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Eye‑blink artifact removal 
from single channel EEG 
with k‑means and SSA
Ajay Kumar Maddirala1 & Kalyana C Veluvolu1,2*

In recent years, the usage of portable electroencephalogram (EEG) devices are becoming popular 
for both clinical and non‑clinical applications. In order to provide more comfort to the subject and 
measure the EEG signals for several hours, these devices usually consists of fewer EEG channels or 
even with a single EEG channel. However, electrooculogram (EOG) signal, also known as eye‑blink 
artifact, produced by involuntary movement of eyelids, always contaminate the EEG signals. Very 
few techniques are available to remove these artifacts from single channel EEG and most of these 
techniques modify the uncontaminated regions of the EEG signal. In this paper, we developed a 
new framework that combines unsupervised machine learning algorithm (k‑means) and singular 
spectrum analysis (SSA) technique to remove eye blink artifact without modifying actual EEG signal. 
The novelty of the work lies in the extraction of the eye‑blink artifact based on the time‑domain 
features of the EEG signal and the unsupervised machine learning algorithm. The extracted eye‑blink 
artifact is further processed by the SSA method and finally subtracted from the contaminated single 
channel EEG signal to obtain the corrected EEG signal. Results with synthetic and real EEG signals 
demonstrate the superiority of the proposed method over the existing methods. Moreover, the 
frequency based measures [the power spectrum ratio ( Ŵ ) and the mean absolute error (MAE)] also 
show that the proposed method does not modify the uncontaminated regions of the EEG signal while 
removing the eye‑blink artifact.

Electroencephalography (EEG) records brain electrical activity and it plays an important role in understanding 
of the motor functions, the cognitive loads, the level of attention and the brain  disorders1–5. �e EEG signals 
are widely used in application like brain computer interface (BCI) system, that extract the information from 
the EEG signals and send that as a command signal to a physical system. Several methods have been proposed 
to extract the EEG components for band identi�cation in BCI  application6,7. Recently, time varying complex 
network models are also proposed to enhance the classi�cation accuracy of BCI  systems8,9. In recent years, there 
is a great demand for in-home health monitoring due to increase in chronic illnesses. �is demand brings a 
need for developing portable wireless healthcare systems to measure biomedical signals in home environment. 
With increasing advancement in technology, the healthcare systems were designed with low instrumentation 
 complexity10,11. Recently, portable EEG devices with single EEG channel are widely used to measure the brain 
signals in non laboratory/clinical  applications12,13. �e use of these devices and their performance is also studied 
in di�erent applications such as BCI, driver fatigue detection and brain  disorders14–18.

In general, the EEG signals are o�en contaminated by several artifacts such as the electrooculogram (EOG), 
the electromyogram (EMG), electrocardiogram (ECG) and motion artifacts are a result of for example, EOG 
artifact is a result of an eye-blink activity. However, due to the involuntary movement of eyelids, the EOG artifact 
(from here onward we will be calling it as eye-blink artifact) always present in EEG signal. �is eye-blink artifact 
appears as a high amplitude spike like signal in the EEG and contaminates it in time and frequency domains. 
More speci�cally, the eye-blink artifact contaminates the low-frequency EEG bands (0–12 Hz)19 which are 
associated to hand movements, attention levels and  drowsiness2,20,21. However, inaccurate �ltering of artifacts 
may e�ect the signal in both time and frequency domains and loss of information may result in compromising 
the end applications, for example, in the fatigue detection and BCI  applications14,15,17,18,22,23.

Removal of eye-blink artifact has been a challenging task, as they o�en overlap with the lower frequency 
spectrum of EEG signal. �e usage of traditional low-pass or band-pass �lter for eye-blink artifact elimination 
may also remove some components of the actual EEG signal. �e adaptive �lters have been applied to remove 
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eye-blink artifact from EEG  signals24. However, they require a reference signal that some how correlates with 
the eye-blink artifact registered in the EEG signal. Similar to the principle component based method, an artifact 
subspace reconstruction (ASR) method was also proposed to remove artifacts from multichannel EEG  data25. �is 
method exploits the clean regions of the data as reference and removes the eye-blink components. Independent 
component analysis (ICA), is a blind source separation (BSS) technique used to decompose (separate) the sources 
from physiological  signals26,27. However, ICA has been widely employed to remove artifacts from multichannel 
EEG  signals26,28,29. In addition to this, canonical correlation analysis (CCA), another BSS based technique, is 
also popular to remove eye-blink artifacts from the multichannel EEG  signals30,31. �ese two methods further 
integrated with other methods to improve their performance in removing  artifacts32–34. �e CCA method was 
successfully employed to remove muscle artifact from the EEG  data35,36. �e main di�erence between these two 
techniques lies in the extraction of source components from the mixed EEG data. �e eye-blink artifacts are 
captured by most of the EEG channels as it is a high energy component and redundant information associated to 
the eye-blink artifact is present in the multi channel EEG data. �e multichannel based artifact removal methods 
relies on this inherent advantage to extract the information and to remove the artifacts. �erefore, removing 
artifact from single channel EEG data is more challenging as compared to multi-channel EEG.

�e ensemble empirical mode decomposition (EEMD)37 and ICA techniques are combined (also called 
EEMD-ICA), to separate the sources from single channel EEG signal using  ICA38. In this method, the EEMD is 
employed to decompose single channel EEG signal into multi-variate data. A�er that, ICA algorithm is used to 
derive the demixing matrix and independent components (ICs) from the multivariate data. To extract the desired 
source signal, the corresponding column vector of mixing matrix (inverse of demixing matrix) is multiplied 
with that of IC of interest. Finally, the desired source signal can be obtained by summing all the components 
obtained in the multiplication step. Recently, singular spectrum analysis (SSA)39 has been successfully employed 
to decompose the EEG  signals40–42. �e SSA is jointly used with ICA to remove di�erent artifacts from single 
channel EEG  signals43. �e main di�erence between EEMD-ICA and SSA-ICA techniques lies in the way they 
decompose the given single channel EEG signal into multivariate data. Surrogate based technique has been 
proposed to remove artifacts from single channel EEG  signal44. However, this method can work only under the 
assumption of EEG stationarity, which may not hold for lengthy EEG epochs.

�e physiology based technique to remove eye-blink artifact from single channel EEG signal was  developed45. 
�is method removes eye-blink artifact without altering the uncontaminated regions in the EEG signal. In this 
method, �rst, a skeleton of eye-blink artifact will be constructed using straight lines. Next, it will be shaped to 
the individual eye-blink detected based on the set threshold. However, the threshold will be determined based 
on the eye-blink potential of each individual. Moreover, this method is sensitive to high amplitude neural spikes 
and also fails to detect when the eye-blink artifact is mixed with other artifacts. Recently, the Fourier-Bessel series 
expansion based empirical wavelet transform (FBSE-EWT) is proposed to eliminate the eye-blink artifact from 
single channel EEG  signal46. In this method, the EEG components, such as δ, θ ,α and β are extracted from single 
channel EEG signal using FBSE-EWT. �e local polynomial approximation based total variation (LPATV) �lter-
ing is applied to the δ component. However, this method requires the optimization of several parameters such as 
regularization parameter, block length, number of overlapping, etc., for the accurate removal of eye-blink artifact.

