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Discrimination of user intent at the computer interface solely from eye gaze can provide a powerful
tool, benefiting many applications. An exploratory methodology for discriminating zoom-in, zoom-out,
and no-zoom intent was developed for such applications as telerobotics, disability aids, weapons sys­
tems, and process control interfaces. Using an eye-tracking system, real-time eye-gaze locations on a
display are collected. Using off-line procedures, these data are clustered, using minimum spanning tree
representations, and then characterized. The cluster characteristics are fed into a multiple linear dis­
criminant analysis, which attempts to discriminate the zoom-in, zoom-out, and no-zoom conditions.
The methodologies, algorithms, and experimental data collection procedure are described, followed
by example output from the analysis programs. Although developed specifically for the discrimination
of zoom conditions, the methodology has broader potential for discrimination of user intent in other
interface operations.

Eye Gaze in Computer Interface Control
The use ofeye gaze as a computer interface control de­

vice is a recent concept with significant potential. Initially

conceived for disability applications and military weapons

targeting, eye gaze as an input device may readily extend

to the control ofadvanced process interfaces, teierobotics,

and camera manipulation (Hutchinson, White, Martin,

Reichert, & Frey, 1989) or routine word processing (Frey,

White, & Hutchinson, 1990). A great appeal of eye-gaze

control is that it may serve as an effective replacement for

mouse and keyboard input for high-workload tasks, thus

freeing the hands to control other operations. For example,

one might access items in a helmet-mounted database using

eye gaze. Alternatively, eye gaze might control not only

the direction ofa wheelchair for a disabled individual, but

also such subtle tasks as speed or route planning.
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Eye-gaze tracking methodologies have been used to

control two types of operations at the computer interface:

spatial cursor position and object selection. Jacob (1990,

1991) presented an algorithm and demonstration of both

ofthese in a videogame interface. He defined fixations after

delays of 100 msec and ended fixations if data were re­

ceived outside the current fixation area for at least 50 msec.

Extensive averaging of spatial positions ensured that spu­

rious blinks and or other anomalies were not considered.

Objects were selected in this interface ifat least a 150-200­

msec dwell time occurred at a specific location; selections

were easily reversible by fixating another object. The ex­

perimental eye-gaze-driven word processor by Frey et al.

(1990) used a dwell time ofl ,000 msec for object selection;

it predicted probable letter combinations continuously in

order to increase user speed and accuracy. These predictions

effectively decreased the number ofalternative characters

needed to display as "lookpoints" to the user. Starker and

Bolt (1990) considered varying models of required dwell

time at an object for specifying user interest. Although they

reported little experimental evidence, their work can aid in

defining time requirements for object selection.

Although the above approaches for using eye gaze for

computer interface control are only first steps, the dwell­

time requirements prior to object or operation selection

make them cumbersome to use in real time. Frey et al. (1990)

and Hutchinson et al. (1989) were able to narrow the num­

ber ofletter choices to 5-6 for eye-gaze selection, but each

character still required an independent fixation and dwell

for selection. Since the two eyes do not have the same

independent-movement property that hands have in typ-
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ing, this interface is quite cumbersome. Furthermore, their

technique cannot handle the more abstract operations re­

quired for graphical user interfaces, such as object rotation

or zooming in/zooming out. If controllable by eye gaze,

such operations must necessarily rely on other, deeper

level characteristics of eye movements.

Zooming In or Out at the Computer Interface

Zooming in for a narrower field of view (i.e., increas­

ing the lens power ofa telephoto lens) or zooming out for a
wider angle view (decreasing the lens power) are two com­

mon operations in graphics, telerobotics, and process­

control interfaces. Both camera mounted on the end of a

robotic end effector or mobile platform and the arm itself

must be controlled (e.g., Khosla & Papanikolopoulos,

1992; NASA, 1993). Although the problems involved in
movement ofa camera to extract three-dimensional infor­

mation from two-dimensional views have recently begun

to be investigated (Abbott, 1992), the control require­

ments of zoom-in/zoom-out detection have not yet been

addressed. Both camera zoom and camera position may

benefit from eye-gaze control, due both to the already fre­

quent use of multi-degree-of-freedom hand controllers

and to the high compatibility of using the eye to control

one's point ofview. Zooming under eye-gaze control may

also benefit the control of virtual environment presenta­

tions (Stark et aI., 1992).

Eye-Gaze Modeling: Samples and Clusters

A common property of the eye-gaze interface control

methods described above is the search for fixations and

subsequent saccades via minimum fixation time criteria.

Although the eye operates in a fixate-saccade-fixate

manner, identification and separation of fixations from

saccades was not necessary here. Instead, a sampling ap­

proach is sufficient, and can be later used to generate fix­

ation locations if still necessary. The sampling approach

describes the X/Y gaze-point location within each sample,

regardless ofwhether the eye is moving or stationary. Fur­

thermore, fixation time may be a marker for processing

difficulty or complexity at an interface (e.g., Just & Car­
penter, 1980), but (1) the eye does not process foveal in­

formation the entire time the eye remains fixated at an

(A)
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object, and (2) parafoveal information, outside the imme­

diate fixation area, is analyzed (Findlay, 1985).

As a basic unit of analysis, clusters of eye-gaze spatial

locations are used here rather than temporal scanpaths.

