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Abstract
Reduced eye contact early in life may play a role in the developmental pathways that culminate in a diagnosis of autism 
spectrum disorder. However, there are contradictory theories regarding the neural mechanisms involved. According to the 
amygdala theory of autism, reduced eye contact results from a hypoactive amygdala that fails to flag eyes as salient. However, 
the eye avoidance hypothesis proposes the opposite—that amygdala hyperactivity causes eye avoidance. This review evalu-
ated studies that measured the relationship between eye gaze and activity in the ‘social brain’ when viewing facial stimuli. 
Of the reviewed studies, eight of eleven supported the eye avoidance hypothesis. These results suggest eye avoidance may 
be used to reduce amygdala-related hyperarousal among people on the autism spectrum.

Keywords  Autism spectrum disorder · Eye gaze · Eye avoidance · Amygdala · Social brain

Autism spectrum disorder (ASD) is a complex neurodevel-
opmental disorder, characterised by restricted interests and 
deficits in social interaction and social communication. A 
wide array of genetic and neurobiological factors has been 
associated with ASD, varying enormously between indi-
viduals (Constantino et al., 2021; Johnson et al., 2021; Klin 
et al., 2020). However, recent developmental studies suggest 
these heterogeneous vulnerabilities may converge on com-
mon endophenotypes, which appear prior to diagnosis and 
play a role in the development of ASD (Constantino et al., 
2021). Of these, one of the most replicable is reduced eye 
contact, with many arguing that reduced gaze to the eyes of 
others plays a role in the development of ASD (Klin et al., 
2020). However, there is conflicting evidence and contra-
dictory theories as to the mechanisms and brain regions 
involved. Where the amygdala theory of autism proposes 
that reduced eye contact results from a hypoactive amyg-
dala, which reduces the innate salience of eyes in social and 
communication development (Baron-Cohen et al., 2000), 
the eye avoidance hypothesis suggests the opposite—that 

amygdala hyperactivity causes unpleasant levels of arousal 
and this unpleasant arousal leads to eye avoidance (Tanaka 
& Sung, 2013). The current review examines literature that 
measured activity in brain areas associated with processing 
social stimuli, with a particular focus on the amygdala, in an 
attempt to determine the neural mechanisms underpinning 
reduced eye contact in ASD.

A Developmental Account of ASD

Longitudinal studies indicate that ASD’s behavioural and 
social-communicative features start to emerge from the 
second year of life, although neurobiological differences 
are apparent from as early three months (Bosl et al., 2018; 
Landa et al., 2013; Ozonoff et al., 2010; Varcin & Nelson, 
2016; Wang et al., 2018). This evidence suggests the behav-
iours characteristic of ASD may be the culmination of an 
underlying developmental process or processes, in which 
molecular and neurobiological liabilities interact with the 
environment in an iterative manner over the first three years 
of life (Constantino et al., 2021; Johnson et al., 2005, 2021; 
Jones et al., 2014; Klin et al., 2020; Shultz et al., 2018; Tiede 
& Walton, 2020). By the age of one, the typically devel-
oping brain has doubled in size and synaptic density has 
quadrupled (Petanjek et al., 2011; Pfefferbaum et al., 1994). 
Rapid brain growth during this period is not only guided by 
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genetics, but also by epigenetic processes shaped by a child’s 
interactions with the environment (Shultz et al., 2018; Szyf 
& Bick, 2013). In typical development, progressively more 
complex social interactions are scaffolded on previous social 
learning, driving development of the social brain (Constan-
tino et al., 2021; Klin et al., 2020). However, small genetic 
susceptibilities early in life can alter an infant’s interaction 
with the environment, augmenting neural and behavioural 
differences, with a cascading influence on social develop-
ment (Klin et al., 2020; Shultz et al., 2018; Whitehouse 
et al., 2021).

While there is considerable variability in phenotypic 
expression at the point of ASD diagnosis (Klin et al., 2020), 
there is emerging evidence for homogeneity in early devel-
opment mechanisms that lead to ASD expression. (Con-
stantino et al., 2021). Recent empirical data and theoretical 
accounts suggest that widely varying neurobiological and 
genetic liabilities converge upon a discrete number of endo-
phenotypes, which play a role in ASD’s development (Con-
stantino et al., 2021). If this is the case, then understanding 
these endophenotypes is critical to understanding how ASD 
develops and also how the difficulties which impact quality 
of life for people on the autism spectrum may be effectively 
treated or prevented.

The Role of Eye Gaze in the Development 
of ASD

A number of endophenotypes are potentially linked to the 
development of ASD, including differences in attentional 
disengagement, motor delays and sensory disturbances 
(Constantino et al., 2021; Johnson et al., 2015, 2021; Klin 
et al., 2020; Tiede & Walton, 2020; Varcin & Nelson, 2016). 
However, the most reliably replicated early predictor of ASD 
is differences in social attention, and in particular, attenuated 
eye gaze (Klin et al., 2020; Tiede & Walton, 2020).