Most of the artifact removal methods discussed above alters the EEG components in the non-artifact regions 
of the given EEG signal. To overcome the limitations of the existing methods, in this paper, we propose a new 
method, in which an unsupervised machine learning algorithm ( k-means) and SSA technique are combined to 
remove eye-blink artifact from single channel EEG signal. In this method, �rst, the given single channel EEG 
signal is mapped into multivariate data matrix using embedding step of SSA. Next, four time domain features 
(the energy, the hjorth  mobility47, the kurtosis and the di�erence between the maximum and minimum of the 
column vector of the multivariate data matrix) were computed and the k-means algorithm is employed. However, 
the novelty of the present work lies in the estimation of the eye-blink artifact using the time-domain features of 
the given EEG signal and the unsupervised machine learning algorithm. Finally, the estimated eye-blink artifact 
is further processed by SSA technique and subtracted from the contaminated EEG signal to obtain the corrected 
EEG signal. Simulations on both synthetic and real EEG data demonstrate the superior performance of the pro-
posed method in removing eye-blink artifact from single channel EEG signals as compared to existing methods.

Results
Constructing synthetic EEG and eye‑blink signals. To validate the performance of proposed method, 
we construct the single channel ground truth EEG signal and the eye-blink artifact as follows: �e ground truth 
or true EEG signal is not available usually. �erefore, for simulation studies, the non-artifact EEG region from 
a lengthy EEG signal is considered as a ground truth EEG signal. �e non-artifact EEG region in a lengthy EEG 
record, where no eye-blink artifact is present at least for 10 s duration, is manually identi�ed and segmented. 
With the same procedure, 20 such artifact-free EEG epochs were constructed from six subject’s lengthy EEG 
records. Figure 1a shows 10 s ground truth EEG signal. To construct the ground truth eye-blink artifact and 
maintain the real morphology of eye-blink artifact we followed the procedure similar  to43; �rst, manually we 
identi�ed eye-blink artifact region in the real EEG signal and segmented. Next, zeros are padded to the eye-
blink segment such that the signal length is equal to 10 s. �erea�er, the MATLAB smooth command is used to 
remove the EEG remnants resided on the eye-blinks and also to smooth the discontinuity in between the edges 
of eye-blink segment and the zero line. �ree similar eye-blink artifacts from three subjects EEG are constructed. 
Synthetically constructed eye-blink artifact is shown in Fig. 1b. With 20 EEG and three eye-blink epochs, we 
have constructed sixty (20 × 3 = 60) synthetically contaminated EEG signals based on the mixing model given 
in (7) and is shown in Fig. 1c.
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Results with synthetic EEG data. �e performance of any artifact removal method depends on its 
parameters. �e proposed method has three parameters: window length M, threshold Th and the number of 
clusters L. In general, the eye-blink time period varies between 100−400 ms . In order to capture the on-set and 
the o�-set events of the eye-blink artifact, we set the window length M to 500 ms = 0.5 × 256 = 128 samples. 
We analyze the performance of proposed method for four arbitrary thresholds ( Th ) and for various number of 
clusters L = 2, 4, 6, 8 and 10. �is analysis helps to identify the optimal choice of the parameters that results in 
good performance. Figure 1d,e shows the performance of proposed method for various selections of threshold 
( Th ) and clusters (L). A�er extensive simulation analysis, we identi�ed low RRMSE values for the threshold 
selection in the range of 1.2 to 1.4 and clusters in the range of 2 to 4. However, we also observed sudden increase 
in the RRMSE for Th > 1.4 . It is noticed from the simulation analysis that the threshold ( Th ) acts similar to a 
cut-o� frequency as in classic �lters and whereas the number of clusters L will act as the number of decomposi-
tion levels as in a wavelet decomposition. �erefore, for better performance, we set the number clusters as L to 
4 and the threshold Th to 1.4.

Figure 2 shows the key steps to estimate the eye-blink artifact â from the contaminated EEG signal x . In 
order to estimate the eye-blink artifact â , �rst, the contaminated EEG signal x is embedded into a matrix X using 
(1), which results in K signal vectors of length M samples. Next, the four time domain features the energy, the 
hjorth  mobility47, the kurtosis and the di�erence between the maximum and minimum of each column of X are 
computed. A�er performing the embedding and the feature extraction steps, the k-means clustering algorithm 
is applied. As the eye-blink artifact appears as a high amplitude and slow varying component in the contami-
nated EEG signal, the signal vectors corresponding to the eye-blink and EEG are well separated in the feature 
space as evident from Fig. 2. �e k-means clustering algorithm assigns labels to each feature point in the feature 
space. �is labeled information allows us to identify the cluster to which particular feature point (indirectly the 
column vector of X ) falls. Using (2), the matrices X̄1 & X̄2 are derived (here the number of clusters L is set to 2).

Next, uni-variate signals s̄1 & s̄2 are constructed using (6). �e resulting decomposed uni-variate signals s̄1 
& s̄2 are shown in Fig. 2. �e fractal dimension of signals s̄1 & s̄2 are computed to identify the eye-blink artifact. 
A�er identifying the eye-blink artifact with pre-set threshold Th , binary eye-blink template is constructed using 
step 6 of the proposed method (see “Methods” section) and multiplied with the contaminated EEG signal x . 
With this, the eye-blink component ā mixed in the contaminated EEG signal x is extracted. However, the direct 
subtraction of this component from x results in zero line at the eye-blink region in the corrected EEG signal 
(which also means that the EEG components superimposed on the eye-blink artifact are also removed together 
with the artifact). �erefore, to smoothen the onset and o�set regions of eye-blink artifact ā , and to remove the 
EEG components superimposed on the eye-blink artifact, we employed SSA technique in this paper. We can see 
a smooth eye-blink artifact in Fig. 2 (zoomed region) that matches with the ground truth eye-blink artifact as 
indicated with black dotted lines. Finally, the estimated eye-blink artifact â will be subtracted from the contami-
nated EEG signal to obtain the corrected EEG signal ŝ.

Figure 3 depicts the estimated eye-blink artifact ( ̂a ) and the corrected EEG signal ( ̂s ) obtained by all the 
methods. �e RRMSE and CC values presented in Fig. 3b–f are computed with respect to the ground truth 

L=2 L=4 L=6 L=8 L=10

Figure 1.  (a,b) ground truth EEG and eye blink artifact signals, respectively and (c) synthetically generated 
contaminated EEG signal with p = 1 . (d) and (e) illustrate the performance of proposed method in terms of 
RRMSE vs threshold for corrected EEG and the estimated eye-blink artifact, respectively.
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eye-blink ( a ) and the EEG signal ( s ) as shown in Fig. 3a. �e proposed method has low RRMSE and high CC 
values as compared to the existing methods. However, we noticed abrupt changes at onset and o�set regions 
of the eye-blink period and non-eyeblink periods in the estimated eye-blink artifacts obtained by the method 
 in45 and FBSE-EWT methods, as evident from Fig. 3d,e in the �rst column. Moreover, the partial estimation of 
eye-blink artifact obtained by the methods  in45 and the FBSE-EWT method can also be noticed in the same. As 
a result, eye-blink component can still be visualized in the corrected EEG signals obtained by the method  in45 
and the FBSE-EWT methods. In contrast, accurate estimation of the eye-blink artifact can be obtained with the 
proposed method and no artifact component can seen in the corrected EEG signal as shown in Fig. 3f. Even 
though the EEMD-ICA and SSA-ICA methods estimate the eye-blink component (eye-blink region between 
6−8 s ) accurately, however they alter the non-artifact regions, which is not desirable.

