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 2 

Abstract 1 

As an anatomical extension of the brain, the retina of the eye is synaptically connected to 2 

the visual cortex, establishing physiological connections between the eye and the brain.   3 

Despite the unique opportunity retinal structures offer for assessing brain disorders, less 4 

is known about their relationship to brain structure and function. Here we present a 5 

systematic cross-organ genetic architecture analysis of eye-brain connections using retina 6 

and brain imaging endophenotypes. Novel phenotypic and genetic links were identified 7 

between retinal imaging biomarkers and brain structure and function measures derived 8 

from multimodal magnetic resonance imaging (MRI), many of which were involved in the 9 

visual pathways, including the primary visual cortex. In 65 genomic regions, retinal 10 

imaging biomarkers shared genetic influences with brain diseases and complex traits, 18 11 

showing more genetic overlaps with brain MRI traits. Mendelian randomization suggests 12 

that retinal structures have bidirectional genetic causal links with neurological and 13 

neuropsychiatric disorders, such as Alzheimer's disease. Overall, cross-organ imaging 14 

genetics reveals a genetic basis for eye-brain connections, suggesting that the retinal 15 

images can elucidate genetic risk factors for brain disorders and disease-related changes 16 

in intracranial structure and function.  17 

 18 

Keywords: Brain MRI; Brain disorders; Fundus photography; GWAS; OCT; Retinal imaging; 19 

Transfer Learning; Visual pathways; UK Biobank.  20 
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 3 

The retina of the eye is the only part of the central nervous system that can be visualized 1 

without surgical intervention.  As a key component of the visual pathway, the retina is 2 

synaptically connected to the visual cortex through the optic nerve, thalamus, and optic 3 

radiations. There are anatomical, physiological, and embryological similarities between 4 

the retina and the brain, in terms of cell types, vasculature, and immune responses1. The 5 

eye develops from the forebrain during the third week of gestation2. The retina is 6 

embryonically formed as part of the diencephalon, which later becomes the thalamus, 7 

thus being developmentally related to specific brain regions. Consequently, the retina has 8 

been considered a unique window into altered brain structure/function1,3 and brain 9 

disorders4, such as Alzheimer's disease5-8, Parkinson’s disease9, stroke10,11, cerebral small 10 

vessel disease12, schizophrenia13, cognitive decline11,14,15, and many others. For example, 11 

it has been extensively studied that retinal neurodegeneration can be used as an easily 12 

accessible biomarker to identify individuals at high risk of developing Alzheimer's disease 13 

or those with preclinical Alzheimer's disease6,8,16-18. Retinal abnormalities have also been 14 

frequently reported in Parkinson's disease, and animal models have demonstrated that 15 

similar molecular mechanisms underlie Parkinson's disease pathology and 16 

neurodegeneration in parkinsonian eyes9. However, except for a few pairs of diseases, 17 

such as primary open-angle glaucoma and Alzheimer's disease19, little is known about the 18 

shared genetic effects underlying eye-brain relationships and parallel pathological 19 

changes between the two organs. 20 

 21 

The retina and brain images provide well-defined clinical endophenotypes for disorders 22 

of the eye and brain. Both color fundus photography and optical coherence tomography 23 

(OCT) are popular retinal imaging modalities. Retinal images serve as the gold standard 24 

screening for age-related macular degeneration20, diabetic retinopathy21, and all other 25 

pathologies involving the retina. These images offer a color picture of the back of the eye, 26 

including the retina, optic nerve head, and retinal vasculature. Retinal OCT imaging shows 27 

a high-resolution view of the cross-sectional structure of the retina22. In neurologic 28 

conditions, OCT imaging allows the assessment of the retinal layers’ thickness and 29 

structural changes caused by the modification of neuronal and retinal glial cells23. In 30 

addition, magnetic resonance imaging (MRI) captures both structural and functional 31 

characteristics of the brain, resulting in a wide range of clinical applications in neurological 32 
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 4 

and neuropsychiatric disorders24. Recent large-scale genome-wide association studies 1 

(GWAS) have shown that both retinal imaging biomarkers25-33 and brain MRI traits34-41 are 2 

heritable, with the genetic influences of common genetic variants being identified in 3 

hundreds of genomic regions. As expected, genetic overlaps were identified between 4 

retinal imaging traits and eye disorders (such as the cupping of the optic nerve head and 5 

glaucoma30) as well as between brain MRI traits and brain disorders (such as functional 6 

connectivity of the visual network and Alzheimer's disease39). However, few studies have 7 

used imaging genetics to study brain health from a retinal perspective.  A large-scale 8 

cross-organ analysis of retinal and brain imaging traits may provide an opportunity to 9 

identify retinal imaging biomarkers for brain disorders and to uncover the genetic basis 10 

for eye-brain connections. 11 

 12 

Using multimodal retinal and brain imaging traits from the UK Biobank (UKB) study42, we 13 

investigated the cross-organ genetic architecture of the eye and brain. A total of 156 14 

retinal imaging traits were examined, of which 46 were derived from OCT images and 110 15 

from fundus photographs. The 46 OCT derived measurements were already available in 16 

the UKB database, such as retinal thickness across layers43,44 and vertical cup-to-disc 17 

ratio29. For the fundus images, we used 11 different pre-trained transfer learning31 18 

models built from the ImageNet45 database to extract imaging features of the retinal 19 

structure. In each deep transfer learning model, the top 10 principal components (PCs) 20 

were considered, explaining an average of 70.71% variance (range = [50.58%, 95.84%]) in 21 

the last layer, resulting in 110 fundus image features (11 x 10). These deep-learning-based 22 

image embeddings and low-dimensional representations contain eye-specific biological 23 

information, which may not be present in standard eye measurements31. We conducted 24 

GWAS for these 156 (46 + 110) retinal imaging traits and then evaluated their genetic 25 

connections with 458 imaging traits from three primary brain MRI modalities, including 1) 26 

101 regional brain volumes35 and 63 cortical thickness traits46 from structural MRI; 2) 110 27 

diffusion tensor imaging (DTI) parameters from diffusion MRI37; and 3) 92 functional 28 

connectivity and activity (or amplitude) traits from resting state and task-based functional 29 

MRI (fMRI)39, respectively. The Methods section and Table S1 provide more information 30 

on these retinal and brain imaging data. An overview of the study design and data analysis 31 

is provided in Figure 1. GWAS summary statistics for retinal imaging traits and our data 32 
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 5 

analysis results will be made available through the eye imaging genetics knowledge portal 1 

(Eye-KP) at https://www.eyekp.org/.  2 

 3 

RESULTS 4 

Phenotypic multimodal eye-brain connections 5 

We examined phenotypic associations between 156 retinal imaging traits and 458 brain 6 

MRI traits after adjusting for a wide variety of vascular risk factors3 and imaging 7 

confounders34, as well as body size, age, and sex effects (see the Methods section for the 8 

complete list of adjusted covariates). For discovery, we analyzed data of UKB white British 9 

individuals (average n = 6,454 across different modalities). At the false discovery rate (FDR) 10 

level of 5% (by the Benjamini-Hochberg procedure, P < 4.37 × 10-4, 156 × 458 tests), we 11 

identified 625 associations (Figs. 2A and S1), 135 of which were replicated in a hold-out 12 

independent validation dataset (average n = 959) with concordant association signs (Fig. 13 

S2). Among the 625 associations, 121 further survived the conservative Bonferroni 14 

significance level (P < 6.99 × 10-7), and 66 can be replicated in the same hold-out 15 

independent dataset. These significant results were mainly related to multiple brain 16 

structural modalities, including regional brain volumes, cortical thickness, and DTI 17 

parameters. They were broadly related to both OCT measures and fundus image features 18 

(Table S2). Below we summarized the patterns of associations that have been replicated.  19 

 20 

Thicknesses of the macula44, the retinal nerve fiber layer (RNFL)43, and the ganglion cell 21 

and inner plexiform layer (GCIPL)43 consistently had positive associations with the 22 

fractional anisotropy (FA) of multiple white matter tracts, including those related to the 23 

visual pathway (Figs. 2B-C and S3). Various eye diseases are associated with retinal 24 

thinning47. Moreover, previous studies have consistently demonstrated the thinning of 25 

the RNFL and GCIPL to be associated with cerebrovascular diseases48 and early-stage 26 

Alzheimer's disease49. These results suggest a parallel relationship between retinal and 27 

brain health, as well as changes in brain white matter that may be related to both. The 28 

strongest associations were observed between the GCIPL thickness of the left eye and the 29 

mean FA of the posterior thalamic radiation, sagittal stratum, and fornix-stria terminalis 30 

tracts (b > 0.142, P < 1.91 × 10-23). The posterior thalamic radiation overlaps with the optic 31 
radiation in the visual pathway, which links the lateral geniculate nucleus to the primary 32 
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 6 

visual cortex, transmitting visual input from the eye. There were also similar associations 1 

between fundus image features and DTI parameters, although the associations were 2 

weaker than those for retinal thickness traits (Fig. S3). Moreover, thickness measures of 3 

the RNFL, GCIPL, macula, and inner nuclear layer (INL)43 were positively associated with 4 

volumes of multiple brain cortical and subcortical structures, including the pericalcarine, 5 

thalamus, pallidum, and putamen (Figs. 2D-E and S4). The pericalcarine is the location 6 

where the primary visual cortex (V1) concentrates, and we found that the regional brain 7 

volumes of the pericalcarine had consistent positive associations with the RNFL, GCIPL, 8 

and macular thickness (b > 0.052, P < 5.90 × 10-5). We also found positive associations 9 
with brain structures in the dorsal and ventral visual pathways that extended from the 10 

primary visual cortex, such as the cuneus (b > 0.057, P < 1.08 × 10-4). The thalamus and 11 

macular are both derived from the diencephalon. Positive associations between regional 12 

brain volumes of the thalamus and macular thickness were found (b > 0.120, P < 1.24 × 13 
10-8), emphasizing their developmental origins. Negative associations between retinal 14 

layer thickness and enlargement of the lateral ventricles were also detected. The left and 15 

right hemispheres of the brain demonstrated consistent associations with retinal imaging 16 

traits. For example, the left and right brain thalamus volumes were significantly 17 

correlated with the thicknesses of the macular and GCIPL in both eyes (b > 0.120, P < 1.24 18 
× 10-8).  The GCIPL thickness was also positively associated with global and regional brain 19 

cortical thickness measures, including the primary visual cortex (the pericalcarine, b = 20 

0.048, P = 7.74 × 10-5). The top two regions with the strongest links were the precuneus, 21 

which is in the dorsal visual pathway (b = 0.073, P = 2.33 × 10-8), and the fusiform, which 22 

is in the ventral visual pathway (b  = 0.064, P = 4.22 × 10-7, Figs. 2F and S4), 23 

 24 

We repeated the above analyses separately for females and males to examine the sex-25 

specific patterns (average n = 3,338 and 3,150, respectively). At the FDR 5% level (P < 4.37 26 

× 10-4), 53 associations were identified in both females and males, the female sample 27 

identified 191 additional associations, and 62 more were only found in males. The 28 

additional associations found in analyses that included only females or males were 29 

primarily related to fundus image traits. Specifically, the female analysis showed more 30 

significant associations with DTI parameters, while the male analysis revealed more 31 

significant associations with cortical thickness measures (Figs. S5-S7). For OCT measures, 32 
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 7 

males and females demonstrated similar eye-brain association patterns, although the 1 

number of significant pairs that survived multiple testing adjustments varied between the 2 

two samples.  For example, the mean FA of the fornix-stria terminalis, posterior thalamic 3 

radiation, and sagittal stratum tracts was associated with the thickness of RNFL, GCIPL, 4 

and macula in both males and females, with more significant pairs being identified in 5 

females (Fig. S8). These retinal thickness traits were also consistently associated with 6 

volumes of the pericalcarine, thalamus, and accumbens regions in sex-specific analysis 7 

