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Abstract. Sketch-and-extrude is a common and intuitive modeling pro-
cess in computer aided design. This paper studies the problem of learning
the shape given in the form of point clouds by “inverse” sketch-and-
extrude. We present ExtrudeNet, an unsupervised end-to-end network
for discovering sketch and extrude from point clouds. Behind Extru-
deNet are two new technical components: 1) an effective representation
for sketch and extrude, which can model extrusion with freeform sketches
and conventional cylinder and box primitives as well; and 2) a numeri-
cal method for computing the signed distance field which is used in the
network learning. This is the first attempt that uses machine learning
to reverse engineer the sketch-and-extrude modeling process of a shape
in an unsupervised fashion. ExtrudeNet not only outputs a compact,
editable and interpretable representation of the shape that can be seam-
lessly integrated into modern CAD software, but also aligns with the
standard CAD modeling process facilitating various editing applications,
which distinguishes our work from existing shape parsing research. Code
is released at https://github.com/kimren227/ExtrudeNet.

1 Introduction

Pen draws a line, paint roller sweeps a surface, and pasta maker extrudes Fusilli
from a stencil. From a point to a line, then to a surface and to a solid shape,
the process of using lower dimensional shapes to construct a higher dimensional
object seems to be a human instinct. In this paper, we explore the inverse of this
process by training a neural network to infer 2D drawings of a point cloud and
then extrude them into 3D to reconstruct the shape.

With recent development in 3D reconstruction technologies and cheaper sen-
sors, point clouds can be easily obtained and become a widely adopted 3D data
representation [23, 24, 35]. However, the unordered and unstructured nature of
point clouds makes it difficult to perform high level manipulation and easy edit-
ing of their underlying geometries. Thus in recent years, the research of extract-
ing shape features and generating high level shape representation from point
clouds is very active, especially in computer vision and graphics.
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Fig. 1. ExtrudeNet studies the problem
of learning the shape, given in the form
of point clouds, by “inverse” sketch-and-
extrude.

We take inspiration from the pro-
cess of sketch and extrude, a popu-
lar and intuitive approach widely used
in the field of computer aided de-
sign (CAD) where engineers usually
model shapes by first “sketching” a
closed free form sketch (profile) in a
2D sketch plane and then “extruding”
the sketch into 3D. We propose Ex-
trudeNet, the first of its kind end-to-
end unsupervised network for learning
high level (editable and interpretable)
shape representation through inverse
sketch and extrude process from point
clouds.

To realize ExtrudeNet, as shown
in Fig. 1, we create three modular
components: 1) rBézierSketch, which
generates a simple closed curve (i.e.
no self-intersection); 2) Sketch2SDF,
a versatile numerical method for computing Signed-Distance-Field from para-
metric curves; and 3) DiffExtruder, a differentiable method for extruding 2D
Signed-Distance-Field (SDF) into a 3D solid shape. Built upon these compo-
nents, ExtrudeNet takes a point cloud as input and outputs sketch and extrude
parameters which form a compact, interpretable and editable shape representa-
tion. ExtrudeNet’s outputs are highly compatible with modern CAD software [3],
allowing control points based editing, which is much easier compared to directly
editing triangle, polygonal meshes or even primitive based constructive solid
geometry (CSG) models [26].

There are prior works on converting point clouds to high level shape rep-
resentations. These representatives are discovering CSG in either a supervised
or unsupervised manner. Supervised approaches [11,19,32,36] suffer issues such
as invalid syntax, infeasible models, and requiring large amount of expert anno-
tated data. Unsupervised methods [8,9,21,25,33,37] find the Boolean combina-
tions of pre-defined geometric primitives such as box and cylinder. Our Extru-
deNet goes beyond these works. First, 2D sketch can be complex freeform curves,
which allows us to model much more complex shapes using a single extrusion.
Second, “Sketch-and-Extrude” is more user-friendly when it comes to editing
and secondary-development, as editing a 2D sketch is more intuitive than edit-
ing 3D parameters. This Sketch-and-Extrude process happens to be a widely
adopted method in CAD software for modeling 3D shapes [1–3, 15], making
our method highly compatible with industry standards. Moreover, extensive ex-
periments show that our ExtrudeNet can reconstruct highly interpretable and
editable representations from point clouds. We also show through qualitative vi-
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sualizations and quantitative evaluation metrics that ExtrudeNet outputs better
overall results. The main contributions of the paper are:

– We present an end-to-end network, ExtrudeNet, for unsupervised inverse
sketch and extrude for shape parsing. To the best of our knowledge, Extru-
deNet is the first unsupervised learning method for discovering sketch and
extrude from point clouds.

– We design a special rational cubic Bézier curve based representation for
sketch and extrusion learning, which can model freeform extrusion shapes,
and the common cylinder and box primitives as well.

– We present a simple and general numerical method for computing the signed
distance field of 2D parametric curves and their 3D extrusions which is
proven to be suitable for gradient-based learning.