As the SNR of the contaminated EEG signal varies with the artifact mixing constant p, we have evaluated the 
performance of the proposed and the existing methods for di�erent p values. �e variations of RRMSE and CC 
values of all methods with respect to p are shown in Fig. 4a,b. It is obvious from these results that the proposed 
method shows lower RRMSE and higher CC as compared to the existing methods. However, the mean RRMSE 
and CC values of the performance of proposed method are better compared with the existing methods, as evi-
dent from Table 1.

�e performance of proposed method in detecting the eye-blink artifact is also studied by varying the feature 
selection. Figure 5 shows the detection of the eye-blink artifact with respect to the artifact mixing constant p. �e 
detection of eye-blink artifact using the proposed method is evaluated in terms of False positive rate (FPR) and it 
is expected to be as small as possible. When the amplitude of eye-blink artifact is large i.e.,  p ≥ 1 , we do not see 
much improvement in FPR values with four features as compared to f1 , f1 & f2 and f1, f2 , & f3 feature selection. 
However, it is observed from Fig. 5a,b that the use of four time domain features helps in the improvement of the 
eye-blink artifact detection rate as compared with single and two time domain features for p = 0.5 . We do not 
seen much di�erence in FPR values obtained with the number of features 3 and 4 (Fig. 5c). Finally, from this 
study we observed that the energy features f1 and f4 contributes more towards detection of the eye-blink artifact 
as compared to other feature components. In Fig. 5, the FPR comparison plots for all features vs f2 , and f3 have 
not showed, as the contribution of these components in detecting the eye-blink artifact is minimal.

We have also evaluated the performance with two di�erent clustering algorithms—spectral clustering and 
agglomerative clustering. Spectral clustering algorithm does not show much improvement whereas an improve-
ment can be seen with agglomerative clustering algorithm as compared to k-mean clustering algorithm. However, 
the agglomerative clustering algorithm’s computational complexity is high and it increases with the number of 
feature samples as compared to k-means clustering method.

Results with real EEG data. For analysis with real EEG data, sixty 10s EEG epochs were segmented from 
the lengthy EEG data of twelve subjects such that at least one eye-blink is present in the EEG signal. Figure 6 
shows the estimated eye-blink artifact ( ̂a ) and the corrected EEG signal ( ̂s ) by all methods. When EEMD-ICA 
and SSA-ICA are applied to the real EEG data, the low frequency EEG information is also extracted together with 
the eye-blink artifact (non-artifact regions in Fig. 6a,b �rst column). Few spikes and the partial extraction of eye-

C1 C2

SSA

Figure 2.  �e key steps for estimating the eye-blink artifact â from the contaminated EEG signal x . Note that 
fds̄i represents the fractal dimension of i th signal s̄i . Here, we have considered only three features for illustration.
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blink component at time period 8 s can be seen in the estimated eye-blink artifact by all the  method45 (Fig. 6c 
�rst column). Similarly, we can see the clipping of the eye-blink component in estimated eye-blink artifact by the 
FBSE-EWT method (Fig. 6d �rst column). In contrast, spikes and partial removal of eye-blink component are 
absent with the proposed method (Fig. 6e �rst column). More importantly, the proposed method removes the 
eye-blink artifact without altering the EEG information from the non-artifact region of the EEG signal.

In general, the ground truth EEG signal is not available to evaluate the performance of artifact removal 
methods on real EEG data. �erefore, we consider two metrics, the power spectral ratio, Ŵ(f ) and the MAE, to 
analyze the performance on real EEG signals. Figure 7, shows the average power spectral ratio curves for 60 EEG 
signals. �e shaded region in Fig. 7a–e shows the standard deviation error from mean. It is clear from the power 
spectral ratio plots shown in Figure 7a–d that the existing methods alters the β band components of the EEG 
signal (i.e. 12−30 Hz ). Compared with the other methods, the method  in45 shows comparable performance with 
the proposed method. �erefore, for comparative analysis, the mean power spectral ratio curves for proposed 

Proposed 
method

(f)

EEMD-ICA

SSA-ICA

FBSE-EWT 
method [46]

Method in [45]

Figure 3.  Row-wise: (a) Superposition of the ground-truth eye-blink artifact and the EEG signal ( s ) with the 
contaminated EEG signal. (b)–(f) superposition of the obtained eye-blink artifact (le�) and the corrected EEG 
signals (right) by all methods on the contaminated EEG signal (for p = 1 case).
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Method in [45]

Proposed

FBSE-EWTSSA-ICA

EEMD-ICA

[46]

Figure 4.  Performance comparison of all methods in terms of (a) RRMSE and (b) CC values with respect to the 
artifact mixing constant p.

Table 1.  Mean RRMSE and CC values of all method for various selections of artifact mixing constant p.

Method

p = 0.5 p = 0.75 p = 1 p = 1.25 p = 1.5

RRMSE CC RRMSE CC RRMSE CC RRMSE CC RRMSE CC

EEMD-ICA 67.8152 0.8297 47.3292 0.9041 37.4845 0.9358 31.2122 0.9529 26.8632 0.9642

SSA-ICA 61.1533 0.8522 41.8371 0.9219 32.5847 0.9499 27.2104 0.9640 22.7803 0.9746

Method  in45 42.5856 0.9059 24.3101 0.9627 20.0368 0.9764 18.7325 0.9784 16.2730 0.9829

FBSE-EWT46 31.3118 0.9513 24.6072 0.9703 20.2033 0.9801 17.0667 0.9858 14.7092 0.9895

Proposed 20.7450 0.9795 14.4100 0.9902 11.8837 0.9933 10.5518 0.9947 9.7430 0.9954

f1 & f2 f1, f2 & f3 vsvsf1 vs

Figure 5.  Comparison of averaged FPR curve obtained with four features vs (a) the energy feature ( f1 ), (b) f1 
& the hjorth mobility ( f2 ) and (c) f1, f2 & the kurtosis ( f3 ) for each artifact constant p. �e fourth feature is the 
di�erence of the maximum and minimum values ( f4 ) of signal vector xi , i = 1, 2, . . . ,K.
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and  method45 are shown in Fig. 7f. We have also computed the MAE for di�erent bands to see the a�ect the 
artifact removal method in each EEG band. However, average MAE values obtained by the proposed method 
for the β band are more good as compared to existing methods, as evident from the power spectral ratio plots 
shown in Fig. 7 and the Table 2.