(Fig. S9). In summary, although only a relatively small percentage of subjects had both 8 

brain and retinal imaging data in the UKB study, we uncovered that the retinal imaging 9 

biomarkers, such as the thickness of different retinal layers, were associated with smaller 10 

brain volumes, reduced cortical thickness, and weaker white matter structural 11 

connections in the brain. Many retina-related brain structural variations were observed 12 

in the primary visual cortex and other structures in the visual pathways. Our results are 13 

consistent with previous studies that have found parallel changes in eye-brain structures 14 

during pathological progression1,3, as well as providing further information on the most 15 

relevant brain MRI modalities and biomarkers for clinical applications and future research. 16 

 17 

GWAS for 156 retinal imaging traits  18 

Based on UKB individuals of white British ancestry50, we estimated the proportion of 19 

phenotypic variance explained by single nucleotide polymorphisms (SNPs) for the 156 20 

retinal imaging traits (average n = 60,748).  The average SNP-based heritability (h2) was 21 

42.21% for the 46 OCT measures (h2 range = (19.28%, 68.28%)), all of which were 22 

significant at FDR 5% level (Fig. S10 and Table S3). Of the 110 fundus image traits, 90 were 23 

significant at FDR 5% level, with the mean h2 being 19.27% (h2 range = (4.06%, 42.75%))). 24 

In each of the 11 transfer learning models, at least seven of the 10 PCs had significant h2. 25 

Additionally, we estimated h2 separately for females and males, and the results were 26 

highly consistent between the two sexes (mean h2 = 24.83% among females vs. 23.33% 27 

among males, correlation = 0.972, P = 0.457, Fig. S11).  28 

 29 

We conducted GWAS based on the same white British cohort to uncover the genetic 30 

architecture of the 156 retinal imaging traits (average n = 60,748). QQ and Manhattan 31 

plots can be viewed on our server (http://165.227.78.169:443/) developed via PheWeb51. 32 
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 8 

Linkage disequilibrium score regression (LDSC) intercepts52 were all near one, indicating 1 

that no confounding factor resulted in the genomic inflation of test statistics (average = 2 

1.004, range = (0.974, 1.031)). At a stringent GWAS significance level 3.20 × 10-10 (5 × 10-3 
8/156, that is, the standard GWAS significance level after further considering Bonferroni-4 

type adjustment for 156 retinal imaging traits), we identified independent (linkage 5 

disequilibrium [LD] r2 < 0.1) significant genetic associations in 258 genomic regions 6 

(cytogenetic bands). Significant associations were found for all 46 OCT measures and 91 7 

of the 110 fundus image traits (Fig. S12 and Table S4). We also estimated these significant 8 

genetic effects separately for males and females in a sex-specific analysis. We found that 9 

the genetic effects were highly consistent in both sexes (correlation = 0.975, P = 0.76, Fig. 10 

S13).  11 

 12 

We replicated our GWAS results using independent European and non-European datasets 13 

(Methods). First, we performed GWAS of the 156 retinal imaging traits using the UKB 14 

European ancestry but non-British subjects (average n = 5,320). For the 4,329 identified 15 

independent (LD r2 < 0.1) image-variant associations in 258 genomic regions, 1,630 16 

(37.65%, in 162 genomic regions) passed the FDR 5% significance level in this European 17 

validation GWAS, and 2,210 (51.05%, in 189 regions) were significant at the nominal 18 

significance level (0.05) (Fig. S14 and Table S5). Most of the significant genetic effects 19 

(2,207/2,210, in 188 regions) had concordant directions in the two independent GWAS, 20 

with the correlation of their genetic effects being 0.958 (Fig. S15). Among the 188 21 

replicated genomic regions, 146 were associated with OCT measures, and 103 were 22 

associated with fundus image traits. These results suggest the high generalizability of our 23 

GWAS findings in European samples. Next, we repeated the validation GWAS on the non-24 

European UKB subjects (average n = 6,490) and found that 25.18% (1,090/4,329, in 142 25 

regions) associations were significant at the nominal significance level, most of which 26 

(1,068/1,090, in 140 regions) had the same genetic effect directions as the discovery 27 

GWAS (Fig. S16). Overall, 107 replicated regions were observed for OCT measures and 51 28 

for fundus image traits in non-European validation analysis.  29 

 30 

We have also developed polygenic risk scores (PRS) via PRS-CS53 to evaluate the out-of-31 

sample prediction performance of our discovery GWAS results (Methods). The PRS for 32 
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 9 

133 of the 156 retinal imaging traits were significant at FDR 5% level (P range = (6.90 × 10-1 
98, 3.82 × 10-2), Table S6 and Fig. S17), with the mean incremental R-squared being 2.51% 2 

(S.E. = 2.29%). A total of 22 traits had R-squared greater than 5%. The highest prediction 3 

accuracy was observed on a set of traits related to the INL43, such as the thickness from 4 

the INL to the retinal pigment epithelium (RPE) (R-squared = 9.46% and 8.43% for right 5 

and left eyes, respectively) and the thickness between the INL to the external limiting 6 

membrane (ELM) (R-squared = 7.68% and 7.20% for right and left eyes, respectively). To 7 

evaluate the transferability of GWAS findings, we also examined the PRS performance on 8 

non-European UKB subjects. We found that 101 retinal imaging PRS had significant 9 

prediction performance in the non-European UKB dataset at FDR 5% level (P range = (2.77 10 

× 10-65, 2.88 × 10-2)). The average incremental R-squared of these significant PRS was 1.39% 11 

(S.E. = 1.45%), which was significantly lower than their corresponding performance in 12 

European dataset (P = 7.89 × 10-9). These results demonstrate the capability of our GWAS 13 

summary statistics in out-of-sample analyses and also illustrate the challenge of cross-14 

population genetic prediction.  15 

 16 

Genetic underpinnings of eye-brain connections in 65 genomic loci 17 

We examined eye-brain genetic pleiotropy in 188 replicated genomic regions of retinal 18 

imaging traits that had concordant genetic effect directions in the discovery and 19 

validation GWAS. First, for the retinal imaging-significant genetic variants and those in LD 20 

with them (r2 ≥ 0.6), we symmetrically searched for GWAS signals that have been 21 

identified to be associated with brain MRI traits35,37,39,46. Second, we performed 22 

association lookups in the NHGRI-EBI GWAS catalog54 to identify shared genetic 23 

influences between retinal imaging traits and brain-related complex traits and diseases 24 

(Methods).  In 65 of these 188 genomic regions, we found genetic overlaps between the 25 

retinal imaging traits and brain phenotypes, 47 of which had also been linked to various 26 

eye traits and conditions, such as glaucoma55, refractive error56, advanced age-related 27 

macular degeneration57, and cataracts58. Specifically, we found genetic pleiotropy for a 28 

wide range of brain traits and disorders, including stroke, Parkinson's disease, Alzheimer's 29 

Disease, glioma/glioblastoma, neuropsychiatric disorders, migraine, mental health, and 30 

cognitive traits (Fig. 3 and Table S7). Shared genetic influences were also identified in 18 31 

regions with different brain MRI modalities, including 10 regions with regional brain 32 
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volumes35, 9 regions with DTI parameters37, 3 regions with cortical thickness traits46, and 1 

2 regions with resting fMRI traits39 (Fig. S18). Using Bayesian colocalization analysis59, we 2 

examined whether there were common causal genetic variants underlying the 3 

overlapping genetic signals between retinal structures and brain phenotypes (posterior 4 

probability of the shared causal variant hypothesis [PPH4] > 0.859,60). In addition, we found 5 

that many retinal imaging-significant genetic variants were expression quantitative trait 6 

loci (eQTLs) reported in large-scale eQTL studies of brain tissues61. Our results are 7 

summarized in Table S8, with selected eye-brain trait pairs being displayed in Figures 4-5 8 

and S19-S79. Below we have provided more details for each brain MRI modality and major 9 

brain phenotype category. 10 

 11 

Brain volumetric measures had genetic overlaps with retinal structures in 10 genomic loci 12 

(LD 𝑟!  ≥ 0.6, Figs. 4A and S19-27). For example, shared genetic components between 13 

cerebrospinal fluid (CSF) volume and vertical cup-to-disc ratio62 were found in 11q24.3 14 

(Fig. 4A). The retinal index variant rs4937515 was an eQTL of ADAMTS8 in brain tissues61, 15 

and there was strong evidence of shared causal genetic variants between the two traits 16 

(PPH4 = 0.997). The rs4937515 was also in LD (𝑟! ≥ 0.6)63 with known genetic risk variants 17 

of glaucoma (index variant rs2875238)55. The CSF is the primary fluid within the central 18 

nervous system, and the biological role of CSF pressure has been well-established in 19 

glaucoma and other ophthalmic diseases64,65. Our results provide further evidence of 20 

genetic links underlying the connections between CSF and eye disorders. Colocalizations 21 

between retinal imaging traits and brain volumes were also observed in 8q23.1 (e.g., right 22 

thalamus), 22q13.1 (e.g., left lateral ventricle), 17q24.2 (e.g., left caudal anterior 23 

cingulate), 6q25.1 (e.g., right hippocampus), and 7q22.1 (e.g., right accumbens area).  In 24 

these regions, retinal imaging traits also tagged (LD 𝑟!  ≥ 0.6) schizophrenia, major 25 

depressive disorder, neuroticism, and cognitive traits. In addition, genetic overlaps 26 

between retinal structures and cortical thickness traits were found in 3 loci (17q21.31, 27 

8p23.1, and 1q21.3), where several brain structures in the visual pathways were involved, 28 

including the precentral, supramarginal, fusiform, and precuneus (Fig. 4B). In summary, 29 

we identify locus-specific genetic overlaps between the thickness of different retinal 30 

layers and the morphometry of multiple brain regions, which play essential roles in 31 

cognitive functions and are affected in various brain disorders. 32 
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 1 

Retinal structures also had widespread genetic pleiotropy with brain structural and 2 

functional connectivity. Retinal imaging traits and DTI parameters had shared genetic 3 

influences in 9 genomic regions, 7 of which had strong evidence of colocalization (Figs. 4C 4 

and S28-35). For example, the overall macular thickness44 and the mode of anisotropy 5 

(MO)66 of the inferior fronto-occipital fasciculus tract had common causal genetic variants 6 

in 17q24.2 (PPH4 = 0.816, Fig. 4C). The inferior fronto-occipital fasciculus is the longest 7 

associative white matter tract that connects various brain areas and involves multiple 8 

functions. Thinner retinal layers had close relationships with the reduced volume and 9 

worse microstructural integrity of the brain's white matter67. These results provide 10 

genetic insights into retina-white matter connections. Both retinal imaging traits and DTI 11 

parameters also overlapped genetically with cognitive traits (such as intelligence in 12 

22q13.1), psychiatric disorders (such as in 14q24.3), and eye disorders (such as advanced 13 

age-related macular degeneration in 17q25.3). We also found shared genetic influences 14 

between functional connectivity of resting fMRI and retinal imaging traits in 11q13.3 and 15 

17q21.31 (Figs. 4D and S36).  16 

 17 

In addition, many genomic regions associated with retinal imaging traits have been linked 18 

to brain-related complex traits and diseases in previous GWAS. In 6q14.2, 6q21, 13q14.2, 19 

15q26.1, and 16q22.1 regions, the thickness of different retinal layers was in LD (r2 ≥ 0.6) 20 

with schizophrenia68-70 (Figs. 5A and S37-S40). For example, the INL thickness had shared 21 

causal genetic variants with schizophrenia (PPH4 = 0.952). The retinal index variant 22 

