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EXTRINSIC CIRCULAR TRAJECTORIES ON TOTALLY h-UMBILIC

REAL HYPERSURFACES IN A COMPLEX HYPERBOLIC SPACE

Tuya Bao and Toshiaki Adachi

Abstract

A trajectory for a Sasakian magnetic field, which is a generalization of geodesics,

on a real hypersurface in a complex hyperbolic space CHn is said to be extrinsic circular

if it can be regarded as a circle as a curve in CHn. We study how the moduli space

of extrinsic circular trajectories, which is the set of their congruence classes, on a totally

h-umbilic real hypersurface is contained in the moduli space of circles in CHn. From

this aspect we characterize tubes around totally geodesic complex hypersurfaces CHn�1

in CHn by some properties of such trajectories.

1. Introduction

In their paper [12] Kajiwara and Maeda gave several characterizations of
nonnegatively curved geodesic spheres in a complex hyperbolic space. Among
them the authors are interested in the characterization of geodesic spheres by
using extrinsic circular geodesics. A smooth curve s parameterized by its
arclength on a Riemannian manifold is said to be a circle of geodesic curvature
k ðb 0Þ if it satisfies the system of di¤erential equations ‘ _ss _ss ¼ kY , ‘ _ssY ¼ �k _ss
with a field Y of unit vectors along s. Equivalently, a smooth curve s para-
meterized by its arclength is a circle if it satisfies ‘ _ss‘ _ss _ss ¼ �k2 _ss. When k ¼ 0,
it is a geodesic. Hence we may say that circles are simplest curves next to
geodesics from the viewpoint of Frenet formula. A curve on a submanifold is
said to be extrinsic circular if it is a circle of positive geodesic curvature as a
curve in the ambient space. Thus Kajiwara and Maeda noted when geodesics
on a real hypersurface can be seen as ‘‘nice’’ curves in its ambient space.
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One can easily guess that some properties of extrinsic shapes of some curves
on a submanifold show properties of the embedding. For example, extrinsic
shapes of geodesics on a standard sphere in a Euclidean space are circles, and
this property characterize a standard sphere among hypersurfaces in a Euclidean
space. From this point of view Kajiwara and Maeda showed that a connected
real hypersurface in a complex hyperbolic space CHn is a geodesic sphere of
positive sectional curvature if geodesics orthogonal to the characteristic vector are
circles in CHn of geodesic curvature greater than the square root of holomorphic
sectional curvature of CHn (see §2 for more precisely).

Being inspired by this result we study extrinsic shapes of trajectories for
Sasakian magnetic fields on totally h-umbilic real hypersurfaces in CHn, which
are geodesic spheres, horospheres and tubes around totally geodesic complex
hypersurfaces CHn�1. A Sasakian magnetic field is a constant multiple of the
canonical 2-form Ff obtained by the characteristic tensor f of a real hypersurface
in a Kähler manifold (see §4). For a Sasakian magnetic field Fk ¼ kFf, a
smooth curve g parameterized by its arclength is said to be its trajectory if it
satisfies the di¤erential equation ‘ _gg _gg ¼ kf _gg. When k ¼ 0 it is nothing but a
geodesic. Hence, trajectories for Sasakian magnetic fields on real hypersurfaces
are generalization of geodesics. Since trajectories are closely related with the
almost contact metric structure of the underlying real hypersurface, the authors
think that their properties show more properties of the real hypersurface than
geodesics. In this paper, we refine the study on extrinsic circular trajectories for
Sasakian magnetic fields on totally h-umbilic real hypersurfaces in CHn in [5].
We study the behavior of the set of congruence classes of these trajectories on
each totally h-umbilic real hypersurface in the moduli space of circles, which
is the set of all congruence classes of circles, on CHn. We show that moduli
spaces of extrinsic circular trajectories on geodesic spheres form a foliation on the
moduli space of bounded circles on CHn. Also, in view of those moduli spaces
we characterize tubes around totally geodesic CHn�1 in CHn.

2. Supplemental results for Kajiwara-Maeda’s characterization

In order to make clear our standing point of studies, we shall start by
recalling a characterization of geodesic spheres of small radius given by Kajiwara
and Maeda [12], and by giving its supplemental results.

On a real hypersurface M of a Kähler manifold ~MM, we have a canonical
contact metric structure which is induced by the complex structure J on ~MM. For
a (local) unit normal vector field N on M in ~MM and the Riemannian metric h ; i
on ~MM, we define a vector field x by x ¼ �JN, a 1-form h by hðvÞ ¼ hv; xi and a
ð1; 1Þ-tensor field f by fðvÞ ¼ Jv� hðvÞN for each tangent vector v A TM. With
the induced metric h ; i on M we have a contact metric structure ðf; x; h; h ; iÞ
on M. We call x the characteristic vector field and f the characteristic tensor
on M.

Let i : M ! ~MM denote an isometric embedding of a real hypersurface M into
the ambient space ~MM. For a smooth curve g on M, we can regard it as a curve
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in ~MM by considering i � g and call it the extrinsic shape of g. For the sake of
simplicity, we usually denote the extrinsic shape i � g also by g. In their paper
[12] Kajiwara and Maeda characterized geodesic spheres of nonnegative curvature
by a property of extrinsic shapes of geodesics.

Theorem (Kajiwara-Maeda [12] (cf. [16])). Let M be a connected real
hypersurface in a complex hyperbolic space CHnðcÞ of constant holomorphic
sectional curvature c. Then the following conditions are mutually equivalent:

(1) M is locally congruent to a geodesic sphere all of whose sectional
curvatures are nonnegative;

(2) M is locally congruent to a geodesic sphere GðrÞ of radius ra ðlog 3Þ=ffiffiffiffiffi
jcj

p
;

(3) At each point p A M there exist a constant kp with kp b
ffiffiffiffiffi
jcj

p
and

orthonormal vectors v1; . . . ; v2n�2 A UpM orthogonal to xp satisfying that
the extrinsic shape of each geodesic gi on M with _ggið0Þ ¼ vi is a circle of
geodesic curvature kp.