2 Related Work

Shape Representation. There have been different representations for 3D
shapes. Recently implicit representation [12, 18, 20], usually in the form of Oc-
cupancy or Signed Distance Field, has drawn a lot of attention. It frees from
intricate data representation and can be used directly via neural networks. To
extract the underlying geometry, however, further processing is required [17],
which is computationally intensive. Parametric representation describes shapes
by parametric equations and is widely used in industry for modeling shapes
thanks to its strong edibility and infinite resolution. However, generating para-
metric shapes from raw data like point clouds is a non-trivial task.
High Level Shape Learning. High level shape representations are often re-
quired, which benefit various practical applications. With the advance in machine
learning, learning high level shape representations from raw data structure gains
popularity. There have been many works for reconstructing CAD and especially
CSG from point clouds. CSG is a tree-like structure representing shapes by start-
ing from primitive objects and iteratively combining geometric shapes through
Boolean operations [16]. It is well adapted in professional CAD software.

CSGNet [32] pioneers supervised CSG learning by modeling CSG as a
sequence of tokens. It processes the sequence into a valid CSG-Tree using
NLP techniques. With recent NLP technologies, DeepCAD [36] and CAD-As-
Language [11] employ more powerful language models, e.g. Transformer, and add
additional constraints to better predict CAD models. However, modeling CAD
as language gives rise to addition problems (such as producing grammatically
correct but invalid representations), which are not easy to solve.

VP [33] pioneers the unsupervised approaches by using the union of a set
of boxes to approximate shapes. SQ [21] takes a step further by using super
quadrics instead of boxes to better approximate complex shapes. BSPNet [8]
and CVXNet [9] propose to use the union of a set of convexes to represent a
complex shape, where the convexes are constructed by intersecting half-spaces.
These methods extend the modeling capability of using standard primitives, but
abundant planes are required to approximate freeform surfaces, which also limits
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their edibility. UCSGNet [13] proposes CSG-Layers that iteratively selects prim-
itives and Boolean operations for reconstruction. CSG-StumpNet [25] reformu-
lates CSG-Tree with arbitrary depth into a fixed three layer structure similar to
Disjunctive Normal Form, and uses a simple network to generate binary matrices
for select fundamental products to union into the final reconstruction. However,
these methods focuses on CSG operations and use only basic primitives (boxes,
spheres, etc.), which is not efficient to approximate complicated shapes. CAPRI-
Net [37] uses quadric implicit shapes to construct two intermediate shapes using
an approach similar to BSP-Net. The two intermediate shapes are then sub-
tracted to form the final shape. The construction process is interpretable, but
the use of quadric implicit shapes reduces its edibility.
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Fig. 2. Framework overview. The input point cloud first goes through the encoder-
decoder phase to predict shape parameters and connection matrices via shape head
and connection head. rBézierSketch is then used to generate the profile curve from the
decoded sketch parameters. Sketch2SDF computes the SDF of the sketches. Sketch
SDF, sketch plane parameters, and extrusion height are passed into DiffExtruder to
generate the occupancy of the extrusion shapes, which together with the connection
matrices are passed into CSG-Stump to generate the final shape occupancy.

3 ExtrudeNet

This section presents ExtrudeNet, an end-to-end network for unsupervised in-
verse sketch and extrude for compact and editable shape parsing. The input to
the network is a point cloud representing a shape to be learned. ExtrudeNet out-
puts a set of 3D extrusions as the building blocks and their Boolean operations,
which together create the shape. Each of the 3D extrusions is defined by a 2D
sketch profile curve and a 3D extrusion process.

The pipeline of the entire network is illustrated in Fig. 2. The main com-
ponents are briefly described below. Note that different encoder and assembly
methods can be used to adapt for different use cases.

(1) Encoder-Decoder: ExtrudeNet first encodes the input point cloud into a
latent feature using the off-the-shelf DGCNN as a backbone encoder [35].
The latent code is then enhanced by three fully connected layers with size
512, 1024, and 2048. After that, the latent feature is passed to the shape
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head and the connection head to decode into extruded shape parameters
and connection matrices. Extruded shape parameters consist of 2D sketch
parameters, sketch plane parameters, and extrusion height. Connection ma-
trices represent Boolean operations among the extruded shapes. Since binary
value is not differentiable, we use the Sigmoid function to predict a soft con-
nection weight in [0, 1] for each matrix.

(2) rBézierSketch: rBézierSketch is used to convert sketch parameters into
a closed profile curve defined by a set of rational cubic Bézier curves for
extrusion. The generated 2D sketch curve is guaranteed to be free of self-
intersection and can represent free-form curves, circular arc and even polygon
in a single formulation.

(3) SDF-Generation: This consists of Sketch2SDF and DiffExtruder.
Sketch2SDF is first used to compute the Signed-Distance-Field (SDF) of the
generated 2D sketch on a plane. The computed 2D sketch SDF, the sketch
plane parameters, and extrusion height are then passed into DiffExtruder to
compute the extruded shapes’ occupancy field in 3D space.

