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In the field of ophthalmology, diabetic retinopathy (DR) is a major cause of blindness. DR is based on retinal lesions including
exudate. Exudates have been found to be one of the signs and serious DR anomalies, so the proper detection of these lesions and
the treatment should be done immediately to prevent loss of vision. In this paper, pretrained convolutional neural network-
(CNN-) based framework has been proposed for the detection of exudate. Recently, deep CNNs were individually applied to solve
the specific problems. But, pretrained CNN models with transfer learning can utilize the previous knowledge to solve the other
related problems. In the proposed approach, initially data preprocessing is performed for standardization of exudate patches.
Furthermore, region of interest (ROI) localization is used to localize the features of exudates, and then transfer learning is
performed for feature extraction using pretrained CNNmodels (Inception-v3, Residual Network-50, and Visual Geometry Group
Network-19). Moreover, the fused features from fully connected (FC) layers are fed into the softmax classifier for exudate
classification.,e performance of proposed framework has been analyzed using two well-known publicly available databases such
as e-Ophtha and DIARETDB1. ,e experimental results demonstrate that the proposed pretrained CNN-based framework
outperforms the existing techniques for the detection of exudates.

1. Introduction

In the area of ophthalmology, deep learning is performing a
vital role to diagnose serious diseases including diabetic
retinopathy (DR). DR is a severe and common disease all
over the world. Diabetic retinopathy is a widespread disease
that is diagnosed in diabetic patients. ,e World Health
Organization (WHO) has declared that, in 2030, diabetes
will be the most serious and 7th highest death-causing
disease in the world [1]. In this perspective, it is most im-
portant to prevent the human lives from being affected by
diabetes. In the case of diabetic retinopathy, some abnor-
malities including lesions are generated in the retina, which
later lead towards the nonreversible blindness and vision
impairment. But the early detection and treatment of these

lesions can reduce the blindness significantly. ,e retinal
abnormalities in DR also include hemorrhages, cotton wool
spots, microaneurysm (MA), retinal neovascularization, and
exudates, which are clearly shown in Figure 1. Soft exudates
(cotton wool spots) are exemplified as light yellow or white
areas with distracted edges, but hard exudates are illustrated
as yellow waxy patches in the retina. ,e existence of ex-
udates in the retinal fundus photographs is one of the most
serious causes of diabetic retinopathy [3]. ,e manual
identification of hard exudates is based on the analyst, which
is a time-consuming task. On the contrary, automatic ex-
udate identification technique is possible to timely detect the
hard exudates accurately. It is also a difficult task to handle
the factors, including shape, texture, color, size, and poor
contrast of the exudates.
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For the diagnosis of diabetic retinopathy, image pro-
cessing techniques, including optic disk localization, adap-
tive threshold, image boundary tracing, and morphological
preprocessing, are widely used for feature extraction using
retinal fundus images. According to [4], early detection of
exudates in retina may assist the ophthalmologists for timely
and proper treatment of affected person. ,e U-Net-based
technique was applied for the segmentation and detection of
exudates on 107 retinal images. ,e reported network was
composed of expensive and shrinking streams, where
shrinking has a similar structure with CNNs. ,e unsu-
pervised segmentation technique can detect the hard exu-
dates on the basis of ant colony optimization. ,e
experimental results were compared with traditional seg-
mentation technique named Kirsch filter and found that the
unsupervised approach performed better than the tradi-
tional approach [5].

Deep convolutional neural network has also performed
an important role in the segmentation and detection of
exudates using digital fundus images. Tan et al. [6] developed
convolutional neural network to automatically discriminate
and segment microaneurysms, hemorrhages, and exudates.
,e reported method describes that only one CNN can be
used for the segmentation of retinal features using a huge
amount of retinal datasets with appropriate accuracy. Fur-
thermore, Garćıa et al. [7] investigated three classifiers:
multilayer perceptron (MLP), radial basis function (RBF),
and support vector machine (SVM) to detect the hard ex-
udates. In this report, 117 retinal fundus images were used
with different variables, including quality, brightness, and
color. Xiao et al. presented a review of exudate detection in
diabetic retinopathy on the basis of a large-scale assessment
of the related published articles. In the reported paper, the
authors focused on the recent and emerging techniques
including deep learning to detect and classify the diabetic
retinopathy in the retinal fundus images [8].