Reduced eye gaze as a potential endophenotype to clinical 
ASD has received great interest over many decades (Itier & 
Batty, 2009; Klin et al., 2020; Phillips et al., 1992; Schultz, 
2005; Tiede & Walton, 2020). Human babies have an innate 
preference for faces (Goren et al., 1975; Valenza et al., 1996) 
and the eye region in particular draws their attention (Batki 
et al., 2000). Relative to typically developing children, how-
ever, infants later diagnosed with ASD look less at faces 
and show reduced eye contact and gaze-following behaviour 
(Leekam et al., 1998; Merin et al., 2007; Riby et al., 2009). 
In fact, reduction in eye gaze over the first six months of 
life is correlated with the severity of later social difficulties 
(Jones & Klin, 2013). Eye gaze is likely to be critical for the 
development of social skills and higher order social-cogni-
tive abilities, such as theory of mind and perspective taking 
(refer Stephenson et al., 2021 for a review). Eyes are an 

important source of social information. Indeed, eye contact 
improves the ability to infer mental states (Adams & Nel-
son, 2016). It is also critical for initiation of joint attention 
(Hamilton, 2016)—allowing people to share experiences. 
Importantly, eye contact signals a desire to interact with oth-
ers (Mundy & Newell, 2007)—increasing opportunities for 
interaction, affiliation and social learning.

Consistent evidence supports the role of eye gaze in social 
development in both clinical and neurotypical populations 
throughout the lifespan. Gaze-following and use of eye con-
tact to establish social interaction in infancy positively cor-
relates with later acquisition of social cognition and social 
skills (Vaughan Van Hecke et al., 2007). Interestingly, a 
recent review has provided evidence that children with vis-
ual impairment experience language, communication and 
social difficulties during the second and third year of life 
and a disproportionate number of these children also exhibit 
stereotyped behaviours (Vervloed et al., 2020). It is possible 
that social difficulties in children with visual impairment 
are caused by reduced access to visual sources of social 
information. Eye contact also supports processing of social 
information and social skills during adulthood. For example, 
duration of eye contact in real life situations positively cor-
relates with adult social skills and emotion recognition accu-
racy (Cherulnik et al., 1978; Hall et al., 2010), and eye gaze 
is also linked to better face identity memory (Davis et al., 
2017). Meanwhile, studies of adults on the autism spectrum 
have found an association between reduced visual fixation 
on the eye region and greater social difficulties (Jones et al., 
2008; Speer et al., 2007).

While the role of eye gaze in the development of ASD 
has received much attention, there are conflicting theories 
on the mechanisms responsible for differences in eye con-
tact. A prominent explanation is that social stimuli, and 
especially the faces and eyes of others, are less salient for 
people on the autism spectrum (Baron-Cohen et al., 2000; 
Klin et al., 2002; Weeks & Hobson, 1987) because they are 
less rewarding (Chevallier et al., 2012; Grelotti et al., 2002) 
and/or less informative (Baron-Cohen et al., 1997; Grelotti 
et al., 2002). The amygdala theory of autism is a brain-based 
theory that claims people on the autism spectrum perceive 
faces and eyes as less salient relative to neurotypical people 
due to amygdala hypoactivation (Baron-Cohen et al., 2000). 
However, a more recent hypothesis challenges this theory. 
In 2013, Tanaka and Sung reviewed evidence of face pro-
cessing difficulties in ASD and proposed the “eye avoidance 
hypothesis” of autism. According to this hypothesis, people 
on the autism spectrum experience high levels of unpleasant 
amygdala-mediated arousal in response to direct eye contact 
and use eye avoidance as a strategy to reduce this arousal 
(Tanaka & Sung, 2013). The remainder of this review pro-
vides an overview of these competing theories and seeks to 
arbitrate between them by reviewing studies that specifically 
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measured the relationship between eye gaze and brain activ-
ity in ASD.

The Amygdala Theory of Autism

The amygdala is a subcortical brain region involved in 
rapid and non-conscious detection of stimuli with biologi-
cal, social, and emotional salience (Zalla & Sperduti, 2013). 
Magnocellular retinal ganglion cells convey biologically 
important information to the amygdala via the superior colli-
culus and pulvinar nucleus of the thalamus (Méndez-Bértolo 
et al., 2016). This subcortical pathway is involved in detec-
tion of faces, especially direct eye contact (Johnson, 2005; 
Senju & Johnson, 2009; Skuse, 2003), and is implicated 
in infant face preferences (Johnson, 2005). The amygdala 
and related subcortical regions may be especially impor-
tant for threat detection, including rapid detection of emo-
tional expressions, especially fear (McFadyen et al., 2019; 
Méndez-Bértolo et al., 2016). The amygdala, in particular, 
drives arousal responses to emotionally salient and threat-
ening stimuli (Rodriguez-Romaguera et al., 2020). Impor-
tantly, activity in the amygdala modulates cortical regions 
involved with the interpretation of social information (Had-
jikhani et al., 2017a, 2017b; Senju & Johnson, 2009). Given 
its central role in processing social and emotional stimuli, 
the amygdala has been the focus of a great deal of research 
on the neurobiological underpinnings of ASD.

We do not provide an exhaustive review of evidence sup-
porting the amygdala theory of autism in the current paper, 
as this has been done elsewhere (refer Sweeten et al., 2002). 
Briefly, advocates of the amygdala theory argue that people 
on the autism spectrum exhibit a similar profile of difficul-
ties to people with amygdala lesions. Neurotypical partici-
pants have a tendency to focus on the eye region when asked 
to make judgements about faces; for example, judgements 
of emotion or gender (Peterson & Eckstein, 2011). How-
ever, people with amygdala damage (Schyns et al., 2005) 
and people on the autism spectrum (Papagiannopoulou 
et al., 2014; Pelphrey et al., 2002; Spezio et al., 2007) spend 
less time looking at the eyes relative to controls. Moreover, 
people on the autism spectrum and people with amygdala 
damage have more difficulty in face tasks that rely on infor-
mation from the eye region, such as recognising complex 
mental states (amygdala damage: Adolphs et  al., 2002; 
Tranel et al., 1994; ASD: Baron-Cohen et al., 1997) and 
negative emotions (amygdala damage: Anderson et al., 2000; 
ASD: Ashwin et al., 2006), especially fear (amygdala dam-
age: Adolphs et al., 2002; Broks et al., 1998; Calder, 1996; 
Schyns et al., 2005; Tranel et al., 1994; ASD: Howard et al., 
2000; Uljarevic & Hamilton, 2013).

