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Featured Application: The proposed methodology is an image processing application for moni-
toring and recognizing human behaviors and has been evaluated over well-known challenging
benchmark datasets. Therefore, this technique can be used to develop advanced surveillance and
security systems to locate human motions and classify their events.

Abstract: With the change of technology and innovation of the current era, retrieving data and data
processing becomes a more challenging task for researchers. In particular, several types of sensors and
cameras are used to collect multimedia data from various resources and domains, which have been
used in different domains and platforms to analyze things such as educational and communicational
setups, emergency services, and surveillance systems. In this paper, we propose a robust method
to predict human behavior from indoor and outdoor crowd environments. While taking the crowd-
based data as input, some preprocessing steps for noise reduction are performed. Then, human
silhouettes are extracted that eventually help in the identification of human beings. After that,
crowd analysis and crowd clustering are applied for more accurate and clear predictions. This step
is followed by features extraction in which the deep flow, force interaction matrix and force flow
features are extracted. Moreover, we applied the graph mining technique for data optimization, while
the maximum entropy Markov model is applied for classification and predictions. The evaluation of
the proposed system showed 87% of mean accuracy and 13% of error rate for the avenue dataset,
while 89.50% of mean accuracy rate and 10.50% of error rate for the University of Minnesota (UMN)
dataset. In addition, it showed a 90.50 mean accuracy rate and 9.50% of error rate for the A Day on
Campus (ADOC) dataset. Therefore, these results showed a better accuracy rate and low error rate
compared to state-of-the-art methods.

Keywords: cluster analysis; deep flow features; extrinsic behavior prediction; features mining; graph
optimization; interaction force; maximum entropy Markov model

1. Introduction

The current era is the age of advanced technology and research in various domains of
information technology, computer vision, and artificial intelligence. These domains open
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the way to develop smart technologies and smart tools with the help of existing cameras
and motion-based sensors. These smart tools enable a way to find solutions in various
domains, one of which is to find and estimate human behavior that proves to be very useful
for improving the lifelog of humans and advancement in the living standard of society.
However, some challenges and issues still exist in this domain such as noise reduction,
posture estimation, behavior mining, cost-efficient system, pedestrian behavior mining,
data optimization, and the classification of various events and activities. These issues still
need to be addressed with the help of previous knowledge and current technology.

Currently, motion sensors and camera-based human motion detection techniques
are used in various domains and smart applications [1–3]. While these applications are
a part of smart systems such as smart homes, the internet of things [4,5], machine learning-
based prediction systems [6], information security and encryption [7], smart emergency
systems [8], educational and managements system, e-learning approaches, smart transport
systems, and smart medical systems, in the security domain, it may help to find the anomaly
and normal behavior of human and even nonhuman objects [9–11], while in the education
system users can monitor the behavior of students. In the sports domain, we also find the
behavior of the players and crowd [12]. Similarly, in the medical domain using the EBP
system, we can predict the behavior of patients, doctors, and visitors [13], while in smart
homes or internet of things-based systems we can predict the nonhuman-based objects’
behavior and as well as human behavior.

Thus, in this article, we designed a robust approach for extrinsic behavior prediction
of the pedestrian in indoor and outdoor crowd scenes. Initially, indoor and outdoor crowd-
based data are considered as the input for the proposed system; then human silhouette
extraction, human verification, crowd analysis, and crowd clustering are the next phase of
the system. After the extraction of a human silhouette, the next step is to extract the features
to predict more accurate human behavior. That is, three main features are extracted from
all the datasets such as deep flow, force flow matrix, and interaction force. To minimize the
repetition of features data and reduce the use of computational resources, we use the graph
mining approach and to find extrinsic behavior prediction of pedestrians; the maximum
entropy Markov model [14–16] is used, which is one of the advanced models to predict
more accurate over complex datasets. Three main publicly available datasets are used,
namely avenue_dataset, crowd-activity_UMN_dataset, and A Day on Campus (ADOC).
Our contributions are as follows:

• We proposed a robust human silhouette extraction approach and human verification
method in crowded outdoor and indoor environments.