Since they restricted themselves to real hypersurfaces of nonnegative cur-
vature, they showed the above result. But their proof tells more. We consider
the following condition:

(ES) At each point p A M of a real hypersurface M in CHn, there
exist linearly independent unit tangent vectors v1; . . . ; v2n�2 A UpM
orthogonal to xp satisfying that the extrinsic shapes of geodesic gi
ði ¼ 1; . . . ; 2n� 2Þ on M with _ggið0Þ ¼ vi are circles of common positive
geodesic curvature kp.

We note that Condition (ES) is a bit weaker than the condition in the
third condition in Kajiwara-Maeda’s result, because we need not assume that
v1; . . . ; v2n�2 A UpM are orthogonal. We have the following.

Proposition 1. A connected real hypersurface M in CHnðcÞ is locally
congruent to a geodesic sphere GðrÞ of radius rb ðlog 3Þ=

ffiffiffiffiffi
jcj

p
if and only if it

satisfies Condition (ES) and there is a point p0 A M with
ffiffiffiffiffi
jcj

p
=2 < kp0 a

ffiffiffiffiffi
jcj

p
.

Proposition 2. A connected real hypersurface M in CHnðcÞ is locally
congruent to a horosphere HS if and only if it satisfies Condition (ES) and there
is a point p0 A M with kp0 ¼

ffiffiffiffiffi
jcj

p
=2.

Proposition 3. A connected real hypersurface M in CHnðcÞ is locally
congruent to a tube TðrÞ of radius r around totally geodesic CHn�1 if and
only if it satisfies Condition (ES) and there is a point p0 A M with kp0 <

ffiffiffiffiffi
jcj

p
=2.

Since one can easily show the above results along the same lines as in the
proof of Kajiwara-Maeda’s result, we here give outlines. We denote by AM

the shape operator of M in CHn associated with a unit normal N. When the
characteristic vector field of a real hypersurface is principal at each point, it is
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said to be a Hopf hypersurface. Its principal curvatures satisfy the following
properties.

Lemma 1 ([14, 13]). Let M be a Hopf real hypersurface in CHnðcÞ. Then
its principal curvatures satisfy the following.

(1) The principal curvature dM associated with x is locally constant.
(2) If a nonnull vector v A TM satisfies AMv ¼ lv, then ð2l� dMÞAMfv ¼

ðdMlþ ðc=2ÞÞfv holds.

Under Condition (ES), we find that either AMvi ¼ kpvi or AMvi ¼ �kpvi
holds for i ¼ 1; . . . ; 2n� 2. This shows that vi and xp are principal curvature
vectors, and in particular that M is a Hopf real hypersurface. Applying Lemma
1 we can conclude that M has at most three constant principal curvatures k, �k
and dM , where, dM denotes the principal curvature associated with the charac-
teristic vector field. As connected Hopf real hypersurfaces in CHnðcÞ all of
whose principal curvatures are constant are classified by Berndt [9], consider-
ing their principal curvatures we get the results. Here, such hypersurfaces are
horospheres HS, geodesic spheres GðrÞ of radius r, tubes TðrÞ of radius r around
totally geodesic CHn�1, tubes TlðrÞ ðl ¼ 1; . . . ; n� 2Þ of radius r around totally
geodesic CH l, and tubes RðrÞ of radius r around totally geodesic real hyper-
surface RHn. When a real hypersurface M is one of HS, GðrÞ and TðrÞ it has
two principal curvatures;

lM ¼

ffiffiffiffiffi
jcj

p
=2;

ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ;

ð
ffiffiffiffiffi
jcj

p
=2Þ tanhð

ffiffiffiffiffi
jcj

p
r=2Þ;

8>><
>>: dM ¼

ffiffiffiffiffi
jcj

p
; when M ¼ HS;ffiffiffiffiffi

jcj
p

coth
ffiffiffiffiffi
jcj

p
r; when M ¼ GðrÞ;ffiffiffiffiffi

jcj
p

coth
ffiffiffiffiffi
jcj

p
r; when M ¼ TðrÞ:

8>><
>>:

These horospheres, geodesic spheres and tubes around totally geodesic complex
hypersurfaces are called totally h-umbilic real hypersurfaces because all tangent
vectors orthogonal to their characteristic vectors are principal. When M is either
TlðrÞ or RðrÞ it has two principal curvatures;

lM ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ; mM ¼ ð

ffiffiffiffiffi
jcj

p
=2Þ tanhð

ffiffiffiffiffi
jcj

p
r=2Þ

for vectors orthogonal to the characteristic vector and

dM ¼
ffiffiffiffiffi
jcj

p
coth

ffiffiffiffiffi
jcj

p
r; when M ¼ TlðrÞ;ffiffiffiffiffi

jcj
p

tanh
ffiffiffiffiffi
jcj

p
r; when M ¼ RðrÞ:

(

3. Circles on a complex hyperbolic space

By results in the previous section, it seems there is a relationship between
geodesic curvatures of circles on CHn and its real hypersurfaces. In order to
study this we here review some basic properties of circles on CHn.
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Two smooth curves s1, s2 on a Riemannian manifold N parameterized by
their arclengths are said to be congruent to each other if there is an isometry j
of N and a constant t0 satisfying s2ðtþ t0Þ ¼ j � s1ðtÞ for all t. Being di¤erent
from circles on a Euclidean space or on a real hyperbolic space, even if two
circles on CHnðcÞ have the same geodesic curvatures they are not necessarily
congruent to each other. For a circle s of positive geodesic curvature on
CHnðcÞ which satisfies ‘ _ss _ss ¼ ksY , ‘ _ssY ¼ �ks _ss with a field Y of unit vectors
along s, we define its complex torsion ts by ts ¼ h _ss; JYi with complex structure
J on CHn. Since J is parallel, its complex torsion ts is constant along s and
satisfies jtsja 1. It is known that two circles s1, s2 on CHnðcÞ are congruent
to each other if and only if ks1 ¼ ks2 and jts1 j ¼ jts2 j (see [17]). Therefore, the
moduli space M2ðCHnÞ of circles of positive geodesic curvature, which is the set
of all congruence classes of such circles, on CHn is set theoretically identified with
a band ð0;yÞ � ½0; 1�.