Differences in amygdala activation are also cited as 
evidence supporting the amygdala theory of autism. In 

neurotypical individuals, activity in the amygdala increases 
in response to eye contact (Skuse, 2003) and emotional 
expressions (Wright et al., 2002), particularly those that are 
negative (Morris et al., 1996). However, there is evidence 
of amygdala hypoactivation during face processing tasks in 
people on the autism spectrum (Baron-Cohen et al., 1999; 
Critchley et al., 2000). Indeed, a recent meta-analysis of 
whole brain fMRI studies concluded that the primary differ-
ence between participants on the autism spectrum and neu-
rotypical controls during face processing tasks was reduced 
amygdala activation in the participants diagnosed with ASD 
(Costa et al., 2021).

The Current Review

While there is substantial evidence in favour of the amyg-
dala theory of autism, support is building for the reverse 
hypothesis—that amygdala hyperactivity is responsible for 
eye avoidance in ASD. Recently, a systematic review inves-
tigated whether hypoarousal or eye avoidance was responsi-
ble for emotion recognition difficulties in ASD (Cuve et al., 
2018). This review found mixed evidence that reduced eye 
gaze is associated with emotion recognition impairments in 
ASD. Furthermore, there was no consistent evidence sup-
porting either hypoarousal or hyperarousal during emotion 
processing tasks. The review identified studies that inves-
tigated emotion recognition impairments using both eye-
tracking and neurophysiological measures (Corden et al., 
2008; Dalton et al., 2005; Hubert et al., 2009; Kliemann 
et al., 2012; Mathersul et al., 2013; Zürcher, Donnelly, et al., 
2013; Zürcher, Rogier, et al., 2013). Of these, three found 
evidence of hypoarousal and three found evidence of hypera-
rousal. Although, Cuve et al. (2018) mention the possibility 
that eye gaze may modulate arousal, their review did not 
attempt to disentangle this relationship. Specifically, it is 
possible that previous findings were contradictory as they 
did not control for gaze. As such, the current review assesses 
studies that measured the relationship between eye gaze and 
neural activity in ASD.

In particular, the current review asked the following 
research questions. Firstly, does eye gaze affect the locali-
sation and magnitude of brain responses to facial stimuli 
in ASD and, secondly, what are the differences in localisa-
tion and magnitude of brain activity between neurotypical 
people and people on the autism spectrum when eye gaze is 
controlled. All studies met the following inclusion criteria:

1.	 Peer reviewed study, published in English;
2.	 Use of groups of neurotypical controls and participants 

diagnosed with ASD;
3.	 Use of passive face viewing or active face processing 

tasks;
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4.	 Manipulated or directed attention to the eye region and/
or measured fixation on the eye region using eye track-
ing; and

5.	 Measured neural responses to facial stimuli using fMRI.

It is important to note that neuroimaging studies focusing 
on regions of interest (ROIs), rather than whole brain acti-
vation patterns, have been criticised for artificially inflating 
group differences and for poor replicability (Gentili et al., 
2019, 2021). To date, however, no study has compared 
whole brain responses to facial stimuli in free-viewing 
and gaze-cuing conditions. Such studies are necessary to 
understand the causal role that eye gaze may play in neural 
activation in ASD. Therefore, ROI analyses were excluded 
from the review unless they specifically compared neural 
responses in free-viewing and gaze-cuing conditions. Eight 
whole brain and three ROI studies were identified that met 
the study’s inclusion criteria (refer Table 1).

The following sections provide an analysis of key find-
ings from these studies in relation to the amygdala, as well 
neural responses in the “social brain”—a network of brain 
regions involved in processing social information in humans 
(Senju & Johnson, 2009). Unless stated otherwise, the stud-
ies reviewed use images of faces with direct gaze.

Eye Gaze and Amygdala Activity

Dalton et al. (2005) were among the first to investigate the 
relationship between gaze and neural activity in ASD. They 
assessed neural responses in participants on the autism 
spectrum and neurotypical controls across two studies using 
emotion discrimination and face recognition tasks. In both 
studies, participants on the autism spectrum spent less time 
fixating the eye region than control participants. Further-
more, fixation time to the eye region was strongly positively 
correlated with amygdala activity in participants on the 
autism spectrum, but there was no evidence of a correla-
tion in neurotypical controls. The authors concluded that eye 
contact was associated with amygdala-mediated emotional 
arousal in ASD. As a correlational analysis, however, they 
were unable to provide evidence of causality. Specifically, 
did eye gaze increase amygdala activity, did amygdala activ-
ity increase eye gaze, or did a third variable influence eye 
gaze and amygdala activity?