• We constructed a graph mining optimization approach and maximum entropy Markov
model, which presented relevant information along with classifying pedestrian behav-
iors for complicated crowd indoor and outdoor data.

• Furthermore, three major benchmark datasets were thoroughly evaluated, providing
a remarkable performance in comparison with other state-of-the-art approaches.

The rest of this paper is structured as follows. We evaluate the associated methods of
pedestrian behavior mining in Section 2. Section 3 contains the proposed EPB methodology
and features extraction approach along with graph mining and the maximum entropy
Markov model. Section 4 describes the tentative design and the outcomes of the evaluation
with present recognized statistical state-of-the-art approaches. Finally, Section 5 concludes
the paper and suggests some future trends.

2. Related Work

Over the decades, a variety of ways to solve the crowd activity recognition challenge
have been offered. In particular, tracking features in extremely dense and complex crowds
is impossible, as per Kratz and Nishino [17] and Marques et al. [18], and optical flow
estimation can become undependable. By identifying fixed-length spatio-temporal di-
mensions and generating spatio-temporal variations of gray levels that are characterized
using a 3D Gaussian Mixture Framework, Kratz and Nishino. [17] avoid optical flow-based
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motion description (GMM) [19–22]. The researchers used Hidden Markov Model [23–25]
to design behavior patterns and identify additional observations as abnormal if they do
not fit the trained model. While working against crowds, Wang and Xu. [26] resist using
an optical flow-based representation and used statistical data calculated from Fourier-
converted spatio-temporal segments collected from a spatio-temporal region. Although the
usefulness of optical flow when working with crowds is sometimes a matter of theoretical
debate, several approaches use optical flow measurements with excellent results. Ryan
et al. [27] used a three-dimensional Obtained Co-occurrence Matrix (GLCM) architecture
to record optical flow vectors, indicating the movements of a particular region through
moving homogeneity. The researchers use a Gaussian Mixture Model to create a normalcy
prediction. The authors claimed that their strategy is efficient at distinguishing between
regular and aberrant situations while preserving a processing capability of around 9 fps,
which is essentially real-time. Wang et al. [28] used two different techniques, one-class
Support Vector Machines (SVM) [29] understanding and Kernel integrates, to calculate the
multilateral Histogram of Optical Flow Orientation (HOFO) [30–32] on a per-frame premise
and framework-appropriate behavior. When combined with their predictor, the obtained
ideas of both techniques have been effective at simulating the appropriate behavior; only
one-class SVM performed somewhat better. Chen et al. [33] created the concept of crowd
velocity and claimed that quick variations in velocity can be employed to distinguish
a crowd demonstrating appropriate behavior from one that is now experiencing panic. The
issue of anomalous behavioral science, according to Biswas et al. [34], has been detected in
limited or infrequent actions. Each frame has been presented as a vector representation,
and matrix reduction has been used to divide the protein complexes into two groups.

Despite previous EBP research studies, there are still some challenges in dynamic
motion and crowd analysis. Therefore, we proposed a novel approach for EBP in this
research paper that is an innovation compared to previous research studies. For this, we
took three major benchmark datasets as input to the system. Initially, pre-processing,
background subtraction, and human detection were performed. The next step was to
extract the features from the extraction of human shape and body information. Furthermore,
we applied the heuristic approach to minimize the data and repetition problem via the
graph mining approach. Finally, the maximum entropy Markov model was applied for
the classification and recognition of pedestrian behaviors for complicated crowd indoor
and outdoor data. After an evaluation of the system, our model is shown to provide
a remarkable performance in comparison with other state-of-the-art approaches.

