
Extrinsic Spin Hall Effect from First Principles

Martin Gradhand,1,2,* Dmitry V. Fedorov,2 Peter Zahn,2 and Ingrid Mertig2,1

1Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
2Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany

(Received 4 December 2009; published 6 May 2010)

We present an ab initio description of the spin Hall effect in metals. Our approach is based on density

functional theory in the framework of a fully relativistic Korringa-Kohn-Rostoker method and the solution

of a linearized Boltzmann equation including the scattering-in term (vertex corrections). The skew

scattering mechanism at substitutional impurities is considered. Spin-orbit coupling in the host as well

as at the impurity atom and the influence of spin-flip processes are fully taken into account. A sign change

of the spin Hall effect in Cu and Au hosts is obtained as a function of the impurity atom, and even light

elements like Li can cause a strong effect. It is shown that the gigantic spin Hall effect in Au can be caused

by skew scattering at C and N impurities which are typical contaminations in a vacuum chamber.
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During recent years the spin Hall effect (SHE) has
attracted a lot of interest caused by its potential to generate
spin currents in nonmagnetic materials. It would allow for
spintronic devices without the problem of spin injection
from a ferromagnet into a nonmagnet. Besides this tech-
nological aspect, the microscopic understanding of the
effect is of great interest, since it has the same origin as
the anomalous Hall effect (AHE). A proper description of
the SHE provides the possibility of an extension of the
method to magnetic materials and a treatment of the
anomalous Hall effect.

After the first proposal of skew scattering [1,2] and the
following detailed discussion of the extrinsic SHE by
Dyakonov and Perel [3], a possible experimental setup
was suggested by Hirsch [4]. Several mechanisms were
found to contribute to the SHE and AHE [5–12]. These
were the intrinsic contribution described by the Berry
curvature [5,11], and the extrinsic contribution where the
side jump mechanism [8,9] and skew scattering [6,7] at
defects can be distinguished [10,12]. The intrinsic part of
the SHE was already calculated for metallic systems by
ab initio methods [13]. Whereas the extrinsic part, in
particular the skew scattering, will be the subject of this
Letter.

The SHE was first demonstrated optically in semicon-
ductors [14], and only later were electrical measurements
on metallic devices [15–17] performed. These experiments
on Al, Cu, Pt, and Au provide a variety of results which can
only partly be explained by the intrinsic mechanism
[13,18]. Unfortunately, no reliable information is available
about defects in the samples under consideration, which
makes a comparison between experiment and theory
difficult.

Here the extrinsic mechanism caused by the skew scat-
tering at substitutional impurities is considered. Our cal-
culations give an insight into the microscopic mechanism
and we propose another explanation for the gigantic SHE

observed in Au [17], besides a Kondo resonance at Fe
impurities [18].
In the first part of the Letter we introduce the approach

based on the Korringa-Kohn-Rostoker method and the
solution of the linearized Boltzmann equation. Our main
focus is the Boltzmann equation since the band structure
calculation was mainly described in Refs. [19,20].
Afterwards, first results of the approach are discussed.
For the description of the transport properties we choose

the Boltzmann equation which is well suited to describe
dilute alloys and allows for separation of the different
microscopic mechanisms contributing to the Hall current.
The nonequilibrium distribution function fnðkÞ ¼
fn0ðkÞ þ gnðkÞ of the considered system is separated into

the equilibrium function fn0 ðkÞ and gnðkÞ the responser of
the system to the perturbation. These functions depend on
the crystal momentum k and the band index n. According
to Kohn and Luttinger [21,22], the Boltzmann equation for
a homogeneous system

_k nrkf
n
0ðkÞ ¼

X
k0n0

½Pn0n
k0kg

n0 ðk0Þ � Pnn0
kk0gnðkÞ� (1)

is given by the force term (l.h.s.) and the collision term
(r.h.s.). A crucial point for the skew scattering mechanism
is the fact that in the presence of spin-orbit interaction the
microscopic reversibility is not any more valid for the

scattering probability (Pnn0
kk0 � Pn0n

k0k), although the systems

under consideration are space-inversion invariant (Pnn0
kk0 ¼

Pnn0
�k;�k0) [2]. The electrons are driven by an applied elec-

tric field _kn ¼ �eE (e > 0) and the system is forced to a
steady state by the collision term. This term is calculated in
the dilute limit of impurity concentrations (c0N—number
of impurities) from Fermi‘s golden rule [20,23]

Pnn0
kk0 ¼ 2�

@
c0NjTnn0
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k � En0
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PRL 104, 186403 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
7 MAY 2010

0031-9007=10=104(18)=186403(4) 186403-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.186403


The transition matrix in the atomic sphere approximation is
given by [20]

Tnn0
kk0 ¼

X
j

Z
�j

ASA

dr�
� n0y
k0 ðrþ RjÞ�VjðrÞ�n

kðrþ RjÞ: (3)