(rs7752421) was an eQTL of SNAP91 in human brain tissues61, affecting gene expression 23 

levels in the brain. In excitatory neurons, synaptic defects are increasingly associated with 24 

schizophrenia, and altered expression of SNAP91 has been observed to impact synaptic 25 

development71. As schizophrenia patients often report visual perception changes, OCT 26 

measures of the retinal structure have received increasing attention in schizophrenia 27 

research72. The identified genetic links in our analysis support the use of retinal layer 28 

assessments as potential biomarkers for schizophrenia. Retinal structures were also in LD 29 

(r2 ≥ 0.6) with other neuropsychiatric disorders and mental health traits, such as bipolar 30 

disorder73, anxiety74, depressive symptoms75, neuroticism76, subjective well-being77, and 31 
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risk-taking tendency78 (Figs. S41-S49). For example, the thickness of various retinal layers 1 

had shared genetic influences with neuroticism in multiple regions (Figs. S41-S47).  2 

 3 

There were 23 genomic regions associated with cognitive traits (such as intelligence79, 4 

cognitive performance80, general cognitive ability81, and reaction time82, Figs. S50-S57) 5 

and/or educational attainment83 (Figs. 5B and S58-S72). Several studies have reported 6 

that retinal layer thickness may be a prognostic biomarker of cognitive impairment and 7 

long-term cognitive decline in older individuals84,85. Retinal imaging traits were in LD (r2 ≥ 8 

0.6) with multiple neurodegenerative disorders, such as in 2q24.3, 17q21.31, 8p23.1, and 9 

15q12 with Parkinson's disease86 (Fig. S73); in 17q21.31 with corticobasal degeneration87; 10 

in 7p21.3 with frontotemporal dementia88; in 5q14.3, 17q21.31, 6p12.1 with Alzheimer's 11 

disease89, and several more loci (such as 1q32.1, 2p25.3, and 11q14.2) with biomarkers 12 

of Alzheimer's disease90 (Figs. S74-76). Genetic overlaps with other brain diseases were 13 

also observed. For example, vertical cup-to-disc ratio29 was in LD (r2 ≥ 0.6) with glioma/ 14 

glioblastoma91 and white matter microstructure in 9p21.3 (Fig. 5C). Glioma may affect the 15 

optic nerve (optic nerve glioma), which is the most common primary neoplasm of the 16 

optic nerve92. Retinal imaging traits also had shared genetic effects with 17 

migraine/headache93 in 5 regions and cerebrovascular diseases in 9 regions, including 18 

stroke94, Moyamoya disease95, intracranial aneurysm96, and cerebral aneurysm97 (Figs. 5D 19 

and S77-79). In summary, our findings indicate close genetic connections between the 20 

eye and the brain.  Abnormalities in retinal structure may provide insight into the genetic 21 

risk of neurodegenerative diseases and neuropsychiatric disorders. 22 

 23 

Genetic correlation and heritability enrichment patterns  24 

We examined genetic correlations (GC) between 156 retinal imaging traits and 39 sets of 25 

publicly available GWAS summary statistics of brain-related complex traits and diseases 26 

using cross-trait LDSC98 (Table S9). At FDR 5% level (P < 2.06×10-3), we observed 246 27 

significant genetic correlation pairs between 69 retinal imaging traits and 21 brain 28 

phenotypes, including brain disorders, cognitive traits, and mental health traits (Fig. S80).  29 

 30 

For example, multiple cognitive traits (such as cognitive function, numerical reasoning, 31 

intelligence, and cognitive performance) and education had consistent positive genetic 32 
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correlations with the thickness of RNFL43 and the overall thickness between the ELM to 1 

the inner and outer photoreceptor segments (ISOS)43 as well as their subfields (Fig. 6A). 2 

Consistent with our results, previous clinical studies have identified RNFL thickness to be 3 

phenotypically related to global cognitive score, executive function, and verbal function99-4 
101. These studies examined RNFL thickness as a possible early biomarker of cognitive 5 

decline, whose thinning suggests axonal loss during the neurodegenerative process of the 6 

brain101,102. On the other hand, negative genetic correlations with cognitive traits were 7 

observed for the thickness of GCIPL, INL, and RPE43, as well as disc diameter29. The 8 

negative correlations between GCIPL thickness and cognitive traits were also in line with 9 

one recent study on patients with Alzheimer’s disease, where GCIPL thickening correlated 10 

with poor cognition in Alzheimer’s disease103. One hypothesis on the intrinsic mechanism 11 

for its thickening suggested that pathological amyloid β (Aβ) accumulation and 12 

neuroinflammation of retinal ganglion cells (RGCs) contributed to the thickening of 13 

GCIPL103, which was supported by a parallel study on RGCs in mouse model104. The 14 

thickness between the ISOS and RPE and their subfields were negatively associated with 15 

depression and neuroticism. There were also negative associations between depression 16 

symptoms and vertical cup-to-disc ratio29 (GC < -0.166, P < 7.72 × 10-4), between cross 17 

disorder (five major psychiatric disorders105) and disc diameter (GC = -0.116, P = 1.33 × 18 

10-3), and between the RNFL thickness and cannabis use disorder (GC = -0.174, P = 1.29 × 19 

10-3). In addition, we found positive genetic correlations between RPE thickness and 20 

attention-deficit/hyperactivity disorder (ADHD) as well as between the INL thickness and 21 

stroke (GC > 0.149, P < 1.88 × 10-3). For fundus imaging traits, there were also widespread 22 

genetic correlations with the above brain phenotypes identified by OCT measures, such 23 

as ADHD, cannabis use disorder, cognitive traits, and cross disorder. In addition, fundus 24 

imaging traits had higher correlations with schizophrenia (|GC| = 0.133, P = 1.10 × 10-3), 25 

major depressive disorder (|GC| = 0.316, P = 1.92 × 10-3), and risk tolerance (|GC| = 0.097, 26 

P = 1.92 × 10-3). These results demonstrated the genome-wide genetic similarity between 27 

retinal structures and brain disorders and traits.  28 

 29 

We also performed partitioned heritability analysis106 via LDSC to identify the tissues and 30 

cell types where genetic variation led to changes in retinal imaging traits. First, we 31 

examined a wide variety of tissue and cell type-specific regulatory elements from the 32 
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Roadmap Epigenomics Consortium107. Among all tissue and cell types, the strongest 1 

heritability enrichments were observed in active gene regulatory regions of multiple brain 2 

tissues (Fig. S81 and Table S10). Next, we repeated the partitioned heritability analysis 3 

using chromatin accessibility data from neurons (NeuN+) and glia (NeuN-) sampled from 4 

14 cortical and subcortical brain regions108. We observed that the heritability of retinal 5 

structures had consistently stronger enrichment in brain glial regulatory elements than 6 

neuronal regulatory elements (Fig. S82). These heritability enrichments suggest that 7 

genetic variants associated with retinal structures may also alter the function of 8 

regulatory elements in brain tissues, especially glial cells, indicating the genomic links 9 

between the eye and the brain.  10 

 11 

Genetic causal links with brain disorders  12 

We applied Mendelian randomization (MR) with GWAS summary statistics from the 13 

FinnGen database109 to examine the directional relationships between retinal structure 14 

and brain disorders. We used eight different MR methods110-117, and prioritized significant 15 

results that passed the Bonferroni adjustment of multiple testing in at least two methods 16 

(Methods). The results presented below have also passed several robustness tests, such 17 

as the MR-Egger intercept test for pleiotropy118.  18 

 19 

Causal genetic effects were found between retinal imaging traits and brain disorders in 20 

both directions, and these results suggested close relationships between retinal 21 

structures and Alzheimer's disease (Table S11). For example, causal genetic effects from 22 

Alzheimer’s disease to retinal structures were identified in multiple OCT measures and 23 

fundus imaging traits, including the thickness of INL (b  > 0.025, P < 4.74 × 10-5) and the 24 

central subfield between the ISOS and RPE (b  > 0.027, P < 1.12 × 10-5). We also observed 25 
causal effects from psychiatric diseases and other degenerative diseases of the nervous 26 

system to retinal structures, such as the INL thickness (b > 0.040, P < 3.56 × 10-7). These 27 
newly established positive causal effects between psychiatric diseases and INL thickness 28 

can be linked to the identified negative genetic correlations between INL thickness and 29 

cognitive traits in our previous section. There was a similar conclusion reached in previous 30 

studies regarding the thickness of the RNFL, whose thinning was indicative of cognitive 31 

decline119,120. On the contrary, other recent studies have also noted correlations between 32 
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INL thickening and brain-related diseases, such as Alzheimer’s disease and multiple 1 

sclerosis121,122. These studies suggested that INL thickness was a response marker for 2 

inflammation during the early stages of diseases, which was further confirmed by another 3 

study, where effective disease treatment was associated with a reduction in INL 4 

thickness123. In addition, when we used retinal imaging traits as exposures and brain 5 

disorders as outcomes, we observed causal effects from retinal structural changes to 6 

dementia and Alzheimer’s disease. These causal links were all observed on fundus 7 

imaging traits generated from pre-trained transfer learning models. For OCT measures, 8 

causal links were identified between anxiety disorders and the thickness of the central 9 

subfield between the INL and RPE (b  = 0.278, P = 7.92 × 10-6). Overall, MR analysis 10 
indicates that retinal imaging traits have genetic interactions with brain 11 

neurodegenerative and neuropsychiatric diseases, especially dementia and Alzheimer's 12 

disease. 13 

 14 

Joint prediction of brain phenotypes using retinal and brain imaging  15 

Using retinal and brain imaging traits, we examined whether they could be combined to 16 

better predict brain-related complex traits and diseases than using only one type of 17 

imaging data. We used a training, validation, and testing design, in which both retinal and 18 

brain images were available for the subjects in the validation and testing datasets. Model 19 

parameters were tuned based on the validation data, and prediction performance was 20 

evaluated in the independent testing dataset (Methods).    21 

 22 

First, retinal imaging traits had significant prediction power on 16 brain phenotypes, 23 

including cognitive traits (such as fluid intelligence and prospective memory), neuroticism, 24 

family history of stroke, mental and behavioral disorders (ICD-10 Chapter F, such as 25 

depressive episode), and diseases of the nervous system (ICD-10 Chapter G, such as 26 

multiple sclerosis and carpal tunnel syndrome) (prediction correlation b  range = [0.068, 27 
0.179], P = [8.11×10-19, 7.88×10-4], Fig. S83 and Table S12). The strongest prediction 28 

accuracy was observed on fluid intelligence (b = 0.179, P = 8.11×10-19). The top-ranking 29 

features for fluid intelligence prediction were from both OCT measures and fundus 30 

imaging traits, such as the thickness of RNFL, INL, and GCIPL (Table S12). Moreover, the 31 

prediction accuracy was improved by adding more retinal imaging traits, suggesting that 32 
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various retinal structural variations captured by different retinal imaging modalities and 1 

pre-trained models can contribute to cognitive performance prediction (Fig. S84 and 2 

Table S12). Multiple clinical studies have suggested that retinal imaging traits like retinal 3 

layer thickness show promising prediction power for pathological cognitive decline and 4 

dementia diagnoses8,102. Similar additive effects were observed on other brain 5 

phenotypes, such as the family history of stroke (Fig. S85).  6 

 7 

Next, we included brain MRI traits in the prediction model of these brain phenotypes. 8 

Figure 6B shows that multimodal brain imaging data can significantly predict all these 9 

brain phenotypes (b range = [0.091, 0.314], P range = [7.61×10-6, 3.25×10-56]), and using 10 

both retinal and brain imaging traits can further improve the performance (b range = 11 