3. System Model of Proposed EBP

Primarily, the designed extrinsic behavior prediction (EBP) system is based upon
red green and blue (RGB) images, a sequence of frames, and video dataset. Some steps
are required, such as dealing with motion blur noise, frame sizing, and the conversion
of frames from images. The next step is defined as people detection and analysis, which
is contained human silhouette, human detection, human verification, crowd clustering,
and analysis. After that, the feature extraction phase contains interaction force, force flow
matrix, and deep flow features. Finally, the last step is to minimize the data through the
graph mining data optimization approach, and the maximum entropy Markov model
is applied over the output optimal feature vector for extrinsic behavior prediction. The
graphical representation of our comprehensive method is presented in Figure 1.
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Figure 1. Flow diagram of proposed human normal and abnormal activity detection model.

3.1. Data Acquisition and filtering

For classification of the crowd-based scenes, in most cases, videos and sequences of
image-based data are acquired as an input of the system. Such types of data are much more
sensitive towards motion blur noise. Noise in images or videos data may cause an increase
in the production cost of a smart system and make it difficult to find accurate results [35].
To deal with this initially, the Wiener filter [36] was adopted, which is more sensitive to
finding and restoring the images against motion blur noise. Equation (1) represents the
mathematical relationship of the Wiener filter.

w (a, b) =
H∗(a, b)

|H(a, b)|2 + K(a, b)
(1)

where w(a, b) are the actual data, and H∗(a, b) are the large area and K(a, b) the filter values.
To find more accurate results, we used a modified Markov random field (MRF) [37], which
is based on the Bayesian concept; Markov random field theory gives the possibility of
providing a structured methodology to visual analysis. The frequent patterns of visuals
are modeled using Markov random fields (MRFs). This provides a variety of analytical
methods and methodologies for addressing so-called inadequacy issues, in which the
observed data does not provide a correct method. To enhance the human silhouette results,
a multi-level floor detection process is adopted in which floor detection is performed
to remove the unnecessary information from the frame. Finally, a median filter [38] is
applied to optimize the silhouette and to show more precise results. Equation (2) shows
the mathematical formula of the median filter.

Im[k, l] = median(z[i, j]), (i, j) ∈ n. (2)
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where i and j narrate to categorization frame n having uncertain district cantered adjacent
pixels [k, l] in an image. Figure 2 shows the results of preprocessing.
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3.2. People Detection and Analysis

The next step is to find humans in given frames and analyze the given results; for
this, texton-based human segmentation is applied; for the verification of human and non-
human objects, Gaussian smoothing is applied; and finally, crowd clustering and analysis
is performed.

3.2.1. Texton-Based Segmentation

Texton is a textural description derived from grouping filtration system that returns
into a small number of technology demonstrator reaction matrices [39]. Filtering responses
could be estimated by employing Leung–Malik (LM) [40] filter banks with inter variations
and multi-orientation to convolve filter banks on visuals. It is made up of Gaussian filters’
first and intermediate gradients, as well as the Laplacian of Gaussian (LoG) [41] separates.
Text-based segmentation is represented as

Tb = ag min1≤m≤k
(

xi − wj
)2 (3)

where Tb is the i-th value of data, and wj is the weights subordinate to each dimension of
the given cluster. Figure 3 shows the example results of text-based segmentation.
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3.2.2. Human Verification

Human verification is one of the key steps in crowd behavior prediction problems;
using the size and shape information of the human body, it is possible to verify a human
in given data. In size-based techniques, there is a specific range that is selected for the
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human body, such as 10i × 90j pixels where I and J are values that can be increased or
decreased by 5 pixels. There are some limitations of the size-based human verification
approach, such as if non-human objects have the same size, this algorithm might detect this
object as human [42]. To deal with this issue, shape-based approaches are used to verify
the human, such as using the human head and human foot shape to indicate the human.
Due to the similar shape of the human body to other objects, sometimes non-human objects
are considered human, or sometimes humans are considered non-human objects. We
used an optimized approach by merging both the approaches and obtaining final human
verification results. Figure 4 shows detailed results of human verification.
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3.2.3. Gaussian Smoothing

