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Introduction

Let H,(C) be a complex hyperbolic space of complex dimensior> 2] endowed
with the metric of constant holomorphic sectional curvatdr, andG be the identity
component of the group of all isometries &f, C)( A submanifoldM inH, C) is said
to be extrinsically homogeneou$ M is an orbit under a closed subgroup 6f

As proposed also in R. Niebergall and P.J. Ryan ([7]), théofohg is an open
problem:Classify all extrinsically homogeneous real hypersuriageH,(C). As a par-
tial answer of this problem, J. Berndt ([1]) classified altresically homogeneous real
hypersurfaces irH, ) whose structure vector fields are principal, where an egen
tor of the shape operator is callgdincipal.

Recently he constructed in [2] a subgroup @f for each= 2) such that
a certain orbitM underB, inH, @) has three distinct principal curvatures 41
and 0 with multiplicities 1, 1 and 2— 3 respectively and the structure vector field
on M is not principal. We shall call this group th&gerndt subgroupof G. The fol-
lowing is due to J. Berndt and H. Tamaru.

Theorem A ([4]). Let§ be a homogeneous foliation of codimension one on con-
nected irreducible Riemannian symmetric space of noncotiype Theng is isomet-
rically congruent to one of the model foliatiorgs or F;.

Remark that, in the above Theorem, the model foliafprconsists of leaves each
of which is a real hypersurface of so calleh type (so with two distinct principal
curvatures), and the model foliatigf; consists of leaves each of which is an orbit
under the Berndt subgroup (so with three distinct principaivatures). As for the de-
tailed, see [4].

In this paper, at first we shall establish general propemiesxtrinsically homo-
geneous real hypersurfaces iy C)( Next, as its applications, we shall prove the fol-
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lowing.

Theorem 1. Let L be a connected closed subgroupGf Assume that every real
hypersurface given as an orbit unddr  has three distinct @pal curvatures and
the structure vector field is not principalhen any of such orbits is isometrically con-
gruent to an orbit under the Berndt subgroup

1. Extrinsically homogeneous real hypersurfaces

Let H,(C) be the complex hyperbolic space of complex dimensiore 2§ with
a Riemannian metri¢ , ) of constant holomorphic sectional curvature 4 , and  be
the identity component of the group of all isometries @f C).(The associated Lie
algebrag of G has a Cartan decompositign=£+p, wheret is a subalgebra angl is
a vector subspace gf. We can identifyp with the tangent spacé&, H{ C}) of H,(C)
at the origino .

Let [ be a Lie subalgebra af, andr be a positive integer. Throughout this sec-
tion, we assume thahere exists a non-empty open €ét Hf(C) such that every
orbit under L throughU is a real hypersurface ifi,(C) and hasr distinct principal
curvatures We may assume thdf  contains the origin . Then there exist 2 el-
ementsZi, ..., Zy,—1 € [ such that{(Z1)y, ..., (Z2,—1),} is an orthonormal basis for
the tangent spac&, L(o( )) df o( ). We choose a unit normal vezipe p of L(o)
ato. We put

o, = exptZo.

Then an orbito,(0) (t € R) is a geodesic inH, Q).
Let I be an open interval containing O such that the geodegimeetg =o,(0)
(t € I) is contained inU , and/ be an open neighborhood of 0 in the vector subspace

Spar]k{Z]_, ) ZZI‘Ifl}

of p such that the exponential map exp W@fonto (ex@f)(o) C L(o) is a diffeomor-
phism. We choose a local orthonormal frame field

{eo: €1, €5, 1}
along g such that
(1.1) €1)o = (Za)p-
The subset defined by

V ={(expZ)(0)) | Z €U, t €1}
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is a neighborhood ob irH, (). We define an orthonormal frame fie{@,} on V by

(1.2) €A Xexpz)e,(0) = (€XPZ ) (€}4)o,(0)-

Then it is clear that{e,} is an extension of ¢/, }.

We denote by#* the dual 1-forms ofe, . Letds be the connection forms
of H,(C) with respect to the dual 1-form&*. Then the structure equations &f, C)(
are given by

dor+> 03 A0P =0, 03 +05 =0,
B
dag‘l‘zgé/\ag:CZ(ééag+Jé4]g+jBAJg)0C/\0D’
c c.D

(1.3)

where J§ are components of the complex structéire HQfC). (
If we put

(1.4) & =J7>,

then (/J’ &) forms an almost contact structure on each otbit,(d)), that is,
(1.5) Suiuf=-sivag, Y Jig =00 Y ga=1,
k j i

whereé = & e, is said to be thestructure vector fieldon L (o,(0)). For convenience
sake, we putM, . 4 (0)).