(4) Assembly:Given the predicted extrusion shapes’ occupancy and connection
matrices, we are in a position to assemble the extrusion shapes to complete
the final reconstruction. For this purpose, we choose to directly use CSG-
Stump from [25] for its simplicity and learning friendly nature. CSG-Stump
reformulates CSG-Trees into a three layer structure similar to Disjunctive
Normal Form and use three fixed size binary matrices to generate and se-
lect fundamental products. The first layer of CSG-Stump is a complement
layer indicating whether the complement of the input occupancy should be
used for the down steam operations. The second layer is an intersection
layer which selects and intersects complement layer’s outputs into intersected
shapes. The last layer selects intersected shapes to union into the final shape.

Below we describe rBézierSketch and SDF-Generation in more detail.

3.1 rBézierSketch and Extrusion

To create an extrusion shape, a profile curve should be sketched and then ex-
truded in 3D space. We use a network to predict the sketch parameters that
define the profile curve in the XY−plane (serving as its local coordinate sys-
tem) and then extrude it along the Z−direction to create the extrusion shape.
The shape is then transformed to the required location and orientation predicted
by the network which mimics the sketch plane transform in CAD software.

rBézierSketch. Considering the common modeling practice and shapes in CAD
applications, there are a few assumptions for the profile curve: (i) it is closed and
has no self-intersection, which has advantages in defining a valid solid shape; (ii)
it is piecewise smooth for creating quality shapes; and (iii) it can model freeform
curves, and circles or polygons as well. Meanwhile, we also have to balance
the capability and complexity of the representation such that it can be easily
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deployed into a learning pipeline. Based on these considerations, we propose the
following model for our profile curve.

The basic mathematical model is a closed curve formed by N curve segments
defined by special rational cubic Bézier curves Ck(t), t ∈ [0, 1], k = 0, 1, · · · , N −
1, which may explain the name rBézierSketch. The equation of Ck(t) is:

Ck(t) =
P k
0 B

3
0(t) + wk

1P
k
1 B

3
1(t) + wk

2P
k
2 B

3
2(t) + P k

3 B
3
3(t)

B3
0(t) + wk

1B
3
1(t) + wk

2B
3
2(t) +B3

3(t)
(1)

where P k
i = (xk

i , y
k
i ) are the control points on the XY−plane, weights wk

1 ≥
0, wk

2 ≥ 0 are for the two inner control points, and B3
i (t) =

(
3
i

)
(1 − t)3−iti are

Bernstein polynomials. To make sure that consecutive segments are connected

to form a closed curve, the constraints P k
3 = P

(k+1)modN
0 are added.

The closed curve is defined around the origin. Thus it is convenient to express
each control points P k

i = (xk
i , y

k
i ) = (ρki cos(α

k
i ), ρ

k
i sin(α

k
i )) by the radial coordi-

nate ρki and the polar angle αk
i . For simplicity, we further distribute the central

angles of the segments evenly. That is, each Bézier curve has the central angle
2π
N . Within each segment Ck(t), the polar angles of control points are chosen to
be:

αk
1 = αk

0 + θ, αk
3 = αk

0 +
2π

N
, αk

2 = αk
3 − θ (2)

where θ =
2π

4N
+ tan−1

(
1

3
tan

(
2π

4N

))
. It is worth pointing out that these

polar angles are specially designed to achieve the capability of circle recovery
(see Proposition 2 below). In this way, to specify the Bézier control points, we
just need to provide the radial coordinates. Connecting all the control points in
order forms a polygon that is homeomorphic to the origin-centered unit circle,
which assures good behavior of the generated profile curve. In summary, the
network only has to estimate the radial coordinates ρki and the weights wk

1 , w
k
2

in order to sketch the profile curve.
Remark 1. The proposed curve model is specially designed to deliver a few nice
properties, which are outlined in the following paragraphs.

Rational cubic Bézier representation in (1) is proposed because it is a simple
form of NURBS that is the industry standard in CAD and meanwhile sufficient to
model freeform curves [10]. Besides freeform smooth shapes, this representation
is able to represent a straight line or a polygon, for example, as long as we let all
the control points P k

i lie on a line. The reason that the rational form is chosen
is that it includes polynomial curves as a special case and has the capability of
exactly representing a circle. These properties enable the extrusion shapes to
include box and cylinder primitive shapes as special cases.

Due to the special angular set-up of rBézierSketch, the generated profile curve
is a simple closed curve, i.e., it does not self-intersect. In fact, we have an even
stronger result.

Proposition 1. The area bounded by the curve generated by rBézierSketch is a
star-shaped set.
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Moreover, the special choice of angle θ in (2) makes it possible to exactly
represent a circular arc using Eq. 1.

Proposition 2. Let the polar angles be given by Eq. 2. If ρk0 = ρk3 , ρ
k
1 = ρk2 =

ρk
0

cos(θ) , and wk
1 = wk

2 = 1
3

(
1 + 2 cos

(
π
N

))
, then the rational Bézier curve of (1)

defines a circular arc, as shown in Fig. 3 (left).

The proposed curve model assures C0 continuity among the segments since
the Bézier control polygons are connected in a loop by enforcing each curve’s
last control point to be the same as the next curve’s first control point (see
Fig. 3 (middle)). Thus totally 3N radial coordinates and 2N weights need to
be predicted. In case the predicted control points and weights happen to satisfy
certain condition given by Proposition 3, C1 continuity can be achieved.