After human verification in crowd-based data, the next step is crowd clustering and
analysis to find human behavior. Initially, Gaussian smoothing [43] is applied to human
verification. The impact of Gaussian smoothing is identical to that of the average filter
in that it blurs a picture. The standard deviation of the Gaussian defines the extent of
reduction. The Gaussian produces a ‘composite index’ of every pixel’s surroundings, with
the estimation graded further towards the core pixel’s intensity. Figure 5 shows the results
of Gaussian smoothing over the human-verified frame.
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3.2.4. Crowd Clustering and Analysis

The next phase is to combine the Gaussian cluster [44] for further processing, such as
crowd clustering and analysis. The variance σ2 of the Gaussian is normalized to approx-
imate the swarm-suspended particles for every human subject whenever humans are in
near vicinity to one another in the Gaussian region. The Gaussian clusters are defined as

Igu =
1

2πσ2 e
Ie(x2+y2)

2σ2 (4)
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where Ie is the given human-verified frame, Igu are the smoothing values, and σ2 is defined
as the Gaussian area, while Figure 6 represents the results of crowd clustering.
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3.3. Feature Extraction Methods

The features extraction method is helpful to classify the human behavior for extrinsic
behavior prediction in crowd-based data and gives more considerable results. In this paper,
we find the three optimal features, such as interaction force, force flow matrix, and deep
flow-based features. Algorithm 1 represents the detailed model of the features extraction
approach.

Algorithm 1: Features computation

Input: Frame_data
Output: Feature vectors ( f1, f2, f3 . . . . . . . fn)
Extarcted_ f eatures← []
Data← GetDatal()
Data_size← GetData_size()
Procedure EBP(Video, Images)
FeaturesVector ← []
Denoise_Data← Pre_processing(Win,Median)
SampledData(DenoiseData)
While exit invalid state do
[IF, FFFM, DF]← ExtractlFeatures(sample data)
FeaturesVector ← [IF, FFFM, DF ]
Return MultifeaturesVector

3.3.1. Interaction Force Features

Interaction force flow features are based upon the force, which interacts with humans,
and find the force value and direction with human movements with the calculations of
force, which are the starting and ending information of human movements, and track
information on human movement. The mathematical description of interaction force flow
features is

I f f (D) = ∑n
i=1[S(Hn)− E(Hn)] (5)

where I f f is defined as the interaction force flow features; D denotes the given data and S
the starting point, while E indicates the ending point of the human node. Figure 7 shows
the results of interaction force features over a crowded scene.
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3.3.2. Force Flow Matrix

To discover a similar pattern and flow of force with human movement, we adopted
the force flow matrix. The force flow matrix enables human force flow and movement
information via the multi-object tracking of human data. Inappropriate instances are finally
acknowledged using the continuous spatial-temporal examination of the crowd’s values.
Finally, extracted features are mapped onto a vector. It is defined as

Ff m = FN
i=0(D)mn

k (6)

where Ff m is the force flow matrix, and D denotes the data. Figure 8 shows the graphical
visualization of the force flow matrix features of EBP the system.
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3.3.3. Deep Flow Features

Under this subheading, the deep flow feature-based based approach has been utilized.
Human movement statistics and the direction of flow in uninterrupted visuals and human
multimedia statistics have been used to create deep flow dynamics. In this case, the
extracting features approach calculates the human’s circulation through their beginning
position to their final destination and gives a certain color to the required destination.
For the same orientation of deep flow, the color pattern will be the same. Following that,
we put all of the retrieved elements into the matrix and performed some more analysis.
Equation (7) describes the mathematical description of deep flow as follows:

D f l = ∑{si(x, y)→ ei(x, y)} (7)

where D f l symbolizes the trajectory of deep flow, si(x, y) the initial argument of human,
and ei(x, y) illustrations the finish spot of the human sign. Figure 9 shows a graphical
representation of deep flow features over a crowd-based environment.
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4. Extrinsic Behavior Prediction

We utilize a correlation approach in which iterative methods act as a pre-classifier
to enhance overall accuracy based on cross-features systems. For the extrinsic behavior
prediction model, the maximum entropy Markov model has been used as a classifier, and
graph mining has been used as a data optimizer and mining approach.