Scanpaths are essentially dynamic time-domain records of

visual gaze point, whereas clusters are more stable space­

domain records. Consider the comparison between a set of

clusters and a scanpath shown in Figure 1. Each eye-gaze

cluster represents a sample of spatially and attentionally

related locations on a screen, and may contain temporally

disparate samples. While the scanpath records the tempo­
ral relationship between eye-gaze samples, it does not

generate clusters of common attentionallocations. More­
over, scanpath analysis depends upon reliable sampling; if

an eye-gaze location sample is missed, the characteristic

scanpath may be greatly altered. Scanpaths are very dy­

namic, containing refixations and circuits. Clusters favor

a more stochastic interpretation, where missed observa­

tions can be tolerated, given sufficiently large clusters.

There are several ways in which clusters are formed,

and, given the importance ofcluster formation and analy­

sis in eye-gaze research, we describe some ofthem below.

Modeling eye-gaze clusters by k means. Latimer
(1988) described a k-means method for cluster analysis

based upon the earlier work ofMacQueen (1967). First, the
number of clusters in a distribution must be estimated,

along with their mean X/Y locations. These are subjec­

tively estimated from plots, and they define the initial con­

ditions for further analysis. Each data observation is then

assigned to the'nearest cluster on the basis of minimum

Euclidean distance. The cluster mean X/Y statistics are

updated with each subsequent assignment. From experi­

ence with this algorithm, the cluster means gravitate to­

ward the spatial modal locations among the data. Latimer

also presented further information on theoretic metrics

for avoiding initial subjective estimates.

Tullis (1983) used a k-means, nearest neighbor approach

for grouping alphanumeric characters on a display. Used

for interface complexity analysis, this algorithm was based

upon methods discussed by Zahn (1971). The Euclidean

distance was computed between each observation and its

nearest neighbor. A graph was formed by connecting any

character pairs separated by less than a threshold value,

(B)

Figure 1. Two interpretations of an identical sample of eye-gaze locations: (A) tem­
poral scanpath record, and (B) minimum spanning tree from graph theory.
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typically twice the mean distance. A group of characters

was then defined as a set of interconnected characters. This

method was quite rapid, as the number of screen character

locations was relatively small compared with graphical

clustering methods that have much more spatial uncertainty.

The k-means approach can rapidly compute spatial

cluster means, but may be criticized on the basis of flexi­

bility and data representation issues. Once a series of ob­
servations is connected into a common cluster, regular

search ofthe data points within a cluster is difficult. Clus­

ters contain closed circuits of interconnections, making it

difficult to span the data efficiently.The clustering approach

used by Tullis (1983) is nonadaptive in that criterion or

minimum threshold distances for separation ofclusters is

based upon statistics from the entire data graph as op­

posed to local data alone. Thus, graphs with local changes

in data density will not separate into intuitive clusters.

Modeling eye-gaze clusters by minimum spanning

trees. Zahn (1971) also described general algorithms for

locally adaptive clustering methods. These usually require

the initial formation of a minimum spanning tree (MST)

prior to a locally adaptive search for clusters. The MST ap­

proach provides greater flexibility and control than does

the k-means approach. These advantages include: (I) effi­

cient tree search as the number of nodes becomes large,

(2) user-controlled nonconsideration ofnodes near cluster
edges, (3) cluster separation based upon locally adaptive

criteria, (4) potential for introducing additional cluster

characterization parameters, and (5) no closed circuits (i.e.,

a branch never reconnects with an existing tree).

Modeling eye-gaze clusters by other approaches.

Although cluster creation can be a data-intensive, highly

quantitative process, justification of the final validity ofa

set of clusters is necessarily intuitive. Other valid cluster­

ing methods have been introduced for specific applications.

For example, Ramakrishna, Pillalamarri, Barnette, Birk­

mire, and Karsh (1993) developed an algorithm to de­

scribe user-selected clusters of fixations. After the user

forms a desired set offixations, the program computes the

vertices of a convex polygon containing all cluster loca­

tions. Cluster characterization variables include height

and width, mean fixation position (both unweighted and

weighted by time), area, and other indices. Scinto and Bar­

nette (1986) used a similar subjective strategy for decid­

ing whether fixations were part of the same cluster. They

specified the minimum number of fixations required to

establish a cluster and the minimum distance permitted
between fixations before separation into multiple clusters.

The program coupled adjacent clusters, as in a hierarchical

clustering algorithm (Johnson, 1967). Belofsky and Lyon

(1988) presented a rule-based algorithm for predicting vi­

sual attention clusters in an instrument-monitoring task.

Major transitions between clusters were used to continu­

ously update the size ofeach cluster. In effect, the system

"learned" to discriminate legal transitions between instru­

ment displays from underlying noise. Neural network­

based approaches for cluster separation (e.g., Vinod, Chaud­

hury, Mukherjee, & Ghose, 1994) also hold outstanding

promise due to their inherent ability to adapt to local clus­

ter features.

Objective
The ultimate goal ofthis research is to determine whether

signature characteristics of eye gaze precede user-driven

interface operations such as zoom in or zoom out, and to

harness them to control these operations. The objective of
the present study was to develop and demonstrate a flexi­

ble off-line analysis methodology that could stimulate the

development ofon-line techniques for discriminating real­

time user intent. For example, if a stable zoom-out discrim­

ination heuristic were discovered in the off-line proce­

dures presented here, the heuristic could be programmed

into a very rapid on-line zoom-out discrimination demon­

stration. Little emphasis was placed here on the speed of
software operation; great emphasis was placed on flexibly

locating marker variables that could be used to advantage

in later, faster on-line discrimination techniques.