Subsequently, a number of studies investigated neu-
ral activity in ASD while cuing gaze to the eye region of 
faces.1 Lassalle et al. (2017) used a fixation cross overlaid 

on facial stimuli to direct gaze to the eye region of neu-
tral and emotional faces. They found that participants on 
the autism spectrum had greater activity than neurotypical 
controls in a range of brain areas, including the amygdala, 
for low-intensity fearful faces, but less activity for happy 
faces. Meanwhile, Zürcher et al. (2013a, 2013b) compared 
responses to fearful faces with averted or direct gaze in par-
ticipants on the autism spectrum and neurotypical controls. 
Like Lassalle et al., Zürcher et al., used a fixation cross to 
direct attention to the eye region of facial stimuli. Unlike 
neurotypical controls, participants on the autism spectrum 
had greater activity in the subcortical pathway (superior 
colliculus and thalamus, but not amygdala) for faces with 
direct, rather than averted gaze—indicating an overactive 
arousal response to fearful faces with direct gaze (Zürcher 
et al., 2013a, 2013b). However, participants on the autism 
spectrum showed attenuated activation of the subcortical 
pathway for fearful faces with averted gaze compared to con-
trol participants. Given fearful faces with averted gaze can 
signal an environmental threat, this hypoactivity may reflect 
difficulties with joint attention. Zürcher et al. speculated that 
people on the autism spectrum lack sensitivity to implicit 
social cues of threat.

While these two studies provide evidence of subcortical 
hyperactivity when people on the autism spectrum process 
fearful faces with direct gaze, they could not determine if eye 
gaze played a causal role in this hyperactivity because they 
did not include a free viewing control condition. In order to 
determine whether eye gaze plays a causal role in generating 
amygdala activity in ASD, a number of studies have com-
pared amygdala activity during free viewing to activity when 
gaze is cued to the eye-region of facial stimuli. For example, 
Hadjikhani et al. (2017a, 2017b) found that participants on 
the autism spectrum had greater activation of the amygdala 
and superior colliculus than neurotypical participants when 
gaze was cued to the eye region of facial stimuli, but equiva-
lent activation for free viewing—suggesting eye gaze plays a 
causal role in subcortical hyperactivation in ASD. In contrast 
to Lassalle et al. (2017), participants on the autism spectrum 
showed greater amygdala activation than neurotypical par-
ticipants in response to all facial expressions when gaze was 
cued to the eyes, including happy expressions, although the 
effect was greatest for fear. These mixed findings may result 
from use of different stimuli or analytic techniques. Where 
Lassalle et al. used static faces, Hadjikhani et al. presented 
short movies of faces morphing from a neutral to emotional 
expression. Evidence suggests that neural responses dif-
fer for dynamic and static facial stimuli (Kilts et al., 2003; 

1  Note that the terms used in the literature sometimes confound con-
structs. Specifically, visual attention is not the same as visual fixation 
because it is possible to covertly attend to someone’s eyes without 
looking at the eye region and conversely covertly attend elsewhere 
while looking at someone’s eyes (Kulke et al., 2021, 2016). This is an 

important distinction to draw in the context of empirical studies that 
attempt to manipulate visual attention by controlling gaze direction.

Footnote 1 (continued)
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Pitcher & Ungerleider, 2021; Trautmann et al., 2009). Fur-
thermore, Hadjikhani et al. used a fixation baseline for deter-
mining neural activity, whereas Lassalle used neutral faces. 
Given evidence that neutral faces may generate excessive 
amygdala activity in people on the autism spectrum (Had-
jikhani et al., 2017a, 2017b; Tottenham et al., 2014), using a 
neutral baseline may underestimate their amygdala response 
to emotional faces. Hadjikhani et al. concluded that people 
on the autism spectrum show an over-reactive subcortical 
response not only to threat-related, but also socially moti-
vating stimuli. They speculated that an overreactive amyg-
dala and consequent over-sensitivity to emotions may be the 
cause of eye avoidance in ASD.

Tottenham et al. (2014) used a combination of eye track-
ing and fMRI to measure visual fixation and amygdala 
responsiveness to angry and neutral facial stimuli during free 
viewing and when gaze was cued to the eye region. During 
free viewing, participants on the autism spectrum were less 
likely to direct gaze toward the eye region of neutral, but not 
angry faces. While Tottenham et al. found amygdala activ-
ity was greater in participants on the autism spectrum than 
neurotypical controls for both the free viewing and experi-
mental conditions, gaze manipulation magnified this differ-
ence in the case of neutral, but not angry faces. Importantly, 
increases in amygdala activity during gaze manipulation 
were greatest for participants who directed their gaze least to 
the eyes of faces during free viewing. The authors concluded 
that eye contact causes a heightened emotional response for 
people on the autism spectrum and that eye avoidance is a 
strategy used to reduce amygdala-related arousal.

Interestingly, Tottenham et al. (2014) found that partici-
pants on the autism spectrum who made more eye move-
ments toward the eye region of facial stimuli during free 
viewing rated faces as less threatening, and this effect was 
largest for neutral faces. Participants on the autism spectrum 
also made significantly more errors in identifying the emo-
tions of neutral faces, with a tendency to misinterpret them 
as showing negative emotions, such as fear or anger. The 
authors interpreted these findings as representing a negativ-
ity bias for ambiguous stimuli, in line with previous findings 
in ASD (Kuusikko et al., 2009). Tottenham et al.’s findings 
suggest gaze avoidance may be related to misapprehension 
of threat in people on the autism spectrum. Importantly, 
amygdala activity during gaze manipulation was positively 
correlated with threat ratings for neutral faces. This effect 
fully mediated group differences in emotion recognition, 
suggesting amygdala hyperactivity interferes with face pro-
cessing and directly contributes to a negativity bias in people 
on the autism spectrum.