Proposition 3. If the control points and weights satisfy

P k+1
0 = P k

3 =
ρk2P

k+1
1 + ρk+1

1 P k
2

ρk2 + ρk+1
1

,
wk

2

wk+1
1

=
ρk+1
1

ρk2
, (3)

curve segments Ck+1(t) and Ck(t) meet at P k+1
0 with C1 continuity.

The proof of above propositions is provided in the supplementary material.

𝐶! Continuity 𝐶" Continuity

Control Polygon

Control Radius
Predicted Control Point
Interpolated Control Point

Circular Arc

Fig. 3. Left: a circular arc. Middle: a C0

profile curve. Right: a C1 profile curve.

If for some CAD applications we
already have prior knowledge that the
models should be at least C1 contin-
uous, then we can enforce C1 conti-
nuity by letting P k

0 and wk
2 be com-

puted from Eq. S.1. In this case we
just predict 2N control points P k

1 , P
k
2

and N weights wk
2 , which have fewer

variables (see Fig. 3 (right)).
Remark 2. In CAD there have been some works to define single-valued curves
in the polar coordinate system. For example, Sanchez-Reyes proposed a subset
of rational Bézier curves that can be used to define single-valued curves [28]
and later extended them to splines [29]. It should be pointed out that our pro-
posed curves are different from those proposed by Sanchez-Reyes. Particularly,
for a Sanchez-Reyes’s curve, the control points are on radial directions regularly
spaced by a constant angle and each weight must equal the inverse of the radial
coordinate of the corresponding control point, which leaves very few degrees of
freedom (DoF) for shape modeling. Our curves have more DoFs.

Extrusion. Once the profile curve C(t) = (x(t), y(t)) on the XY−plane is
obtained, the extrusion shape is generated by directly extruding the curve along
the Z−direction. The extrusion shape is bounded by the top and bottom planes
and a side surface. The side surface has the parametric equations (x, y, z) =
((x(t), y(t), s) where s ∈ [0, h] is the second parameter and h is the extrusion
height estimated by the network.
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The network also estimates a quaternion that defines a rotation matrix R
and a translation vector t = (tx, ty, tz) that defines a translation matrix T . The
matrix R makes the XY−plane be in the orientation of the target sketch plane
and the matrix T moves the origin to the target sketch center on the sketch
plane. Thus applying matrices R and T to the upright extrusion shape gives the
target extrusion shape in 3D space, as shown in Fig. 4.

3.2 SDF-Generation

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

Fig. 4. Left: 2D sketch in the XY−plane;
Middle: direct extrusion; Right: the target
extrusion shape.

Sketch2SDF. Note that the gener-
ated sketches are in parametric forms.
Unlike explicit or implicit functions,
computing a signed-distance-field of
parametric curves is not trivial. There
were a few implicitization algorithms
for converting a parametric curve into
an implicit representation [30, 38].
However, they require exact arith-
metic computation. Moreover, as ob-
served in [31], the existence of singularity in parametric representation often
makes the resulting implicit expression useless.

Control Polygon

Normal Vector

Tangent Vector

Displacement Vector

Testing Point

Closest Point

Fig. 5. The SDF of a curve is computed by
a numerical method.

In this section, we present a nu-
merical method for computing the
SDF of parametric sketches. The
method is general. While it applies to
the rational cubic Bézier curves here,
it also works for other parametric
curves. This method also yields good
gradients which is friendly for deep
learning applications (see Sec. 4.2).
The SDF of a sketch is defined by the Distance-Field DF (p), the smallest dis-
tance from a given testing point p to the curve, multiplied by a sign SIGN(p)
which indicates whether the testing point p is inside or outside of the sketch.
Distance-Field. To compute the Distance-Field of a sketch, we first sample
a set of points S from the curve and take the smallest distance between the
test point p and sample points S as the value of DF (p). Specifically, given a
parametric curve C(t) = (x(t), y(t)), t ∈ [0, 1], the sampling points are obtained
by evenly sampling the parameter values in the parameter domain:

S =

{(
x(

i

n
), y(

i

n
)

)
| i = 0, 1, · · · , n

}
(4)

Then the distance between the testing point p and the set S is found by

DF (p) = min
s∈S

∥s− p∥2 (5)

and its corresponding closest point’s parameter value is denoted by CT (p).
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Signed Distance-Field. To test if a point p is inside or outside of a sketch,
we check whether if the displacement vector from the testing point towards the
closest point in S has the same direction as the normal vector of the curve at the
closest point. We assume that the curves are parameterized such that they are
traced in the counter-clockwise direction. Otherwise, a simple reparameterization
can correct it. Then the normal vector of the curve C(t) can be computed by
rotating its tangent vector by 90 degrees clockwise:

N(t) =

(
dy(t)

dt
,−dx(t)

dt

)
(6)

If two consecutive curve segments of the sketch meet with C0 continuity, the
normal vectors of the two segments at the joint point are different. To ensure a
consistent normal at the junction of two curves, the average of the two is used.
In this way, the sign function for a testing point p can be computed:

SIGN(p) =
N(CT (p))) · (C(CT (p))− p)

∥N(CT (p))) · (C(CT (p))− p)∥2 + ϵ
(7)

where a small positive number ϵ is added to prevent from zero division. Finally,
the Signed-Distance of p is:

SDFs(p) = SIGN(p)×DF (p). (8)

Fig. 5 gives an example of a computed SDF.