In the segmentation and detection of exudates, it is
necessary to localize the specified features. ,e location to
segmentation approach for exudate segmentation using
digital fundus images was reported [9] and composed of
three steps including noise removal, hard exudate locali-
zation in the retinal fundus images, and hard exudate
segmentation of diabetic retinopathy.,e noise removal was
performed with match filters for vessel segmentation, and
optic disc segmentation was performed on the basis of sa-
liency technique. Furthermore, the location of exudates was

identified using random forest classifier to categorize the
patches into exudate and nonexudate classes. Finally, the
local contrast and exudate regions were identified for the
segmentation of exudates and were further classified as
exudate and nonexudate patches. Asiri [10] presented a
review to highlight the recent development in the field of
diabetic retinopathy. ,e automatic detection of diabetic
retinopathy and macular degeneration has become one of
the hottest topics of recent deep learning-based research
work.

In addition, enormous work has been done to auto-
matically identify the exudates on the basis of its features
including texture, shape, and size. ,e well-known exudates
detection techniques can be separated into 4 basic types: (1)
machine learning-based techniques; (2) threshold-based
techniques; (3) mathematical morphological techniques; (4)
region growing approaches.

Machine learning-based algorithms contain supervised
and unsupervised learning approaches. A. R. Chowdhury
et al. [11] applied random forest classifier for the detection of
retinal abnormalities. ,e technique was based on k-means
segmentation of fundus photographs and preprocessing
performed by machine learning approaches based on sta-
tistical and low-level features. Moreover, a novel approach
was introduced by Perdomo et al. [12] for the detection of
diabetic macular edema on the basis of exudates’ locations
using machine learning techniques. Furthermore, Carson
Lam et al. [13] applied pretrained models, namely, AlexNet
and GoogleNet, for the detection of diabetic retinopathy.
,e reported article recognized different stages of diabetic
retinopathy using convolutional neural networks. ,e au-
thors highlighted multinomial classification models and
discussed some issues about misclassification of disease and
CNNs inability in the article.

,reshold techniques utilize variations in color strength
among different image regions. In this context, iterative
thresholding technique is presented on the basis of particle
and firefly swarm optimization to diagnose the exudates and
hemorrhages [14]. ,e threshold technique consisted of
image enhancement using preprocessing techniques and
vessel segmentation using Top-hat and Gabor transforma-
tion.,e detection of hemorrhages is performed on the basis
of linear regression and support vector machine classifier.
Additionally, Kaur and Mittal [15] reported exudate seg-
mentation technique to help the eye specialists for effective
planning, and timely treatment in the detection of DR was
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Figure 1: (a) Normal retina and (b) diabetic retinopathy [2].
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developed. ,e authors applied dynamic decision thresh-
olding approach to find the faint and bright edges which help
to segment the hard exudates efficiently and pick the
threshold values in the retinal fundus images dynamically.
Furthermore, Das and Puhan [16] presented the Tsallis
entropy thresholding technique to enhance the visibility of
exudates in diabetic retinopathy. ,e obtained features of
exudates are further filtered to remove the false-positive
values by sparse-based dictionary learning and categoriza-
tion. ,e Tsallis technique was analyzed on the basis of the
public dataset including DIARETDB1 and E-Ophtha to
obtain better accuracy results with 95% accuracy.