Since, for anyt € I and anyo € L, the distance between the orbi, and
the pointo(0) is equal tor , we can consider the parameter as a functionndrg .
It is clear that

(1.6) 6° = dt.

Since it follows from (1.3) and the exterior derivative of &) that
> P A0 =0,

we can put

HP:Zhj,ﬂj, h,'j:hj,'.
j

For eacht off , the symmetric matrix;( ¢ ( )) is the shape operatothe real hy-
persurfaceM,; , and the eigenvaluggt) of (h;;(¢)) are called theprincipal curvatures
of M.
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Hereafter we retake the orthonormal frame fi¢ldi} in such a way that each
is principal, that is,

(1.7) 6° = N6,

It follows from (1.3), (1.4), (1.7) and the exterior derivat of (1.7) that

S =8 = e S + &0
k

(1.8) ! . '
(2 = X +0)5100 + 3e€;0°) £ 07 = 0,

where we have pud! = dJ);/dt. We put

D Al = = A — e (G + &N
(1.9) k k
+ (A2 — N +0)650% + 3eg;¢;6°.
Then, from (1.8) and (1.9), we can easily find
(1.10) Aije =Ajix =Ap;.
Let \; = A; in (1.9). Then we have

(1.11) Aijp = —c&J] — & df if A =),
(1.12) N =M +e+ 3l

Moreover, it follows from (1.9) that

(1.13) Qv = A0 =D (Aiji+ &I +c€Ii)0" = 3cgig;0° for i # j.
k

Using (1.4) and (1.7), the parallelism of the complex sttt/ of H, (C) implies

(1.14) dJi = (6% — JLO) = &x;67 + N0
k

(1.15) g = (&0] = 2 J/07).
J

Sinceo, o J = J oo, for any o € G, the componentslj’f ang depend only ory .
Therefore it follows from (1.13) and (1.15) that

AjE N

J

&
PYEEDY
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AjE i
J fj

(1.17) D i A+ &)+ e€i0) = Mdf =0,
X j N
J

We denote byV, the eigenspace corresponding to the principal curvakur€hen,
under the above notation, we have the following general gnggs about extrinsically
homogeneous real hypersurfacesHp C).(

Theorem 1.1. Let L be a connected closed subgroup @f Assume that there
exists a non-empty open interval such thar everyr ofl, the orbit M, = L(o,(0))
under L is a real hypersurface iif,(C), and the number of distinct principal curva-
tures of M, does not depend onThen we have the following
(1) If M, has a principal curvature\ with multiplicity = 2, then the V)\-component
of the structure vector field vanish identically ony,,

(2) M, has at least one principal curvature with multiplicity,
(3) If there exists a principal curvatur@ such that theV,-component of the structure
vector field¢ vanishes for somé/,,, then X is given by

A = —v/—ctanhy/ —c(t — tg), A\ =1+ —c or A = —/—ccothy/—c(t — 1),

whererg is constant and — 1y € 1,
(4) If M, has 2n — 1 distinct principal curvatures then the isotropy subgroup of
the group of all isometries oM, i8-dimensional

Proof. (1) If X, = A; for i # j, then it follows from (1.9) that;¢; = 0. Since
we see from (1.12) thag? = ¢7, we have¢; = ¢; = 0.
(2) Assume that all principal curvatures o1, have multipies > 2. Then we see
from (1) that¢ vanishes identically o4, and a contradiction.
(3) It is immediate from (1.12) and (1.16).
(4) 1t follows from (1.2) that the map. preserves the principal directions of,
Therefore, if the dimension of the isotropy subgroup is restslthan 1, then we see
that there exists a principal curvatuke with multiplicity = 2 and a contradiction]

On the other hand, putting & in (1.17) and making use of (1..&) obtain

Aj7 A j
(1.18) &y mfj =0.