DiffExtruder. Now we show how to compute the SDF of the extrusion
shape. We first transform the testing point p back to a point p′ by reversing
the transformations that transform the XY−plane to the target sketch plane:
p′ = R−1(T−1(p)). Then we compute the signed distance of p′ with respect to
the upright extrusion shape whose base lies on the XY−plane. For this purpose,
we project point p′ onto the XY−plane by setting its z-value to 0 and denote
the footprint by p′′, and further find its nearest point (cx, cy, 0) on the profile
curve. Then the projected testing point p′′, the nearest point (cx, cy, 0) and its
corresponding point (cx, cy, h) on the end plane of the extrusion define a vertical
plane. Now, the problem of finding the SDF of the extrusion shape is reduced
into computing the 2D SDF on the vertical plane.

If a point is inside of the extrusion shape, its signed distance to the shape
simply becomes the minimum of the 2D sketch SDF and the distances from the
point to the two planes that bound the extrusion.

SDFi(p
′) = max(min(SDFs((p

′
x, p

′
y)), h− p′z, p

′
z), 0) (9)

If the point lies outside the extruded primitive, its signed distance becomes:

SDFo(p
′) = −[(min(h− p′z, 0))

2 + (min(p′z, 0))
2

+(min(SDFs((p
′
x, p

′
y)), 0))

2]
1
2 .

(10)
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It can be seen that for a testing point outside the extruded shape, SDFi becomes
zero, and for a testing point inside the extrusion shape, SDFo becomes zero.
Therefore we can simply get the overall SDF by adding the two terms:

SDF (p′) = SDFi(p
′) + SDFo(p

′). (11)

Occupancy of Extrusion Shape. After getting the SDF of an extrusion shape,
the occupancy can be computed by a sigmoid function Φ where η indicates how
sharp the conversion is taken place:

O(p′) = Φ(−η × SDF (p′)). (12)

3.3 Training and Inference

We train ExtrudeNet in an end-to-end and unsupervised fashion as no ground
truth sketch and extrusion parameters are present. The supervision signals are
mainly generated by the reconstruction loss Lre that computes the discrepancy
between the reconstructed shape’s occupancy Ô and the ground truth shape’s
occupancy O∗ using a set of testing points P ⊂ R3 sampled within the shape’s
bounding box:

Lre = Ep∼P ||Ôi −O∗
i ||22. (13)

As suggested in [25], when a shape is too far from any testing points, the gradient
becomes extremely small due to the use of a sigmoid function. Thus a primitive
loss is introduced to “poll” the primitive shapes towards testing points:

Lprim =
1

K

K∑
k

min
n

SDF 2
k (pn), (14)

We enforce the weights to be close to one, which encourage the rational Bézier
curves to be close to Bézier curves.

Thus, the overall objective is then defined:

Ltotal = Lre + λp · Lprim + λw ·
N−1∑
k=0

2∑
i=1

(wk
i − 1)2 (15)

where λp and λw are the trade-off factors.
During inference, we discretize the connection matrices into Boolean values

for interpretable construction. In addition, we implement a CAD converter that
directly takes binary connection matrices and the network generated parameters
as input and converts the reconstructed shape into CAD compatible format. We
use OpenSCAD [15] to render the final shape into STL [27] format.

4 Experiments

In this section, we first evaluate our complete pipeline ExtrudeNet, particularly
its ability to extract editable and interpretable shape representations with abla-
tion on different settings. Then, we evaluate the key component of rBézierSketch
and Sketch2SDF on 2D toy examples.
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Input UCSG CSGStump ExtrudeNet Oracle SQ UCSG CSGStump ExtrudeNet OracleSQ Input

Fig. 6. Qualitative comparison between ExtrudeNet and other baselines. ExtrudeNet
generates visually more pleasing outputs with curved surfaces compared to all the
baselines.

4.1 Evaluations of ExtrudeNet

Dataset. We evaluate the ExtrudeNet on ShapeNet Dataset [7] with train,
test, and val split aligned with prior methods. The input point clouds are sam-
pled from the original mesh surface via Poisson Disk Sampling [6]. The testing
points are sampled using [5] in a grid from the mesh bounding box with 15% of
padding on each side. This padding is important to remove unwanted artifacts,
see Supplementary Material.
Implementation Details. We implement ExtrudeNet using PyTorch [22], and
train the network with Adam Optimizer [14] with a learning rate of 1e-4. We
train each class on a single NVIDIA V100 GPU with a batch size of 16. It took
about 5 days to converge.