It describes the scattering of Bloch waves (four compo-
nent spinors) with spin-mixed character resulting from
the relativistic treatment of the ideal and perturbed system
at a potential perturbation �VjðrÞ. Here j runs over all

atoms of the impurity cluster. The impurity problem for
the potential and the perturbed wave functions �n

kðrÞ is
solved self-consistently on a real space cluster of 55 atoms
via Dyson and Lippman-Schwinger equations starting
from the unperturbed ideal crystal with the Bloch states

�
� n
kðrÞ [23].
Under the approximation of a weak electric field and the

knowledge of a Fermi-Dirac distribution in equilibrium,
the linearized Boltzmann equation

� nðkÞ ¼ �nk

�
vnk þ X

k0n0
Pn0n
k0k�

n0 ðk0Þ
�

(4)

is obtained. Here the unknown quantity is the mean free
path �nðkÞ determined by the relaxation time

ð�nkÞ�1 ¼ X
k0n0

Pnn0
kk0 ; (5)

the group velocity

v n
k ¼ 1

@

@En
k

@k
; (6)

and the scattering-in term
P

k0n0P
n0n
k0k�

n0 ðk0Þ [24,25]. The
linearized Boltzmann equation is an integral equation and
can be solved iteratively [23,25,26]. In the low temperature
limit the conductivity tensor is given by a Fermi surface
integral [23]
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For the spin conductivity �s, the spin polarization, defined
as the expectation value of the spin operator for the states
�nk on the Fermi surface

snz ðkÞ ¼ h�nkj�̂�zj�nki; (8)

has to be included

� s ¼ e2
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snz ðkÞvnk ��nðkÞ: (9)

The conductivities (� and �s) include the vertex correc-
tions in the dilute limit [27] due to the scattering-in term in
Eq. (4). For degenerate bands in a nonmagnetic system
with space-inversion symmetry, the procedure introduced

in Ref. [19] is applied to put the quantization axis along the
z direction for each k point. This is necessary to simulate a
tiny external magnetic field or ferromagnetic leads to align
the electron spins. Following Ref. [19], we denote the wave
functions with a positive spin expectation value as�þ and
with a negative one as �� states, respectively.
The quantum mechanical properties of the system, i.e.,

the result of the ab initio calculation, enter the conductivity
evaluation threefold. First, the topology of the Fermi sur-
face determines the states contributing to the conductivity.
Second, their Fermi velocities vnk, defined by Eq. (6), are
taken into account. Finally, the collision term in the
Boltzmann equation is calculated from the unperturbed

�
� n
kðrÞ and the perturbed�n

kðrÞ wave functions of a system
with substitutional impurities.
From Fermi‘s golden rule [Eq. (2)] it follows immedi-

ately that, in the dilute limit, the conductivity scales in-
versely with the number of impurities c0N. Consequently
the ratio of spin Hall conductivity �s

yx and charge conduc-

tivity �xx is independent on the impurity concentration c0.
This ratio

� ¼ �s
yx

�xx

(10)

is called the Hall angle [16–18].
All calculations presented below are performed with a

k-point mesh larger than 2000 points on a piece of the
Fermi surface which lies in the irreducible part of the
Brillouin zone. The angular momentum cutoff of lmax ¼
3 is used. A convergence test for these parameters, as well
as for the size of the perturbed cluster (55 atoms), turned
out that the relative errors of the Hall angle are smaller
than 2%.

FIG. 1 (color online). The Hall angle � for different substitu-
tional impurities in a Cu host. The number in parentheses gives
the core charge connected with the spin-orbit coupling strength
at the impurity site.
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As the first result, in Fig. 1 the Hall angle � is presented
for different substitutional impurities in a Cu host. Without
going into details three conclusions can be drawn. First, the
very light element Li, which provides nearly no spin-orbit
coupling at the impurity site, produces a larger effect than
the much heavier element Ag. Second, sign changes of the
SHE can occur for some impurities. Finally, the influence
of the spin-flip scattering is almost negligible for all
impurities.

The presence of a strong extrinsic SHE caused by light
impurities is the consequence of the size of the transition
matrix elements in Eq. (3). Important for a strong scatter-
ing from state k into k0 is a large potential difference
�VjðrÞ. The spin-orbit coupling is contained in the wave

functions already and provided by the host material.
Although the spin-orbit interaction caused by Ag is much
stronger, the small potential change induced by this iso-
electronic element in Cu prevents a sizeable SHE. The
mechanism is similar to the effect of the strong spin-flip
scattering at light impurities explained in Ref. [20].

The sign change caused by Mg and Zn impurities is
more subtle and needs a closer look into the microscopic
scattering process included in the Boltzmann equation. As
introduced above, the states are separated in �þ and ��
states by the orientation of their spin polarization along the
z axis. The skew scattering process, which is considered
here, leads to different scattering amplitudes for these
states [6,7,10]. Assuming the incoming state to propagate
along the x direction gives an outgoing wave function
scattered mainly to the left (þy) or right (�y) depending
on the spin state of the wave function. In Fig. 2 the micro-
scopic scattering probabilities for a given state k are shown
as a function of the final states k0 on the Fermi surface of
Cu. To visualize the effect of skew scattering, which is
usually much weaker than the momentum scattering, the
difference (Pþþ

kk0 � P��
kk0 ) between the probabilities for�þ

and �� states is shown. The spin-conserving scattering is
considered only. The clear asymmetry between the two
spin channels is the origin of the spin current and the
spatial spin separation, i.e., of the SHE. In addition, the
spin separation processes for Zn [Fig. 2(a)] and Li impu-
rities [Fig. 2(b)] are opposite and cause the different sign of
the SHE (Fig. 1).