[0.120, 0.344], P range = [3.72×10-9, 7.54×10-68]). For example, multiple categories of 12 

brain MRI traits can predict fluid intelligence, including DTI parameters (b = 0.118, P = 13 

7.05 × 10-9), regional brain volumes (b = 0.132, P = 8.17 × 10-11), cortical thickness traits 14 

(b = 0.100, P = 9.01 × 10-7), resting fMRI (b = 0.216, P = 7.01 × 10-27), and task fMRI (b = 15 
0.197, P = 2.11 × 10-22). Adding retinal imaging traits to each of these brain modalities 16 

improved the prediction performance over only using this single brain modality. The 17 

largest improvement was observed when we added all imaging data types together (b = 18 
0.344, P = 7.54×10-68). The prediction accuracy further moved up to 0.391 (P = 9.56 × 10-19 
89) by adding the genetic PRS of fluid intelligence (Fig. 6C). These results demonstrate that 20 

integrating retinal and brain imaging modalities may lead to better predictions of brain-21 

related complex traits and diseases than using only one type of imaging data alone. 22 

 23 

DISCUSSION 24 

Imaging of the eye is inexpensive and noninvasive, and it can provide rich information 25 

about the retina's structure and function. Many brain diseases, such as neuropsychiatric 26 

and neurodegenerative disorders, are diagnosed and monitored primarily based on 27 

subjective reports of clinical symptoms124. The accuracy of these subjective reports is 28 

often complicated by the fact that patients with impaired mental capacity report 29 

inconsistent symptoms in varying degrees, which can bias the downstream data analysis 30 

and clinical prediction125.  Also, patients presenting with acute mental symptomatology 31 

may have hard-to-define underlying ailments, which leads to imprecise medical 32 
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management. Retinal imaging traits may serve as objective biomarkers for brain 1 

abnormalities and to assess the progression of neurological conditions126.  In this paper, 2 

we identified novel eye-brain connections using multimodal imaging data from the two 3 

organs. The pericalcarine (primary visual cortex) and other structures within the visual 4 

pathway were associated with retinal features. Furthermore, we observed correlations 5 

between retinal features and thalamic volume, both of which are derived from the 6 

diencephalon. We then described the genetic co-architecture of the eye and the brain in 7 

65 genomic regions, suggesting genetic associations that overlap among retinal features, 8 

brain MRI traits, and eye disorders (such as macular degeneration). We found genetic 9 

correlations and causal links between retinal imaging traits and various cognitive and 10 

mental health traits, as well as brain disorders. Additionally, we demonstrated that multi-11 

organ images could be combined to improve the prediction of brain phenotypes. As 12 

neuroprotective treatments become more widely available, this ability to predict brain 13 

diseases could have major clinical benefits. Compared with previous clinical studies, our 14 

findings support hypotheses regarding underlying mechanisms of eye-brain connections 15 

from a novel cross-organ genetic perspective.  16 

 17 

This study has a few limitations. Our analyses were based on the ongoing UKB brain 18 

imaging study, which currently covered only a small proportion of all UKB participants 19 

(about 10% by 2022) and consisted primarily of European ancestry individuals. We 20 

conducted phenotypic analyses on an even smaller sample of UKB subjects with both eye 21 

and brain imaging data. It is anticipated that more brain-related retinal imaging 22 

biomarkers can be discovered and replicated as the UKB brain imaging study collects data 23 

from more subjects127.  Furthermore, it is challenging to infer phenotypic causality from 24 

our current cross-sectional analysis. Repeated UKB imaging scans in the future will allow 25 

us to study the causal relationships between eye and brain changes in a longitudinal study 26 

design. In addition, the eye-brain genetic links identified were European or UKB specific, 27 

and it will be important to examine whether these cross-organ genetic overlaps can be 28 

generalized to other populations or studies when more data are collected128. In summary, 29 

the massive genetic connections between the brain and the eye found in our UKB-based 30 

study support the use of retinal imaging to study and manage the risk of brain disorders. 31 
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The utility of these retinal imaging biomarkers needs to be verified in future clinical and 1 

research settings. 2 

 3 

METHODS 4 

Methods are available in the Methods section. 5 

Note: One supplementary information pdf file and one supplementary table zip file are 6 

available. 7 

 8 

ACKNOWLEDGEMENTS 9 

We thank Mufeng Gao for her help with data management in the early stage of this 10 

project. The study has been partially supported by start-up funds from Purdue Statistics 11 

Department and funding from Analytics at Wharton. This research has been conducted 12 

using the UK Biobank resource (application number 22783), subject to a data transfer 13 

agreement. We would like to thank the individuals who represented themselves in the 14 

UK Biobank for their participation and the research teams for their efforts in collecting, 15 

processing, and disseminating these datasets. We would like to thank the research 16 

computing groups at the University of North Carolina at Chapel Hill, Purdue University, 17 

and the Wharton School of the University of Pennsylvania for providing computational 18 

resources and support that have contributed to these research results. We gratefully 19 

acknowledge all the studies and databases that made GWAS summary-level data publicly 20 

available. Y.L. is partially supported by R56 AG079291 and U01 HG011720. 21 

 22 

AUTHOR CONTRIBUTIONS 23 

B.Z. designed the study. Y.J.L. and B.Z. processed the raw retinal imaging data. B.Z., Z.F., 24 

Z.W., J.S., X.Y., X.F.W., B.L., X.Y.W, and C.C. analyzed the data. Z.F., B.Z., Y.Y., and J.L. 25 

designed the website and developed online resources. Y.L.Y, Y.L., J.L.S., J.M.O., T.L., and 26 

H.Z. provided comments and helped interpret the results. B.Z. wrote the manuscript with 27 

feedback from all authors.  28 

 29 

CORRESPONDENCE AND REQUESTS FOR MATERIALS should be addressed to B.Z and H.Z. 30 

 31 

COMPETING FINANCIAL INTERESTS 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

The authors declare no competing financial interests. 1 

 2 

REFERENCES 3 

1. Nguyen, C.T., Acosta, M.L., Di Angelantonio, S. & Salt, T.E. Seeing Beyond the 4 

Eye: The Brain Connection. Frontiers in Neuroscience, 796 (2021). 5 

2. Bales, T.R., Lopez, M.J. & Clark, J. Embryology, eye. (2019). 6 

3. Chua, S.Y. et al. Relationships between retinal layer thickness and brain volumes 7 

in the UK Biobank cohort. European Journal of Neurology 28, 1490-1498 (2021). 8 

4. London, A., Benhar, I. & Schwartz, M. The retina as a window to the brain—from 9 

eye research to CNS disorders. Nature Reviews Neurology 9, 44-53 (2013). 10 

5. López-de-Eguileta, A. et al. The retinal ganglion cell layer reflects 11 

neurodegenerative changes in cognitively unimpaired individuals. Alzheimer's 12 

research & therapy 14, 1-13 (2022). 13 

6. Barrett-Young, A. et al. Associations between thinner retinal neuronal layers and 14 

suboptimal brain structural integrity: Are the eyes a window to the brain? 15 

bioRxiv (2022). 16 

7. Hinton, D.R., Sadun, A.A., Blanks, J.C. & Miller, C.A. Optic-nerve degeneration in 17 

Alzheimer's disease. New England Journal of Medicine 315, 485-487 (1986). 18 

8. Mutlu, U. et al. Association of retinal neurodegeneration on optical coherence 19 

tomography with dementia: a population-based study. JAMA neurology 75, 20 

1256-1263 (2018). 21 

9. Indrieri, A., Pizzarelli, R., Franco, B. & De Leonibus, E. Dopamine, alpha-synuclein, 22 

and mitochondrial dysfunctions in parkinsonian eyes. Frontiers in Neuroscience 23 

14, 567129 (2020). 24 

10. Baker, M.L., Hand, P.J., Wang, J.J. & Wong, T.Y. Retinal signs and stroke: 25 

revisiting the link between the eye and brain. Stroke 39, 1371-1379 (2008). 26 

11. Ikram, M.K., Ong, Y.T., Cheung, C.Y. & Wong, T.Y. Retinal vascular caliber 27 

measurements: clinical significance, current knowledge and future perspectives. 28 

Ophthalmologica 229, 125-136 (2013). 29 

12. Langner, S.M. et al. Structural retinal changes in cerebral small vessel disease. 30 

Scientific Reports 12, 1-10 (2022). 31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

13. Silverstein, S.M., Choi, J.J., Green, K.M., Bowles-Johnson, K.E. & Ramchandran, 1 

R.S. Schizophrenia in Translation: Why the Eye? Schizophrenia Bulletin (2022). 2 

14. Liew, G. et al. Retinal microvascular signs and cognitive impairment. Journal of 3 

the American Geriatrics Society 57, 1892-1896 (2009). 4 

15. Dumitrascu, O.M. & Qureshi, T.A. Retinal vascular imaging in vascular cognitive 5 

impairment: current and future perspectives. Journal of experimental 6 

neuroscience 12, 1179069518801291 (2018). 7 

16. Guo, L., Duggan, J. & Cordeiro, M. Alzheimer's disease and retinal 8 

neurodegeneration. Current Alzheimer Research 7, 3-14 (2010). 9 

17. MacCormick, I.J., Czanner, G. & Faragher, B. Developing retinal biomarkers of 10 

neurological disease: an analytical perspective. Biomarkers in medicine 9, 691-11 

701 (2015). 12 

18. Ueda, E. et al. Association of Inner Retinal Thickness with Prevalent Dementia 13 

and Brain Atrophy in a General Older Population: The Hisayama Study. 14 

Ophthalmology Science 2, 100157 (2022). 15 

19. Gharahkhani, P. et al. A large cross-ancestry meta-analysis of genome-wide 16 

association studies identifies 69 novel risk loci for primary open-angle glaucoma 17 

and includes a genetic link with Alzheimer’s disease. BioRxiv (2020). 18 

20. Ferris III, F.L. et al. Clinical classification of age-related macular degeneration. 19 

Ophthalmology 120, 844-851 (2013). 20 

21. Kumari, S. et al. Selfie fundus imaging for diabetic retinopathy screening. Eye 36, 21 

1988-1993 (2022). 22 

22. Bouma, B.E. et al. Optical coherence tomography. Nature Reviews Methods 23 

Primers 2, 1-20 (2022). 24 

23. Vujosevic, S. et al. Optical coherence tomography as retinal imaging biomarker 25 

of neuroinflammation/neurodegeneration in systemic disorders in adults and 26 

children. Eye, 1-17 (2022). 27 

24. Miller, K.L. et al. Multimodal population brain imaging in the UK Biobank 28 

prospective epidemiological study. Nature Neuroscience 19, 1523-1536 (2016). 29 

25. Alipanahi, B. et al. Large-scale machine-learning-based phenotyping significantly 30 

improves genomic discovery for optic nerve head morphology. The American 31 

Journal of Human Genetics 108, 1217-1230 (2021). 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