Zürcher et al. (2013a, 2013b) investigated neural acti-
vation when people on the autism spectrum attempted to 
identify Thatcherised faces. Thatcherised faces have inverted 
eyes and/or mouths, which appear unremarkable to most Ta
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observers when presented inverted, but grotesque when pre-
sented upright (Thompson, 1980). Zürcher, Donnelly, et al. 
presented pairs of inverted or upright faces to participants, 
who were asked to identify which face was Thatcherised. 
In participants on the autism spectrum, cuing gaze to the 
eyes, as opposed to the mouth, improved the ability to dis-
criminate Thatcherised from typical faces. Furthermore, 
participants on the autism spectrum, but not neurotypical 
participants, showed activity in the subcortical pathway, 
including the amygdala, pulvinar, and superior colliculus, 
when gaze was cued to the eye region of upright faces. Like 
Tottenham et al. (2014), Zürcher, Donnelly et al. speculated 
that amygdala hyperactivity may be related to misinterpreta-
tion of threat during perception of ‘grotesque’ stimuli and 
that threat bias may underlie eye avoidance in ASD.

While most studies have used an experimental manipula-
tion in which gaze was cued to the eye region for the dura-
tion of the stimuli presentation, Kliemann et al. (2012) used 
a novel paradigm. Specifically, Kliemann et al. manipulated 
participants’ starting fixation on facial stimuli (eye or mouth 
region) and measured subsequent eye movements and amyg-
dala activity using a combination of eye tracking and fMRI. 
Participants on the autism spectrum had elevated amygdala 
responses compared to neurotypical participants when start-
ing on the eye region, while neurotypical participants had 
elevated amygdala responses compared to participants on 
the autism spectrum when starting on the mouth region. Fur-
thermore, participants on the autism spectrum made more 
eye movements away from the eye region and neurotypi-
cal participants made more eye movements towards the eye 
region. Importantly, in participants on the autism spectrum, 
there was a positive correlation between amygdala activity 
and frequency of subsequent eye movements away from the 
eye region—suggesting amygdala activity is involved in eye 
avoidance, not eye fixation, in this population.

To date, most studies have provided evidence supporting 
the eye avoidance hypothesis. However, there are three nota-
ble exceptions. Perlman et al. (2011) used fMRI to meas-
ure amygdala activation while participants viewed faces 
freely or according to three different scan paths in which 
the duration of focus on the eyes was low (32%), medium 
(48%) or high (56%). Participants followed the scan paths 
by tracking a red crosshair as it jumped to new locations on 
the facial stimuli every 500 ms. Participants on the autism 
spectrum showed significantly less amygdala activity than 
neurotypical participants during free-viewing. However, 
Perlman et al. found no increase in amygdala activity dur-
ing the experimental manipulations in participants on the 
autism spectrum.

Perlman et al.’s (2011) contradictory results may be a 
product of methodological differences. Where Perlman et al. 
manipulated the duration of time participants spent looking 
at the eye region according to different scan paths, other 

studies constrained gaze entirely to the eye region (Had-
jikhani et al., 2017a, 2017b; Lassalle et al., 2017; Totten-
ham et al., 2014). Notably, amygdala activity in the control 
group declined during the gaze manipulations, such that 
there was no difference between participants on the autism 
spectrum and neurotypical controls. Given the amygdala’s 
role in directing attention to salient stimuli (Kliemann et al., 
2012), Perlman et al. speculated that the decline in activa-
tion among control participants occurred because there 
was no need for the amygdala to direct attention during 
the gaze manipulation. Other studies, however, have found 
that amygdala activity in neurotypical participants does not 
change when gaze is cued to the eyes using a fixation cross 
(Hadjikhani et al., 2017a, 2017b). Given that attention can 
modulate amygdala activity (Klumpp et al., 2012), it pos-
sible the instruction to follow a crosshair reduced activation 
during the gaze manipulations because participant attention 
was focussed on the crosshair, rather than the facial stimuli.

Other studies providing evidence against the eye avoid-
ance hypothesis have used fixation crosses to direct gaze to 
the eye region. For example, Dapretto et al. (2006) measured 
neural responses in neurotypical controls and individuals 
on the autism spectrum while they imitated or observed 
emotional faces. Like Perlman et al. (2011), Dapretto et al. 
found that people on the autism spectrum had equivalent 
amygdala activity to neurotypical participants. Meanwhile, 
Davies et al. (2011) presented negatively valanced facial 
stimuli with averted or direct gaze to children on the autism 
spectrum and neurotypical controls. A fixation cross pre-
sented prior to the facial stimuli was used to cue gaze to 
the eye region. Davies et al. found that neurotypical partici-
pants had increased activation of the amygdala and associ-
ated subcortical regions when viewing negatively valanced 
facial stimuli with direct gaze. However, participants on the 
autism spectrum did not show significantly increased activ-
ity in these subcortical regions. Davies et al. concluded that 
social-emotional processing difficulties in ASD are related to 
reduced salience of social stimuli, rather than eye avoidance. 
Importantly, however, between subject analyses showed no 
difference in subcortical activity between participants on the 
autism spectrum and neurotypical controls. As with Dapretto 
et al. and Perlman et al., Davies et al.’s results suggest that 
participants on the autism spectrum and neurotypical con-
trols experience equivalent amygdala activity when gaze 
is cued to the eyes of facial stimuli. Thus, support for the 
amygdala theory of autism is questionable, based on these 
results.