Discussion
�e performance of the proposed method in comparison with other existing methods is analyzed in terms of 
RRMSE and the CC values computed with respect to the ground truth eye-blink artifact (are shown in Fig. 4a,b). 
In all conditions i.e. p = 0.5, 0.75, 1, 1.25 and 1.5, the mean RRMSE and CC values of the proposed method are 
di�erent from the RRMSE and CC valuable of EEMD-ICA, SSA-ICA and the  method45. Comparing the estimated 
eye-blink artifacts from synthetic and real EEG signals, the existing  method45 fails to extract the initial and 
�nal change-over points (in�ections) of the eye-blink artifact. �e probable reason for this is that, the eye-blink 
artifact is constructed by the straight lines and the intersection of these lines are �tted with zero slope to EEG 
trace. �erefore, partial separation in change-over points of eye-blink can be seen in the corrected EEG signal 
(please refer to second column in Figs. 3d and 6c). Although there is no signi�cant di�erence in the CC values 
obtained for the proposed and the FBSE-EWT methods for the conditions p > 1 , it can be clearly seen that the 
peaks of eye-blink component were clipped-o� in the estimated eye-blink artifact obtained by the FBSE-EWT 
method (see the �rst column in Figs. 3e and 6d). As a result, we can see abrupt changes in the corrected EEG 

Proposed method

EEMD-ICA

SSA-ICA

Contaminated EEG signal  Estimated eye-blink signal Corrected EEG signal

Method in [45]

FBSE-EWT 
method [46]

Figure 6.  Row-wise: (a)–(e) superposition of the estimated eye-blink artifact (le�) and the corrected EEG 
signals (right) of all the methods with the contaminated EEG signal.
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signal obtained by the FBSE-EWT method (see the second column in Figs. 3e and 6d). �ese changes will lead 
to modi�cation in the spectrum of the corrected EEG signal.

In order to show the a�ect of artifact removal methods in the spectral domain, we computed the power 
spectrum ratio and the MAE. From the power spectral ratio plots it can be seen that all the methods removed 
the eye-blink artifact e�ciently. However, from the power spectrum ratio plots we can notice that most of the 
existing methods alters the β band ( 12−30 Hz ) of the corrected EEG signal (Fig. 7a–d). In contrast, the proposed 
method does not alter the original EEG components and as a result the power spectrum ratio value is 1 in this 
frequency band (Fig. 7e). Hence, the MAE values obtained by proposed method in the β band are more better 
as compared to the MAE values obtained by other methods.

From this study we observe that most of the existing methods alters the EEG components from the non-
artifact regions of the EEG signal and as a result the spectrum of the corrected EEG signal is altered. In contrast 
to the existing methods, the proposed method exploited the di�erence in the time-domain features of the EEG 
signal (evident from Fig. 2) to remove the eye-blink artifact without altering the EEG components. Moreover, 
we also studied the eye-blink artifact detection rate in terms of FPR and found that the energy based features 
contributed more towards detection of the eye-blink artifact as compared to other feature components. As evident 
from the simulation studies, the performance of the proposed method is sensitive to the threshold Th selection. A 
careful selection is required and this is also the limitation of the proposed method. A statistical based approach 
to address the limitation of proposed method with respect to the threshold selection will be the topic of our 
future research. In this paper, we mainly focused on removing the eye-blink artifact using a simple unsupervised 
clustering algorithm. Hence, in this study, we have used k-means clustering algorithm over other methods as it 
is simple and computationally e�cient unsupervised clustering algorithm. However, based on the requirement 
of the application, other clustering algorithms can also be employed in the proposed method.

Proposed
 method

FBSE-EWTSSA-ICAEEMD-ICA

(f)

Method in [45]
Proposed
 method

Method in [45]

[46]

Figure 7.  (a)–(e) shows the power spectral ratio curves of all the methods, and (f) the super position of the 
mean power spectral ratio curves of the proposed method and the existing  method45.

Table 2.  Mean MAE values of the proposed and the existing methods in di�erent EEG bands 1−8, 8−12 and 
12−30 Hz.

Method

MAE

1–8 Hz 8–12 Hz 12–30 Hz

EEMD-ICA 19.4213 1.3561 0.1399

SSA-ICA 20.9366 1.1344 0.0815

Method  in45 18.9892 0.7360 0.0457

FBSE-EWT46 18.5890 0.3428 0.0955

Proposed 19.6776 0.7495 0.0093
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Conclusion
A new method that relies on the EEG time-domain features and the strength of unsupervised machine learning 
algorithm ( k-means) followed by SSA technique was developed for accurate removal of the eye-blink artifact for 
the single channel EEG signal. Simple four time-domain features of the EEG signal were employed to estimate 
eye-blink artifact and SSA technique was employed to remove the EEG remnants on the estimated eye-blink 
artifact. Results show that proposed method removes the eye-blink artifact without altering the original EEG 
components. As the time domain features are good in di�erentiating the EEG and eye-blink components, the 
proposed method was able to remove the artifact from the EEG signals by proper tuning of its parameter (thresh-
old Th ). Comparative analysis with existing methods also demonstrate the superiority of the proposed method 
in accurate �ltering of eye-blink artifacts. �e developed technique can be employed for EEG pre-processing in 
applications where fewer or single frontal EEG channel(s) are usually employed.

Methods
Proposed method. �e overview of the single channel EEG artifact removal process employed in this 
paper is shown in Fig. 8. �e novelty of the work lies in decomposing the given single channel EEG into L signals 
using the EEG features and the k-mean clustering algorithm. A�er decomposing the given single channel EEG 
signal into components, the fractal dimension (FD) of each decomposed component is computed. As the eye-
blink artifact is a slow varying component, the FD is expected to be a small for the signals corresponding to the 
eye-blink artifact and is high for the signals corresponding to EEG. �e eye-blink artifact component will be 
constructed by adding the decomposed components whose FD values are less than the pre-set threshold. Finally, 
the resulted eye-blink artifact component is further processed by SSA and subtracted from the contaminated 
EEG signal to obtain the corrected EEG signal. �e proposed method relies on the following key steps to remove 
eye-blink artifact from single channel EEG signal.

SSA

Th

0

1

+

+

+

C1 C3 CLC2

CL = L
th cluster

1

2

345

6 7

89

Figure 8.  Block diagram of the proposed method (for p = 1 case).
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Step-1, 2 and 3. Consider x = [x(1), x(2), . . . , x(N)] = s + pa is an N sampled contaminated single channel 
EEG signal. �e constant p represents the contribution of eye-blink artifact in the EEG signal, which we call it 
as artifact mixing constant. �e signal vectors s and a represents the ground truth EEG signal and the eye-blink 
artifact, respectively. In this step, the given single channel EEG signal x is mapped into multivariate data matrix 
as in (1).

where M is the window length and K = N − M + 1 . In xj is the jth, j = 1, 2, . . . ,K column vector of X . Note 
that in (1), we assumed the artifact mixing constant p = 1 for simple understanding of the proposed method.