26. Xie, Z. et al. iGWAS: image-based genome-wide association of self-supervised 1 

deep phenotyping of human medical images. medRxiv (2022). 2 

27. Currant, H. et al. Genetic variation affects morphological retinal phenotypes 3 

extracted from UK Biobank optical coherence tomography images. PLoS genetics 4 

17, e1009497 (2021). 5 

28. Le Goallec, A., Diai, S., Collin, S., Vincent, T. & Patel, C.J. Identifying the genetic 6 

and non-genetic factors associated with accelerated eye aging by using deep 7 

learning to predict age from fundus and optical coherence tomography images. 8 

medRxiv (2021). 9 

29. Han, X. et al. Genome-wide association analysis of 95 549 individuals identifies 10 

novel loci and genes influencing optic disc morphology. Human Molecular 11 

Genetics 28, 3680-3690 (2019). 12 

30. Han, X. et al. Automated AI labeling of optic nerve head enables insights into 13 

cross-ancestry glaucoma risk and genetic discovery in> 280,000 images from UKB 14 

and CLSA. The American Journal of Human Genetics 108, 1204-1216 (2021). 15 

31. Kirchler, M. et al. transferGWAS: GWAS of images using deep transfer learning. 16 

Bioinformatics 38, 3621-3628 (2022). 17 

32. Tomasoni, M. et al. Genome-Wide Association Studies of retinal vessel tortuosity 18 

identify 173 novel loci, capturing genes and pathways associated with disease 19 

and vascular tissue pathomechanics. (2020). 20 

33. Zekavat, S.M. et al. Deep learning of the retina enables phenome-and genome-21 

wide analyses of the microvasculature. Circulation 145, 134-150 (2022). 22 

34. Elliott, L.T. et al. Genome-wide association studies of brain imaging phenotypes 23 

in UK Biobank. Nature 562, 210-216 (2018). 24 

35. Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies 25 

variants influencing regional brain volumes and refines their genetic co-26 

architecture with cognitive and mental health traits. Nature genetics 51, 1637-27 

1644 (2019). 28 

36. Smith, S.M. et al. An expanded set of genome-wide association studies of brain 29 

imaging phenotypes in UK Biobank. Nature neuroscience 24, 737-745 (2021). 30 

37. Zhao, B. et al. Common genetic variation influencing human white matter 31 

microstructure. Science 372(2021). 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

38. Grasby, K.L. et al. The genetic architecture of the human cerebral cortex. Science 1 

367(2020). 2 

39. Zhao, B. et al. Genetic influences on the intrinsic and extrinsic functional 3 

organizations of the cerebral cortex. medRxiv (2021). 4 

40. Hofer, E. et al. Genetic correlations and genome-wide associations of cortical 5 

structure in general population samples of 22,824 adults. Nature 6 

communications 11, 1-16 (2020). 7 

41. Satizabal, C.L. et al. Genetic architecture of subcortical brain structures in 38,851 8 

individuals. Nature genetics 51, 1624-1636 (2019). 9 

42. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes 10 

of a wide range of complex diseases of middle and old age. PLoS medicine 12, 11 

e1001779 (2015). 12 

43. Ko, F. et al. Associations with retinal pigment epithelium thickness measures in a 13 

large cohort: results from the UK Biobank. Ophthalmology 124, 105-117 (2017). 14 

44. Patel, P.J. et al. Spectral-domain optical coherence tomography imaging in 67 15 

321 adults: associations with macular thickness in the UK Biobank Study. 16 

Ophthalmology 123, 829-840 (2016). 17 

45. Deng, J. et al. Imagenet: A large-scale hierarchical image database. in 2009 IEEE 18 

conference on computer vision and pattern recognition 248-255 (Ieee, 2009). 19 

46. Zhao, B. et al. Heart-brain connections: phenotypic and genetic insights from 20 

40,000 cardiac and brain magnetic resonance images. medRxiv (2021). 21 

47. Lee, N.H. et al. Using the Thickness Map from Macular Ganglion Cell Analysis to 22 

Differentiate Retinal Vein Occlusion from Glaucoma. Journal of clinical medicine 23 

9, 3294 (2020). 24 

48. Ye, C. et al. Alterations of optic tract and retinal structure in patients after 25 

thalamic stroke. Frontiers in aging neuroscience 14(2022). 26 

49. Ge, Y.-J. et al. Retinal biomarkers in Alzheimer’s disease and mild cognitive 27 

impairment: A systematic review and meta-analysis. Ageing Research Reviews 28 

69, 101361 (2021). 29 

50. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide 30 

complex trait analysis. The American Journal of Human Genetics 88, 76-82 31 

(2011). 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

51. Gagliano Taliun, S.A. et al. Exploring and visualizing large-scale genetic 1 

associations by using PheWeb. Nature Genetics 52, 550-552 (2020). 2 

52. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from 3 

polygenicity in genome-wide association studies. Nature genetics 47, 291-295 4 

(2015). 5 

53. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C.A. & Smoller, J.W. Polygenic prediction via 6 

Bayesian regression and continuous shrinkage priors. Nature Communications 7 

10, 1776 (2019). 8 

54. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide 9 

association studies, targeted arrays and summary statistics 2019. Nucleic Acids 10 

Research 47, D1005-D1012 (2018). 11 

55. Gharahkhani, P. et al. Genome-wide meta-analysis identifies 127 open-angle 12 

glaucoma loci with consistent effect across ancestries. Nature communications 13 

12, 1-16 (2021). 14 

56. Hysi, P.G. et al. Meta-analysis of 542,934 subjects of European ancestry identifies 15 

new genes and mechanisms predisposing to refractive error and myopia. Nature 16 

genetics 52, 401-407 (2020). 17 

57. Fritsche, L.G. et al. A large genome-wide association study of age-related 18 

macular degeneration highlights contributions of rare and common variants. 19 

Nature genetics 48, 134-143 (2016). 20 

58. Choquet, H. et al. A large multiethnic GWAS meta-analysis of cataract identifies 21 

new risk loci and sex-specific effects. Nature Communications 12, 1-12 (2021). 22 

59. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of 23 

genetic association studies using summary statistics. PLoS genetics 10, e1004383 24 

(2014). 25 

60. Kibinge, N.K., Relton, C.L., Gaunt, T.R. & Richardson, T.G. Characterizing the 26 

causal pathway for genetic variants associated with neurological phenotypes 27 

using human brain-derived proteome data. The American Journal of Human 28 

Genetics 106, 885-892 (2020). 29 

61. de Klein, N. et al. Brain expression quantitative trait locus and network analysis 30 

reveals downstream effects and putative drivers for brain-related diseases. 31 

bioRxiv (2021). 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

62. Craig, J.E. et al. Multitrait analysis of glaucoma identifies new risk loci and 1 

enables polygenic prediction of disease susceptibility and progression. Nature 2 

genetics 52, 160-166 (2020). 3 

63. Huang, L. et al. TOP-LD: A tool to explore linkage disequilibrium with TOPMed 4 

whole-genome sequence data. The American Journal of Human Genetics 109, 5 

1175-1181 (2022). 6 

64. Fleischman, D. & Allingham, R.R. The role of cerebrospinal fluid pressure in 7 

glaucoma and other ophthalmic diseases: A review. Saudi Journal of 8 

Ophthalmology 27, 97-106 (2013). 9 

65. Machiele, R., Frankfort, B.J., Killer, H.E. & Fleischman, D. Problems in CSF and 10 

ophthalmic disease research. Frontiers in Ophthalmology 2(2022). 11 

66. Cox, S.R. et al. Ageing and brain white matter structure in 3,513 UK Biobank 12 

participants. Nature communications 7, 13629 (2016). 13 

67. Mauschitz, M.M. et al. Retinal layer assessments as potential biomarkers for 14 

brain atrophy in the Rhineland Study. Scientific reports 12, 1-7 (2022). 15 

68. Pardiñas, A.F. et al. Common schizophrenia alleles are enriched in mutation-16 

intolerant genes and in regions under strong background selection. Nature 17 

Genetics 50, 381–389 (2018). 18 

69. Li, Z. et al. Genome-wide association analysis identifies 30 new susceptibility loci 19 

for schizophrenia. Nature Genetics 49, 1576-1583 (2017). 20 

70. Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian 21 

and European populations. Nature genetics 51, 1670-1678 (2019). 22 

71. Schrode, N. et al. Synergistic effects of common schizophrenia risk variants. 23 

Nature genetics 51, 1475-1485 (2019). 24 

72. Silverstein, S.M., Fradkin, S.I. & Demmin, D.L. Schizophrenia and the retina: 25 

towards a 2020 perspective. Schizophrenia research 219, 84-94 (2020). 26 

73. Yao, X. et al. Integrative analysis of genome-wide association studies identifies 27 

novel loci associated with neuropsychiatric disorders. Translational psychiatry 28 

11, 1-12 (2021). 29 

74. Thorp, J.G. et al. Symptom-level modelling unravels the shared genetic 30 

architecture of anxiety and depression. Nature Human Behaviour 5, 1432-1442 31 

(2021). 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

75. Baselmans, B.M. et al. Multivariate genome-wide analyses of the well-being 1 

spectrum. Nature genetics 51, 445-451 (2019). 2 

76. Nagel, M. et al. Meta-analysis of genome-wide association studies for 3 

neuroticism in 449,484 individuals identifies novel genetic loci and pathways. 4 

Nature Genetics 50, 920 (2018). 5 

77. Okbay, A. et al. Genetic variants associated with subjective well-being, 6 

depressive symptoms, and neuroticism identified through genome-wide 7 

analyses. Nature Genetics 48, 624–633 (2016). 8 

78. Linnér, R.K. et al. Genome-wide association analyses of risk tolerance and risky 9 

behaviors in over 1 million individuals identify hundreds of loci and shared 10 

genetic influences. Nature Genetics 51, 245-257 (2019). 11 

79. Savage, J.E. et al. Genome-wide association meta-analysis in 269,867 individuals 12 

identifies new genetic and functional links to intelligence. Nature Genetics 50, 13 

912-919 (2018). 14 

80. Lee, J.J. et al. Gene discovery and polygenic prediction from a genome-wide 15 

association study of educational attainment in 1.1 million individuals. Nature 16 

Genetics 50, 1112–1121 (2018). 17 

81. Davies, G. et al. Study of 300,486 individuals identifies 148 independent genetic 18 

loci influencing general cognitive function. Nature Communications 9, 2098 19 

(2018). 20 

82. de la Fuente, J., Davies, G., Grotzinger, A.D., Tucker-Drob, E.M. & Deary, I.J. A 21 

general dimension of genetic sharing across diverse cognitive traits inferred from 22 

molecular data. Nature Human Behaviour 5, 49-58 (2021). 23 

83. Lafferty, M.J. et al. MicroRNA-eQTLs in the developing human neocortex link 24 

miR-4707-3p expression to brain size. Elife 12, e79488 (2023). 25 

84. Kim, H.M. et al. Association Between Retinal Layer Thickness and Cognitive 26 

Decline in Older Adults. JAMA ophthalmology (2022). 27 

85. Wang, R. et al. Association of retinal thickness and microvasculature with 28 

cognitive performance and brain volumes in elderly adults. Frontiers in Aging 29 

Neuroscience (2022). 30 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

86. Nalls, M.A. et al. Large-scale meta-analysis of genome-wide association data 1 

identifies six new risk loci for Parkinson's disease. Nature genetics 46, 989-993 2 

(2014). 3 

87. Kouri, N. et al. Genome-wide association study of corticobasal degeneration 4 

identifies risk variants shared with progressive supranuclear palsy. Nature 5 

communications 6, 7247 (2015). 6 

88. Pottier, C. et al. Potential genetic modifiers of disease risk and age at onset in 7 

patients with frontotemporal lobar degeneration and GRN mutations: a genome-8 

wide association study. The Lancet Neurology 17, 548-558 (2018). 9 

89. Lambert, J.-C. et al. Meta-analysis of 74,046 individuals identifies 11 new 10 

susceptibility loci for Alzheimer's disease. Nature genetics 45, 1452-1458 (2013). 11 