As CHn is a Hadamard manifold, a simply connected complete manifold
of nonpositive curvature, we can consider its ideal boundary qCHn. We say a
smooth curve s : R ! CHn to be unbounded in both directions, if both of the
sets fsðtÞ j ta 0g and fsðtÞ j tb 0g are unbounded. For such a curve s we
set sð�yÞ ¼ limt!�y sðtÞ, sðyÞ ¼ limt!y sðtÞ if they exist in qCHn, and call
them its points at infinity. If we define a function n : ð0;yÞ ! ½0; 1� by

nðkÞ ¼
0; if 0 < k <

ffiffiffiffiffi
jcj

p
=2;

ð4k2 þ cÞ3=2=ð3
ffiffiffi
3

p
jcjkÞ; if

ffiffiffiffiffi
jcj

p
=2a ka

ffiffiffiffiffi
jcj

p
;

1; if k >
ffiffiffiffiffi
jcj

p
;

8>><
>>:

we can describe properties of circles on CHnðcÞ as follows ([6]):

1) A circle s is bounded if and only if either ks >
ffiffiffiffiffi
jcj

p
or ts < nðksÞ;

2) A circle s is unbounded in both directions and has a single point at infinity
(sð�yÞ ¼ sðyÞ) if and only if

ffiffiffiffiffi
jcj

p
=2a ks a

ffiffiffiffiffi
jcj

p
and jtsj ¼ nðksÞ;

3) A circle s is unbounded in both directions and has two distinct points

at infinity if and only if either ks <
ffiffiffiffiffi
jcj

p
=2 or

ffiffiffiffiffi
jcj

p
=2a ks a

ffiffiffiffiffi
jcj

p
and

jtsj > nðksÞ;
4) Every bounded circle s with ts ¼ 0 is closed of length 4p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 þ c

p
;

5) Every bounded circle s with ts ¼G1 is closed of length 2p=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ c

p
.

Figure 1. The moduli space M2ðCHnÞ of circles on CHnðcÞ
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We denote by ‘ and ~‘‘ the Riemannian connections on a real hypersurface
M and on CHnðcÞ, respectively. We recall that Gauss and Weingarten for-
mulae are given as ~‘‘XY ¼ ‘XY þ hAMX ;YiN and ~‘‘XN ¼ �AMX for vector
fields X , Y tangent to M. We take a geodesic g on M whose initial vector is
orthogonal to the characteristic vector. By use of Gauss formula, if the extrinsic
shape of g is a circle, then its complex torsion is null. Thus we may say that
Kajiwara-Maeda’s result and its supplements show a relationship between geo-
desic curvatures of circles of null complex torsion and real hypersurfaces from
the viewpoint of extrinsic shapes of geodesics. We are hence interested in some
relativity of real hypersurfaces and circles of other complex torsions.

4. Extrinsic shapes of trajectories for Sasakian magnetic fields

Let M be a real hypersurface in CHnðcÞ. We here extend the notion of
geodesics on M. By using the characteristic tensor f we define a 2-form Ff

on M by Ffðu; :vÞ ¼ hu; fvi. Since it is a closed 2-form (see [8]), we say its
constant multiples to be Sasakian magnetic fields. Generally, a closed 2-form on
a Riemannian manifold is called a magnetic field because it can be regarded as a
generalization of a static magnetic field on a Euclidean 3-space (see [10, 18] and
also [1], for example). A smooth curve g on M parameterized by its arclength
is said to be a trajectory for a Sasakian magnetic field Fk ¼ kFf if it satisfies
‘ _gg _gg ¼ kf _gg. As trajectories for F0 are geodesics, we can consider trajectories as
perturbations of geodesics.

We here consider trajectories for Sasakian magnetic fields whose extrinsic
shapes are circles. Given a trajectory g for Fk, we define its structure torsion
rg by rg ¼ h _gg; xgi, where x denotes the characteristic vector of M. Since Gauss
formula and Weingarten formula lead us to ‘Xx ¼ fAMX , we have

r 0
g ¼ ‘ _ggh _gg; xgi ¼ hkf _gg; xgiþ h _gg; fAM _ggi ¼ 1

2
h _gg; ðfAM � AMfÞ _ggi;

because the shape operator AM is symmetric and the characteristic tensor f is
anti-symmetric. Thus rg is constant along g if AM and f are simultaneously
diagonalizable (AMf ¼ fAM ). It is known that such a property holds for
geodesic spheres GðrÞ, horospheres HS, and tubes TðrÞ and TlðrÞ around totally
geodesic CH l ðl ¼ 1; . . . ; n� 1Þ, which are usually called real hypersurfaces of
type (A).

We now restrict ourselves to GðrÞ, HS and TðrÞ in CHnðcÞ. For a trajectory
g for Fk on such a real hypersurface M, by using Gauss and Weingarten formulae
we have

~‘‘ _gg _gg ¼ kf _ggþ ðlMð1� r2g Þ þ dMr2g ÞN;

~‘‘ _gg½kf _ggþ ðlMð1� r2g Þ þ dMr2g ÞN�
¼ �fk2ð1� r2g Þ þ ðlM þ ðdM � lMÞr2g Þ

2g _gg
þ ðlM � krg þ ðdM � lMÞr2g Þðkþ ðdM � lMÞrgÞðrg _gg� xgÞ:

8>>>>><
>>>>>:

ð4:1Þ
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Thus we get conditions that the extrinsic shapes of trajectories are circles
(cf. [3, 5]).