In step-2, four time domain features the energy ( f1 ), the hjorth  mobility47 ( f2 ), the kurtosis ( f3 ), and the dif-
ference in the maximum and minimum values of column of xi ( f4 = max{xi} − |min{xi}| ), are computed that 
results EEG feature data matrix F = [f1, f2, . . . , fK ] of size 4 × K , where f j = [f

j
1 , f

j
2 , f

j
3 , f

j
4] is j th column vector of 

feature matrix F . Usually, the eye-blink artifact appears in the EEG signal as a high amplitude and slow varying 
component. �e selected four features are good in extracting such inherent property of the eye-blink artifact.

In step-3, an unsupervised machine learning algorithm, i.e. k-means48 clustering algorithm, is applied on 
the extracted feature data matrix F with L number of clusters. �e k-means clustering algorithm will provide the 
labels to each feature vector f j . �e labeled information (clustering information) convey that to which cluster 
the feature vector f j has fallen into.

Step-4. Based on the information obtained from the k-means clustering algorithm, �rst, multivariate data 
matrix X̄i , i = 1, 2, . . . , L is constructed as follows. �e j th column vector xj of X is placed (copied) in the j th 
column of matrix X̄i when the j th feature vector f j of matrix X belongs to i th cluster Ci ; otherwise a vector with 
zeros is placed (copied) in that column of matrix X̄i . �is operation is shown with a dotted line from the output 
the embedding block in Fig. 8 and can be represented mathematically as

where x̄
j
i (j = 1, 2, . . . ,K) , is the j th column vector of X̄i.

Next, each X̄i matrix corresponding to each cluster is mapped into uni-variate signal using diagonal averaging 
step of SSA (using (6)). �is results in L decomposed components, say s̄1, s̄2, .., s̄L from the contaminated EEG 
signal x . However, a criteria has to be selected to identify the signals corresponding to the eye-blink artifact 
from the L number of signals. A signal complexity measure, also called fractal dimension (FD)49, is successfully 
 applied50 to identify the eye-blink artifact component from the estimated sources.

Step-5, 6 and 7. Hence, in step-5, we have computed FD for all L the decomposed components. Since the eye-
blink artifact is characterized as high amplitude and slow varying component, the FD is expected to be a lower 
value for eye-blink artifact when compared to EEG signals. Finally, the decomposed components whose FD is 
less than or equal to the pre-set threshold ( Th ) are added together. �is results an eye-blink artifact component 
ār . It is clear from (2) that some of the columns in X̄i are expected to be zeros. Applying diagonal averaging step 
of SSA on X̄i , the amplitude levels in the reconstructed eye-blink signal are e�ected. In other words, there will be 
amplitude reduction in the eye-blink regions due to this diagonal averaging operation, as few of the columns of 
the matrix X̄i are zeros. �erefore, the direct subtraction of ār component from the contaminated EEG signal x 
will result the partial separation of eye-blink artifact.

To overcome such problem, in Step-6, each positive and negative valued samples in the obtained eye-blink 
artifact ār are replaced to one. �is results in the formation of a binary artifact template āb , whose sample values 
are ones in the artifact region and zeros in non-artifact region. In Step-7, the obtained binary eye-blink artifact 
template is multiplied with the input signal x . �us it results an eye-blink artifact component ā that is present in 
the contaminated EEG signal x , with no amplitude changes in the artifact region.

Step-8 and 9. However, the obtained artifact component ā has some EEG remnants on the eye-blinks (Fig. 8). 
�e direct subtraction of this component from the contaminated EEG signal results in the loss of valuable EEG 
information and a zero line can be seen in the corrected EEG signal. �erefore, the EEG remnants should be 
�ltered (indirectly we are retaining the EEG components) before it is subtracted from the contaminated EEG 
signal x.

In Step-8 of proposed method, we employ SSA (discussed in the following subsection) to remove the EEG 
remnants that reside on the eye-blink artifact component ā . SSA can remove such remnants from eye-blink 
regions, as it relies on the co-variance of the data to separate the components. �erefore, the eye-blink artifact 
component ā is given as input signal to SSA and the EEG remnants are �ltered out results an estimated eye-blink 
component â . Finally, in Step-9, the estimated eye-blink artifact signal â will be subtracted from the contaminated 
EEG signal to obtain the corrected EEG signal ŝ.

In the proposed method, the threshold Th plays an important role in identifying the eye-blink artifact com-
ponent from the decomposed components a�er clustering. However, when there is no eye-blink artifact present 
in the EEG signal, it is obvious that all decomposed component belongs to EEG signal and the fractal dimen-
sion (FD) of these components is above the pre-set threshold Th . When the FD of each component is above 

(1)X =







x(1) x(2) ...... ..... x(K)

x(2) x(3) ..... ..... x(K + 1)

: : ..... ..... :

x(M) x(M + 1) ..... ..... x(N)






= [x

1
, x

2
, . . . , xK ] = S + A, (p = 1)

(2)x̄
j
i =

{

x
j if f j ∈ Ci , {i = 1, 2, . . . , L}

0 if f j /∈ Ci
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the threshold Th , then step 6, 7,  and 8 of the proposed method are not performed and the estimated eye-blink 
artifact â is set to zero. Finally, the corrected EEG ̂s = x , indicates that the given EEG signal is not contaminated 
by the eye-blink artifact.

Singular spectrum analysis (SSA). In this subsection, we brie�y discuss about the SSA technique, as 
the proposed method development relies on the key steps of SSA technique. It is a data-driven subspace based 
technique, widely used to extract the low frequency trends and oscillating components from the noisy  data39,51. 
Recently, SSA technique has been widely used to process several physiological  signals41,52,53. Basically, it com-
prises the following steps: (i) embedding, (ii) decomposition, (iii) grouping and (iv) diagonal averaging.

Embedding. Consider ā = [ā(1), ā(2), . . . , ā(N)] = a + b , is a N sampled signal with noise. �e vectors a and 
b represents the signal of interest and the noise component, respectively. In embedding step of SSA, the given 
uni-variate time-series signal ā is mapped into multi-variate data as shown below:

where M is the window length and K = N − M + 1.

Decomposition. In the next step, the singular value decomposition (SVD) of Ā will be performed to decompose 
the trajectory matrix Ā into Ā1, Ā1, . . . , ĀM . �e M trajectory matrices can be obtained as follow: �e SVD of a 
rectangular matrix of size M × K can be factored as NA = UDV

T , where U and V represents orthogonal matri-
ces, whose columns are eigenvectors of co-variance matrix C = ĀĀ

T and C = Ā
T
Ā , respectively; and the D is 

a rectangular diagonal matrix, whose elements are singular values ( σ ). Let the �1, �2, . . . , �M and u1, u2, . . . ,uM 
represent the eigenvalues and the eigenvectors of the co-variance matrix C = ĀĀ

T . Assume that the eigenvalues 
are sorted in the descending order based on their strengths (amplitudes), i.e. �1 ≥ �2 ≥, . . . ,≥ �M ≥ 0 . �en, 
the i th trajectory matrix Āi can be represented as

where vi = Ā
T
ui/

√
�i  . Substituting vi in (4), then the i th trajectory matrix Āi is given by

�e term uiu
T
i

 in (5) form subspace for the i th component in the given signal ā.