This analysis considers incoming electrons in the x
direction only, the spin separation caused by the skew
scattering depends strongly on the wave vector k. For the
evaluation of the conductivity tensor, all directions of
incoming states have to be considered.

Furthermore, we present the SHE for different impuri-
ties in a Au host. The idea is to check if the gigantic SHE of
�� 0:1 measured by Seki et al. [17] can be understood in
the framework of our approach. As discussed already
above, there are several requirements to create a system
that exhibits a large SHE. First, a host has to provide
significantly spin-mixed Bloch functions. Second, either

the spin-orbit coupling at the impurity site should be strong
or the perturbation of the potential has to be large.
Consequently, the heavy impurities Ag and Pt are calcu-
lated in a Au host. In addition, the light atoms Li, C, and N
are considered. The results for � in Au, summarized in
Fig. 3, show a very counterintuitive picture. Heavy impu-
rities like Pt and Ag cannot explain the large effect, but
typical contaminations in a standard vacuum chamber, like
C and N, cause a gigantic Hall angle. This result is not in
contradiction to the already proposed mechanism originat-
ing from a Kondo resonance at Fe impurities, since we are
not able to judge which explanation is relevant for the
samples investigated in Ref. [17]. Whether the Kondo
resonance or the scattering at light impurities causes the
gigantic spin Hall effect has to be proven experimentally.
In the last part, two important aspects of our calculations

are elucidated. Namely, we show how the spin relaxation is
included in our calculations. In addition, the importance of
the scattering-in term will be discussed. In Cu and Au hosts
only two bands are present at the Fermi level with�þ

k and
��

k degenerate states, according to the spin orientation
along the z axis [19]. As a sum over all bands in Eq. (4),
we obtain the following expression

�þðkÞ ¼ �þk
�
vþk þX

k0
fPþþ

k0k�
þðk0Þ þ P�þ

k0k�
�ðk0Þg

�

(11)

with spin-conserving contributions Pþþ
k0k�

þðk0Þ and spin-

flip contributions P�þ
k0k�

�ðk0Þ. It turns out that the influ-

ence of the spin-flip processes is of minor importance and
qualitatively similar results are obtained neglecting the
spin-flip contribution (see Figs. 1 and 3).
We show the importance of the scattering-in term using

�s in the anisotropic relaxation time approximation. This
means that the mean free path of Eq. (4) is taken without

FIG. 2 (color). The skew scattering for (a) Zn and (b) Li
impurities in a Cu host. The distribution of (Pþþ

kk0 � P��
kk0 ) is

shown (in arbitrary units) for states k0 at the Fermi level, where
the incoming momentum k points in the [100] direction. The
spin polarization for all wave functions is aligned in [001] for
�þ states and in the ½00�1� direction for �� states, respectively.
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the scattering-in term: �n
ð0ÞðkÞ ¼ �nkv

n
k. Inserting this into

Eq. (9) and taking into account that the spins point along
the z direction with sþz ðkÞ ¼ �s�z ðkÞ ¼ jszðkÞj, the fol-
lowing expression for the spin conductivity is obtained

�sð0Þ
xy ¼ e2

@

1

ð2�Þ3
ZZ dS

jvkj jszðkÞjð�
þ
k � ��k Þvx

kv
y
k: (12)

From Eq. (12) it is obvious that �sð0Þ
xy ¼ �sð0Þ

yx . On the other
hand, since the quantization axis is along the z direction
and the considered crystals are cubic, C4 symmetry is
present meaning x and y axes are equivalent. So, the
symmetry of the system requires an antisymmetric spin

conductivity tensor �sð0Þ
xy ¼ ��sð0Þ

yx . Thus, both conditions

together imply �sð0Þ
xy ¼ 0. It shows that the scattering-in

term (vertex corrections) is mandatory for the description
of the SHE.

In summary, we show that our ab initio calculations in
combination with the solution of the linearized Boltzmann
equation, taking into account the scattering-in term, allow
for a description of the skew scattering mechanism in the
SHE. The importance of a strong potential perturbation at
the impurity site in competition with the strength of the
spin-orbit interaction of the substitutional atom is dis-
cussed. The sign change of the SHE provided by different
impurity atoms in Cu is explained in terms of the micro-
scopic transition probabilities. The extremely large Hall
angle induced by C impurities in a Au host is proposed as a
possible explanation of the gigantic SHE measured in Au.
The theoretical results presented here are obtained in the
dilute limit of the number of impurities neglecting the
intrinsic contribution. For an experimental realization this
would mean concentrations of about 1 at.%.
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