PROGRAM DETAILS

Overview of Zoom Intent Modeling
The approach used here for inferring whether an oper­

ator would like to zoom in, zoom out, or do neither differs

substantially from prior eye-gaze interface control method­
ologies. A multistep modeling procedure is used, as de­

tailed in Figure 2. While the display is being viewed, a

time-limited sample ofX/Y monocular eye-gaze locations

is collected, at the maximum sampling rate of the eye­

tracking system (e.g., 30-60 Hz). The remainder of the

intent-discrimination analyses were performed off line,

allowing a broad search for variables that might impact

the zoom-intent discrimination. Using Prim's algorithm

(adapted from Camerini, Galbiati, & Maffioli, 1988), the

spatial locations are connected to form a graph, forming

an MST without circuits. The MST is separated into mul­

tiple clusters on the basis ofadaptive and defined statisti­

cal tests. For each cluster, an associated mean X/Y loca­

tion, mean and standard deviation (SD) diameter, mean

and SD pupil diameter, and other parameters are com­

puted. Clusters are formed and characterized from each

subsequent (and possibly overlapping) sample, defining

separate frames. As an additional step, clusters are mapped

between frames on the basis ofminimum distance, with each

cluster ofa frame mapped to a corresponding cluster in its

preceding data frame. Multiple discriminant analysis next

provided a means for classifying zoom conditions and

providing heuristics for the separation functions. Emergent
heuristics may be user dependent or trainable, or may be

generalized to a broader population given similarities in

natural eye-gaze tendencies among users. Future research

will determine if such between-user similarities exist.

The zoom distinction is made by analyzing changes in

clusters between frames. As an example, it might be ex­

pected that a user will focus his attention in smaller and
smaller areas over time to signal an area to zoom in on. Con­

versely, focusing one's attention toward the outer areas ofa
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Eye-Gaze Sample

Frame N

Cluster Formation

and Characterization

Cluster Formation

and Characterization

Multiple Discriminant

Analysis

No Zoom, Zoom-in,

or Zoom-out

Multiple Discriminant

Analysis

-+-

Figure 2. Conceptual steps of zoom-discrimination process, for two arbitrary data frames,
NandN+l.

window may signal a desire to zoom out. Computable for

any set ofcluster characteristics (including changes in char­

acteristics between frames), the multivariate data analysis

(MDA) can define the criteria for best separating the zoom­

in, zoom-out, and no-zoom conditions. These are displayed

by projected lines onto variable scatter plots. Code for the

MDA, adapted from Murtagh and Heck (1987), assigns the

zoom groupings to the closest group mean in discriminant

function space, using the Mahalanobis distance.

MST Formation Algorithm
The MST is formed using Prim's algorithm (see Camerini

et aI., 1988). Below, nodes are defined from the set ofun­

connectedX/Yeye-gaze samples, and vertices are from the

connected graph. In effect, the search space increases with

the number ofnodes, but decreases with increasing num­

bers ofvertices. An edge ofthe graph is created with each

vertex-node connection.
1. Starting at an arbitrary node, search the entire set of

nodes for minimum Euclidean distance from the vertex.

Connect this node to the starting vertex, forming the ini­

tial edge.
2. Remove the connected node from a list of available

nodes, and add it to a list ofgraph vertices.

3. Find the minimum Euclidean distance, across all ver­

tices and nodes, from a connected vertex to an uncon­

nected node, and connect these.

4. Continue with Step 2, until no more nodes exist or

the number of vertices is equal to the original number of

nodes. For n original nodes, n - 1 edges are created.

MST Search Algorithm
The connected MST can be searched to generate edge

length mean and SD statistics. The MST is recursively

spanned via depth-first searching, an efficient and sys­

tematic technique for visiting all vertices ofa graph (Gib­

bons, 1984). Figure 3 displays an MST with numerical la­

bels for the first 10 vertices searched, starting from an
arbitrary vertex. .

1. Start at an arbitrary vertex (Vertex 1 in Figure 3) and
label as level o.

2. Visit the first vertex connected to the parent vertex

(Vertex 2). If such a vertex exists, increment and label its

level. If no such connected vertex exists, decrement the

level and return to its parent vertex. Ifthe level is negative,
the search is completed.

3. Continue exploring sibling branches at a parent node

until all branches have been explored, then return to the

prior parent vertex. In this manner, a vertex is revisited

only by returning via edges that have already been tra­
versed (Gibbons, 1984, pp. 20-21).

Figure 3. Sample minimum spanning tree, showing depth-first
search order for the first 10 vertices, starting from Vertex 1.
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4. When all branches at a vertex have been visited, the

maximum branching depth can be defined from the max­

imum value oflevel. In Figure 3, the maximum branching

level from Node 1 is 5 (achieved at Vertex 6).

Statistics such as mean and maximum branching depth

can provide a means for characterizing the size and shape

of clusters, rather than just defining cluster location.

Cluster Formation Algorithm
Clusters are formed by iteratively determining if each

edge is longer than its local neighbors, ensuring that clus­

ter formation is adaptive to local graph vertex densities.

The cluster formation algorithm requires user-selected

values for branching depth (BD), edge ratio (ER), and edge

standard deviations (ESD), as explained below.

1.The data frame sampling is defined by user input val­

ues for sample size and sample offset. A frame of vertices

of sample size is offset from the prior frame by the offset

(except the initial frame, which has no offset). If the sam­

ple size and offset are equal, each sample is nonoverlap­

ping, containing no vertices from the prior sample. If the

offset is zero, one frame sample is repeatedly analyzed.