Grouping. �e grouping step involves identifying the subspace for the desired signal (smooth eye-blink arti-
fact in this present study). In other words, it identi�es the appropriate eigenvectors (basis functions) to con-
struct the desired signal. In the proposed method, we employ eigenvalue (spectrum) based grouping criteria 
to identify the desired eigenvector. Consider that the desired signal subspace can be constructed with d num-
ber of eigenvectors. To identify the d most signi�cant eigenvectors (basis functions of desired signal), eigen-
value ratio is r�(i) is computed by dividing each eigenvalue by the sum of total eigenvalues and is de�ned as 
r�(i) = �i/

∑
M

l=1 �l , i = 1, 2, . . . ,M . �e indices of eigenvalues whose ratio greater than preset threshold TSSA 
(set to 0.01) are identi�ed. �e number of eigenvalues whose ratio is greater than TSSA is denoted as d. Finally, 
using (5) the d number of Āk , k = 1, 2, . . . , d were computed and summed together. �is results interested signal 
trajectory matrix in the form of Â =

∑
d

k=1
Āk.

Diagonal averaging. However, the obtained trajectory matrix Â do not hold the hankel structure to reconstruct 
uni-variate signal from it. �erefore, in the diagonal averaging (it’s a reverse process to the embedding step) step, 
the anti-diagonal elements of Â are replaced with their mean value as de�ned in (6). Lets consider that â(i, j) 
represents the i th row and j th column element of matrix Â , then the desired signal can be estimated as follows

It is clear from (6) that the n th sample of estimated eye-blink artifact â(n) is an average of anti diagonal elements 
â(i, n − i + 1)|i=1,2...n , (for n = 2 , â(2) = {â(1, 2) + â(2, 1)}/2 ). Finally, the corrected EEG signal ŝ is obtained 
by subtracting the estimated eye-blink artifact â from the contaminated EEG signal x.

Performance measures. In this section, we have de�ned some measures to validate the performance of 
the proposed method over the existing methods. However, in this paper, we have considered the following EEG 
mixing model for analysis. Let the vectors s and a represent the ground truth EEG and the eye-blink artifact, 
respectively. �en the contaminated EEG signal x is de�ned as

(3)Ā =







ā(1) ā(2) ...... ..... ā(K)

ā(2) ā(3) ..... ..... ā(K + 1)

: : ..... ..... :

ā(M) ā(M + 1) ..... ..... ā(N)






= [ā1, ā2, . . . , āK ] = A + B

(4)Āi =

√

�iuiv
T

i i = 1, 2, . . . ,M

(5)Āi = uiu
T

i Ā

(6)â(n) =
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1
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where p is constant that represents the contribution of eye-blink artifact in the contaminated EEG signal (known 
as artifact mixing constant). When p > 1 (eye-blink artifact is more predominant) the signal to noise ratio (SNR) 
of contaminated EEG is low and when it is < 1 SNR is high.

�e performance of the proposed artifact removal method is evaluated on both synthetic and real EEG 
signals. In order to compare the performance of proposed artifact removal method with the existing methods 
on synthetic EEG signals, we have de�ned the following two performance measures: relative root mean square 
error (RRMSE) and correlation coe�cient (CC). When the artifact removal method accurately estimates the 
eye blink artifact, the RRMSE and CC values between the ground truth and the estimated eye-blink artifacts are 
expected to be 0 and 1, respectively.

For simulation results with real EEG data, as neither ground truth EEG and nor the eye-blink artifact are 
usually available, we have de�ned two measures, power spectrum ratio Ŵ(f ) and mean absolute error (MAE) 
to evaluate the performance of all the methods. When the eye-blink artifact is perfectly removed from the con-
taminated EEG signal, Ŵ(f ) and the MAE are expected to be 1 and 0, respectively in the β band ( 12−30 Hz ) of 
EEG signal. �e power spectral ratio and MAE measures can objectively quantify if a particular method �lters 
the artifact without altering the actual EEG signal.

Relative root mean square error (RRMSE). Considering the ground truth or true eye-blink artifact as a and the 
estimated eye-blink artifact obtained by the artifact removal method as â , the RRMSE can be de�ned as

where, N is the number of samples in the signal. When an artifact removal method accurately estimates the 
eye-blink artifact from the EEG signal, the di�erence between a and â (numerator term) will be small and hence 
RRMSE value is expected to be small for a good artifact removal method.

Correlation coe�cient (CC). CC is a statistical based performance measure, represents the correlation between 
two signals. �e CC between the ground truth eye-blink a and the estimated eye-blink â components is de�ned 
as

�e correlation coe�cient between the ground truth and the estimated eye-blink artifact is expected to be 1 
when an artifact removal method perfectly estimated the eye-blink artifact.

Power spectrum ratio ( Ŵ). It is a plot describing the ratio of the power spectrum of the corrected EEG signal 
to the power spectrum of the contaminated EEG signal and is used as metric to evaluate the performance of the 
proposed technique on real EEG  signals54. �e power spectrum ratio of the corrected and the contaminated EEG 
signals at each frequency is de�ned as

where, pŝ and px are represents the power spectrums of the corrected and the contaminated EEG signals, respec-
tively. In general, the energy of eye-blink artifact lies in the band between 0 and 12 Hz. However, when the eye-
blink artifact is removed, the power spectrum ratio of corrected EEG signal to the contaminated EEG signal is 
expected to be less than 1 in the frequency band 0–12 Hz. �e low value of Ŵ(f ) in this band doesn’t mean the 
EEG components in 0–12 Hz band are removed, rather it is due to the elimination of high energy component 
(eye-blink artifact) in the corrected EEG signal. Whereas it is equal to 1 in the β band (12–30 Hz), this is due to 
the fact that energy of eye-blink artifact in this band is very small.

Mean absolute error (MAE). Consider px(f ) and pŝ(f ) are the power spectrums of the contaminated and the 
corrected EEG signals, respectively. �en the MAE between the spectrums of both the contaminated and the 
corrected EEG signals is de�ned as

where j and l represent the indices of the start and end frequencies of a speci�c band. �e MAE is computed 
for the following three bands 1−8 , 8−12 and 12−30 Hz to understand a�ect of artifact removal methods on 
corrected EEG signals. When there is no loss of EEG components by an artifact removal technique, the MAE 
value in a band is expected close to zero (in β band), which means represents better performance of the artifact 
removal technique.

(7)x = s + pa

(8)RRMSE =

√

∑

N

n=1
[a(n) − â(n)]

2

∑

N

n=1
a2(n)

× 100(%)

(9)CC =
cov(a, â)

σaaσââ

(10)Ŵ(f ) =
pŝ(f )

px(f )
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EEG data and pre‑processing. To assess the performance of proposed and the existing methods, in this 
work, we have considered event related potential (ERP) BCI data (ERP-BCI) for both synthetic and real EEG 
data analysis. �e EEG data is obtained from a publicly available  database55,56 and there is no direct involvement 
of humans in this research study. �e ERP-BCI EEG  data55,56 is collected from 12 subjects and each subject is 
asked to spell 20 characters (which results 20 trails) using traditional matrix speller. �e EEG signals (64 chan-
nels) are recorded using BioSemi Active Two EEG system with sampling frequency 2048 Hz. For this study, we 
have considered pre-frontal EEG channel Fp1 . �e EEG signals were down sampled to 256 Hz and a band-pass 
�lter with cut-o� frequencies 1−30Hz is employed to remove dc and high frequency components from the data. 
More details about the EEG data used in this study are available  in55,56.