Lemma 2. A trajectory g for Fk on a real hypersurface M which is congruent
to one of GðrÞ, HS and TðrÞ in CHnðcÞ is extrinsic circular if and only if it
satisfies one of the following conditions:

1) rg ¼G1,
2) lM � krg þ ðdM � lMÞr2g ¼ 0,
3) kþ ðdM � lMÞrg ¼ 0.

Corresponding to each case, the geodesic curvature kg and the complex torsion tg
of the extrinsic shape of g are as follows:

1) kg ¼ dM , tg ¼H1,
2) kg ¼ jkj, tg ¼ �sgnðkÞ,
3) kg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2lMkrg þ l2M

q
, tg ¼ ð2kr2g � k� lMrgÞ=kg.

When M is one of GðrÞ, HS and TðrÞ, we have dM � lM ¼ jcj=ð4lMÞ.
Thus in the case 4klM þ jcjrg ¼ 0, which is the third case of the above lemma,
we can express the geodesic curvature and the complex torsion of the extrinsic
shape as

kg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2M þ

jcjr2g
2

þ
c2r2g

16l2M

s
; tg ¼

rgðjcj � 2jcjr2g � 4l2MÞ
4kglM

:ð4:2Þ

First we study extrinsic circular trajectories for Sasakian magnetic fields on
a given totally h-umbilic real hypersurface M. We denote by EðMÞ the set of
all congruence classes of extrinsic circular trajectories on M of the third type
in Lemma 2. Since each isometry j of M is equivariant, that is, there is an
isometry ~jj of CHn satisfying i � j ¼ ~jj � i with the isometric embedding i : M !
CHn, we find that if two trajectories on M are congruent to each other then
their extrinsic shapes are congruent to each other in CHn. We can show the
converse holds (see [2, 7]). Thus we can identify the set EðMÞ with the set of
all congruence classes of circles which are extrinsic shapes of trajectories of the
third type in Lemma 2 on M.

As the structure torsion of each trajectory satisfies jrgja 1, for an extrinsic
circular trajectory g of the third type in Lemma 2 on M, by the first equality of
(4.2) we have lM a kg a lM þ ðjcj=ð4lMÞÞ. By substituting the first equality of
(4.2) into the second we obtain

t2g ¼
ðk2

g � l2MÞð32l2Mk2
g þ 4cl2M � c2Þ2

jcjð8l2M � cÞ3k2
g

:ð4:3Þ

If we regard the right hand side of (4.3) as a function gðKÞ ¼ gðK ; lMÞ on
K ¼ k2

g , we have

dg

dK
¼ l2Mð8K � cÞð8K � 4l2 þ cÞð32l2MK þ 4cl2M � c2Þ

jcjð8l2M � cÞ3K 2
:
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We hence get the following:
1) When M is either HS or GðrÞ, then g is monotone increasing with respect

to kg, and gðl2MÞ ¼ 0, g lM þ jcj
4lM

� �2 !
¼ 1.

2) When M is TðrÞ, then g is monotone increasing in the union of intervals

ðl2M ; ð4l2M � cÞ=8� [ ð�4cþ c2l�2
M Þ=32; lM þ jcj

4lM

� �2" #
;

and is monotone decreasing in the interval

½ð4l2M � cÞ=8; ð�4cþ c2l�2
M Þ=32�:

At the ends of these intervals we have

gðl2MÞ ¼ gðð�4cþ c2l�2
M Þ=32Þ ¼ 0;

g lM þ jcj
4lM

� �2 !
¼ 1; gðð4l2M � cÞ=8Þ ¼ �ð4l2M þ cÞ3ð4l2M � cÞ

jcjð8l2M � cÞ3
ð< 1Þ:

We note that lM þ ðjcj=ð4lMÞÞ ¼ dM . Moreover, when M ¼ TðrÞ we have

1)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4l2M � cÞ=8

q
<

ffiffiffiffiffi
jcj

p
=2 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4cþ c2l�2

M Þ=32
q

,

2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4cþ c2l�2

M Þ=32
q

<
ffiffiffiffiffi
jcj

p
if and only if r> ð2 logð

ffiffiffi
7

p
þ 1Þ� log 6Þ=

ffiffiffiffiffi
jcj

p
,

3) gðð4l2M � cÞ=8Þ is monotone decreasing with respect to lM .
By the above argument, we find that the moduli space EðMÞ of extrinsic

circular trajectories of the third type in Lemma 2 on M is a curve on the
moduli space M2ðCHnÞ of circles like Figures 2 and 3. Also, we find that the
congruence class of extrinsic circular trajectories of the first type in Lemma 2
on M, which is expressed as fðdM ; 1Þg in M2ðCJ nÞ ¼ ð0;yÞ � ½0; 1�, is contained
in EðMÞ. Thus, the moduli space of all extrinsic circular trajectories on M is
EðMÞ [ fðk; 1Þ j k > 0g.