4.1. Graph Mining

Once features are extracted from all of the visual frames in the datasets, the next step is
to minimize the input, which minimizes operational expenses and improves precision. Due
to feature data that is also subjected to statistical structures and indices, researchers may
obtain a high prediction performance of extraction by using the graph mining approach [45].
Graph mining is a collection of tools and methodology for data analysis, predicting data
structure, and creating an ordered and factual graph for template matching. Algorithm
2 describes the complete working overview of graph mining, while Figure 10 shows the
mining results of the feature vectors.
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Algorithm 2: Data mining via Graph mining approach

Input: Complete Features (Cf)
Output: Minined_data (Md)
Complete_ f eature← []
for i = 1: k do
Read_Data: U→(Cf)
Tree_Craeting: TC_tree(U→0)
Read_Data: to find min R(min) and max R(Max)
Find_next_node: R(Cf→ next_node)
Find Mutual_node: apprise_the_list
Mine_the_date: min(Tree,apprise)
Restrictive_TC_tree:Produce_the_tree(mining)
end
return Optimized Data {OD}
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4.2. Maximum Entropy Markov Model

For the classification and detection of human behavior, we applied the maximum
entropy Markov model over three benchmark datasets. The goal of using this approach is
to get around the notion of the traditional hidden Markov model (HMM) [14] architecture,
which replaces monitoring and transformation processes with a single function, H(r| r′ , o).
As a result, the current measurement is dependent on the current condition.

Maximum Entropy Markov Model (MEMM), on the other hand, can view the data as
being connected with transition phases rather than depending on its current states. At first,
all experiences have been linked to transfers rather than states. It is formulated as

αq+1(r) = ∑r′ αq
(
r′
)
∗Hr′(r|oq+1) (8)

where αq+1(r) is the likelihood of the initial state occurring at a specific moment in time
q to the reflection classification. Therefore it calculates the data’s probabilistic model,
which is based on specific limitations obtained from the learning algorithm [46]. Each
limitation denotes certain instructional properties of the data that estimate the outcomes
of all specific elements in the learning distribution. It can also address the multivariate
regression approach that relies upon probabilistic models by emitting symbols from the
learning algorithm, which selects the optimal set of monitoring characteristics. This clas-
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sification method generalizes to identify factors that correspond to the reliant variable’s
decomposition as follows:

H(Q|P) = ∏n
r=1 H(Pr|Qr) ∗∏n

r=1 H(Qr|Qr−1) (9)

where Q is the state arrangement, and P is the structure of clarifications, i.e., P1, P2, . . . , Pn.
To exhaust the possibilities of the uncertain possibility H, a set of clarifications is marked
with tags, i.e., Q1, Q2, . . . , Qn as

H(Q1, . . . , Qn|P1, . . . , Pn) = ∏n
r=1 H(Qr|Qr−1, Pr) (10)

1
kqi

∑
ksi
r=1 fr

(
prn

, qrn

)
=

1
kqI

∑
ksi
n=1 ∑q∈q Hq′(q|ptr )fa

(
qrn

, s
)

(11)

where r1, r2, r3, . . . , rn are the spell imprints that include changeover utility Hs′ .