Typical offsets of 5-10 observations for sample sizes of

15-30 observations provide sufficient memory between

data frames for smooth cluster transitions. At 30 Hz, 15

frames represent a 0.5-sec sample of eye-gaze locations.

2. To be considered a potential cut edge separating two

clusters, an edge, e, defined by vertices i and}, must meet

or exceed user-input branching depth requirements; oth­

erwise, it may be too close to the border of the MST. An

edge that does not meet this requirement is not further

considered as a potential cut edge. Starting with vertex i,

the graph is searched in a direction away from e. Each suc­

cessive connection away from the vertex forms a deeper

level connection, as explained for the MST search algo­

rithm. To fulfill the branching depth requirement, level ~

(A)

BD, for both vertex i and vertex}. Figure 4 shows an ex­

ample set of identical graphs for BD = 3 (Figure 4A) and

BD = 1 (Figure 4B). Smaller values ofBD effectively de­

crease the number of considered edges when generating

local means and SDs. Small values of BD (e.g., 0 or 1)

minimize or defeat the depth check, allowing potential

cut edges to lie at or near graph boundaries. Larger values

of BD (e.g., > 5) effectively require that potential cut

edges lie well embedded within the graph, and that com­

puted clusters contain a large number of vertices.

3. The potential cut edge is now compared to determine

ifit is long enough to separate two clusters. Note that, due

to its lack ofconnected circuits, the MST data representa­

tion ensures that a cut edge separates no more than twoclus­

ters. Repeating the depth-first search described above,edges

are collected starting at vertices i and}, proceeding up to

a branching depth ofBD, in a direction away from e. The

mean and SD edge lengths are computed from this edge

set. The edge is a cut edge if two criteria are satisfied:

Length/mean edges> ER

and

Length> mean edges + ESD (SD edges). (1)

Values of ER and ESD in the range of 2-4 provide in­

tuitively conservative cluster separation. Larger values

force clusters to be separated by greater distances. Increas­

ing ER relative to ESD places more emphasis on mean

distance than on edge-length variance for cluster separa­

tion. The presence ofboth ratio and variance criteria pro­

vide dual mechanisms to control the clustering process.

Statistical assumptions underlying the cluster criteria

tests are minimal. Large edge samples, created from large

sample sizes and values of BD, produce relatively sym­

metric distributions ofedge lengths with smaller mean edge

variance than smaller samples. Edge-length samples may

(B)

Potential Cut Edge

Considered Edge

Non Considered Edge

Figure 4. Example graphs, illustrating effect of branching depth (BD) on the clus­
tering process (sample size =20). (A) BD =3, on each side of a potential cut edge, pro­
ducing 14 local edges from which a mean and standard deviation are obtained.
(B) BD = 1, producing only 4 edges for computation of the statistics.



be skewed,regardless of their sample size, due to a small
number of extremely long edges. In these cases, means

will likely be small and have larger SDs. Here, the mean

edge (but not the SD) criteria are easily met. Thus, smaller

edge-length samples result in more conservative cluster

separation than larger edge-length samples. To guard

against excessive skewness in the edge-length distribu­

tions, the user can input the number ofSDs from the mean

edge length, beyond which edge lengths are considered

outliers in the cut-edge decision. This outlier criterion is

individually computed for each considered edge.
The algorithm finishes by computing a set of statistics

for each cluster, shown in Table 1. The M
d

measures the

physical size of a cluster using the absolute distance sep­

aration ofeach node from its cluster mean. The SDd mea­

sures the variation about this distance; small means with

small variation indicate tightly clustered vertices, as op­

posed to those from small means and larger variation. This

set of generated cluster statistics provides a rich variable

environment for subsequent discrimination algorithms.

The MST data representation was required to generate

this variable set.

Cluster Mapping Algorithm

In addition to discrimination within sampling frames,

the zoom-discrimination methodology can detect regular

changes in clusters between successive sampling frames.

Each cluster within a frame is mapped or identified with

a cluster in its preceding frame. Figure 5 presents three

data frames, with cluster mappings noted by arrows. This

is a visually intuitive process, as enlarging, moving, or

contracting clusters are quite apparent when inspecting

across data frames. The computer used here cannot effi­

ciently consider every shape and detail characteristic con­

sidered by the human eye. Instead, the present algorithm

maps these clusters using constrained minimum separa­

tion distance, assigning clusters to each other whose spa­

tial means are the closest between two frames. Intuitively,

the outcome ofthis algorithm agrees quite well with those

produced from visual inspection. Conversely, those cases

where mapped clusters are separated by longer distanees

are also harder to visually map. The steps ofthis algorithm

are presented below.
1. The mapping algorithm starts with two adjacent data

frames, each containing a set of clusters. Using M; and

My, the shortest Euclidean distance to each first-frame
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cluster is found for each cluster in the second frame.

These clusters are matched.

2. The same matching is then repeated in the opposite

direction, except that no match is made if two clusters are

already mapped to each other.

3. The set of remaining intercluster distances is then

sorted in ascending order, with the maximum number of

cluster mappings defined by the maximum ofthe number

of clusters in each of the two frames.

4. The remaining cluster mappings are assigned by de­
scending the intercluster distance list from shortest to long­

est distances. On the first pass through the list, those clus­

ters that are uniquely present among list members from
the first and then second frame are assigned.