Given amygdala response may vary by emotional expres-
sion, studies that test neural responses to combinations of 
emotions (e.g., Dapretto et al., 2006; Davies et al., 2011) 
may not provide a sufficiently granular approach to under-
standing the amygdala response to eye gaze—potentially, 
explaining some of the mixed findings in this review. While 
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there is some evidence that emotional expression does not 
influence the magnitude of amygdala response to eye gaze 
in participants on the autism spectrum (i.e., Dalton et al., 
2005; Kliemann et al., 2012), other studies have found that 
amygdala response varies by emotion. For example, Had-
jikhani et al. (2017a, 2017b) found that amygdala response 
to eye gaze was greatest for fearful faces in participants on 
the autism spectrum. Meanwhile, Tottenham et al. (2014) 
found a substantial increase in amygdala response to neu-
tral faces among participants on the autism spectrum dur-
ing gaze manipulation, but no increase in response to angry 
faces. Finally, Lasalle et al. (2017) found participants on 
the autism spectrum had increased amygdala response to 
low intensity fearful faces, but decreased response to happy 
faces compared to neurotypical participants. The gaze direc-
tion of facial stimuli also appears to modulate amygdala 
response to faces in ASD. For example, participants on the 
autism spectrum tend to exhibit overactivity in the amygdala 
and/or associated subcortical regions in response to fearful 
faces with direct gaze (Hadjikhani et al., 2017; Hadjikhani 
et al., 2017a; Lassalle et al., 2017; Zürcher et al., 2013a, 
2013b). However, the subcortical response to fearful faces 
with averted gaze is attenuated, even when participant gaze 
is directed to the eye region (Zürcher et al., 2013a, 2013b). 
Based on this evidence, gaze direction and type of emotional 
expression appear to be important when considering the role 
of eye gaze in ASD.

In summary, this review provides evidence against 
the amygdala theory of autism. Specifically, none of the 
reviewed studies observed reduced amygdala activity in par-
ticipants on the autism spectrum compared to neurotypical 
controls when gaze was cued to the eyes. A recent meta-
analysis of face processing studies (based predominantly 
on free-viewing paradigms) has reported that the primary 
difference between participants on the autism spectrum and 
neurotypical controls is amygdala hypoactivation in the par-
ticipants diagnosed with ASD. The findings of the current 
review suggest these results may be confounded by gaze 
preferences among participants on the autism spectrum—
highlighting the importance of controlling for gaze in future 
face processing studies.

Meanwhile, eight of eleven studies reviewed support 
the eye avoidance hypothesis. Two studies have shown that 
amygdala activity is positively associated with visual atten-
tion to the eye region in participants on the autism spectrum, 
but not neurotypical controls (Dalton et al., 2005). Three 
studies found that amygdala activity and/or activity in the 
subcortical threat detection system was increased in partici-
pants on the autism spectrum compared to control partici-
pants when gaze was directed to the eye region of fearful or 
‘grotesque’ faces (Lassalle et al., 2017; Zürcher et al., 2013a, 
2013b). Meanwhile, studies that manipulated gaze and com-
pared neural responses to free-viewing suggest eye gaze 

may be a direct cause of amygdala hyperactivity in ASD 
(Hadjikhani et al., 2017a, 2017b; Tottenham et al., 2014). 
Finally, amygdala activity precedes subsequent gaze away 
from the eye region of facial stimuli in people on the autism 
spectrum—indicating eye avoidance is a strategy used to 
manage amygdala-mediated over-arousal (Kliemann et al., 
2012). Interestingly, effects were most consistent for neutral 
and fearful faces, including faces expressing low-intensity 
fear (Hadjikhani et al., 2017a, 2017b; Lassalle et al., 2017; 
Tottenham et al., 2014), suggesting threat sensitivity or 
negativity bias may be implicated in eye avoidance in ASD. 
Importantly, eye avoidance is likely to reduce opportunities 
for social learning among children on the autism spectrum, 
with cascading implications for development of the social 
brain (Klin et al., 2020; Shultz et al., 2018).

Eye Gaze and Activity in the ‘Social Brain’

It has been proposed that amygdala activation in response 
to eye contact influences and is influenced by the ‘social 
brain’, including cortical regions such as the fusiform gyrus, 
superior temporal sulcus, temporoparietal junction, medial 
prefrontal cortex and inferior frontal gyrus (Blakemore, 
2008; Senju & Johnson, 2009). More specifically, eye con-
tact elicits activity in subcortical regions, including the 
amygdala, which activates wide ranging cortical areas. In 
turn, cortical inhibitory systems play an important role in 
modulating amygdala responses to eye contact (Senju & 
Johnson, 2009; Skuse, 2003). Indeed, a recent study with 
neurotypical participants has shown that cueing gaze to the 
eye region of facial stimuli increases amygdala connectivity 
with the ‘social brain’ and significantly increases activity 
in these regions (Hadjikhani, Åsberg Johnels, et al., 2017; 
Hadjikhani, Zurcher, et al., 2017). This section reviews stud-
ies that measured the relationship between eye gaze and 
neural responses in the social brain among participants on 
the autism spectrum—identifying areas of the social brain 
that are ‘normalised’ by eye gaze and areas that continue to 
exhibit atypical activity.

The Fusiform Face Area

The fusiform face area (FFA), in the lateral part of the fusi-
form gyrus, is a key region of the social brain involved in 
visual perception of faces. The FFA selectively responds to 
faces over other types of objects (Kanwisher et al., 1997; 
Puce et al., 1995) and its response is increased by looking at 
eyes (Morris et al., 2007). There is some evidence that peo-
ple on the autism spectrum demonstrate FFA hypoactivity 
when viewing images of faces (Perlman et al., 2011). How-
ever, two quantitative meta-analyses found that FFA activity 
does not differ between participants on the autism spectrum 
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and neurotypical participants (Costa et al., 2021; Samson 
et al., 2012), with Samson et al. citing mixed findings and 
divergent methodologies. One methodological difference 
that may account for contradictory findings in previous stud-
ies is the duration of time that participants spend looking at 
the eyes of facial stimuli.