In our experiments, each sketch is constructed with 4 Bézier curves with
a sample rate of 100. We estimate 64 extruded shapes in total, and use 64 as
the number of intersection nodes in Assembly (see Fig. 2) adopted from CSG-
Stump [25].
Main Results - Comparisons with Baselines. We compare our method
with related approaches focusing on editable shape abstraction, namely, VP
[33], SQ [21], UCSG-Net [13], and CSG-Stump Net [25]. Note that BSPNet and
CVXNet are excluded as they mainly focus on the reconstruction of thousands of
planes that contain too many primitives and thus lack editability. For fair com-
parison, we align the number of available primitives to 64 for VP, SQ and UCSG.
We show qualitative comparisons with the baseline methods in Fig. 6. It can be
seen that our ExtrudeNet models curved surfaces more effectively compared to
all the baseline methods, thus resulting in a more detailed reconstruction.

Moreover, we also conduct quantitative evaluations using symmetric L2

Chamfer Distance (CD), volumetric IoU and surface F1 scores. The compar-
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isons of the results are given in Table 1. We can see that ExtrudeNet achieves
the best overall reconstruction quality.

Table 1. Different Metric computed between 3D reconstruction results and the ground
truth shapes. ExtrudeNet outputs better overall results

VP [33] SQ [21] UCSG [13] Stump [25] ExtrudeNet
CD V-IoU F1 CD V-IoU F1 CD V-IoU F1 CD V-IoU F1 CD V-IoU F1

Chair 1.10 0.28 67.07 2.85 0.21 41.49 3.54 0.25 61.01 1.34 0.41 63.33 1.47 0.41 60.17
Car 1.02 0.67 62.71 1.25 0.17 78.58 0.64 0.11 82.54 0.76 0.32 76.45 0.67 0.41 82.20
Sofa 2.18 0.29 48.75 1.27 0.37 69.14 1.30 0.29 79.59 0.85 0.61 83.88 0.79 0.62 83.42
Plane 5.11 0.29 37.55 0.58 0.23 82.94 0.71 0.10 87.66 0.70 0.36 74.57 0.66 0.33 77.95
Lamp 8.41 0.24 35.57 1.79 0.16 63.00 7.02 0.22 55.66 3.48 0.24 57.93 3.77 0.20 42.86

Telephone 2.75 0.55 48.22 0.46 0.38 88.29 0.34 0.69 93.32 1.60 0.58 91.24 0.56 0.62 89.00
Vessel 2.84 0.37 54.21 0.76 0.27 78.52 4.54 0.09 61.65 1.15 0.44 72.30 1.63 0.48 61.06

Loudspeaker 1.67 0.45 50.06 2.07 0.34 65.00 1.81 0.19 56.35 1.70 0.52 63.32 1.21 0.60 75.04
Cabinate 3.16 0.48 42.90 1.97 0.31 40.52 1.09 0.38 73.56 0.77 0.56 79.11 0.73 0.68 84.94
Table 1.62 0.26 60.05 2.89 0.17 60.01 3.64 0.30 65.09 1.35 0.35 74.48 1.06 0.45 73.49
Display 1.25 0.36 60.52 0.72 0.33 80.09 1.13 0.54 78.18 1.64 0.50 75.75 0.96 0.55 83.66
Bench 1.57 0.26 63.31 1.09 0.17 73.46 1.73 0.21 74.12 1.04 0.29 73.40 0.78 0.39 81.17
Rifle 1.35 0.35 66.06 0.38 0.26 90.55 1.05 0.29 84.38 0.78 0.37 85.61 0.76 0.44 84.18

Mean 2.61 0.37 53.61 1.39 0.25 70.12 2.19 0.28 73.31 1.32 0.42 74.64 1.15 0.47 75.32

Table 2. CD results (×10−3) with shapes ex-
truded from different numbers of sketches.

#Primitives 8 16 32 64
Plane 0.89 0.96 0.81 0.66
Chair 2.01 1.81 1.47 1.47
Bench 1.41 1.18 1.30 0.78

Effect of Different Numbers of
Primitives. To show that our pro-
posed extrude shapes with freeform
profile curves are highly adaptable,
we train ExtrudeNet with limited
numbers of extruded shapes. Ta-
ble 2 reports the results on the three
classes. It can be seen that even with
only 8 available extruded shapes, our method can still achieve reasonable recon-
struction results.

Table 3. CD results (×10−3) with shapes
extruded from different sketches on the Air-
plane class.

Sketch Type Freeform Circle Poly
CD 0.66 0.877 0.838

Effect of Different Sketches. Our
method can also use other profile
curves such as polygonal and circu-
lar. Table 3 gives a comparison on
the CD results under different types
of profile curves. We can see that
extruded shapes with the proposed
freeform profile curves outperform the results using the other two common pro-
file curves by a significant margin, which indicates the strong representability of
the extruded shapes with freeform profile curves.

Edibility of Sketch and Extrude. After getting the results from ExtrudeNet,
a designer can do a secondary development with ease. Using the bench example
in Fig. 7, we show that by editing the Bezier Control Points and reducing the
extrusion height, we can easily generate an armchair from the reconstruction
result.

More ablations such as sampling rate, number of curves, sketch plane placement
etc., can be found in the supplementary material.
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Fig. 7. As ExtrudeNet’s output is directly compatible with Industrial CAD software,
we can directly import the shape into Fusion360 and edit using its GUI interface. We
show that a bench can be edited into an armchair by simply edit the 2D cross-section
sketch by dragging the control points and adjust the extrusion height. Left: Extru-
deNet’s output. Middle: Edit sketch using Fusion 360. Right: Result after editing.