5. Remaining cluster mappings for which duplicate

clusters exist in either frame are now assigned until all

clusters have been assigned. The algorithm ensures that all

clusters are assigned, and that minimum intercluster dis­

tances are used.

Pooled cluster option. A pooled cluster option is
also available. In this case, statistics from each of the clus­

ters within a frame are pooled by computing means,

weighted by the number of vertices in each cluster. Each
frame is then only represented by one cluster, which ex­

presses the central tendencyof cluster characteristicson that

frame.The interframemapping procedure proceedsbymap­
ping this pooled cluster to the prior frame's pooled cluster.

A pooled cluster differs from a characterization of the
unclustered graph on a frame. The entire graph in many

cases contains several clusters, separated by relatively long

distances. The mean distance from vertices to the spatial
center of the graph does not represent individual cluster

characteristics, as does the pooled cluster option. Note

that in cases where the input number of data samples per

frame is larger than the number ofsamples on a trial, only

one cluster and data frame are created.

Interpretation of mapped clusters. The mapping of

clusters between data frames provides a basis for a second

set of variables that may track changes in cluster charac­

teristics from frame to frame. For example, increasing

cluster sizes produce positive values for changes in Md'As

dynamic entities, clusters may also expand, absorbing

other clusters, or contract, spawning new clusters. These

changes are consistent with interframe switches in atten­
tion, which may broaden or contract to specific display

areas. The pooled-cluster option automatically maps the

Symbol

Table 1
Statistics Generated From Each Individual or Pooled Cluster

Symbol Meaning Units Brief Description

Number of vertices Number of verticeswithin cluster
Mean X pixels Mean X spatial locationof cluster
Mean Y pixels Mean Yspatial location of cluster
Mean edge length pixels Mean edge length within cluster
SD edge length pixels SD edge length within cluster
Mean vertex distance pixels Mean distance from vertex to X/Y mean
SD vertex distance pixels SD distance from vertex to XIY mean
Mean pupil diameter mm Mean pupil diameter of cluster samples
SD pupil diameter mm SD pupil diameter of cluster samples
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Frame 1 Frame 2 Frame 3

® 8
88- Et)-

Figure 5. Example of interframe cluster-mapping process, based upon minimum
distance between spatial means of clusters.

representative cluster on a frame to that on the preceding

frame, and an aggregate interpretation of attentional

changes is appropriate.

MDA Modeling
The objective of MDA is to discover discriminating

axes that will achieve optimal separation among prede­

fined classes. A discriminant function minimizes within­

group variance while maximizing the distance between

class means (or between-group variance). The zoom-in,

zoom-out, no-zoom discrimination creates three classes;

at most two discriminant functions are computed in this

case. The second function is used only when it adds sub­

stantially to the discriminatory power ofthe solution. Lin­

ear discriminant functions were computed to optimally

separate the zoom classes. The MDA used here, adapted

from code presented by Murtagh and Heck (1987), at­

tempts to classify observations into one ofthe zoom classes

on the basis ofa user input set of2-5 model variables. The

data used here were from an experiment in which the group

membership ofeach observation was known a priori. The

MDA classification is therefore a descriptive methodol­

ogy here, and the input data are treated as a training set for

MDA classification under a supervised classification par­

adigm. Classification criteria are developed with the train­
ing set, and can then be used to predict group membership

for observations where membership information is un­

known. If similar zoom-in criteria were discovered across
individuals and situations, the resultant classification

heuristic could be programmed into on-line application

programs for rapid discrimination.

Each observation may be derived from either an indi­

vidual or a pooled cluster. In addition, frame-to- frame dif­

ferences in each ofthese can be modeled. No distributional

assumptions or other properties are necessary with regard

to the data.

MDA Visualization
The classification criteria are specified using projec­

tions ofthe class means into discriminant function space.

Each point in discriminant function space is assigned to

the nearest class mean. However, the criteria are of little

value in discriminant space and must therefore be translated

into parameter space. Criteria are described in the para­

meter space as the intersection ofa pair oflinear inequal­

ities containing all input variables. Each inequality defines

a region in the parameter space separated by a hyperplane.

Figure 6 shows a typical linear separation for three classes

and two discriminant functions in three-parameter space.

Three half-planes partition the three-dimensional parame­

ter space into three regions. When only one discriminant

function is used, two parallel planes always separate the

three classes. One class is then bounded on two sides; the

others are bounded on only one side.

The decision criteria from the MDA are shown in Fig­
ure 6 as three linear functions separating the group means.

When more than three input variables are used, the classi­

fication criteria shown on a single plot represent a slice

across the hyperplane separators at the grand mean of all
variables not shown on that plot. Normally the linear sep­

arators will capture class differences, but separation is not
guaranteed in a two-dimensional plot. It is possible that a

class mean will fall on one side of a linear cut but on the
other side of a hyperplane in depth.

MDA Significance
The ability of the discriminant functions to classify the

three zoom conditions is measured from a confusion ma-

600

Mean X

400

Mean

Distance

Mean Y
500

Figure 6. Three-dimensional representation of multivariate
data analysis zoom classification for three input variables: mean
X, mean distance, and mean pupil diameter.
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Q = (N - nK)2/N(K-l) = (N-3n)2/2N, (2)

Table 2
Example Confusion Matrix and Statistics

MDA Assignment % Correctly

Actual No Zoom Zoom In Zoom Out Predicted

H o:P(zoom-in) = P(zoom-out) = P(no-zoom) = .33.

Hi: At least one condition had P > .33.

The test statistic was:

of an algorithm will require routinely accurate classifica­
tion on both training and new data.