X i
J

AjFE AN
J

Since it is clear thaty (A — X))/ — /\,-)gjjif = 0 by (1.5), this equation
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and (1.18) imply that

A Z N .

d i J!
1.1 ; D¢ =0.
(1.19) éZAj_A,@ 0

J

Thus we can state

Lemma 1.2. If the components of the structure vector figlebn M, satisfyé; #
0,....§ #0and ¢ =0 (@ = r +1), then the rank of the matriB = (bap)i<a, p<, IS

not greater thanr — 2, where the entrie$,3 of B are defined by

0 if =4
bozﬂ: Jo

ﬂ .
Aa_Aﬂlfa¢ﬂ

Proof. Since¢, #0 fora=1,2...,r, we see from Theorem 1.1 that the mul-
tiplicity of A\, is equal to 1 for anyy, that is,\, 7 A\g whena Z5 (1= a, 8 < r).
From the construction oB , we see that the matBix is symmebWoreover it fol-
lows from (1.18) and (1.19) that

)‘B?')\oe Jég A[??'Aa Jé?

1.20 =0 and Agép =0.
(1.20) zﬁjAﬁ_M&f an Zﬁj T M

Define two vectorsX and iiR" by

X = (517"'7£l’) andy = 0\151,---,/\r§r)-

Then X andY are linearly independent because of the factthat Az for a # .
Therefore (1.20) shows thaf, Y € Ker B and hence ranB < r — 2. O

Now we shall quote the following formulas from [8, (2.6) in5f0].

NI (A + e+ & TE?

2; e — Ai

MFN .
(1.21) _2 AZ (Ajji +c&Jd! + cﬁle.")Z
P A = Aj

-2
—6c(\ — AL+ 3e(€@N — X)) — (A — A+ AiN)
=0

it A # A
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The following is used later.
Proposition 1.3. Let I’ be an open interval defined by
I' ={s e R| L(o4(0)) is a real hypersurface ird,(C)}.

If there is a finite real numbesy € 9I’, then there exists a principal curvatuigr)
of L(o,(0)) (t € I') such that

’ILnJO A(t) = o0.

Proof. By changing the parameter , it suffices to prove thdt(i, (o)) is a real
hypersurface for 6 < e and L ) is not so, then there is a principal curvati(e)
of L(o,(0)) such that lim_o A\(r) = co.

Let G, be a geodesic hypersphere kfy C)(centered ab with radius (&t <
€). Then the unit vector fieldv, =d(/dr)o,(0) is normal to bothL ¢ (o)) and G, .
By the hypothesis, there is a vectdr € [ such thatX §,(0)) # 0 for 0 < ¢t < ¢
and X p ) = 0. We consider the curvds) = (expsX ) (0)) on L (o,(0)). Then we see
that 7(s) is also onG, since (expX 9( )& . The unit vector field defined by

N, = (expsX )N,

along 7(s) is normal toL ¢;(0)) and G, in common.

It is known ([1]) that the principal curvatures a, are giveg h = 2coth2
and p = cothr with multiplicities 1 and 2 — 2 respectively. For a unit vector fiele
belonging to the eigenspadé, alongo,(0), a vector fieldX §,(o)) is expressed by

X(0:(0)) = | X|(cosbes + sinfey),

where e, is a unit vector field belonging tov, and |X| indicates the length
of X(o:(0)). We can choose an orthonormal frame fi¢ld, . .., ez,—1} in V. Then it
is easy to see thal; ef) = \e; and S; ;) =pe; (2<i < 2n—1), whereS; is the shape
operator of G, . With respect to this local orthonormal framédfiges, eo, ..., e2—1}
along o,(0), we shall denote the components of the shape opefrBtor L of(o))
by h,’j .

Let V be the Riemannian connection @&, C) The tangent spacéy,)(G;)
of G, at o,(0) is the just vector spacgo,(0)), which is denoted byM,,. Since N,
is the unit normal vector field of. o¢(0)) and G, in common, we have

(Vi) 1y, = ~Ti(X(01(0)) = =S (X (0 (0).
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Since it is easy to see that
S (X (0:(0))) = | X|(X cosfey + psinbey),
T,(X(0:(0))) = |X]| (cose S hise; +sind Zh,-ze,-) ,
we obtain the equations

(h11 — 1) cosf + hy2sind =0,
h12€080 + (hop — p) sing = 0,

which implies that

1
= (%hll + hzz) *3 (h11h22 — h1p%) = 0.
If all principal curvatures ofL &;(0)) are bounded for &t <e¢, then we have
lim,_oh;; < oo for eachh;; and this shows that the last equation gives a cootrad
tion. [l

2. Proof of Theorem 1

In this section we shall prove Theorem 1. We can use the oatand the results
in the previous section. For conveniences sake, we assumahth constant holomor-
phic sectional curvature off, () is equal to—4, that is,c =—1.