Received: 16 June 2020; Accepted: 4 May 2021

References
 1. Robinson, N., Vinod, A. P., Ang, K. K., Tee, K. P. & Guan, C. T. EEG-based classi�cation of fast and slow hand movements using 

wavelet-CSP algorithm. IEEE. Trans. Biomed. Eng. 60, 2123–2132 (2013).
 2. Ofner, P. et al. Attempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord 

injury. Sci. Rep. 9, 1–15 (2019).
 3. Antonenko, P., Paas, F., Grabner, R. & Van Gog, T. Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 

22, 425–438 (2010).
 4. Guo, Z., Pan, Y., Zhao, G., Cao, S. & Zhang, J. Detection of driver vigilance level using EEG signals and driving contexts. IEEE 

Trans. Reliab. 67, 370–380 (2017).
 5. Noachtar, S. & Rémi, J. �e role of EEG in epilepsy: A critical review. Epilepsy Behav. 15, 22–33 (2009).
 6. Veluvolu, K. C., Wang, Y. & Kavuri, S. S. Adaptive estimation of EEG-rhythms for optimal band identi�cation in BCI. J. Neurosci. 

Methods 203, 163–172 (2012).
 7. Wang, Y., Veluvolu, K. C. & Lee, M. Time-frequency analysis of band-limited EEG with BMFLC and Kalman �lter for BCI applica-

tions. J. Neuroeng. Rehabil. 10, 109 (2013).
 8. Gupta, G., Pequito, S. & Bogdan, P. Re-thinking EEG-based non-invasive brain interfaces: Modeling and analysis. In 2018 ACM/

IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), 275–286, https:// doi. org/ 10. 1109/ ICCPS. 2018. 00034 (2018).
 9. Gupta, G., Pequito, S. & Bogdan, P. Learning latent fractional dynamics with unknown unknowns. In 2019 American Control 

Conference (ACC), 217–222, https:// doi. org/ 10. 23919/ ACC. 2019. 88150 74 (2019).
 10. Emotiv. [online]: https:// emotiv. com/ epoc. php (2015).
 11. Muse. [online]: http:// www. choos emuse. com/ (2015).
 12. Ridwan, S. D., �ompson, R., Jap, B. T., Lal, S. & Fischer, P. Single channel wireless EEG: Proposed application in train drivers. In 

2008 �ird International Conference on Broadband Communications, Information Technology & Biomedical Applications, 58–63. 
https:// doi. org/ 10. 1109/ BROAD COM. 2008. 69 (2008).

 13. Koley, B. & Dey, D. An ensemble system for automatic sleep stage classi�cation using single channel EEG signal. Comput. Biol. 
Med. 42, 1186–1195 (2012).

 14. Salyers, J. B., Dong, Y. & Gai, Y. Continuous wavelet transform for decoding �nger movements from single-channel EEG. IEEE. 
Trans. Biomed. Eng. 66, 1588–1597 (2019).

 15. Ogino, M., Kanoga, S., Muto, M. & Mitsukura, Y. Analysis of prefrontal single-channel EEG data for portable auditory ERP-based 
brain-computer interfaces. Front. Hum. Neurosci. 13, 250 (2019).

 16. Ge, S., Wang, R. & Yu, D. Classi�cation of four-class motor imagery employing single-channel electroencephalography. PLoS ONE 
9, 1–7 (2014).

 17. Wang, P., Min, J. & Hu, J. Ensemble classi�er for driver’s fatigue detection based on a single EEG channel. IET Intell. Transp. Syst. 
12, 1322–1328 (2018).

 18. Sauvet, F. et al. In-�ight automatic detection of vigilance states using a single EEG channel. IEEE. Trans. Biomed. Eng. 61, 2840–2847 
(2014).

 19. Halder, S. et al. Online artifact removal for brain-computer interfaces using support vector machines and blind source separation. 
Comput. Intell. Neurosci. 2007, 082069 https:// doi. org/ 10. 1155/ 2007/ 82069 (2007).

 20. Ofner, P., Schwarz, A., Pereira, J. & Müller-Putz, G. R. Upper limb movements can be decoded from the time-domain of low-
frequency EEG. PLoS ONE 12, 1–24 (2017).

 21. Lin, C. et al. EEG-based assessment of driver cognitive responses in a dynamic virtual-reality driving environment. IEEE. Trans. 
Biomed. Eng. 54, 1349–1352 (2007).

 22. Borghini, G., Astol�, L., Vecchiato, G., Mattia, D. & Babiloni, F. Measuring neurophysiological signals in aircra� pilots and car 
drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014).

 23. Lal, S. K. & Craig, A. Driver fatigue: Electroencephalography and psychological assessment. Psychophysiology 39, 313–321 (2002).
 24. He, P., Wilson, G. & Russell, C. Removal of ocular artifacts from electro-encephalogram by adaptive �ltering. Med. Biol. Eng. 

Comput. 42, 407–412 (2004).
 25. Chang, C. Y., Hsu, S. H., Pion-Tonachini, L. & Jung, T. P. Evaluation of artifact subspace reconstruction for automatic artifact 

components removal in multi-channel EEG recordings. IEEE. Trans. Biomed. Eng. 67, 1114–1121. https:// doi. org/ 10. 1109/ TBME. 
2019. 29301 86 (2020).

 26. Jung, T. et al. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163–178 (2000).
 27. Sha�q, G. & Veluvolu, K. C. Surface chest motion decomposition for cardiovascular monitoring. Sci. Rep. 4, 5093 (2014).
 28. Vigário, R., Sarela, J., Jousmiki, V., Hamalainen, M. & Oja, E. Independent component approach to the analysis of EEG and MEG 

recordings. IEEE. Trans. Biomed. Eng. 47, 589–593 (2000).
 29. Delorme, A., Sejnowski, T. & Makeig, S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent 

component analysis. Neuroimage 34, 1443–1449 (2007).
 30. Somers, B. & Bertrand, A. Removal of eye blink artifacts in wireless EEG sensor networks using reduced-bandwidth canonical 

correlation analysis. J. Neural Eng. 13, 066008 (2016).
 31. Lin, C. et al. Real-time EEG signal enhancement using canonical correlation analysis and gaussian mixture clustering. J. Healthc. 

Eng. 2018, 5081258 p-11  https:// doi. org/ 10. 1155/ 2018/ 50812 58(2018).
 32. Castellanos, N. P. & Makarov, V. A. Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent 

component analysis. J. Neurosci. Methods 158, 300–312 (2006).
 33. Wang, G., Teng, C., Li, K., Zhang, Z. & Yan, X. �e removal of EOG artifacts from EEG signals using independent component 

analysis and multivariate empirical mode decomposition. IEEE J Biomed. Health. Inform. 20, 1301–1308 (2016).
 34. Mucarquer, J. A., Prado, P., Escobar, M., El-Deredy, W. & Zañartu, M. Improving EEG muscle artifact removal with an EMG array. 