A huge amount of contribution has been made to detect
the abnormalities in fundus images using mathematical
morphological approaches. Morphological techniques uti-
lize several mathematical operators having different struc-
tures of elements. Jaafar et al. [17] reported an automated
technique for the identification of exudates in fundus
photographs. In this work, a new method for pure splitting
of fundus colored images was applied, and on the first stage,
a segmentation process was performed on the basis of
variation calculation of pixels in fundus images and then the
morphological technique was applied to filter out the
adaptive thresholding outcomes on the basis of segmenta-
tion results. Additionally, a random forest technique was
applied for the detection of hard exudates in the given
fundus images. In the diabetic retinopathy, ensemble clas-
sifier is applied for multiclass segmentation and localization
of hard exudates [18]. ,e features of exudates were
extracted with coarse grain and fine grain levels with the use
of Gabor filter and morphological reconstruction, respec-
tively. ,e candidate regions were trained on ensemble
classifier to classify the exudate and nonexudate boundaries.
,e four types of publicly available datasets, including
Messidor, HEI-MED, e-Ophtha Ex, and DIARETDB1, were
used for experiments. Harangi and Hajdu [19] also reported
a novel approach to detect the exudates in three steps, in-
cluding candidate extraction by greyscale morphological
technique, precise boundary segmentation by contour-based
technique, and exudate classification by region wise classi-
fier. Harangi et al. [20] presented an exudate detection
approach using greyscale morphology and active contour
techniques to recognize potential exudate states and to
extract exact boundaries of the candidates, respectively.

Region growing approaches observe neighbourhoods of
start positions and decide whether they can be a member of a
particular region. Lim et al. [21] introduced a modified
technique of the previous research work.,e classification of
diabetic and normal macular edema was performed with the
help of extracted exudates. ,e detection of exudates was
performed on the basis of signed macular regions to dis-
tinguish the diabetic retinopathy from the retinal fundus
images. On the basis of contour identification, Harangi and
Hajdu [22] introduced exudate detection technique and,
additionally, region wise categorization. In this technique,
morphological approaches were applied including greyscale
morphology to extract the exudate features and proper shape
by Markovian segmentation system. A novel approach for
detection of diabetic macular edema was developed by

Giancardo et al. [23] on the basis of features including
exudate segmentation, wavelet decomposition, and color.
,e experiments were performed on the publicly available
datasets, and obtained 88 to 94% accuracy depends on
different datasets.

In this research work, the goal of the proposed technique
is to detect the exudates from diabetic retinopathy using
transfer learning. ,e main contribution of the proposed
work is to apply the transfer learning concept for feature
extraction using well-known pretrained deep convolutional
neural networks includes Inception-v3, ResNet-50, and
VGG-19. Additionally, fusion is performed on extracted
features and further classified by softmax for the final
decision.

,e rest of the article is organized as follows: the pro-
posed method is explained in Section 2; the experimental
results and discussion are covered in Section 3. Finally, the
findings are concluded in Section 4.

2. The Proposed Technique

In this portion, the proposed framework based on pretrained
convolutional neural network architectures is described for
retinal exudate detection and classification in fundus images.
In the proposed framework, three well-reputed pretrained
network architectures are combined together to perform
feature fusion, as different architectures can capture dif-
ferent features; if only single architecture had been adopted
instead of combining multiple architectures, then the
probability would have been high to miss some useful
features, and ultimately, it might had affected the perfor-
mance of the proposed framework.

Initially, data preprocessing is performed on both
datasets to standardize the exudate patches and then
Gaussian mixture technique is applied to localize the can-
didate exudate before feature extraction. ,e novel frame-
work becomes helpful for the low-level feature extraction
individually by 3 reputed pretrained convolutional neural
network architectures including Inception-v3, VGG-19, and
ResNet-50. Moreover, collective features are treated as input
into the fully connected (FC) layers for further action in-
cluding classification, performed by softmax to classify the
retinal exudate and nonexudate patches, as shown in
Figure 2.

2.1. Dataset. Data gathering is an essential part of the ex-
periments for the analysis of the proposed technique. In this
proposed approach, two publicly available retinal datasets
are used for experiments: (i) e-Ophtha and (ii) DIARETDB1.
E-Ophtha dataset contains 47 retinal fundus images ex-
amined by four ophthalmologist experts for manual an-
notation of exudates [24]. ,e size of the retinal images
varied from the resolution of 1400× 960 to 2544×1 696
pixels. ,e DIARETDB1 dataset contains 89 retinal fundus
photographs with the resolution of 1500×1 152 [25]. All the
retinal images were captured by the digital specified fundus
image camera having a 50-degree field of view. ,e exam-
ination of exudates in the diabetic retinopathy was
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performed manually and evaluated by five authorized
ophthalmologists. Soft and hard exudates were labelled with
“exudates” as a single class. ,e total images were resized to
the standard size of DIARETDB1 images having a resolution
of 1500×1152 pixels, and the estimated image scale size was
decided based on the standard size of the retinal optic disc.
,e samples including affected and healthy retinal images of
the e-Ophtha and DIARETDB1 are shown in Figure 3.