SYSTEM HARDWARE AND
EXPERIMENTAL DATA COLLECTION

Eye-Gaze Apparatus

Eye-gaze data are collected from an unobtrusive cam­

era mounted below a workstation display. Figure 7 shows

the major components of the data-collection system. The

camera system (LC Technologies, Inc., Fairfax, VA)emits

an invisible infrared light. The pupil and glint produced
from the IR reflection off the cornea provide the system

with sufficient data to compute a gaze angle, following
calibration. The camera is interfaced to a host 386 PC, via

a video digitizer card. The PC sends eye-gaze data across

an RS-232 port to a Sun Spare 2 workstation. The appli­

cation software, written in C, read the data from the serial
port while presenting and recording the experiment.

The present eye-tracking system has an average angu­
lar bias error of .45°, translating to .15 in. at a 20-in. eye­

screen distance. Its tolerance to head motion, without head

tracking apparatus, is about 1.5 in. laterally and vertically,

and .5 in. in depth. A chinrest is currently used to stabilize

the head during viewing. With head-tracking hardware, this

tolerance can be increased to 10-18 in. The system works

equally well with or without glasses or contact lenses.

47
73

64

62

10

7

22

9

28

7

17

3
5

Overall

No Zoom

Zoom In

Zoom Out

Note-Q = {I 08 - 3*67)2/2*108=40;p<.001.

trix, as shown in the example in Table 2. This matrix tal­

lies predicted versus actual observations in a 3 X 3 ma­

trix, with successfully classified observations located on

the diagonal of the matrix. Predicted observations were

assigned from heuristics obtained from the mapped dis­

criminant functions; observed data were the actual train­

ing data. The significance of the discriminatory power

can be measured using a test statistic presented by Press

(1972, pp. 381-383). The hypotheses for the present prob­

lem are:

where N, n, and K, respectively, are number of observa­

tions classified, number of observations correctly classi­

fied, and number ofclassification groups (always 3 here).

The statistic is distributed chi-square with 1 df (Press,

1972). A significant rejection ofHo in favor ofHI is evi­

dence that the MDA classifies observations significantly

better than chance. The greater the value of Q, the better

the classification. Note that the example shown here is for

illustration only; the classification success will probably

decline with new observations. Practical implementation

Data Collection

Initial gaze-point calibration required viewing several

known locations on the application computer display

screen. The calibration was automatically repeated until a

criterion distance accuracy was achieved. These calibra­

tion indices were sent over the serial port to a host PC file.

Actual data collection then ensued, following explanations
and practice trials.

Togenerate sufficientdata to test the zoom-discrimination

methodology, the experimental procedure presented about

Host
Eye-Tracking

Software

Application
Eye-Tracking

Software

Host Computer
(IBM 386)

RS-232
Application

Computer
(Sun Sparc 2)

Figure 7. Block diagram of eye-gaze apparatus.
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100 trials to each participant. The participant controlled
the "s" and "d" keys with his/her left hand, and the left and

right mouse buttons with his/her right hand. At the start of

each trial, a simple test shape, which was to be memorized,

was displayed for 2 sec. The shape spanned 20° of visual
angle at the 20-in. viewing distance. Following a short

pause, a comparison shape was presented. The experi­
mental task was to determine if the comparison shape was

the same as the memorized test shape. On many occa­

sions, sufficient information was presented in the com­

parison shape to allow the participant to respond "s" for

"same" or "d" for "different." On other occasions, how­

ever, a zoom in (by pressing the left mouse button) or zoom

out (right button) was necessary to gain further informa­

tion about the comparison shape. An "s" or "d" response

was then made following the zoom operation. Eye gaze

was collected only from the appearance of the comparison

shape, and collection terminated with the first keypress

event. In this manner, only eye-gaze locations immediately

preceding a zoom-in, zoom-out, or no-zoom decision

were considered in subsequent analyses.

EXAMPLE RESULTS

A commented example of one individual's results is
provided below, showing actual screen graphics. These

example results are provided to illustrate the methodology's

capabilities, as opposed to providing a general solution to
the zoom-discriminationproblem. Convergingresults across

many individuals and conditions will be necessary to pro­

vide a general zoom-discrimination solution, which may

(A)

then be used on line. Figure 8 illustrates the otT-lineMST

and cluster formation, under two sets of criteria, using a

sample size of 30. Eye-gaze locations are shown here as
small circles located with respect to the viewed shape, and

ofsize proportional to the pupil diameter at each location.

In Figure 8A, input values ofBD, ER, and ESD were each

equal to 3. Only one cluster, illustrated by a circle of ra­

dius M
d

, was created from the MST. When BD and ER

were decreased to a more liberal value of 2 (Figure 8B),

the same MST was divided into two clusters, separated by

one cut edge. Currently, a cluster may be as small as 2
samples, spanning a diameter of I pixel.

Following cluster formation, characterization, and inter­

frame mapping, clusters may be plotted by experimental

trial. Figure 9 shows clusters from two example trials under

different clustering conditions. Observation of clusters by

trial is important for developing theories underlying user in­

tent discrimination. For example, Figure 9A shows clusters

superimposed on a viewed shape just prior to zooming out,

over a 1.5-sec period. Illustrating one cluster per frame

across three frames, the observer started beneath the center

of the shape, then moved his attention toward the center.