Figure 2. EðMÞ for M ¼ GðrÞ Figure 3. EðMÞ for M ¼ TðrÞ
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Next we study how the curve EðMÞ for a totally h-umbilic real hypersurface
M behaves with respect to the radius. We regard the right hand side of (4.3) as
a function hðLÞ ¼ hðL; kgÞ on L ¼ l2M . We have

dh

dL
¼ �

ð8k2
g � cÞ2ð32k2

gLþ 4cL� c2Þð4Lþ cÞ
jcjð8L� cÞ4k2

g

:

When M ¼ GðrÞ, as kg b lM >
ffiffiffiffiffi
jcj

p
=2, we see 32k2

gLþ 4cL� c2 > 0 and
4l2M þ c > 0. Hence we find that dh=dL < 0 for lM < kg < dM . Since

ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ is monotone decreasing with respect to r, if we take two

geodesic spheres M ¼ Gðr1Þ, M 0 ¼ Gðr2Þ ðr1 < r2Þ, the curves EðMÞ and EðM 0Þ
do not have intersections (see Figure 4). Moreover, as limr!y lGðrÞ ¼

ffiffiffiffiffi
jcj

p
=2,

limr!y dGðrÞ ¼
ffiffiffiffiffi
jcj

p
and limr#0 lGðrÞ ¼ limr#0 dGðrÞ ¼ y, we find that the moduli

space MB2ðCHnÞ of bounded circles on CHn is covered by fEðGðrÞÞ j r > 0g.
When M ¼ TðrÞ, as lM <

ffiffiffiffiffi
jcj

p
=2, we find that dh=dL < 0 for lM <

kg <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4cþ c2l�2

M Þ=32
q

and dh=dL > 0 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4cþ c2l�2

M Þ=32
q

< kg < dM .

Since ð
ffiffiffiffiffi
jcj

p
=2Þ tanhð

ffiffiffiffiffi
jcj

p
r=2Þ is monotone increasing with respect to r andffiffiffiffiffi

jcj
p

coth
ffiffiffiffiffi
jcj

p
r is monotone decreasing with respect to r, if we take two tubes

Tðr1Þ, Tðr2Þ ðr1 > r2Þ, we find that EðTðr1ÞÞ and EðTðr2ÞÞ intersect with each
other only at one point (see Figure 5). The k-coordinate Kðr1; r2Þ of this point

satisfies ð�4cþ c2l�2
Tðr1ÞÞ=32 < Kðr1; r2Þ2 < ð�4cþ c2l�2

Tðr2ÞÞ=32. As EðTðrÞÞ con-

verges to EðHSÞ when r goes to infinity, we see that the intersection of EðTðr1ÞÞ
and EðTðr2ÞÞ lies in MB2ðCHnÞ. Since limr#0ð�4cþ c2l�2

TðrÞÞ=32 ¼ limr#0 dTðrÞ ¼
y, we see that MB2ðCHnÞ is covered by fEðTðrÞÞ j r > 0g. We set MU2ðCHnÞ
¼ M2ðCHnÞnMB2ðCHnÞ and denote by T the set of all congruence classes
of circles on CHnðcÞ of geodesic curvature not greater than

ffiffiffiffiffi
jcj

p
and of

complex torsion G1. As we have limL#0 hðLÞ ¼ 1, and limL"k2
g
hðLÞ ¼ 0 for

each kg, and have limr#0 lTðrÞ ¼ 0, we find that the set M2ðCHnÞnT is covered by

fEðTðrÞÞ j r > 0g, and that fEðTðrÞÞ \MU2ðCHnÞ j r > 0g covers MU2ðCHnÞnT.
Summarizing up we have

Figure 4. EðMÞ, EðM 0Þ for M ¼ Gðr1Þ, M 0 ¼
Gðr2Þ with r1 < r2

Figure 5. EðMÞ, EðM 0Þ for M ¼ Tðr1Þ, M 0 ¼
Tðr2Þ with r1 > r2
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Theorem 1. (1) The family fEðGðrÞÞ j r > 0g forms a foliation of the moduli
space MB2ðCHnÞ of bounded circles on CHn.

(2) The family fEðTðrÞÞ j r > 0g covers the set M2ðCHnÞnT of all congruence
classes of circles except unbounded circles of complex torsion G1.

(3) Two distinct EðTðr1ÞÞ;EðTðr2ÞÞ intersect each other only at one point.
This point lies in MB2ðCHnÞ.

(4) The family fEðTðrÞÞ \MU2ðCHnÞ j r > 0g forms a foliation of
MU2ðCHnÞnT.

In the above we studied the moduli space of extrinsic circular trajectories
on each totally h-umbilic real hypersurface. Being concerned with Propositions 1
and 3, in the following we shall study their moduli spaces for some families
of totally h-umbilic real hypersurfaces, and investigate how circles of given
geodesic curvature are obtained as extrinsic shapes of trajectories on some real
hypersurfaces.

Theorem 2. Every bounded circle of geodesic curvature
ffiffiffiffiffi
jcj

p
=2 < ka

ffiffiffiffiffi
jcj

p
on a complex hyperbolic space CHnðcÞ is the extrinsic shape of a trajectory for
some Sasakian magnetic field on some geodesic sphere GðrÞ of radius rb ðlog 3Þ=ffiffiffiffiffi

jcj
p

. The triplet of such a trajectory, a Sasakian magnetic field and a geodesic
sphere is uniquely determined.

Theorem 3. Every circle of geodesic curvature 0 < ka
ffiffiffiffiffi
jcj

p
=2 and of com-

plex torsion t0G1 on a complex hyperbolic space CHnðcÞ is the extrinsic shape
of a trajectory for some Sasakian magnetic field on some tube TðrÞ around
CHn�1. For such a circle with complex torsion jtj < 1, the triplet of such a
trajectory, a Sasakian magnetic field and a tube is uniquely determined.

One can easily guess these results by the first and the last assertions of
Theorem 1, but in order to show clearly how trajectories correspond to circles we
here give their proofs.

Proof of Theorems 2 and 3. We take a circle s on CHnðcÞ satisfying one of
the following:

i) ks a
ffiffiffiffiffi
jcj

p
=2 and ts 0G1,

ii)
ffiffiffiffiffi
jcj

p
=2 < ks a

ffiffiffiffiffi
jcj

p
and jtsj < nðksÞ.