90. Hillary, R.F. et al. Genome and epigenome wide studies of neurological protein 12 

biomarkers in the Lothian Birth Cohort 1936. Nature communications 10, 1-9 13 

(2019). 14 

91. Melin, B.S. et al. Genome-wide association study of glioma subtypes identifies 15 

specific differences in genetic susceptibility to glioblastoma and non-16 

glioblastoma tumors. Nature genetics 49, 789-794 (2017). 17 

92. Lin, C.-Y. & Huang, H.-M. Unilateral malignant optic glioma following 18 

glioblastoma multiforme in the young: a case report and literature review. BMC 19 

ophthalmology 17, 1-5 (2017). 20 

93. Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility 21 

loci for migraine. Nature genetics 48, 856-866 (2016). 22 

94. Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects 23 

identifies 32 loci associated with stroke and stroke subtypes. Nature genetics 50, 24 

524-537 (2018). 25 

95. Duan, L. et al. Novel susceptibility loci for moyamoya disease revealed by a 26 

genome-wide association study. Stroke 49, 11-18 (2018). 27 

96. Foroud, T. et al. Genome-wide association study of intracranial aneurysm 28 

identifies a new association on chromosome 7. Stroke 45, 3194-3199 (2014). 29 

97. Ishigaki, K. et al. Large-scale genome-wide association study in a Japanese 30 

population identifies novel susceptibility loci across different diseases. Nature 31 

genetics 52, 669-679 (2020). 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

98. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases 1 

and traits. Nat Genet 47, 1236-41 (2015). 2 

99. Toledo, J. et al. Retinal nerve fiber layer atrophy is associated with physical and 3 

cognitive disability in multiple sclerosis. Mult Scler 14, 906-12 (2008). 4 

100. Ashtari, F., Emami, P. & Akbari, M. Association between retinal nerve fiber layer 5 

thickness and magnetic resonance imaging findings and intelligence in patients 6 

with multiple sclerosis. Adv Biomed Res 4, 223 (2015). 7 

101. Dreyer-Alster, S., Gal, A. & Achiron, A. Optical Coherence Tomography Is 8 

Associated With Cognitive Impairment in Multiple Sclerosis. J Neuroophthalmol 9 

42, e14-e21 (2022). 10 

102. Ko, F. et al. Association of Retinal Nerve Fiber Layer Thinning With Current and 11 

Future Cognitive Decline: A Study Using Optical Coherence Tomography. JAMA 12 

Neurol 75, 1198-1205 (2018). 13 

103. Liu, Y.L. et al. Retinal ganglion cell-inner plexiform layer thickness is nonlinearly 14 

associated with cognitive impairment in the community-dwelling elderly. 15 

Alzheimers Dement (Amst) 11, 19-27 (2019). 16 

104. Grimaldi, A. et al. Inflammation, neurodegeneration and protein aggregation in 17 

the retina as ocular biomarkers for Alzheimer's disease in the 3xTg-AD mouse 18 

model. Cell Death Dis 9, 685 (2018). 19 

105. Bipolar, D., Schizophrenia Working Group of the Psychiatric Genomics 20 

Consortium. Electronic address, d.r.v.e., Bipolar, D. & Schizophrenia Working 21 

Group of the Psychiatric Genomics, C. Genomic Dissection of Bipolar Disorder 22 

and Schizophrenia, Including 28 Subphenotypes. Cell 173, 1705-1715 e16 (2018). 23 

106. Finucane, H.K. et al. Partitioning heritability by functional annotation using 24 

genome-wide association summary statistics. Nature genetics 47, 1228-1235 25 

(2015). 26 

107. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. 27 

Nature 518, 317 (2015). 28 

108. Fullard, J.F. et al. An atlas of chromatin accessibility in the adult human brain. 29 

Genome research 28, 1243-1252 (2018). 30 

109. Kurki, M.I. et al. FinnGen: Unique genetic insights from combining isolated 31 

population and national health register data. medRxiv (2022). 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

110. Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample 1 

summary data Mendelian randomization. Stat Med 36, 1783-1802 (2017). 2 

111. Bowden, J. et al. Improving the accuracy of two-sample summary-data 3 

Mendelian randomization: moving beyond the NOME assumption. Int J 4 

Epidemiol 48, 728-742 (2019). 5 

112. Burgess, S., Butterworth, A. & Thompson, S.G. Mendelian randomization analysis 6 

with multiple genetic variants using summarized data. Genetic epidemiology 37, 7 

658-665 (2013). 8 

113. Bowden, J., Davey Smith, G., Haycock, P.C. & Burgess, S. Consistent estimation in 9 

Mendelian randomization with some invalid instruments using a weighted 10 

median estimator. Genetic epidemiology 40, 304-314 (2016). 11 

114. Hartwig, F.P., Davey Smith, G. & Bowden, J. Robust inference in summary data 12 

Mendelian randomization via the zero modal pleiotropy assumption. 13 

International journal of epidemiology 46, 1985-1998 (2017). 14 

115. Ye, T., Shao, J. & Kang, H. Debiased inverse-variance weighted estimator in two-15 

sample summary-data Mendelian randomization. The Annals of statistics 49, 16 

2079-2100 (2021). 17 

116. Zhao, Q., Wang, J., Hemani, G., Bowden, J. & Small, D.S. Statistical inference in 18 

two-sample summary-data Mendelian randomization using robust adjusted 19 

profile score. The Annals of Statistics 48, 1742-1769 (2020). 20 

117. Wang, J. et al. Causal inference for heritable phenotypic risk factors using 21 

heterogeneous genetic instruments. PLoS genetics 17, e1009575 (2021). 22 

118. Burgess, S. & Thompson, S.G. Interpreting findings from Mendelian 23 

randomization using the MR-Egger method. European journal of epidemiology 24 

32, 377-389 (2017). 25 

119. Asanad, S. et al. The Retina in Alzheimer's Disease: Histomorphometric Analysis 26 

of an Ophthalmologic Biomarker. Invest Ophthalmol Vis Sci 60, 1491-1500 27 

(2019). 28 

120. Sotirchos, E.S. et al. Progressive Multiple Sclerosis Is Associated with Faster and 29 

Specific Retinal Layer Atrophy. Ann Neurol 87, 885-896 (2020). 30 

121. Cordano, C. et al. Retinal INL Thickness in Multiple Sclerosis: A Mere Marker of 31 

Neurodegeneration? Ann Neurol 89, 192-193 (2021). 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

122. Balk, L.J. et al. Retinal inner nuclear layer volume reflects inflammatory disease 1 

activity in multiple sclerosis; a longitudinal OCT study. Mult Scler J Exp Transl Clin 2 

5, 2055217319871582 (2019). 3 

123. Knier, B. et al. Retinal inner nuclear layer volume reflects response to 4 

immunotherapy in multiple sclerosis. Brain 139, 2855-2863 (2016). 5 

124. Almonte, M.T., Capellàn, P., Yap, T.E. & Cordeiro, M.F. Retinal correlates of 6 

psychiatric disorders. Therapeutic Advances in Chronic Disease 11, 7 

2040622320905215 (2020). 8 

125. Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low 9 

specificity for major depression. Nature Genetics 52, 437-447 (2020). 10 

126. Silverstein, S.M., Demmin, D.L., Schallek, J.B. & Fradkin, S.I. Measures of retinal 11 

structure and function as biomarkers in neurology and psychiatry. Biomarkers in 12 

Neuropsychiatry 2, 100018 (2020). 13 

127. Littlejohns, T.J. et al. The UK Biobank imaging enhancement of 100,000 14 

participants: rationale, data collection, management and future directions. 15 

Nature communications 11, 1-12 (2020). 16 

128. Forgetta, V. et al. Cohort profile: genomic data for 26 622 individuals from the 17 

Canadian Longitudinal Study on Aging (CLSA). BMJ open 12, e059021 (2022). 18 

129. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. 19 

in Proceedings of the IEEE conference on computer vision and pattern recognition 20 

770-778 (2016). 21 

130. Krizhevsky, A., Sutskever, I. & Hinton, G.E. Imagenet classification with deep 22 

convolutional neural networks. Communications of the ACM 60, 84-90 (2017). 23 

131. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale 24 

image recognition. arXiv preprint arXiv:1409.1556 (2014). 25 

132. Szegedy, C. et al. Going deeper with convolutions. in Proceedings of the IEEE 26 

conference on computer vision and pattern recognition 1-9 (2015). 27 

133. Iandola, F.N. et al. SqueezeNet: AlexNet-level accuracy with 50x fewer 28 

parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016). 29 

134. Howard, A.G. et al. Mobilenets: Efficient convolutional neural networks for 30 

mobile vision applications. arXiv preprint arXiv:1704.04861 (2017). 31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

135. Zhang, X., Zhou, X., Lin, M. & Sun, J. Shufflenet: An extremely efficient 1 

convolutional neural network for mobile devices. in Proceedings of the IEEE 2 

conference on computer vision and pattern recognition 6848-6856 (2018). 3 

136. Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning 4 

library. Advances in neural information processing systems 32(2019). 5 

137. Avants, B.B. et al. A reproducible evaluation of ANTs similarity metric 6 

performance in brain image registration. Neuroimage 54, 2033-2044 (2011). 7 

138. Jahanshad, N. et al. Multi-site genetic analysis of diffusion images and voxelwise 8 

heritability analysis: A pilot project of the ENIGMA–DTI working group. 9 

Neuroimage 81, 455-469 (2013). 10 

139. Kochunov, P. et al. Multi-site study of additive genetic effects on fractional 11 

anisotropy of cerebral white matter: comparing meta and megaanalytical 12 

approaches for data pooling. Neuroimage 95, 136-150 (2014). 13 

140. Glasser, M.F. et al. A multi-modal parcellation of human cerebral cortex. Nature 14 

536, 171-178 (2016). 15 

141. Ji, J.L. et al. Mapping the human brain's cortical-subcortical functional network 16 

organization. Neuroimage 185, 35-57 (2019). 17 

142. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic 18 

data. Nature 562, 203-209 (2018). 19 

143. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of 20 

large-scale data. Nature genetics 51, 1749 (2019). 21 

144. Watanabe, K., Taskesen, E., Bochoven, A. & Posthuma, D. Functional mapping 22 

and annotation of genetic associations with FUMA. Nature Communications 8, 23 

1826 (2017). 24 

145. Chang, C.C. et al. Second-generation PLINK: rising to the challenge of larger and 25 

richer datasets. Gigascience 4, 7 (2015). 26 

146. Friedman, J., Hastie, T. & Tibshirani, R. glmnet: Lasso and elastic-net regularized 27 

generalized linear models. R package version 1(2009). 28 

 29 

METHODS 30 

Eye and brain imaging data 31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.23286035doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

Our study was based on data obtained from the UK Biobank (UKB) study, which recruited 1 

approximately half a million individuals between the ages of 40 and 69 between 2006 and 2 

201042 (https://www.ukbiobank.ac.uk/). The ethics approval of the UKB study was from 3 

the North West Multicentre Research Ethics Committee (approval number: 11/NW/0382). 4 

The optical coherence tomography (OCT) and retinal imaging scans were part of the eye 5 

measurements conducted during the participant’s visit to the UKB assessment center. We 6 

considered two sets of retinal imaging traits. First, we used the derived OCT measures in 7 

Category 100079 (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100079), which 8 

were generated and returned by previous studies29,43,44. These measures mainly provide 9 

the thickness of different retinal layers and their subfields, as well as the vertical cup-to-10 

disc ratio and disc diameter. As suggested, we used the data in Data-Fields 28552 & 11 

2855343 to perform quality control for these OCT measures by keeping images with an 12 

image quality score > 45. We further only keep the OCT measures with a sample size > 13 

30,000, resulting in 46 measures with an average sample size of 62,425.  14 

 15 

Second, we downloaded the raw fundus retinal eye images from Category 100016 16 

(https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100016) and performed GWAS on 17 

these whole images by extracting imaging biomarkers using transfer learning models. 18 