During this time, the cluster size initially decreased, then in­

creased. Figure 9B shows three data frames superimposed

on a shape just prior to a zoom in. Here a more complex set
of2-3 clusters per frame were observed over a 1.2-secpe­

riod; the frame sizes were 0.4sec here. Cluster sizes wereini­

tially large, then became smaller, as the observer's atten­

tional focus moved to the center ofthe viewed shape.
The MDA and scatterplots provide a necessary means

for capturing the multidimensional changes observed in

(B)

Figure 8. Minimum spanning tree and cluster formation, using sample size of 30. (A) Only one cluster is generated from OD =ER =
ESD =3. (8) Two clusters are produced when OD =ER =2, and ESD =3. (8D =branching depth, ER =edge ratio, and ESD =edge
standard deviation.)
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(B)

Figure 9. Examples of cluster trends on two different trials. (A) Three data frames, each with one cluster. Each cluster contains 15
samples, representing 0.5 sec. Cluster size decreased, then increased on this zoom-out trial, as eye gaze tended toward the center of
the viewed shape. (B) A more complex pattern of clusters is shown on this zoom-in trial, containing three frames. Each frame repre­
sents 12 eye-gaze samples, or 0.4 sec; each contains two or three clusters. Attention moved in toward the center of the shape just prior
to the zoom operation, and clusters decreased in size.

the prior two figures. Figure 10 shows a two-dimensional
scatter plot for the variable pair, d MEAN X versus d AVG

DIST, on Data Frame 4 offive frames. No outliers lie be­

yond the boundaries of this plot, whose axes are bounded

by the variable mean ±3 SD. The d MEAN X is the change

in mean horizontal cluster location (pixels) between clus­

ters in Frame 4 and Frame 3, with positive values indicat­

ing temporal movement toward the right of the display.

Other variables, such as the mean X and Ypositions ofeach

cluster also provide similar, often correlated information

as the d MEAN X and Y variables, but the latter indices

may provide dynamic activity information between mapped

clusters that is not apparent from individual clusters alone.

The d AVGDIST is the change, between the same frames,

in mean distance from each node within a cluster to the

spatial mean of that cluster. Positive values indicate clus­
ters that are expanding; negative values indicate clusters

that are contracting. In this figure, each cluster on the

frame is represented as a shape; squares represent zoom­

out, circles, zoom-in, and triangles, no-zoom conditions.

The spatial means of these zoom conditions are repre­

sented by smaller dark symbols, corresponding to the

symbols ofthe zoom conditions. The embedded numbers

are the trial numbers on which each cluster appeared.

The MDA, computed from the two plotted variables, is

overlaid on the example data in Figure 10 as a set of three

decision lines. Because only two variables were used in the
MDA, the solution is coplanar or two-dimensional. Three

variable pair plots are displayed if three variables are en-

tered, providing a three-dimensional solution; entering four

or five variablesprovidesa hyperplane solution that is harder

to visualize. As indicated by the confusion matrix on the

right side ofthe figure, the model correctly assigned 17 of

the 26 clusters (65%) to their correct zoom conditions in

this example (X2 = 12,p < .001). The MDA solution used

two eigenvectors to separate the three zoom conditions.

The decision functions essentially form a heuristic, shown

at the lower right ofthe figure, which may be used to clas­

sify new observations (given that one is satisfied with 65%
accuracy). To illustrate, these heuristics were:

Do not zoom if:
-.41.(dMEANX)+ 1.43 (dAVGDIST)< 1O.45,and

1.03 (d MEAN X) > 7.81.

Zoom in if:
-.41 (d MEAN X) + 1.43 (d AVG DIST) > 10.45, and

-.18 (d MEAN X) + 1.32 (d AVG DIST) > 11.21.

Zoom out if:
1.03 (d MEAN X) < 7.81, and

-.18 (d MEAN X) + 1.32 (d AVG DIST) < 11.21.

The MDA, for this example, counterintuitively assigned

zoom in to clusters that expand between frames, and either

zoom out or no zoom to contracting clusters. The separa­

tion between zoom out and no zoom was based on inter­

frame changes in horizontal cluster position for contracting

clusters. Right shifts indicated no zoom; left shifts indi­

cated zoom out. Again, this example heuristic is provided
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for illustration only; converging results across many indi­

viduals and conditions are necessary prior to further gen­

eralization of results.

The analysis and visualization application also offers a

no-graphics option, which presents only the results of the

analysis ofthe confusion matrix for all combinations ofup

to five input model variables. Results are rapidly pre­

sented for these variable subsets, allowing rapid identifi­

cation and plotting of the most important variables from

the MDA procedure.

DISCUSSION

An off-line analysis methodology for discrimination of

zoom intent was illustrated here as an initial attempt to un­

derstand eye-gaze characteristics for subtle computer in­

terface control operations, cursor positioning, and object

selection. The discrimination was performed from a multi­

step clustering, cluster characterization, and MDA across

frames of collected data. This general methodology holds

potential advantages over temporal criterion-based dwell­

time selection techniques (e.g., Frey et al., 1990; Hutchin­

son et al., 1989; Jacob, 1991), which can be relatively slow

and cumbersome.

Cluster Analysis
Analysis of eye-gaze clusters allows an assessment of

changing attentional focus at a computer interface. As an

alternative tool to scanpath analysis, the dynamic mecha­

nisms of cluster movement, contraction, and expansion

were captured by the present methodology.