We denote by f _ss;Ysg its Frenet frame. In other words, this s satisfies ~‘‘ _ss _ss ¼
ksYs and ~‘‘ _ssYs ¼ �ks _ss. By Lemma 2 and (4.2), we first solve the following
system of equations on l and r

16l4 þ 8jcjr2l2 þ c2r2 ¼ 16k2
sl

2;

rðjcj � 2jcjr2 � 4l2Þ ¼ 4kstsl:

(
ð4:4Þ

As we need to get a solution with jrja 1, the first equation of (4.4) shows
that la ks a lþ ðjcj=ð4lÞÞ. Since ks a

ffiffiffiffiffi
jcj

p
, the second inequality ks a l þ
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ðjcj=ð4lÞÞ automatically holds. We hence study (4.4) under the condition that
la ks a

ffiffiffiffiffi
jcj

p
. By substituting r2 ¼ 16l2ðk2

s � l2Þ=ð8jcjl2 þ c2Þ into the second,
we have

t2s ¼ ðk2 � l2Þð4c2l2 � c3 þ 32ck2
sl

2Þ2

k2
sð8jcjl

2 þ c2Þ3
:

We put the right hand side of the above equality as fksðlÞ, and consider it a
function of l. We then find that fksðlÞ is monotone decreasing with respect to l,
and that fksðkÞ ¼ 0, fksð0Þ ¼ 1 and fksð

ffiffiffiffiffi
jcj

p
=2Þ ¼ ð4k2

s þ cÞ3=ð27c2k2
sÞ ¼ nðksÞ2.

First we study the case that
ffiffiffiffiffi
jcj

p
=2 < ks a

ffiffiffiffiffi
jcj

p
and jtsj < nðksÞ. When we

consider geodesic spheres, their principal curvatures for vectors orthogonal to
characteristic vectors are in the interval

ffiffiffiffiffi
jcj

p
=2 < lM a

ffiffiffiffiffi
jcj

p
if and only if their

radii satisfy rb ðlog 3Þ=
ffiffiffiffiffi
jcj

p
. Thus for ts with 0a ts < nðksÞ we have unique l

satisfying fksðlÞ ¼ t2s. This determines r2. Hence (4.4) has a unique solution
ðl; rÞ in this case. By using this solution, we set v ¼ ð4kslYsð0Þ � crJ _ssð0ÞÞ=
ð4l2 � 2cr2Þ. As we have

kvk2ð4l2 � 2cr2Þ2 ¼ k4kslYsð0Þ � crJ _ssð0Þk2

¼ 16k2
sl

2 þ 8ckstslrþ c2r2

¼ 16l4 � 8cr2l2 þ c2r2 þ 2cr2ð�cþ 2cr2 � 4l2Þ þ c2r2

¼ ð4l2 � 2cr2Þ2;

we see v is a unit tangent vector. We choose the geodesic a with initial vector v

and take a geodesic sphere G of radius r ¼ ð2=
ffiffiffiffiffi
jcj

p
Þ coth�1ð2l=

ffiffiffiffiffi
jcj

p
Þ centered at

aðrÞ. Since its inward unit normal N satisfies Nsð0Þ ¼ v and _ssð0Þ is orthogonal
to v, we find that _ssð0Þ is tangent to G and we have

h _ssð0Þ;�JNsð0Þi ¼ �4kstsl� cr

4l2 � 2cr2
¼ r:

Thus if we take the trajectory g for Fcr=ð4lÞ on G satisfying _ggð0Þ ¼ _ssð0Þ, its
structure torsion is r, and hence we find by Lemma 2 and (4.4) that its extrinsic
shape is a circle with

kg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2r2

16l2
� cr2

2
þ l2

s
¼ ks; tg ¼

1

kg

cr3

2l
� cr

4l
� lr

� �
¼ ts:

Since the Frenet frame of the extrinsic shape of g at gð0Þ is f _ssð0Þ;Ygð0Þg with

Ygð0Þ ¼
1

kg

cr

4l
J _ssð0Þ þ l� cr2

2l

� �
v

� �
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by (4.1), we find that the extrinsic shape of g coincides with s. Thus we obtain
that every bounded circle of geodesic curvature

ffiffiffiffiffi
jcj

p
=2 < ka

ffiffiffiffiffi
jcj

p
on CHnðcÞ is

the extrinsic shape of a trajectory for some Sasakian magnetic field on some
geodesic sphere of radius rb logð3=

ffiffiffiffiffi
jcj

p
Þ.

We now show that the above triplet ðG;Fcr=ð4lÞ; gÞ is unique. If we suppose
that the extrinsic shape of a trajectory v for Fk on a geodesic sphere GðRÞ
coincides with s, then Lemma 2 and (4.1) show that

� k ¼ �ðjcjrvÞ=ð4lGðRÞÞ,
� the pair ðlGðRÞ; rvÞ satisfies (4.4),
� ksYs ¼ kJ _vvþ ðlGðRÞ þ ðjcjr2v Þ=ð4lGðRÞÞÞNGðRÞ with the inward unit normal
NGðRÞ of GðRÞ.

Since (4.4) has a unique solution for given ks, ts, we see NGðRÞ coincides with v
at sð0Þ. Therefore we find GðRÞ ¼ G, and hence get Fk ¼ Fcr=ð4lGðRÞÞ and v ¼ g.
This completes the proof of Theorem 2.

Next we study the case that 0 < ks a
ffiffiffiffiffi
jcj

p
=2 and jtsj < 1. For tubes

around totally geodesic CHn�1, principal curvatures of vectors orthogonal to
characteristic vectors are in the interval 0 < lM <

ffiffiffiffiffi
jcj

p
=2. As we have unique

l satisfying fksðlÞ ¼ t2s, it determines r2. Hence (4.4) has a unique solution
ðl; rÞ also in this case. Along the same lines as for the case of geodesic spheres,
we get the assertion of Theorem 3. r

We can do the similar argument for the case ks >
ffiffiffiffiffi
jcj

p
. In this case the

inequalities la ks a lþ ðjcj=ð4lÞÞ leads us to ðks þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
s þ c

p
Þ=2a la ks. We

therefore obtain that every bounded circle on CHnðcÞ is the extrinsic shape
of a trajectory for some Sasakian magnetic field on some geodesic sphere, and
that for such a circle with complex torsion jtj < 1 the triplet of a trajectory,
a Sasakian magnetic field and a geodesic sphere is uniquely determined ([5]).