H
(
q
∣∣q′ , p) =

1
Z(p, q′)

exp (∑r mrfr
(
p, q′

)
) (12)

where mr is the quantity that must be taught and is linked to a trait fr(p, q′) selection
of best functions also called the legitimate characteristic capabilities, and Z(p, q′) is the
normalization factor that ensures the average of the matrix. Figure 11 shows a detailed
overview of the Maximum Entropy Markov Model architecture.
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5. Experimental Results and Analysis
5.1. Experimental Setting

The leave-one-out cross-validation approach has been adopted to evaluate the per-
formance of the proposed EBP method over three publicly available benchmark datasets
named avenue dataset, crowd-activity UMN dataset, and ADOC. These datasets cover
human crowd-based indoor/outdoor and normal/abnormal scenes.

The avenue dataset [47] comprises 16 preparation and 21 challenging video clips.
The videos were taken in the Chinese University of Hong Kong (CUHK) site avenue with
30652 frames overall. The exercise videos capture usual circumstances. Challenging videos
comprise normal and abnormal actions. Three abnormal examples are strange, wrong,
and abnormal objects, and the dataset comprehends a few contests such as minor camera
vibration, outliers and normal outlines.

The second dataset in our designed EBP framework is the activity of the crowd The
University of Minnesota UMN dataset [48] is a machine mapping of populated areas.
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Normal crowd behavior is observed until a predefined singular moment, where at the
point the behavior shifts to an evacuated scenario, in which each individual hurries out
of the camera frame to resemble terror. The collection is made up of 11 video clips that
start normal and then move to deviant behavior. The anxiety issue is shot in three different
locations, one indoors and two exteriors. All clip had been recorded at a frame rate of
30 frames per second with a resolution of 640 × 480 pixels using a static camera.

We also verified with a third standard dataset entitled ADOC [49], a 24-hour event
that includes 25 different event types and spans 721 occurrences. This is the biggest dataset
accessible for intrusion detection with localized bounding box descriptions. The informa-
tion has been gathered through a security camera that was installed on a huge university
campus. It looks out over a corridor that connects many structures and catches the activities
of students, educators, and employees on a hectic day. Video is captured at a frequency
of 1080p at a frame rate of three frames per second by the camera. The footage has been
encoded with the H.264 protocol, a lossy image compression technology that is widely
used in the monitoring sector. We generated a dataset using footage that was collected over
24 h. The video depicts a variety of lighting settings as well as congested situations with
debris in the backdrop. The data were annotated with a variety of events increasing in
occurrence from low to high. Where the bicyclist had a 238 frequency, the individual on the
lawn had a 132 frequency, the golf cart on the sidewalk had a 105 frequency, the person on
the phone had a 58 frequency, and the individual on a skateboard had a 48 frequency.

5.2. Hardware Platform

MATLAB (R2018a) was utilized for all software-based simulations and computation,
while Intel (R) Core(TM) i5-4210U CPU @ 1.70 GHz with 64-bit Windows 10 was used as
the physical device. The device enclosed an 8 GB RAM and a 2.40 GHz CPU. The leave
one subject out (LOSO) cross-validation method was applied to evaluate the established
method’s accuracy. The new conclusions over the crowd-based dataset and tentative
outcomes are discussed in the results segment.

5.3. Experimental Result and Evaluation

In this subdivision, trials were conducted twice to assess the performance of the
designed EBP model over three standard datasets. Table 1 shows the actual human count
and human detection mean accuracy by the change of the given frame data [50]. This table
has five columns in which the first one indicates the sequences of given frames, the second
for the actual track, the third for successful detection, the fourth for failure rate, and finally
the fifth for the accuracy of the avenue dataset with 91.60% mean accuracy.

Table 1. Actual human detection and recognition accuracy over avenue dataset.

Sequence No
(Frames = 45) Actual Track Successful Failure Accuracy

6 5 5 0 100.0
12 5 5 0 100.0
18 5 5 0 100.0
24 7 6 1 85.71
30 9 7 2 77.77
36 9 8 1 88.88
42 9 8 1 88.88

Mean accuracy = 91.60%

Table 2 shows the actual human count and human detection mean accuracy by the
change of the given frame data. This table has five columns, in which first one indicates the
sequences of given frames, the second for the actual track, the third for successful detection,
the fourth for the failure rate, and finally the fifth for the accuracy of the UMN dataset with
90.92% mean accuracy.
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Table 2. Actual human detection and recognition accuracy over UMN dataset.