The multiple cluster formation and characterization

methods used here relied heavily upon the spanning tree

methodologies discussed by Zahn (1971). As opposed to

the more subjective techniques often used for cluster eye­

movement data (e.g., Belofsky & Lyon, 1988; Ramakrishna

et al., 1993; Scinto & Barnette, 1986), the MST-based tech­

nique allows automated clustering based upon controlled

comparison of local samples of eye movements. Efficient

clustering algorithms (e.g., Camerini et al., 1988) have al­

ready been developed in other application areas, easing

some of the burdens of developing new methodologies.

The relatively slow MST-based clustering used here

provided a great deal of flexibility in cluster characteriza­

tion, and a means for generating multiple clusters for this

exploratory work. Faster approaches to clustering are

possible, such as generation of best fitting ellipses from

variance-eovariance matrices among eye-gaze samples,

but these were rejected in favor of the more flexible MST

approach used here. Future work will develop real-time

discrimination methods using faster clustering schemes.

Extensions to the cluster characterizations used here are

numerous. While all clusters were represented here as cir­

cles, ellipses or polygons with an angular orientation may

better characterize lines of movement over time. Charac­

terization ofthese clusters could then include angle, minor,

and major axes. Clusters were mapped between frames,
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here, on the basis ofclosest distance, but an algorithm also

comparing other features, such as size or shape, may more

accurately track rapidly moving or changing clusters.

MDA Classification
The MDA forms an integral component of this explor­

atory user-intent discrimination methodology, on the basis

of its ability to generate optimal decision criteria that si­

multaneously consider many dependent variables. While

some conditions may require only a two-variable model for

accurate zoom-condition assignment, others may require

a five or more variable hyperplane solution. In addition to

its ability to consider multiple variables, the MDA can be

rapidly computed, using efficient algorithms (e.g., Murtagh

& Heck, 1987). Used here in off-line discriminant analy­

sis, the MDA provides significant flexibility in discovering

which cluster-based variables are important and in the gen­

eration ofquantitative heuristics. Eventual agreement in the

discriminating variables and resultant heuristics across in­

dividuals and conditions will allow simple hard coding of

the discrimination criteria and rapid on-line decisions.

The logical extensions to the present off-line MDA meth­

ods are nonlinear analysis and improved visualization.

Rather than optimally separating observations among con­

ditions by linear discriminant functions, the nonlinear meth­

ods can fit quadratic or higher order functions. Given well­

separated, nonoverlapping observations between the zoom

conditions, the nonlinear functions should provide im­

proved classification and significance for more error-free

assignments. Improved decision space visualization can

aid the interpretation of three or more space decision sur­

faces. Additional visualization tools can aid in comparing

heuristics between individuals in order to generate com­

posite, across-user heuristics.

Improved Zoom Classification
While only extensive exploration ofthe present method­

ology across a broad range ofusers, conditions, and stim­

uli will determine whether a static set of decision heuris­

tics can be defined, additional within-user classification

methodologies may also hold promise for decision heuris­

tics that may be highly nonlinear. For example, a neural

network could substitute the MDA in the present method­

ology. Following a short calibration period, the neural net

could effectively provide the appropriate variable weights

for efficient zoom-in, zoom-out, or no-zoom determina­

tion. The layers ofthe net could filter the 18 variables avail­

able here to the three zoom-condition groups.

User-Intent Discrimination
This study targeted zooming as a specific interface op­

eration, but the methodology presented here is potentially

broadly generalizable to other operations. For example, the

stimuli in the "same-different" judgment task could be re­

placed by those varying in rotation about differing axes.

Translation and object selection may also be studied in

the same general manner. Ultimately, an entire eye-gaze-
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controlled interface may be feasible given sufficient ex­
perimental observation. The concepts of intent discrimi­

nation could use other types ofdata, such as keystroke or

limb movements.

In all of these examples, the key to the success of this

methodology is the discovery ofnatural"signatures" ofvari­

abies that precede intended operations. The degree to which

individuals exhibit such common natural signatures will

ultimately define whether real-time procedures may suc­

cessfully supplant the off-line analysis methodology pre­

sented here. Whether all users regularly exhibit such reg­

ular eye-movement patterns preceding zoom operations is

still an open issue. Such operations as object rotation or

translation may ultimately be better suited to the discov­

ery of eye-movement signatures than is object zooming.

Considerations for Real-Time Applications

While the present work makes no claim to discovering

a practical algorithm for effective eye-movement-based,

real-time zoom control, it does provide an exploratory off­

line methodology for discovering deterministic patterns in

attentional focus preceding these operations. Given the

discovery ofan accurate and repeatable algorithm, there are
several constraints to consider prior to the development of

real-time applications. First, conservative criteria for zoom
control would both lower the chance of false zooming and

lessen the chance ofcorrect zooming. An appropriate cri­

terion, determined perhaps on the basis of costs and pay­

offs, is required. Second, a successful zoom-control dis­

criminator must distinguish both zoom in from zoom out

and any zoom from no zoom. An intermediate solution,

using a mouse or other hand control in addition to eye gaze

may provide sufficient redundancy in cases of nondis­

crimination. Third, additional eye tracking following un­

successful zoom operations may be able to indicate that

something is wrong and place the system in an error­

recovery mode.

Software Availability

The analysis software described here can be made

available to interested parties. It is UNIX-based and pro­

grammed in ANSI C. Calls are made to X-Windows rou­

tines on a Sun workstation. For further information on ob­

taining the software, contact either 1.H. Goldberg (e-mail:

jhgie@engr.psu.edu) or 1.C. Schryver (e-mail: ryv@cos­

maill.ctd.ornl.gov).
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