Briefly, we used multiple pre-trained deep convolutional neural networks (CNNs) trained 19 

from the ImageNet45 database. The ImageNet database contains more than 14 million 20 

images classified into more than 20,000 classes, which can be used to train models that 21 

extract various features from retinal fundus images. Many CNNs models have been 22 

trained on ImageNet and were widely used in the image processing field to learn complex 23 

patterns from images. In addition to the ResNet50129 model used by the transferGWAS31, 24 

we implemented 10 more pre-trained CNN models, including the AlexNet130, Vgg16131, 25 

Vgg19131, GoogLeNet (Inception V1)132, Inception (V3)132, ResNet18129, ResNet34129, 26 

SqueezeNet133, MobileNet134,  and ShuffleNet135.  These pre-trained models are available 27 

on Pytorch136 and represent different designs and architectures, such as layer depth, size 28 

of kernels, and hyperparameters. For example, the ResNet50 has 50 layers with kernel 29 

size 1 × 1, 3 × 3, and 7 × 7, while AlexNet has 8 layers with kernel size 3 × 3, 5 × 5, and 11 30 

× 11. All pre-trained models use the rectified linear unit (ReLU) as the activation function. 31 

We began by combining the original left and right retinal fundus images and the rotated 32 
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images with 90°, 180°, and 270°, each with and without horizontal mirroring. Next, we 1 

input these eight retinal fundus images into each pre-trained model and averaged the 2 

outputs from the last layer of convolutional networks. Then we generated the top-10 3 

ranked principal components (PCs) from each of the 11 models as retinal imaging 4 

biomarkers in downstream GWAS analyses. The average sample size across all these 110 5 

(10 × 11) fundus imaging traits is 78,513. In all the OCT measures and fundus image traits, 6 

the values greater than five times the median absolute deviation from the median were 7 

treated as outliers and removed.  8 

 9 

The UKB brain MRI data were generated from raw images downloaded from Category 10 

100003 (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100003). The multimodal 11 

brain imaging traits used in the present paper have been extracted in previous papers by 12 

our research group35,37,39,46. First, we had 101 regional brain volumes35 and 63 cortical 13 

thickness traits46 generated from T1-weighted structural MRI images. These structural 14 

MRI traits were produced by the advanced normalization tools137 (ANTs). For the 101 15 

volumetric traits, we had brain volumes for 98 pre-defined cortical and subcortical areas 16 

and three global brain volume measures (total gray matter volume, total white matter 17 

volume, and total brain volume). We also examined the thickness of 62 cortical areas and 18 

the global thickness. Second, the ENIGMA-DTI pipeline138,139 was used to generate 110 19 

tract-averaged DTI parameters based on diffusion MRI, including fractional anisotropy, 20 

mean diffusivity, axial diffusivity, radial diffusivity, and mode of anisotropy, for 21 21 

predefined major white matter tracts and the whole brain (5 × 22). For resting fMRI, we 22 

applied the Glasser360 atlas140 to partition the cerebral cortex into 360 regions for 12 23 

functional networks141, including the primary visual, secondary visual, auditory, 24 

somatomotor, cingulo-opercular, default mode, dorsal attention, frontoparietal, 25 

language, posterior multimodal, ventral multimodal, and orbito-affective networks. We 26 

generated 92 functional activity (amplitude) and functional connectivity traits, including 27 

the average activity for each network and the average connectivity for each pair of 28 

networks (including within the same network), as well as the global activity and 29 

connectivity of the whole cortex. Similarly, 92 functional activity and connectivity traits 30 

were generated from task fMRI39. In summary, we considered 458 brain MRI traits of brain 31 
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structure and function. See Table S1 for the complete ID list of both retinal imaging and 1 

brain imaging traits. 2 

 3 

Phenotypic eye-brain imaging analyses  4 

In our phenotypic analysis, we examined pairwise associations between 156 retinal 5 

imaging traits and 458 brain MRI traits. We used the UKB subjects with both two imaging 6 

types and adjusted a wide range of covariates, including age, sex, standing height, 7 

assessment center, body mass index, weight, waist-to-hip ratio, smoking status, mean 8 

arterial blood pressure, age-squared, age-sex-interaction, age-squared-sex-interaction, 9 

top 40 genetic PCs142, volumetric scaling, head motion, head motion-squared, brain 10 

position, brain position-squared34,36, diabetes, ICD-10 disease code staring with R73 11 

(“elevated blood glucose level”, such as hyperglycemia), I70 (“atherosclerosis”, such as 12 

atherosclerosis of aorta), I10 (Essential (primary) hypertension), and E78 (“disorders of 13 

lipoprotein metabolism and other lipidaemias”, such as hyperlipidemia). For regional 14 

brain volumes, we additionally corrected for total brain volume to remove global effects. 15 

We fitted linear models for each pair of imaging traits (R version 3.6.0) and used a 16 

discovery-validation design, in which the UKB individuals of white British ancestry 17 

(average n = 6,454 across different modalities) were used to discover eye-brain imaging 18 

associations, which were verified by a hold-out independent validation dataset (average 19 

n = 959, relatives142 of the discovery sample were removed). The Benjamini-Hochberg 20 

procedure was used to adjust for multiple testing, and we reported significant 21 

associations at the false discovery rate (FDR) of 5%. Validation criteria included a P value 22 

less than 0.05 in the hold-out independent dataset with concordant association signs 23 

between the discovery and validation datasets. We also considered the conservative 24 

Bonferroni multiple testing correction and highlighted these top-ranking significant 25 

findings in the paper. In addition, we repeated the above analysis separately for females 26 

and males (average n = 3,338 and 3,150, respectively) and reported the sex-specific 27 

association patterns.  28 

 29 

Genetic analysis of 156 retinal imaging traits 30 

We performed GWAS for the 156 retinal imaging traits using the imputed genotyping data 31 

from the UKB study. For the set of subjects with both retinal imaging traits and genetic 32 
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data, we performed the following quality controls39: 1) removed individuals with missing 1 

genotype rate > 0.1; 2) removed variants with missing genotype rate > 0.1; 3) removed 2 

variants with minor allele frequency (MAF) < 0.01; 4) removed variants that failed the 3 

Hardy-Weinberg equilibrium test at 1 × 10-7 level; and 5) removed variants with 4 

imputation INFO score < 0.8. The SNP-based heritability of white British samples was 5 

estimated based on all autosomal SNPs using GCTA50 (average n = 60,748). We adjusted 6 

for the effects of age, sex, assessment center, age-squared, age-sex interaction, age-7 

squared-sex interaction, and top 40 genetic PCs142.  8 

 9 

Using the same set of subjects and covariates data, we performed GWAS using linear 10 

mixed effect models via fastGWA143. SNP heritability and GWAS were also conducted 11 

separately for males and females. We defined the independent (LD r2 < 0.1) significant 12 

genetic associations and loci using FUMA144 (version v1.3.8). The details of FUMA 13 

annotations can be found at https://fuma.ctglab.nl/tutorial. Briefly, FUMA identified 14 

variants whose P values passed our stringent GWAS significance level 3.20 × 10-10 (the 15 

standard GWAS significance level after further Bonferroni-adjusted for the 156 retinal 16 

imaging traits) and were independent of other significant variants (LD r2 < 0.1). Based on 17 

these independently significant variants, FUMA constructed LD blocks by considering all 18 

variants (MAF ≥ 0.0005, including variants from the 1000 Genomes reference panel) in LD 19 

(r2 ≥ 0.6) with at least one independent significant variant. For independently significant 20 

associations defined by FUMA, we performed validations using 1) the UKB European but 21 

non-British subjects (average n = 5,320) and 2) UKB non-European subjects (average n = 22 

6,490). Relatives of the discovery GWAS sample were removed, and we adjusted for the 23 

top 10 genetic PCs instead of the top 40. Other adjusted covariates remained the same.  24 

We also developed polygenic risk scores (PRS) using summary statistics from discovery 25 

GWAS and examined their prediction accuracy on the two validation datasets. We 26 

constructed PRS based on PRS-CS53 with all default parameters. The validation genotype 27 

data were randomly selected from 1,500 UKB European subjects without retinal imaging 28 

data.  29 

 30 

Genetic eye-brain imaging analyses  31 
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For the independently significant variants and all variants in their LD blocks, we used 1 

FUMA to look them up on the NHGRI-EBI GWAS catalog (version e104_2021-09-15) to 2 

search for any previously GWAS results reported on these variants (P < 9 × 10-6). We 3 

focused on the existing GWAS results of brain and eye-related complex traits and diseases 4 

and manually categorized them into 14 groups, including stroke (and other 5 

cerebrovascular disorders, such as Moyamoya disease, intracranial aneurysm, and 6 

cerebral aneurysm), Parkinson's disease, Alzheimer's disease, glioma/glioblastoma (GBM), 7 

other neurological disorders (such as amyotrophic lateral sclerosis, progressive 8 

supranuclear palsy, corticobasal degeneration, and frontotemporal dementia), 9 

schizophrenia, other psychiatric disorders (such as bipolar disorder, depression, major 10 

depressive disorder, and autism spectrum disorder), psychological traits (such as 11 

neuroticism, anxiety, subjective well-being, and risk tolerance), cognitive traits (such as 12 

general cognitive ability, the highest math class taken, intelligence, and reaction time), 13 

education, brain structure/function, migraine, Alzheimer's disease biomarkers (such as 14 

cerebrospinal fluid biomarker levels, rate of cognitive decline in Alzheimer's disease, and 15 

plasma t-tau levels), and eye traits/diseases (such as macular thickness, refractive error, 16 

spherical equivalent, and glaucoma). In addition, we systematically examined genetic 17 

overlaps with the GWAS results of brain MRI traits reported in previous studies, including 18 

101 regional brain volumes35, 215 DTI parameters37 (including the 110 tract-average 19 

values used in our phenotypic analysis and 105 additional PCs of fractional anisotropy), 20 

63 cortical thickness traits46, 92 resting fMRI traits, and 92 task fMRI traits39.  For the index 21 

variants of retinal imaging traits defined by FUMA, we looked up the MetaBrain 22 

database61 (https://www.metabrain.nl/) to see if they were reported eQTLs in large-scale 23 

gene expression meta-analysis of brain tissues. For each locus with shared genetic 24 

influences, we tested for common causal genetic variants between the retinal imaging 25 

trait and the brain phenotype using Bayesian colocalization analysis59. The colocalization 26 

was established if the posterior probability of the shared causal variant hypothesis (PPH4) 27 

was greater than 0.859,60.  28 

 29 

Cross-trait LDSC98 (https://github.com/bulik/ldsc/, version 1.0.1) was used to examine the 30 

pairwise genetic correlation between 156 retinal imaging traits and 39 sets of publicly 31 

available GWAS summary statistics of brain phenotypes. The default European LD scores 32 
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provided by the LDSC software were used, which were based on the 1000 Genomes 1 

European data. We used the HapMap3 variants, and variants in the major 2 

histocompatibility complex region were excluded. For the 46 OCT measures, we also used 3 

LDSC to perform the heritability enrichment analysis106 with genetic variant annotations 4 

of tissue type and cell type-specific regulatory elements. The heritability explained by the 5 

annotated genome regions was estimated and tested with percentages and enrichment 6 

scores.  Baseline annotation models were included in the analysis when we analyzed 7 

additional annotations. We tested for the annotations of regulatory elements from 8 

multiple adult and fetal tissues from the Roadmap Epigenomics Consortium107 and two 9 

major brain cell types (neurons and glia) sampled from various brain cortical and 10 

subcortical brain regions108.  11 

 12 

Bi-directional Mendelian randomization (MR) analysis was used to discover the causal 13 

effect between 156 retinal imaging traits and 25 brain-related clinical endpoints. Eight 14 