Indeed, evidence suggests there is a positive association 
between eye gaze and FFA activity in participants on the 
autism spectrum (Dalton et al., 2005). Furthermore, studies 
have found FFA activity in participants on the autism spec-
trum does not differ from neurotypical participants when 
cued to the eye region of facial stimuli (Dapretto et al., 2006; 
Davies et al., 2011; Zürcher et al., 2013a, 2013b). Finally, 
Perlman et al. (2011) found that FFA activity was signifi-
cantly reduced in participants on the autism spectrum during 
free viewing, but more closely approximated that of controls 
with increasing duration of eye gaze. These results suggest 
that eye avoidance plays a causal role in FFA hypoactivation 
associated with ASD. Importantly, however, these findings 
may not extend to faces with averted gaze, with evidence 
suggesting participants on the autism spectrum show less 
FFA activity than control participants for fearful faces with 
averted, as opposed to direct gaze (Zürcher et al., 2013a, 
2013b).

The Superior Temporal Sulcus and Temporoparietal 
Junction

Other key social brain regions are the superior temporal 
sulcus (STS) and temporoparietal junction (TPJ) in the 
temporoparietal cortex, which are involved in processing of 
gaze and face movement (Haxby & Hoffman, 2000; Pitcher 
& Ungerleider, 2021; Puce et al., 1998), and have been 
linked to perspective-taking (Jackson et al., 2006; Pitcher 
& Ungerleider, 2021; Ruby & Decety, 2003) and theory of 
mind (Saxe & Kanwisher, 2003). Studies have found evi-
dence of STS/TPJ hypoactivity in participants on the autism 
spectrum when viewing fearful faces (Kim et al., 2015) and 
for facial stimuli with direct, but not averted, gaze (Pitskel 
et al., 2011; von dem Hagen et al., 2014). Interestingly, 
however, Lassalle et al. (2017) found no differences in STS/
TPJ activity between participants on the autism spectrum 
and neurotypical participants when gaze was cued to the 
eye region of facial stimuli—suggesting that eye avoid-
ance may also be implicated in previous findings of STS/
TPJ hypoactivity. Lassalle et al. concluded that looking at 
the eye region modulates STS/TPJ activity in people on the 
autism spectrum such that it is resembles that of controls. 
They hypothesised that improving eye gaze might assist with 
associated social cognitive functions, such as perspective-
taking. To date, however, Lasalle et al.’s is the only study 
to specifically investigate STS/TPJ activation during a gaze 
cuing paradigm. Furthermore, their study did not compare 

experimentally manipulated gaze to a free-viewing condi-
tion. Replications using an experimental paradigm with a 
free-viewing control are necessary to confirm Lasalle et al.’s 
findings and establish causality.

The Medial Prefrontal Cortex

The medial prefrontal cortex (mPFC) is a key structure in 
the social brain implicated in regulation of emotion (Hänsel 
& von Känel, 2008) and theory of mind (Hartwright et al., 
2014). Consistent evidence from free viewing paradigms 
suggests participants on the autism spectrum experience 
mPFC hypoactivity during emotion processing and mental-
ising tasks (Castelli et al., 2002; Kana et al., 2016; Wang 
et al., 2007). However, Zürcher et al.’s (2013a, 2013b) gaze 
cuing study found that directing attention to the eye region 
of upright Thatcherised stimuli led to equivalent activation 
of the mPFC among participants on the autism spectrum and 
controls. Further research comparing gaze cuing to a free-
viewing control condition are necessary to confirm these 
findings and establish causality. Importantly, the mPFC may 
be under-connected to the amygdala for certain facial stim-
uli, even when gaze is directed to the eye region. Specifi-
cally, Lasalle et al. (2017) found a strong positive correlation 
between activity in the ventromedial PFC (vmPFC) and the 
amygdala in neurotypical participants when viewing fearful 
faces that was absent in participants on the autism spectrum.

Lasalle et al.’s (2017) findings corroborate other evi-
dence of reduced connectivity between the vmPFC and the 
amygdala in people on the autism spectrum (Li et al., 2021; 
Swartz et al., 2013). Amygdala-mediated arousal elicited by 
eye contact is inhibited by prefrontal feedback in neurotypi-
cal people (Skuse, 2003). Strong medial prefrontal-amyg-
dala connectivity, in particular, is necessary for amygdala 
inhibition (Kim et al., 2011) and habituation (Hare et al., 
2008; Swartz et al., 2013). Interestingly, several studies 
have reported decreased amygdala habituation in response 
to facial stimuli in ASD (Kleinhans et al., 2009; Lombardo 
et al., 2009; Swartz et al., 2013), with habituation to neutral 
faces correlating negatively with social difficulties (Swartz 
et al., 2013). Lassalle et al.’s findings suggest that ASD may 
be characterised by over-sensitivity to low-intensity fear, rel-
ative to neurotypicals. In the context of reduced prefrontal 
inhibition, the authors speculate that people on the autism 
spectrum compensate by using eye avoidance to manage 
strong emotional responses. Interestingly, substantial evi-
dence suggests that children on the autism spectrum often 
have difficulty with emotional regulation, which is linked 
to aggression and temper tantrums, as well as anxiety and 
depression in this population (Mazefsky et al., 2013; Samson 
et al., 2015). Atypical connectivity between the amygdala 
and the vmPFC may play a role in emotional regulation dif-
ficulties in ASD.
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The Inferior Frontal Gyrus