Sequence No
(Frames = 45) Actual Track Successful Failure Accuracy

6 11 11 0 100.0
12 11 10 1 91.66
18 12 11 1 91.66
24 12 11 1 91.66
30 13 12 1 92.30
36 13 11 2 84.61
42 13 11 2 84.61

Mean accuracy = 90.92%

Table 3 shows the actual human count and human detection mean accuracy by the
change of the given frame data. This table has five columns in which first one indicates
the sequences of the given frames, the second for the actual track, the third for successful
detection, the fourth for the failure rate, and finally the fifth for the accuracy of the ADOC
dataset with 92.84% mean accuracy.

Table 3. Actual human detection and recognition accuracy over ADOC dataset.

Sequence No
(Frames=45) Actual Track Successful Failure Accuracy

6 12 12 0 100.0
12 12 11 1 91.66
18 13 12 1 92.30
24 13 12 1 92.30
30 14 13 1 92.85
36 15 14 1 93.33
42 16 14 2 87.50

Mean accuracy = 92.84%

The next step is to find normal and abnormal events of the proposed EBP method with
the help of the maximum entropy Markov model algorithm; Table 4 shows the confusion
matrix [51–53] of the avenue dataset with 87.00% of mean accuracy and 13.00% error rate.
Table 5 shows the confusion matrix of the UMN dataset with a mean accuracy rate of 89.50%
and an error rate of 10.50%. Table 6 shows the confusion matrix of the ADOC data set with
a mean accuracy rate of 90.50 and 9.50% error.

Table 4. Confusion matrix of proposed EPB method over avenue dataset.

Scene No Anomaly Detection Error Rate

Scene 01 84.00 16.00
Scene 02 87.50 12.50
Scene 03 89.50 10.50

Mean accuracy 87.00% 13.00%

Table 5. Confusion matrix of proposed EPB method over UMN dataset.

Scene No Anomaly Detection Error Rate

Scene 01 87.50 12.50
Scene 02 89.50 10.50
Scene 03 91.50 08.50

Mean accuracy 89.50% 10.50%
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Table 6. Confusion matrix of proposed EPB method over A Day on Campus (ADOC) data set.

Scene No Anomaly Detection Error Rate

Scene 01 86.50 13.50
Scene 02 91.50 8.50
Scene 03 93.50 6.50

Mean accuracy 90.50% 9.50%

After obtaining the results of means accuracy for the EPB system, the next phase is
to compare with a state-of-the-art classification algorithm. Figure 12 shows the detailed
results of the comparison.
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In study [54], they designed an approach for a fine-grained abnormal behavior un-
derstanding in the crowd with the help of low-level motion descriptors, dense trajectory,
and histogram of oriented tracks. In [55], Lloyd et al. developed a legitimate descriptor
that encodes differences in crowd appearance utilizing periodic estimates of grey level co-
occurrence tensor information to explain crowd behavior. As compared with other types of
crowd behavior, they add an inter-frame consistency indicator and show the perception of
aggressive behavior in a less consistent manner. Leyva et al. [56] designed a model to check
abnormal activities; the model utilizes an intelligent system that examines the compressed
feature set using Gaussian Mixture Models, Markov Chains, and Bag-of-Words. To improve
recognition rate, their system additionally incorporates the coordinated approach of the
classifiers in the local spatial region. In [57], Vu et al. used multilayer models including
both luminance and movement information to propose a model for efficient abnormal
identification. The architecture was made up of three primary parts: (1) denoising auto en-
coders for transfer learning, (2) conditional generative adversarial networks for level-wise
representative production, and (3) consolidation of abnormal areas found at every repre-
senting standard. Gong et al. [58] proposed to integrate a unit into the decoder and create
a better encoder dubbed MemAE (memory-augmented auto encoder). MemAE collects the
encoder’s encoding and then utilizes it as a request to identify the most appropriate storage
objects for restoration considering an argument. In [59] Tang et al. suggest a solution that
incorporates the benefits of both approaches while balancing their drawbacks. An edge
framework was set up to forecast and reassemble upcoming frames sequentially. The next
frame estimation increases the size of the restoration mistakes, making it easier to spot
unusual occurrences, while restoration enhances the future expected blocks with normal
events. Chong et al. [60] provide a dynamical structure for detecting anomalies in cluttered
scenes in video content. The framework was made up of two primary elements: one for