2.2. Data Preprocessing. In this phase, the input data are
prepared for standardization because of variations in the size
of the retinal exudates. Figure 4 demonstrates the distinction
between patch sizes among all the extracted retinal exudate
patches. ,e length and the width of the extracted patches
are corresponding to the X and Y axis, respectively. It also
determines that, with the ignorance of outliers, the collection
of retinal exudate patch differs from the size of 25× 25 to the
size of 286× 487 resolution. In this case, the analysis of the
retinal images requires the standard size of the patch for
better understanding of data labelling. For this solution, the
smallest patch size was selected for the identification of the
pathological sign by the experts [26].

In the proposed model, 25× 25 patch size of colored
patch images is used with two types of groups including
nonexudate and exudate. ,e manual exudate patch ex-
traction is performed and obtained 36500 and 75600

exudates from e-Ophtha and DIARETDB1 datasets, re-
spectively. Similarly, for the balance dataset, 35000 and
60000 are extracted nonexudate patches and obtained by the
regions of e-Ophtha and DIARETDB1 databases. In the
retinal nonexudate patch group, there are various retinal
diseases including optic nerve heads, background tissues,
and retinal blood vessels. In the proposed technique, all the
patches were obtained and extracted without any kind of
overlap and can be seen as nonexudate and exudate patch
classes in Figures 5(a) and 5(b), respectively.

2.3. Region of Interest Localization. Exudates can be de-
scribed as bright lesions, highlighted as bright patches and
spots in diabetic retinopathy with full contrast in the yellow
plane of the color fundus image. Exudate segmentation is
applied before the application of feature extraction using the
region of interest (ROI) localization. In this step, exudate
segmentation is performed to detect the ROI into the retinal
fundus images. In this case, numerous approaches have been
used including neural network, fuzzy models, edge-based
segmentation, and ROI-based segmentation. In the pro-
posed technique, Gaussian mixture approach is used for
exudate localization. Stauffer and Grimson [27] used
Gaussian sorting to attain the background subtraction
technique. In this paper, a hybrid technique is applied with
the integration of Gaussian mixture model (GMM) on the
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basis of adaptive learning rate (ALR) to attain the significant
outcome in the form of candidate exudate detection. ,e
region of interest (ROI) is acquired from hybrid approach, as
shown in Figure 6. ,e ROI is fed into the pretrained
convolutional neural network models for feature extraction
to obtain compact feature vector.

,e following equation calculates the region of interest
(ROI) by Gaussian mixture model:

m(x) � ∑
q

p�1

rqw x; μq, σq( ), (1)

where rq is denoted as a weight factor and w(x; μq, σq)
represents the normalized form of the average μq. ,e
adaptive learning rate is described to revise μq frequently
with the application of probability constraint w(x; μq, σq) to
recognize that a pixel is a part of qthGaussian distribution or
not.

2.4. Pretrained Deep Convolutional Neural Network Models
for Feature Extraction. In the start, individual deep con-
volutional neural network models are applied to extract the
features, and later, adopted models are further combined
with FC layer for the categorization of fundus images. In this
scenario of feature combination, there could be multiple
types of features including compactness, roundness, and
circularity extracted by the single shape descriptor. In the
proposed technique, three up-to-date and the most recent
deep convolutional neural network architectures, including
Inception-v3 [28], Residual Network (ResNet)-50 [29], and
Visual Geometry Group Network (VGGNet)-19 [30], are
applied for feature extraction and for further classification of
exudate and nonexudate diabetic retinopathy. ,e above
CNN models are already trained for numerous standard
image descriptors monitored by the significant extracted
features from the tiny images, on the basis of transfer
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Figure 3: Retinal image samples from e-Ophtha ((a) affected and (b) healthy) and DIARETDB1 ((c) affected and (d) healthy) databases. In
(a) and (c), exudates are encircled.
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learning [31]. In the following subsections, the adopted deep
convolutional neural network architectures are briefly
defined.