As we have 5
ffiffiffiffiffi
jcj

p
=4b dMð¼ lM þ ðjcj=ð4lMÞÞÞ if and only if the radius of M

satisfies rb ðlog 3Þ=
ffiffiffiffiffi
jcj

p
, we obtain

Proposition 4. Every circle of geodesic curvature k > 5
ffiffiffiffiffi
jcj

p
=4 on CHnðcÞ

is the extrinsic shape of a trajectory for some Sasakian magnetic field on some
geodesic sphere GðrÞ of positive curvature.

We should note that bounded circles are also extrinsic shapes of trajectories
for some Sasakian magnetic fields on tubes around totally geodesic CHn�1.

Theorem ([5]). Every circle on CHnðcÞ except circles of geodesic curvature
0 < ka

ffiffiffiffiffi
jcj

p
and of complex torsion t ¼G1 is the extrinsic shape of a trajectory

for some Sasakian magnetic field on some tube TðrÞ. When a circle is unbounded,
such a triplet of a trajectory, a Sasakian magnetic field, and a tube is uniquely
determined. When a circle is bounded, exactly two triplets correspond to it.

We have a result corresponding to Theorem 2.
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Proposition 5. Every bounded circle of geodesic curvature
ffiffiffiffiffi
jcj

p
=2 < kaffiffiffiffiffi

jcj
p

on a complex hyperbolic space CHnðcÞ is the extrinsic shape of a trajec-
tory for some Sasakian magnetic field on some tube TðrÞ. The triplet of
such a trajectory, a Sasakian magnetic field and a geodesic sphere is uniquely
determined.

If we consider the condition dM a 5
ffiffiffiffiffi
jcj

p
=4 for tubes around totally geodesic

complex hypersurfaces, we get the following.

Proposition 6. Every circle of geodesic curvature kb 5
ffiffiffiffiffi
jcj

p
=4 on a complex

hyperbolic space CHnðcÞ is the extrinsic shape of a trajectory for some Sasakian

magnetic field on some tube TðrÞ of radius ra ðlog 3Þ=
ffiffiffiffiffi
jcj

p
.

5. A characterization of tubes around complex hypersurfaces

Since Kajiwara-Maeda’s result shows a characterization of geodesic spheres
of small radius, we here consider to give a characterization of tubes around
totally geodesic complex hypersurfaces.

We here consider the following condition on the characteristic vector xp at
p A M:

(ET) The extrinsic shape of the trajectory g0 for some Sasakian magnetic
field Fk0 with _gg0ð0Þ ¼ xp is a circle of geodesic curvature k0 jk0j.

Theorem 4. A connected real hypersurface M in CHnðcÞ is locally congruent
to a tube TðrÞ around totally geodesic complex hypersurface CHn�1 if and only if
it satisfies the following conditions at each point p A M:

i) The condition (ET) holds at p;
ii) There exist constants kp, rp with kp 0 0, jrpj < 1 and linearly independent

unit tangent vectors v1; . . . ; v2n�2 A UpM with hvi; xpi ¼ rp which satisfy
that the extrinsic shapes of trajectories gi ði ¼ 1; . . . ; 2n� 2Þ for Fkp

with _ggið0Þ ¼ vi are circles of geodesic curvature ki with ki <
ffiffiffiffiffi
jcj

p
=2 and

ki 0 jkpj.

Proof. By Lemma 2, we are enough to show the ‘‘if ’’ part. For a
trajectory g for Fk on M we have

~‘‘ _gg _gg ¼ ‘ _gg _ggþ hAM _gg; _ggiN ¼ kJ _ggþ ðhAM _gg; _ggi� krÞN;ð5:1Þ

~‘‘ _gg
~‘‘ _gg _gg ¼ �k2 _gg� ðhAM _gg; _ggi� krÞðAM _ggþ kxÞ þ d

dt
ðhAM _gg; _ggi� krÞN:ð5:2Þ

Since g is parameterized by its arclength, the extrinsic shape of g is a circle
of geodesic curvature kg if and only if it satisfies ~‘‘ _gg

~‘‘ _gg _gg ¼ �k2
g _gg. By the first

condition, we have from (5.1) and (5.2) that

kg0 ¼ jhAMxp; xpij and k2
g0
xp ¼ ðhAMxp; xpi� k0ÞAMxp þ k0hAMxp; xpixp:
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As kg0 0 jk0j, we find that xp is a principal curvature vector. We denote by dp
the principal curvature associated with xp. By Lemma 1 it is locally constant
with respect to p. As M is connected we find it is constant, hence we can denote
by dM .

By the second condition we have from (5.2) that

ðk2
i � k2

pÞr ¼ ðhAMðvi � rpxpÞ; vi � rpxpið5:3Þ

þ dMr2p � kprpÞðrpdp þ kpÞ;

ðk2
i � k2

pÞðv� rpxpÞ ¼ ðhAMðvi � rpxpÞ; vi � rpxpið5:4Þ

þ dMr2p � kprpÞAMðvi � rpxpÞ:

Since ki 0 jkpj, by (5.4) we find that vi � rpxp is principal. We denote by ai the

principal curvature of vi � rpxp. Then (5.3) and (5.4) turn to

ðk2
i � k2

pÞrp ¼ ðaið1� r2pÞ þ r2pdp � kprpÞðrpdþ kpÞ;ð5:5Þ

k2
i � k2

p ¼ ðaið1� r2pÞ þ r2pdp � kprpÞai:ð5:6Þ

Hence we have either rpai ¼ rpdp þ kp or aið1� r2pÞ þ r2pdp � kprp ¼ 0 holds. If

rp ¼ 0, we have a2i ¼ k2
i � k2

p and aikp ¼ 0 by (5.5) and (5.6). Since ki 0 jkj we
see kp ¼ 0, which is a contradiction. Thus we have rp 0 0. Again as ki 0 jkpj,
we find aið1� r2pÞ þ r2pdp � kprp 0 0 and obtain ai ¼ dp þ ðkp=rpÞ. Thus, we
have a1 ¼ � � � ¼ a2n�2ð¼ apÞ, hence M is totally h-umbilic.