IEEE Trans. Instrum. Meas. 69, 815–824 (2020).

https://doi.org/10.1109/ICCPS.2018.00034
https://doi.org/10.23919/ACC.2019.8815074
https://emotiv.com/epoc.php
http://www.choosemuse.com/
https://doi.org/10.1109/BROADCOM.2008.69
https://doi.org/10.1155/2007/82069
https://doi.org/10.1109/TBME.2019.2930186
https://doi.org/10.1109/TBME.2019.2930186
https://doi.org/10.1155/2018/5081258


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11043  | https://doi.org/10.1038/s41598-021-90437-7

www.nature.com/scientificreports/

 35. De Clercq, W., Vergult, A., Vanrumste, B., Van Paesschen, W. & Van Hu�el, S. Canonical correlation analysis applied to remove 
muscle artifacts from the electroencephalogram. IEEE. Trans. Biomed. Eng. 53, 2583–2587 (2006).

 36. Gao, J., Zheng, C. & Wang, P. Online removal of muscle artifact from electroencephalogram signals based on canonical correlation 
analysis. Clin. EEG Neurosci. 41, 53–59 (2010).

 37. Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 
1, 1–41 (2009).

 38. Mijović, B., De Vos, M., Gligorijević, I., Taelman, J. & Van Hu�el, S. Source separation from single-channel recordings by combin-
ing empirical-mode decomposition and independent component analysis. IEEE. Trans. Biomed. Eng. 57, 2188–2196 (2010).

 39. Golyandina, N., Nekrutkin, V. & Zhigljavsky, A. A. Analysis of Time Series Structure: SSA and Related Techniques (CRC Press, 2001).
 40. Teixeira, A. R., Tomé, A. M., Lang, E. W., Gruber, P. & Martins da Silva, A. Automatic removal of high-amplitude artefacts from 

single-channel electroencephalograms. Comput. Methods Programs Biomed. 83, 125–138 (2006).
 41. Mohammadi, S. M., Kouchaki, S., Ghavami, M. & Sanei, S. Improving time-frequency domain sleep EEG classi�cation via singular 

spectrum analysis. J. Neurosci. Methods 273, 96–106 SSN 0169-2607, https:// doi. org/ 10. 1016/j. cmpb. 2006. 06. 003 (2016).
 42. Teixeira, A. R., Tome, A. M., Lang, E. W., Gruber, P. & Martins da Silva, A. On the use of clustering and local singular spectrum 

analysis to remove ocular artifacts from electroencephalograms. In Proceedings 2005 IEEE International Joint Conference on Neural 
Networks, Vol. 4, 2514–2519. https:// doi. org/ 10. 1109/ IJCNN. 2005. 15562 98 (2005).

 43. Maddirala, A. K. & Shaik, R. A. Separation of sources from single-channel EEG signals using independent component analysis. 
IEEE Trans. Instrum. Meas. 67, 382–393 (2018).

 44. Chavez, M., Grosselin, F., Bussalb, A., De Vico Fallani, F. & Navarro-Sune, X. Surrogate-based artifact removal from single-channel 
EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 540–550 (2018).

 45. Zhang, S. et al. Removing eye blink artefacts from EEG-a single-channel physiology-based method. J. Neurosci. Methods 291, 
213–220 (2017).

 46. Gajbhiye, P., Tripathy, R. K. & Pachori, R. B. Elimination of ocular artifacts from single channel EEG signals using FBSE-EWT 
based rhythms. IEEE Sens. J. 20, 3687–3696 (2020).

 47. Hjorth, B. EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29, 306–310 (1970).
 48. Bishop, C. M. et al. Neural Networks for Pattern Recognition (Oxford University Press, 1995).
 49. Sevcik, C. A Procedure to Estimate the Fractal Dimension of Waveforms. https:// arxiv. org/ abs/ 1003. 5266 (2010).
 50. Gomez-Herrero, G. et al. Automatic removal of ocular artifacts in the EEG without an EOG reference channel. In Proceedings of 

the 7th Nordic Signal Processing Symposium - NORSIG 2006, 130–133. https:// doi. org/ 10. 1109/ NORSIG. 2006. 275210 (2006).
 51. Ghil, M. et al. Advanced spectral methods for climatic time series. Rev. Geophys. 40(1), 1003 https:// doi. org/ 10. 1029/ 2000R G0000 

92 (2002).
 52. Maddirala, A. K. & Shaik, R. A. Motion artifact removal from single channel electroencephalogram signals using singular spectrum 

analysis. Biomed. Signal Process. 30, 79–85 (2016).
 53. Barrios-Muriel, J., Romero, F., Javier Alonso, F. & Gianikellis, K. A simple SSA-based de-noising technique to remove ECG inter-

ference in EMG signals. Biomed. Signal Process. 30, 117–126 (2016).
 54. Schloegl, A., Ziehe, A. & Müller, K. R. Automated ocular artifact removal: comparing regression and component-based methods. 

Nat. Prec. https:// doi. org/ 10. 1038/ npre. 2009. 3446.1 (2009).
 55. Citi, L., Poli, R. & Cinel, C. Documenting, modelling and exploiting P300 amplitude changes due to variable target delays in 

Donchi’s speller. J. Neural Eng. 7, 056006 (2010).
 56. Goldberger, A. L. et al. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic 

signals. Circulation 101, e215–e220 (2000).

Author contributions
K.C.V. devised the protocol and setup. A.K.M. performed all the experiments, wrote the manuscript and prepared 
all the �gures. K.C.V. did proof reading and corrections for this manuscript.

Funding
�is work was supported by Brain Pool Program through the National Research Foundation of Korea (NRF) 
funded by the Ministry of Science and ICT (2019H1D3A1A01068799).

Competing interests 
�e authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.C.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access �is article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© �e Author(s) 2021

https://doi.org/10.1016/j.cmpb.2006.06.003
https://doi.org/10.1109/IJCNN.2005.1556298
https://arxiv.org/abs/1003.5266
https://doi.org/10.1109/NORSIG.2006.275210
https://doi.org/10.1029/2000RG000092
https://doi.org/10.1029/2000RG000092
https://doi.org/10.1038/npre.2009.3446.1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Eye-blink artifact removal from single channel EEG with k-means and SSA
	Results
	Constructing synthetic EEG and eye-blink signals. 
	Results with synthetic EEG data. 
	Results with real EEG data. 

	Discussion
	Conclusion
	Methods
	Proposed method. 
	Step-1, 2 and 3. 
	Step-4. 
	Step-5, 6 and 7. 
	Step-8 and 9. 

	Singular spectrum analysis (SSA). 
	Embedding. 
	Decomposition. 
	Grouping. 
	Diagonal averaging. 

	Performance measures. 
	Relative root mean square error (RRMSE). 
	Correlation coefficient (CC). 
	Power spectrum ratio ( ). 
	Mean absolute error (MAE). 

	EEG data and pre-processing. 

	References