2.4.1. Inception-v3 Architecture. Inception-v3 architecture is
a convolutional network based on convolutional layers in-
cluding pooling layers, rectified linear operation layers, and
fully connected layers. Inception-v3 architecture is designed
for image recognition and classification. ,e proposed
model is also based on the Inception-v3 architecture, which
pools several convolutional filters of various sizes towards an
innovative single filter. Furthermore, the innovative filter
not only decreases the computational complexity but also
abates the number of parameters. Inception-v3 also attains
better accuracy with the combination of heterogeneous-
sized filters and low-dimensional embeddings. ,e basic
architecture of the Inception-v3 is shown in Figure 7.

2.4.2. ResNet-50 Architecture. Residual Network-50 is a
deep convolutional neural network to achieve significant

results in the classification of ImageNet database [32].
ResNet-50 is composed of numerous sizes of convolutional
filters to reduce the training time and manage the degra-
dation issue that happens because of deep structures. In this
work, ResNet-50 is applied, which is already trained on the
standard ImageNet database [33] except fully connected
softmax layer associated with this model. ,e basic archi-
tecture of the ResNet-50 is shown in Figure 8.

2.4.3. VGG-19 Architecture. ,e Visual Geometry Group
Network model is based on multilayered operations called a
deep neural network model. It is comparable with the
AlexNet model except additional convolutional layers. ,e
expansion of VGGNet architecture is based on the re-
placement of kernel-sized filters with the window size 3× 3
filters and with 2× 2 pooling layers consecutively. ,e
general VGG-19 architecture contains 3× 3 convolutions
layers, ratification layers, pooling layers, and three fully
connected layers with 4096 neurons [30]. ,e performance
of VGGNet-19 neural network is better than AlexNet ar-
chitecture due to its simplicity. ,e basic architecture of the
VGG-19 is shown in Figure 9.

2.5. Transfer Learning and Features Fusion. In the field of
machine learning, transfer learning is recognized as a most
useful method, which learns the contextual knowledge
used for solving one problem and applying it to the new
related problems. Primarily, the transfer learning ap-
proach network is trained for a particular job on the re-
lated dataset, and after that, transfer to the objective job is
trained by the objective dataset [34]. In this work, the
objective of the proposed technique is to experiment the
well-known CCN models in both transfer learning context
and feature-level fusion, concerning retinal exudate
classification, and to validate the achieved results on the
e-Ophtha and DIARETDB1 retinal datasets. ,e fusion
approach combines features extracted from fully con-
nected layer using three different DCNNs. ,e features of
all three DCNNs are merged together in single feature
vector. Suppose three different CNN architectures with
respective FC layers are represented as

(a)

(b)

Figure 5: (a) Nonexudate patches; (b) exudate patches.

Figure 6: ,e region of interest is encircled with blue line.
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X � x ∈ 1, 2, 3{ }, (2)

Y � y ∈ 1, 2, 3{ }, (3)

where equation (2) represents three CNN models and
equation (3) illustrates a number of FC layers. ,erefore, the

extracted features are combined in the feature vector space
FV⊕, having dimensions “d“, and can be described as

FV⊕ � X + Y. (4)