We take the interval’ defined in Proposition 1.3, which is the maximal interval
satisfying the assumption of Theorem 1.1. From Theorem fdLl&amma 1.2, we see
that there is an orthonormal frame fiefds, ..., ex,—1} on M, =L (0,(0)), t € I, such
that A1, A\ and A3 are distinct principal curvatures with multiplicities 1,ahd 2: — 3
respectively, and the components of the structure vecttt fieare given by&; # 0,
& #0 andé; =0 (i = 3) with respect to the frame field. Moreover we see that 0
by Lemma 1.2.

For simplicity, we puté; = o and & = 3. Then we haven? + 3° = 1 by (1.5).
Since we obtain/io + Ji3 =0 (i = 3) by (1.5), we may put/? = 3 and J3 = —a.
Using /3 =0, a®+ 32 =1 and (1.5), we see that

o

o

2.1) €= , J= . det@) #0.

0
In the following we shall prove

(2.2) M+ A2=3 3 and Ahp; = 3)\3 — 1.
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Puttingi =2 and =3 in (1.15) and making use of (2.1), we obtain

(2.3) 03 = —\36°,
(2.4) abl + 563 = — B0 + a6?

respectively. Since we havg; = A3 (i = 3), it follows from (1.9), (1.10), (1.11)
and (2.1) that

A113= —Ap3 = —2003,

(2.5) .
A;jx = 0 otherwise except =1; =2ard =3

If we puti =1 andj =2 in (1.9) and take account of (2.1), (2.3) é&), then we
have

(2.6) A123= —A3(\1 — \p) +a® — 32

As a similar argument as in (2.6), putting =1, =3 ahd =j2, = 31O
respectively and using (2.5) yield

_ 308 g, Azt
/\1 — )\3 /\1 - )\3
Az — 3 3a3

2. 5= Ly 2,
(2.8) 03 S 0 /\2_)\30

(2.7) 03 =

If we compare (2.4) with (2.7) and (2.8), then we have

(2.9) Arpz = —A1(h2 — A3) + MZM + 32,
M — A3
_ 2M— A3
(2.10) A123 = Ao(M1— A3) = 30°—7F —«
A2 — A3

respectively. Eliminatingdi,3 from (2.6) and (2.9), and from (2.6) and (2.10) respec-
tively, we can find

(2.11) 3a(A1 — A2) = —(A1 — Ag){Ai(X2 — Ag) — As(h1 — A2) — 2},
(2.12) 36%(A1 — A2) = (A2 — Aa){ha(A1 — Ag) + As(A1 — A2) — 2}

Thus the sum of (2.11) and (2.12) gives the equation
(2.13) A2 -2\ + X)Xz + M\ +1=0

becausen? + 32 = 1.
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Putting: =1, =3 and =2 =3 in (1.21) and making use of (1.17)1)(2
and (2.5), we have

2(A13— a® + 3%)? + 180232 + 2(A13— (%)?
(2.14) AL — A2 A1 — A3 A2 — A3
+ (A1 — As)(Ads — 1— 653%) — 3a®\3 = 0,
~ 2(Ag3— a? + 3%)? + 2(A123+ a?)? + 18023
(2.15) AL— A2 A1 — A3 A2 — A3
+ (A2 — A3)(M2ds — 1 — 6a%) — 36°X3=0

respectively. Using (2.9), (2.10), (2.11), (2.12) and 82,1t is easy to see that the sum
of (2.14) and (2.15) is reduced to

(2.16) MM =AMz + A5 +3) + (A + A2)(MA2 — 2) = 0

The equations (2.13) and (2.16) imply (2.2). It is easily séom (2.2) that
the principal curvaturesi(t) and X(¢) of the real hypersurfaca?, £ of(0)) (t € I)
are distinct solutions of the quadratic equation

x2 = 3\3(t)x +3\3(r)> —1=0,

and the discriminant of this equation implies tHag(r)| < 2/v/3. Therefore all of
the principal curvatures\i(z), A2(¢) and A3(t) of M, (r+ € I’) are bounded. Thus by
Proposition 1.3 we seé’ =R.

Since the collection{M, | r € R} is a homogeneous foliation of codimension
one on H, (), it follows from Theorem A thatM, is congruent to an orbit unde
the Berndt subgroum, , as explained in Introduction. [l
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