MR methods110-117 were implemented, including MR Egger, simple median, simple mode, 15 

fixed effect inverse variance weighted (IVW), multiplicative random effect IVW, DIVW, 16 

MR-RAPS, and GRAPPLE. The 25 brain-related clinical endpoints were all from the latest 17 

release (R7) of FinnGen database (https://www.finngen.fi/en/access_results), where 12 18 

of them were mental and behavior disorders, and the remaining 13 phenotypes were 19 

diseases of the nervous system. Most of the diseases we selected have a number of cases 20 

greater than 10,000, except for a few important brain diseases, including Alzheimer’s 21 

disease (n > 6,000), other neurological diseases (n = 7288), and epilepsy (n = 8523). Table 22 

S11 provides more information on the MR methods and FinnGen data. Exposure GWAS 23 

summary statistics were first clumped with Plink145 to guarantee that the instrumental 24 

variables used in MR models are independent. The P value significance threshold (p1) and 25 

the secondary significance threshold (p2) in clumping were set to 5 × 10-8, and the 1000 26 

Genomes European reference panel was applied. Besides, the threshold over the squared 27 

correlation between two genetic variants was set to be r2 = 0.01 and window size = 1Mb. 28 

After clumping, the selected SNPs from exposure GWAS data were extracted from 29 

outcome GWAS summary statistics with function extract_outcome_data() in the two-30 

sample MR package (https://mrcieu.github.io/TwoSampleMR/). To ensure that the effect 31 

of a genetic variant on the exposure and outcome corresponded to the same allele, data 32 
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harmonization was performed using the harmonise_data function() with the default 1 

settings. The estimated causal pairs of retinal imaging trait and brain disease were further 2 

screened with several rules. The first step was to discard pairs with fewer than six genetic 3 

variants. Second, we dropped the pairs whose estimated MR Egger intercept differed 4 

significantly from zero118. Bonferroni correction was then performed on the MR results of 5 

each method separately. Finally, we reported the causal pairs that were significant for 6 

either of the IVW methods and at least one of the robust MR methods (DIVW, simple 7 

mode, simple median, MR-RAPS, and GRAPPLE). 8 

 9 

Prediction of brain phenotypes using retinal and brain imaging data  10 

We examined the prediction power of 156 retinal imaging traits on 32 brain-related 11 

complex traits and diseases, including cognitive traits, neuroticism sum score, family 12 

history of brain disorders, mental and behavioral disorders (ICD-10 Chapter F), and 13 

diseases of the nervous system (ICD-10 Chapter G). We focused on unrelated white British 14 

subjects and randomly selected 50,944 subjects as the training dataset, 2,464 subjects as 15 

the validation dataset, and 2,464 subjects as our testing dataset. The subjects in the 16 

validation and testing datasets also had brain MRI data, enabling testing the prediction 17 

performance with both two imaging types in later steps. For each of the 32 traits, we used 18 

ridge regression for prediction and the effect sizes of retinal imaging traits were estimated 19 

on the training dataset via the glmnet146 package (R version 3.6.0). All model parameters 20 

were tuned based on validation data, and prediction performance was examined based 21 

on the correlation between the predicted values and the observed ones in the 22 

independent testing data.  In all the training, validation, and testing datasets, we removed 23 

the effects of age, sex, age-sex interaction, age-squared, age-squared-sex interaction, 24 

assessment center, and top 40 genetic PCs. For brain phenotypes where retinal imaging 25 

traits had significant predictive power after Bonferroni correction for multiple testing, we 26 

further examined the predictive power of multiple brain MRI modalities and the joint 27 

performance of using retinal and brain imaging traits. In brain imaging prediction, we used 28 

the same validation and testing datasets as the retinal imaging analysis and all other 29 

unrelated white British subjects (average n = 37,239) as training data. Finally, we 30 

examined the prediction accuracy of genetic PRS for fluid intelligence. We used the 31 

unrelated white British subjects without retinal or brain imaging data as training GWAS 32 
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(n = 71,406) and developed the PRS with PRS-CS53. The same set of covariates as the 1 

imaging prediction analysis was removed.  2 

 3 

Code availability  4 

We made use of publicly available software and tools. The original codes to apply pre-5 

trained transfer learning models to extract features from raw retinal fundus images are 6 

available at https://github.com/mkirchler/transferGWAS. Our code with more 7 

implemented pre-trained CNN models will be shared on Zenodo https://zenodo.org/.  8 

 9 

Data availability  10 

GWAS summary statistics of brain MRI traits can be freely downloaded at BIG-KP 11 

(https://bigkp.org/). GWAS summary statistics of retinal imaging traits will be made 12 

publicly available at Eye-KP (https://www.eyekp.org/). The individual-level data used in 13 

this study can be obtained from https://www.ukbiobank.ac.uk/.  14 

 15 

Figure legends  16 

Fig. 1 Study overview and workflow. 17 

(A) An overview of the study design. We used multimodal retinal and brain imaging data 18 

to understand the phenotypic and genetic connections between the brain and the eye. 19 

We considered multiple brain magnetic resonance imaging (MRI) modalities, including 20 

structural MRI, diffusion MRI, resting-state functional MRI (fMRI), and task-based fMRI. 21 

For the eye, we used traits derived from retinal optical coherence tomography (OCT) and 22 

extracted from fundus retinal images using pre-trained transfer learning models. (B) A 23 

brief description of the overall workflow and major analyses in each part.  24 

 25 

Fig. 2 Phenotypic eye-brain imaging associations. 26 

(A) This figure shows the -log10(p-value) of testing the associations between 156 retinal 27 

imaging traits (46 derived OCT measures and 110 fundus image traits) and 458 brain MRI 28 

traits, including 101 regional brain volumes, 63 cortical thickness traits, 110 diffusion 29 

tensor imaging (DTI) parameters, 92 resting fMRI traits, and 92 task fMRI traits. Table S1 30 

provides more information on these imaging traits. The red dashed horizontal line 31 
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indicates the Benjamini-Hochberg FDR 5% significance level (raw P < 4.37 × 10-4). Each 1 

brain imaging modality is labeled with a different color. We have also labeled the brain 2 

structures that had the strongest associations in each modality. (B-C) Location of the 3 

white matter tracts whose DTI parameters were significantly associated with (B) the 4 

thickness of the ganglion cell and inner plexiform layer (GCIPL, left eye) and (C) the overall 5 

thickness of the macula (left eye).  AD, axial diffusivity; RD, radial diffusivity; MO, mode 6 

of anisotropy; and FA, fractional anisotropy. (D-E) Location of the brain regions whose 7 

volumes were significantly associated with (D) the thickness of GCIPL (right eye) and (E) 8 

the overall thickness of the macula (right eye). (F) Location of the cortical brain regions 9 

whose thickness was significantly associated with the thickness of GCIPL (left eye).  10 

 11 

Fig. 3 Genomic loci associated with both eye imaging traits and brain-related complex 12 

traits and diseases.  13 

(A) Ideogram of genomic regions (names are in black) influencing both retinal imaging 14 

traits and brain-related complex traits and diseases, including the phenotypes reported 15 

on the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/) and the brain MRI traits 16 

available on BIG-KP (https://bigkp.org/). Each category of brain phenotypes is labeled 17 

with a different color, and we use different shapes for OCT measures and fundus image 18 

traits. (B) Table summary, where the x-axis represents the genomic regions and y-axis 19 

displays the category of brain phenotypes. Derived OCT measures and fundus image traits 20 

are labeled with different colors, and a third color is used when both are observed in the 21 

locus.  22 

  23 

Fig. 4 Selected genetic loci that were associated with both eye and brain imaging traits. 24 

(A) In 11q24.3, we observed shared genetic influences between the vertical cup-to-disc 25 

ratio (regressed on disc diameter, left eye, VCDR_regressed_left, index variant rs4937515) 26 

and the cerebrospinal fluid volume (CSF volume, index variant rs4936099). Bayesian 27 

colocalization analysis suggested the shared causal variant between the two traits 28 

(posterior probability PPH4 = 0.997). (B) In 1q21.2, we observed shared genetic influences 29 

between the inner nuclear layer (INL) thickness (left eye, INL_thickness_left) and the 30 
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cortical thickness of the right precentral brain region (Right_precentral_thickness, shared 1 

index variant rs71578488, PPH4 = 0.562). In this region, the INL_thickness_left was also 2 

in LD (r2 ≥ 0.6) with cerebrospinal fluid biomarker levels. (C) In 17q24.2, we observed 3 

shared genetic influences between the overall macular thickness (right eye, 4 

overall_macular_thickness_right, index variant rs4791212) and the mean MO of the 5 

inferior fronto-occipital fasciculus (IFO_MO, index variant rs12451721, PPH4 = 0.963). We 6 

also observed genetic overlaps (LD r2 ≥ 0.6) with self-reported math ability, risk-taking 7 

tendency, and loneliness. (D) In 11q13.3, we observed shared genetic influences between 8 

the ninth PC of the Vgg19 model on fundus image (Vgg19_PC9) and the functional 9 

connectivity within the auditory network (Auditory<=>Auditory, shared index variant 10 

rs12807936, PPH4 = 0.994).  11 

 12 

Fig. 5 Selected genetic loci that were associated with both eye and brain-related 13 

complex traits and disorders. 14 

(A) In 6q14.2, we observed shared genetic influences between the inner nuclear layer (INL) 15 

thickness (right eye, INL_thickness_right, index variant rs7752421) and schizophrenia 16 

(index variant rs3798869). Bayesian colocalization analysis suggested the shared causal 17 

variant between the two traits (posterior probability PPH4 = 0.952). In this region, the 18 

thickness of INL was also in LD (r2 ≥ 0.6) with bipolar disorder and cognitive ability. (B) In 19 

14q11.2, we observed shared genetic influences between the overall macular thickness 20 

(right eye, overall_macular_thickness_right, index variant rs200581586) and educational 21 

attainment (index variant rs4982712, PPH4 = 0.764). In this region, the overall macular 22 

thickness was also in LD (r2 ≥ 0.6) with intelligence and cognitive ability.  (C) In 9p21.3, we 23 

observed shared genetic influences between the vertical cup-to-disc ratio (regressed on 24 

disc diameter, left eye, VCDR_regressed_left, index variant 9:22053956_TA_T) and 25 

Glioma (index variant rs4977756). We also observed genetic overlaps (LD r2 ≥ 0.6) with 26 

self-reported math ability, risk-taking tendency, and loneliness. (D) In 13q14.13, we 27 

observed shared genetic influences between the fifth PC of the Vgg16 model on fundus 28 

image (Vgg16_PC5, index variant rs866376) and ischemic stroke (index variant rs9526212, 29 

PPH4 = 0.994).  30 

 31 
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Fig. 6 Genetic correlations and prediction analysis. 1 

(A) We show the selected genetic correlations between brain-related complex traits and 2 

diseases (x-axis) and retinal imaging traits (y-axis). The asterisks highlight significant 3 

genetic correlations after adjusting for multiple testing using the Benjamini-Hochberg 4 

procedure to control the FDR at 5% level. The colors represent genetic correlations. Table 5 

S1 provides more information on these retinal imaging traits. ADHD, attention-6 

deficit/hyperactivity disorder. (B) Predicting brain phenotypes using both retinal and 7 

brain imaging traits. (C) The accuracy of fluid intelligence prediction using multiple data 8 

types. Retinal image, including all retinal imaging traits. DTI parameters, diffusion tensor 9 

imaging parameters; Brain image, including all brain imaging modalities.  10 
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