Transfer learning-based techniques are implemented with
the pretrained Inception-v3, ResNet-50, and VGGNet-19
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Figure 7: ,e basic Inception-v3 architecture [28].
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architectures from ImageNet. ,e transfer learning setup is
tracked by handling the continuing neural networkmodules as
the fixed feature extractor for the different datasets. Generally,
the transfer learning holds the primary pretrained prototypical
weights and extracts image-based features through the con-
cluding network layer. Mostly, a huge amount of data are
mandatory to train a convolutional neural network from
scrape however sometime; it is hard to organize a large amount
of database of related problems. Opposite to an ultimate
circumstance, in the case ofmost real-world applications, it is a
difficult job or it rarely happens to achieve similar training and
testing data. In this scenario, the transfer learning approach is
presented and is also proved a fruitful technique.,ere are two
main steps of transfer learning approach: firstly, the selection
of pretrained architecture; secondly, the problem similarity
and its size. In the selection phase, the choice of pretrained
architecture is based on the relevant problem which is asso-
ciated with the objective problem. In the case of similarity and
size of the dataset, if the amount of the target database is lesser
(for example, smaller than one thousand images) and also
relevant to the source database (for example, vehicles dataset,
hand-written character dataset, and medical datasets), then
there will be more chances of data over fitting. In another case,
if the amount of the target database is sufficient and relevant to
the source training database, then there will be a little chance of
over fitting and it just needs fine tuning of the pretrained
architecture. ,e deep convolutional neural network (DCNN)
models including Inception-v3, ResNet-50, and VGG-19 are
applied in the proposed framework to utilize their features on
fine-tuning and transfer learning. In the beginning, the
training of the selective convolutional neural network models
is performed using sample images taken by the standard
publicly available “ImageNet” database; moreover, the idea of
transfer learning for fused feature extraction has been
implemented. In this case, the proposed technique assists the
architecture to learn the common features from the new
dataset without any requirement of other training. ,e in-
dependently extracted features of all the selective convolu-
tional neural network models are joined into the FC layer for
further action including the classification of nonexudate and
exudate patch classes performed by softmax.

3. Results and Discussion

,e experiments are performed on “Google Colab” using
graphics processing units (GPUs). For the performance
evaluation, two publicly available standard datasets are se-
lected for experiments. ,e training phase is divided into 2
sessions, and each session took 6 hours to complete the
experimental task. ,e designed framework of the proposed
technique is trained on 3 types of convolutional neural
network architectures including Inception-v3, ResNet-50,
and VGG-19 individually, and after that, transfer learning is
performed to transfer the knowledge data into the fused
extracted features. ,e attained experimental results from
the individual convolutional neural network is compared
and analyzed with the set of fused features accompanied by
various existing approaches. 10-fold cross-validation ap-
proach is applied for performance evaluation. Cross-

validation is a resampling procedure used to evaluate ma-
chine learning models on a limited data sample. ,e pro-
cedure has a single parameter called k that refers to the
number of groups that a given data sample is to be split into.
As such, the procedure is often called k-fold cross-validation.
When a specific value for k is chosen, it may be used in place
of k in the reference to the model, such as k� 10 becoming
10-fold cross-validation [35].,e input data are divided into
different ratios of training and testing datasets used in the
experiments of the proposed methodology. ,e splitting
data are performed in three different ways with the ratio of
70% for training and 30% for testing, similarly 80% for
training and 20% for testing, and 90% for training and 10%
for testing the CNN architectures. Table 1 shows the
comparative analysis of three individual CNN architectures
with the proposed technique on the basis of data splitting
using e-Ophtha dataset.

Similarly, Table 2 illustrates individual architecture and
proposed technique results in terms of classification accu-
racy using DIARETDB1 dataset.

In the context of classification performance, a true positive
is an outcome where the model correctly predicts the positive
class. Similarly, a true negative is an outcome where the model
correctly predicts the negative class. However, false negative
(FN) and false positive (FP) represent the samples, which are
misclassified by the model. ,e following equations can be
applied for the performance assessment.

Accuracy: it is a measure used to evaluate the model
effectiveness to identify correct class labels and can be
calculated by the following equation:

accuracy �
TN + TP

TN + TP + FN + FP
× 100. (5)

F-measure: it averages out the precision and recall of a
classifier having a range between 0 and 1. Best and worst
scores are represented by “0” and “1”, respectively, com-
puted as follows:

precision �
TP

FP + TP
,

recall �
TP

FN + TP
,

F1 score �
2 × recall × precision

recall + precision
.

(6)

Table 1 also illustrates the output as exudate patches,
with respective F1 score, recall, precision value, and accu-
racy. ,e highest classification accuracy of individual CNN
architectures and proposed technique is achieved with the
help of splitting data approach. Overall, it is mentioned that
the proposed approach achieves significant classification
accuracy for retinal exudate detection than the individual
CNN architectures. Using e-Ophtha dataset, Table 1 shows
that the highest classification accuracy of individual CNN
architectures including Inception-v3, ResNet-50, and VGG-
19 is 93.67%, 97.80%, and 95.80%, respectively, but the
proposed approach attained a classification accuracy of
98.43%. Using the DIARETDB1 dataset, Table 2 illustrates
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that the highest classification accuracy of individual CNN
architectures including Inception-v3, ResNet-50, and VGG-
19 is 93.57%, 97.90%, and 95.50%, respectively, but the
proposed approach attained a classification accuracy of
98.91%.