Appl. Sci. 2022, 12, 5985 15 of 18

representing spatial data and the other for understanding the time dynamics of those
qualities. For understanding and simulating the relationship of normal objects, Pourreza
et al. [61] present Ano-Graph, a unique yet fast technique. A Spatial-Temporal Graph
(STG) is created throughout this manner by taking each cluster as an entity’s attribute
collected from a real-time off-the-shelf detection algorithm, and connections are created to
interact. Following that, the STG is subjected to an identity learning system that captures
events in a subspace. Table 7 shows the comparison of proposed method accuracy with
state-of-the-art methods over the Avenue, UMN, and ADOC datasets.

Table 7. Comparison of proposed method accuracy with state-of-the-art methods over Avenue, UMN,
and ADOC datasets.

Methods Avenue UMN ADOC

Fine-grained [54] - 85.00 -
GLCM Texture Based [55] - 88.00 -

Levya et al. [56] - 88.30 -
Vu et al. [57] 71.50 - -

Gong et al. [58] 83.30 - -
Tang et al. [59] 85.10 - -

Chong et al. [60] - - 84.60
Pourreza et al. [61] - - 87.05

Our proposed method 87.00% 89.50% 90.50%

6. Discussion

The development of the proposed system is to attain extrinsic behavior prediction
of pedestrians via maximum entropy Markov model and graph-based features mining.
This research study is based upon preprocessing, human verification, crowd analysis,
features extraction, data optimization, and behavior prediction steps; while preprocessing
was performed to reduce the computational cost, some of the data contained human and
non-human objects simultaneously. To deal with this issue, human verification and crowd
analysis were performed. For the classification and prediction of various classes or things,
features extraction is one of the important steps. We proposed three robust features such as
deep flow, force interaction matrix, and force flow features. Moreover, for data optimization
and mining the features data, a graph mining approach was used. Finally, for extrinsic
behavior prediction and classification, the maximum entropy Markov model was used.

Meanwhile, due to the complex dataset and distance from the camera, there is one lim-
itation of this research study, which is the obstruction issue. This issue creates problems
in human detection and verification as well as the features extraction. This becomes the
main reason for the lower mean accuracy rate of human detection and extrinsic behavior
prediction. Figure 13 illustrates the challenging images of crowd scenes.Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 19 
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7. Conclusions and Future Works

This paper proposes a step forward in the approach to predict human behavior in
a crowded indoor or outdoor environment and classification of normal and abnormal
behavior. Initially, crowd-based data was taken as the input of the system, using some
preprocessing tools and techniques. We then reduced the noise and size of the frames
and identified the human and nonhuman objects. After that, feature extraction was per-
formed, and the three features were extracted. To minimize the data and to save the
computational cost as well as to increase the accuracy of the system, the graph-mining
approach was adopted. Finally, in order to predict the behavior of pedestrians, the maxi-
mum entropy Markov model was applied. The comparison results show an improvement
over the three benchmarked datasets avenue, UMN, and ADOC in mean accuracy and
classification rates.

We will incorporate additional extracting features algorithms from other areas in the
future to identify far more complicated behaviors in various contexts, such as emergency
service, education, surveillance, and transport system. In addition, we have planned to
apply this to remote sensing data and real-time environments.
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