We have by (5.1) that

k2
i ¼ k2

pð1� r2pÞ þ hA _ggi; _ggii
2 ¼ k2

pð1� r2pÞ þ fap þ ðdp � apÞr2pg
2:

For a totally h-umbilic real hypersurface M in CHn we see

dM � lM ¼

ffiffiffiffiffi
jcj

p
=2; when M ¼ HS;

ð
ffiffiffiffiffi
jcj

p
=2Þ tanhð

ffiffiffiffiffi
jcj

p
r=2Þ; when M ¼ GðrÞ;

ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ; when M ¼ TðrÞ:

8>><
>>:

Thus we have dM � lM > 0, hence find that ki > lM . As geodesic curvatures of
extrinsic shape of trajectories are less than

ffiffiffiffiffi
jcj

p
=2, we see M is congruent to a

tubes around totally geodesic complex hypersurface. r

Next we study a condition concerning the strength of a Sasakian magnetic
field and the geodesic curvature of extrinsic shapes.

Theorem 5. A connected real hypersurface M in CHnðcÞ is locally congruent
to a tube TðrÞ around totally geodesic complex hypersurface CHn�1 if and only if
it satisfies the following conditions with some constants k, k satisfying k0 jkj and
0 < k <

ffiffiffiffiffi
jcj

p
=2:
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i) The condition (ET) holds at each point p A M;
ii) There exist linearly independent tangent vectors v1; . . . ; v2n�2 A UpM sat-

isfying that
(a) vi 0Gxp for i ¼ 1; . . . ; 2n� 2,
(b) the extrinsic shapes of trajectories gi ði ¼ 1; . . . ; 2n� 2Þ for Fk with

_ggið0Þ ¼ vi are circles of common geodesic curvature k.

Proof. We are enough to show the ‘‘if ’’ part. Along the same lines as
in the proof of Theorem 4, we see M is a Hopf hypersurface. We denote by
dM the principal curvature associated with x. We put ri ¼ hvi; xpi. As k0 jkj,
we find by the proof of Theorem 4 that each vi � rixp is principal and that
airi ¼ dMri þ k, where ai is the principal curvature of vi � rixp.

When ri ¼ 0, we have k ¼ 0. As

k2 ¼ k2ð1� r2i Þ þ fai þ ðdM � aiÞr2i g
2;ð5:7Þ

this shows that ai ¼Gk. When ri 0 0, substituting ai ¼ dM þ ðk=riÞ into (5.7),
we find that ri satisfies the following equation

�2kdMr3i þ ðdM � k2 � k2Þr2i þ 2kdMri þ k2 ¼ 0:

Thus ri is one of the three solutions of this cubic equation. Therefore, by
perturbation theory ([11]) we find that each ai is locally constant. This means
that M is a Hopf real hypersurface all of whose principal curvatures are
constant.

We check that whether homogeneous Hopf hypersurfaces satisfy the con-
dition. When M is one of HS, GðrÞ, TlðrÞ we find by their principal curvatures

dM , lM and by (5.7) that k > lM >
ffiffiffiffiffi
jcj

p
=2. Hence these do not satisfy the

condition. We study the case M ¼ RðrÞ. In this case we have

lM ¼
ffiffiffiffiffi
jcj

p
n=2; mM ¼

ffiffiffiffiffi
jcj

p
=ð2nÞ; dM ¼ 2

ffiffiffiffiffi
jcj

p
=ðnþ n�1Þ

with n ¼ coshð
ffiffiffiffiffi
jcj

p
r=2Þ. We have dM 0 mM . When n ¼

ffiffiffi
3

p
, we have dM ¼ lM .

Hence k ¼ 0 and k ¼ dM . Thus, for i with ai ¼ mM we have ri ¼ 0. Therefore
we get k2 ¼ m2

M ð0 l2MÞ, which is a contradiction. When n0
ffiffiffi
3

p
, we have

dM 0 lM . Therefore we have ri ¼ k=ðdM � aiÞ hence get

k2 ¼ k2 1� k2

ðdM � aiÞ2

( )
þ ai þ

k2

dM � ai

� �2
¼ k2 þ a2i þ

2k2ai

dM � ai
:

As k <
ffiffiffiffiffi
jcj

p
=2, we need dM � lM < 0, hence we have n >

ffiffiffi
3

p
. Moreover, we

have

jcjn2
4

þ 2k2ðn2 þ 1Þ
ð3� n2Þ ¼ jcj

4n2
þ 2k2ðn2 þ 1Þ

ð3n2 � 1Þ ¼ k2 � k2;
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which leads us to k2 ¼ jcjðn2 � 3Þð3� n�2Þ=32. Here, as kþ ðdM � aiÞri ¼ 0 and
jrij < 1, we have jkj < minfjdM � lM j; jdM � mM jg. Therefore we obtain

ð3� n�2Þðnþ n�1Þ2 < 8ðn2 � 3Þ;
ðn2 � 3Þðnþ n�1Þ2 < 8ð3� n�2Þ;

(

which are equivalent to

ð5n2 þ 1Þðn4 � 3n2 þ 1Þ > 0;

ðn2 þ 5Þðn4 � 3n2 þ 1Þ < 0:

�

This is also a contradiction. Hence RðrÞ does not satisfy the condition. Thus
we get the conclusion. r
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