In order to make better understanding of classification
accuracy results, Figure 10 and Figure 11 show the com-
parative classification accuracies of the proposed model
against the individual models using e-Ophtha and DIA-
RETDB1 datasets, respectively.

Additionally, Table 3 demonstrates the comparative
results obtained by proposed framework and the existing
familiar approaches for the detection of retinal exudates.
Table 3 illustrates the classification accuracies of [18] as 87%,
[36] as 92%, and [37] as 97.60% and 98.20%. But the pro-
posed framework achieved higher accuracy than the
abovementioned techniques using both e-Ophtha and
DIARETDB1 datasets.

,e comparative classification performance of the
proposed framework against [37] is a little bit high, but the
extracted features achieved by the proposed framework can
support the final results and specifically be very meaningful

Table 1: Comparative classification accuracy results of the proposed model with individual CNN models for exudate detection using e-
Ophtha dataset.

CNN models
Data splitting

Training (%) Testing (%) F1 score Recall Precision Classification accuracy (%)

Inception-v3
70 30 0.95 0.98 0.92 92.50%
80 20 0.93 0.94 0.92 92.90%
90 10 0.94 0.92 0.96 93.67%

ResNet-50
70 30 0.94 0.98 0.91 90.67%
80 20 0.94 0.98 0.90 95.70%
90 10 0.98 0.97 0.99 97.80%

VGG-19
70 30 0.94 0.99 0.90 92.33%
80 20 0.94 0.93 0.95 95.80%

90 10 0.94 0.90 0.89 93.50%

Proposed model
70 30 0.96 0.96 0.97 97.98%
80 20 0.96 0.97 0.95 98.43%

90 10 0.95 0.96 0.95 97.90%

Table 2: Comparative classification accuracy results of the proposed model with individual CNN models for exudate detection using
DIARETDB1 dataset.

CNN models
Data splitting

Training (%) Testing (%) F1 score Recall Precision Classification accuracy (%)

Inception-v3
70 30 0.95 0.98 0.93 93.10
80 20 0.93 0.94 0.92 93.30
90 10 0.95 0.94 0.97 93.57

ResNet-50
70 30 0.95 0.99 0.92 90.57
80 20 0.94 0.98 0.90 96.10
90 10 0.98 0.98 0.98 97.90

VGG-19
70 30 0.94 0.98 0.90 93.12
80 20 0.93 0.92 0.95 95.50

90 10 0.91 0.93 0.90 93.76

Proposed model
70 30 0.96 0.97 0.96 98.72
80 20 0.95 0.96 0.95 98.91

90 10 0.96 0.96 0.96 97.92
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Figure 10: ,e comparative classification accuracy results using e-
Ophtha dataset.
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in clinical practices. ,e comparative analysis shows that the
proposed pretrained CNN-based transfer learning technique
outperforms the existing individual methods in terms of
accuracy against both datasets for the detection of retinal
exudates.

4. Conclusions

In this article, a pretrained convolutional neural network-
(CNN-) based framework is proposed for the detection of
retinal exudates in fundus images using transfer learning. In
the proposed framework, pretrained models, namely, Incep-
tion-v3, Residual Network-50 (ResNet-50), and Visual Ge-
ometry Group Network-19 (VGG-19), are used to extract the
features from fundus images, based on transfer learning for the
improvement of classification accuracy. Finally, the classifi-
cation accuracy of the proposed model is compared with
various DCNN models separately, as well as compared with
the existing techniques. ,e proposed transfer learning-based
framework has been evaluated and outstanding results in
terms of accuracy are obtained, instead of training from
scratch. Hence, the accuracy of the proposed approach out-
performs the other existing techniques for the detection of
retinal exudates. In future work, the proposed framework can
be modified to discriminate hard and soft exudates. Moreover,
the proposed framework can also be extended to diagnose
hemorrhages and microaneurysms for diabetic retinopathy.
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