4.2 Evaluation of rBézierSketch

To demonstrate the approximation ability and the ease of learning of the pro-
posed rBézierSketch, we conduct a fitting experiment that directly optimize for
the radial coordinate that best reconstructs a given raster emoji image from [4].
As the emojis contains different color blocks, which is not suitable to be rep-
resented using occupancy or SDFs, we choose to approximate the individual
boundaries instead of solid colors blocks. Given a raster emoji image, we first
compute its edges using Canny edge detection, and then we compute the Dis-
tance Field for the edge image. We fit the sketch by minimizing the MSE loss
between the predicted and ground truth distance fields using standard gradient
decent. As shown in Fig. 8, the emoji can be reconstructed by rBézierSketch with
good quality. We also show the training plot, where a smooth decrease in the
loss term indicating that rBézierSketch and Sketch2Field yields good gradients
and it is friendly to used in a learning setup.

M
SE

 L
os

s

IterationGTPredicted Sketches Colorized GTPredicted Sketches Colorized

Fig. 8. Left: We show that using rBézierSketch alone we can reconstruct the emojis
with good qualities. Right: Our rBézierSketch and Sketch2SDF provide low variance
gradients which yields a smooth convergence.

4.3 Evaluation of Sketch2SDF

Here we demonstrate the versatility and accuracy of Sketch2SDF on computing
parametric sketches’ SDF by giving concrete examples.
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Versatility. To show the versatility, we implemented four different kinds of para-
metric curves, namely polygon, ellipse, Cubic Bezier Sketchs with C1 and C0

continuity, see Fig. 9(Top). Note that our method is not limited to these curves,
and can be easily adapted to new parametric curve types. During the implemen-
tation of these curves, only the curve sampling and normal computation need
to be adapted accordingly while the rest of the code remains untouched. This
indicates that our pipeline is highly reusable and can support new parametric
curves with minimum effort.

Samples/Sketch

(a) (b) (c) (d)

(a)

(b)

(c) (d)

(a) (b) (c) (d)

Fig. 9. Top: Sketch2SDF can be easily adapted to
different parametric curve types. Bottom: Visual-
ization of the approximation errors by comparing
numerical and analytical SDFs of Bezier sketch.
(a)∼(d) indicate the errors at sampling rate of 20,
40, 80 and 120. We can see that error is barely no-
ticeable with a relatively small sampling rate.

Approximation Accuracy. As Sketch2SDF is a numerical method, approxi-
mation is introduced, where the sample rate is the most influential factor. Thus,
we study the degree of approximation under different sampling rates by com-
paring our numerical results against the analytical results using Bézier Sketches.
In Fig.9, we plot the maximum error of all testing points versus sample rate
and visualize the error heat map. We can see that too few sample points will
dramatically decrease the accuracy, and higher sampling rates yield more ac-
curate approximation, which is however at the cost of higher computation and
memory usage. Empirically, we find that around 400 sample points per curve is
a reasonable trade-off.

5 Conclusion

In this paper, we have presented ExtrudeNet, which is an effective framework for
unsupervised inverse sketch-and-extrude for shape parsing from point clouds. It
not only output a compact, editable and interpretable shape representation but
also a meaningful sketch-and-extrude process, which can benefit various applica-
tions. As demonstrated by extensive experiments, ExtudeNet can express com-
plex shapes with high compactness and interpretability while achieving state-of-
the-art reconstruction results both visually and quantitatively.
Discussion. Currently, ExtrudeNet requires a relatively long training time as
sketches are more freeformed and have higher degrees of freedom. We also notice
that some artifacts have been reconstructed due to high degrees of freedom.
The current extrusion is a simple extrusion along the direction orthogonal to
the sketch plane. Generalizing the extrusion to include more advanced processes
such as sweeping and lofting warrants further investigation, which would have
more impacts in the industry.
Acknowledgements The work is partially supported by a joint WASP/NTU
project (04INS000440C130), Monash FIT Startup Grant, and SenseTime Gift
Fund.
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F Propositions and Proofs

Proposition 4. The area bounded by the curve generated by rBézierSketch is a
star-shaped set.

Proof: Consider an arbitrary ray cast from the origin. Since the polygon gen-
erated by connecting all the control points in order is homeomorphic to the
origin-centered unit circle, the ray will intersect the polygon at least once. On
the other hand, based on the construction of the control points of the rational
Bézier curve, when we travel along the polygon in the counter-clock direction,
the polar angle is monotonically increasing, which means that the ray will not
intersect the polygon more than once. Therefore the ray intersects the Bézier
control polygon only once, so does it intersect the profile curve, which is con-
firmed by the continuity of the curve and the variation diminishing property of
rational Bézier curves. The variation diminishing property says that for an ar-
bitrary line, the number of intersections with the curve will not be greater than
the number of intersections with the control polygon [10]. Hence any point on
the profile curve can be visible to the origin.

