

Fig. 7. Implementation of Fitness Unit

VI. COMPARISON OF RESULTS AND DISCUSSION

The proposed software tool for the evolutionary design
of multifunctional combinational circuits at the gate level
supports the concept of parallel simulation. It enables us to
accelerate the evolutionary design b times if b is the number
of bits in operands of CPU. As the tool is written generally, it
can evolve circuits of desired number of inputs and outputs,
utilize desired gates and parameters of CGP. By using this
tool we were able to obtain multifunctional circuits of better
quality (in terms of the number of gates utilized) and in a
shorter time in comparison with the results reported in [9].
In fact, in paper [9], only two out of 50 runs were successful
for the Multiplier/sorting network problem although the EA
utilized 128-member population and generated about 118,000
generations on average. On the other hand, the tool exhibits
the same problems as other tools utilized for the evolutionary
circuit design—scalability.

The FPGA-based implementation of the system has al-
lowed speeding up the evolutionary design more than 60
times (against PC with Athlon64 3200+). This speedup is
very promising if one considers that the software simulator
has fully explored the potential of parallel simulation (in
SW we have reached the speedup 16 against the sequential
simulation). By implementing the parallel evaluation of both
modes of a multifunctional circuit and four-bit operators in

PEs, we have accelerated the sequential implementation eight
times in FPGA. An implementation of a higher degree of
parallelism (e.g. PEs operating at 16 bits, multiple VRCs
etc.) requires considerably more area on the chip.

As this implementation is written generically in VHDL,
the user can easily specify the desired parameters of target
circuits (inputs, outputs, polymorphic gates), VRC parame-
ters and EA parameters. A crucial problem here is finding an
optimal level of parallelism and area utilization of the FPGA.
Current implementation has utilized approx. 60% of Virtex
XC2V3000 FPGA resources.

In contrast to the software simulator, we have recognized
that a perfect solution is not produced in each run of EA
in FPGA. Probably, the reason is that EA implemented in
FPGA is very simple (it is, in fact, a parallel hill-climbing
algorithm). In future research, we are going to implement in
the FPGA the same version of EA as we have used in PC.
Furthermore, in the fitness function, we will minimize the
number of gates utilized in evolved circuits.

A conventional implementation of the 4-bit sorting net-
work requires 18 gates (9 ANDs, 9 ORs), i.e. 108 transistors
(a standard CMOS AND as well as OR gate requires 6
transistors). The 2-bit multiplier can be implemented using
7 gates (5 ANDs, 2 XORs), i.e. 50 transistors (XOR gate
costs 10 transistors). Therefore, multiplexing the modules

9682

Fig. 8. VRC configured to perform Plus1/Plus7 function. Most PEs are
not utilized

requires at least 158 transistors. Note that the cost of poly-
morphic multiplexers is not considered in this values and it
is assumed that no gates can be reused in both modules. As
the evolved 2-bit Multiplier/4-bit Sorting Network consists
of 18 NAND/NOR gates and 5 AND gates, it costs 138
transistors, which represents a considerable reduction of the
area on a chip in comparison with a potential solution based
on polymorphic multiplexers.

VII. CONCLUSIONS

Two implementations of the evolutionary design of multi-
functional combinational modules were proposed and com-
pared in this paper. Although the FPGA implementation is
not so effective as the simulator (if the success rate of EA is
measured), it exhibits the speedup more than 60 in compar-
ison with the simulator. The ultimate goal of future research
is to propose an FPGA-based approach to the evolutionary
design of complex multifunctional circuits whose design is
intractable using a common PC or a cluster of workstations.
This research will also deal with the scalability issues.

ACKNOWLEDGMENT

This work has been financially supported by the
Grant Agency of the Czech Republic under contract
No. 102/06/0599 “Methods of polymorphic digital circuit
design”.

REFERENCES

[1] M. Bidlo and L. Sekanina. Providing information from the
environment for growing electronic circuits through poly-
morphic gates. In Genetic and Evolutionary Computation
Conference (GECCO2005) workshop program, pages 242–
248, Washington, D.C., USA, 2005. ACM Press.

[2] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and
P. Sundararajan. A Self-reconfiguring Platform. In Proc. of
the 13th Conf. on Field Programmable Logic and Applications
FPL’03, volume 2778 of Lecture Notes in Computer Science,
pages 565–574, Lisbon, Portugal, 2003. Springer-Verlag.

[3] H. de Garis. An Artificial Brain: ATR’s CAM-brain project
aims to build/evolve an artificial brain with a million neural
net modules inside a trillion cell cellular automata machine.
New Generation Computing Journal, 12(2):215–221, 1994.

[4] Liberouter home page, 2006. http://www.liberouter.org.

[5] T. Martinek and L. Sekanina. An evolvable image filter: Ex-
perimental evaluation of a complete hardware implementation
in fpga. In Evolvable Systems: From Biology to Hardware,
volume 3637 of LNCS, pages 76–85. Springer Verlag, 2005.

[6] J. Miller, D. Job, and V. Vassilev. Principles in the Evolutionary
Design of Digital Circuits – Part I. Genetic Programming and
Evolvable Machines, 1(1):8–35, 2000.

[7] J. F. Miller and P. Thomson. Cartesian genetic program-
ming. In Genetic Programming, Proceedings of EuroGP’2000,
volume 1802 of LNCS, pages 121–132, Edinburgh, 2000.
Springer-Verlag.

[8] L. Sekanina. Evolvable Components: From Theory to Hard-
ware Implementations. Natural Computing Series, Springer
Verlag, 2004.

[9] L. Sekanina. Evolutionary design of gate-level polymorphic
digital circuits. In Applications of Evolutionary Computing,
volume 3449 of LNCS, pages 185–194, Lausanne, Switzerland,
2005. Springer Verlag.

[10] L. Sekanina and S. Friedl. An evolvable combinational unit
for fpgas. Computing and Informatics, 23(5):461–486, 2004.

[11] B. Shackleford. A high-performance, pipelined, FPGA-based
genetic algorithm machine. Genetic Programming and Evolv-
able Machines, 2(1):33–60, 2001.

[12] A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, I. Ferguson,
and V. Duong. Taking Evolutionary Circuit Design From
Experimentation to Implementation: Some Useful Techniques
and a Silicon Demonstration. IEE Proc.-Comp. Digit. Tech.,
151(4):295–300, 2004.

[13] A. Stoica, R. S. Zebulum, and D. Keymeulen. Polymorphic
electronics. In Proc. of Evolvable Systems: From Biology to
Hardware Conference, volume 2210 of LNCS, pages 291–302.
Springer, 2001.

[14] A. Stoica, R. S. Zebulum, D. Keymeulen, and J. Lohn.
On polymorphic circuits and their design using evolutionary
algorithms. In Proc. of IASTED International Conference on
Applied Informatics AI2002, Insbruck, Austria, 2002.

[15] V. Vassilev and J. F. Miller. Scalability problems of digital
circuit evolution. In Proc. of the 2nd NASA/DoD Workshop
of Evolvable Hardware, pages 55–64, Los Alamitos, CA, US,
2000. IEEE Computer Society.

9683