Proposition 5. Let the polar angles be given by Eq.2. If ρk0 = ρk3 , ρ
k
1 = ρk2 =

ρk
0

cos(θ) , and wk
1 = wk

2 = 1
3

(
1 + 2 cos

(
π
N

))
, then the rational Bézier curve of (1)

defines a circular arc, as shown in Fig.3 (left).

Proof: Consider triangle △OP k
0 P

k
1 shown in Fig.3 (left). If ρk1 =

ρk
0

cos(θ) ,

∠OP k
0 P

k
1 is a right angle. Then ∥P k

0 P
k
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π

2N
+

tan−1

(
1

3
tan

( π
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, we thus have
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+ 1
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Similar analysis applies to the other end of the Bézier curve. It can be easily
verified that these equations together with the chosen weights in the proposition
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make the conditions given in [34] be satisfied, which ensure that the generated
rational cubic Bézier curve is an circular arc, and thus we arrive at the conclusion.

Proposition 6. If the control points and weights satisfy

P k+1
0 = P k

3 =
ρk2P

k+1
1 + ρk+1

1 P k
2

ρk2 + ρk+1
1

,
wk

2

wk+1
1

=
ρk+1
1

ρk2
, (S.1)

curve segments Ck+1(t) and Ck(t) meet at P k+1
0 with C1 continuity.

Proof: Consider curve segments Ck(t) and Ck+1(t). First, P
k+1
0 = P k

3 assures
C0 continuity of the two segments. Second, from Eq.S.1, we have

ρk2(P
k+1
1 − P k+1

0 ) = ρk+1
1 (P k

3 − P k
2 ) (S.2)

or
wk+1

1 (P k+1
1 − P k+1

0 ) = wk
2 (P

k
3 − P k

2 ). (S.3)

Eq.S.2 implied that P k+1
0 or P k

3 does lie on the bisector of angle ∠P k
2 OP k+1

1 .
Eq.S.3 means C ′

k(1) = C ′
k+1(0). This is because

C ′
k(1) = 3

(
(P k

3 − wk
2P

k
2 )− (1− wk

2 )P
k
3

)
= 3wk

2 (P
k
3 − P k

2 )

and similarly,
C ′

k+1(0) = 3wk+1
1 (P k+1

1 − P k+1
0 ).

Therefore Ck+1(t) and Ck(t) meet at P k+1
0 with C1 continuity.

G More Ablation Studies

Ablation on Number of Sample Points Per Curve As discussed in Fig.10, sample
rate plays an important role on the accuracy of the approximation. To further
demonstrate that Sketch2SDF can work with a relative small sampling rate,
we vary the sampling rate and train ExtrudeNet separately, as shown in the
Tab.D, even with a small sample rate (80 per sketch) ExtrudeNet still manages
to generate comparable results.

Table D. Chamfer Distances of Airplane class under different sample rate. We can see
that ExtrudeNet performs comparably even under small number of sample points.

Sample Rate 400 320 160 80

CD 0.664 0.702 0.726 0.725

Ablation on Number of Bezier Curve Per Sketch rBézierSketch can be configured
to generate sketches with different number of Bezier Curves. Highly flexible
sketch can be achieved via using a large number of curves, however, this increase
the computation cost and also gives network too much degree of freedom, making
the network much harder to train.
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Table E. Performance of ExtrudeNet under different numbers of Curves. We can see
that too few Bézier curves is not flexible enough while large number of curve makes
network harder to train.

# Curves 2 4 6 8

CD 0.754 0.664 0.722 1.09

Fig. J. Reconstruction results by setting constraints on the extrusion plane orientation.
Left: Top Extrude. Middle: Side Extrude. Left: Front Extrude.

Ablation on Sketch Plane Orientation Three-view-drawing is a popular drawing
method that placing the sketch plane on 3D coordinate planes. In this ablation,
we study the effect of the ExtrudeNet’s performance under constraint sketch
plane orientation, see Tab.F. Interestingly, the results are consistent with how
human tends to draw shapes (from top and front).

Table F. We train ExtrudeNet with constraint sketch plane orientation, we can see
that freely placed sketch plane yields the best result.

Orientation side top front free

CD 3.291 0.821 0.733 0.664

Fig.K. Left: Without padding the
generated mesh contains artifacts
that overshoot the gray bounding
box. Right: Result with padding.

Effect of Padding. As Bézier Sketches are
very flexible and locally supported, only the
control points that have testing points in their
proximity are updated. Note that we add 15%
padding on each side of the mesh bounding
box. Without padding, artifacts that “over-
shoot” outside the bounding box can be gener-
ated (Fig.K). Adding padding when sampling
the testing points can solve this problem, as
“over-shot” shapes in the padded region will incur a higher loss which forces all
the control points to be updated.

H More Visualizations

We have created a video for better visualization, see attached. The video is
composed of two sections. First section illustrates ExtrudeNet in detail with
special attention on the ”Sketch” and ”Extrude” process. Note that, to better
visualize individual extruded shapes, we using UNION as the assembly method,
thus the final reconstruction results are worse than the complete ExtrudeNet.
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Second section of the video shows detailed reconstructed results. We have also
attached more rendered results in Fig.L.

Fig. L. More visualization of ExtrudeNet results
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