The inferior frontal gyrus (IFG), is another prefrontal region 
of the social brain. It is implicated in emotion perception 
and regulation (Carr et al., 2003; Chick et al., 2020; Wager 
et al., 2008), as well as the ability to use information from 
the eyes to perceive mental states (Dal Monte et al., 2014). 
In a gaze cuing paradigm, Davies et al. (2011) found that 
participants on the autism spectrum showed less activity 
than neurotypical controls in ventral areas of the IFG when 
viewing negatively valanced (angry and fearful) faces.2 
While neurotypical controls activated these regions of the 
IFG when viewing negatively valanced faces with direct, but 
not averted gaze, participants on the autism spectrum did not 
activate these brain regions in either condition. Given direct 
gaze conveys social information with immediate relevance 
to the individual, Davies et al. speculate that hypoactiva-
tion of the IFG may represent difficulty comprehending 
the communicative intent of gaze direction. Unlike Davies 
et al., Zürcher et al. (2013a, 2013b) observed robust activa-
tion of the IFG when participants on the autism spectrum 
viewed fearful faces with direct compared to averted gaze. 
Contradictory results in these studies may be the result of 
testing neural responses to different combinations of facial 
expressions. Where Davies et al. assessed neural responses 
to a combination of angry and fearful faces, Zürcher et al. 
assessed fearful faces individually. Interestingly, Davies 
et al. found that time fixating the eye region was not associ-
ated with IFG activity in participants on the autism spec-
trum, but increasing proportions of gaze toward the eyes 
relative to other facial features was associated—leaving open 
the possibility that eye gaze may be related to IFG activity 
in ASD. Gaze manipulation studies are necessary to more 
rigorously examine this possibility.

The dorsal region of the IFG, known as the pars oper-
cularis, is an important node in the brain’s mirror system 
(Carr et al., 2003). Mirror neurons are active during action 
observation as well as imitation and are proposed to facili-
tate interpretations of the intentions of others (Rizzolatti & 
Fabbri-Destro, 2010). There is some evidence that partici-
pants on the autism spectrum show attenuated activity in 
the dorsal IFG, even when gaze is cued to the eye region 
of facial stimuli. For example, Dapretto et al. (2006) found 
that participants on the autism spectrum showed hypoacti-
vation of the pars opercularis when imitating and observ-
ing emotional faces. According to mirror system models of 
empathy, when people view emotional expressions, action 

representations are relayed from the pars opercularis to 
the anterior insula, which interfaces with limbic regions 
to translate these representations into felt experience (Carr 
et al., 2003; Ferrari et al., 2017; Jabbi & Keysers, 2008). 
Interestingly, Dapretto et al. observed insula hypoactivity 
in combination with attenuated activity in the pars opercu-
laris when participants on the autism spectrum imitated and 
observed emotional faces. Furthermore, activity in both the 
insula and IFG was positively associated with social func-
tioning, as defined by higher scores on the social subscales 
of the Autism Diagnostic Observation Schedule—Generic 
and the Autism Diagnostic Interview—Revised. Dapretto 
et al. speculated that hypoactivity of these brain regions is 
associated with empathising difficulties in ASD, in line with 
the broken mirror theory of autism (Ramachandran & Ober-
man, 2006).

Importantly, however, insula and IFG hypoactivity are 
not universally observed in participants on the autism spec-
trum when gaze is cued to the eyes. Instead, activity in these 
regions appears to be modulated by a number of factors. For 
example, Zürcher et al. (2013a, 2013b) observed reduced 
activity in the pars opercularis and anterior insula com-
pared to controls when participants on the autism spectrum 
discriminated inverted Thatcherised faces, but not upright 
faces. Lassalle et al. (2017) observed IFG and insula hypoac-
tivity when participants on the autism spectrum viewed faces 
with happy expressions, but not fearful expressions. Finally, 
Zürcher et al. (2013a, 2013b) found that participants on the 
autism spectrum had attenuated activity compared to con-
trols in the pars opercularis and anterior insula when cued 
to the eye region of fearful faces with averted gaze. When 
viewing fearful faces with direct gaze, however, participants 
on the autism spectrum exhibited robust activity in fronto-
insular regions. Importantly, a recent free-viewing study 
noted equivalent activation of areas involved in affective 
empathy, including the IFG and insula, when participants 
on the autism spectrum and neurotypical controls viewed 
videos of people in pain (Hadjikhani et al., 2014). These 
finding suggest mirror regions are activated in ASD when 
viewing others in pain, even when gaze is not cued to the 
eye region. Clearly, further research is necessary to better 
understand factors that modulate neural activity in these 
regions in ASD.

Social Brain Summary and Implications

In summary, the gaze cuing studies reviewed here suggest 
that directing gaze to the eye region of faces may modulate 
activity in key areas of the social brain, including the mPFC, 
STS/TPJ and FFA, such that patterns of activation in par-
ticipants on the autism spectrum resemble those of controls 
(Perlman et al., 2011; Zürcher et al., 2013a, 2013b). These 
results indicate that eye avoidance may play a role in mPFC, 

2  Please note that Davies et al. (2011) refer to the ventrolateral pre-
frontal cortex (vlPFC), where other studies use the term IFG. Both 
areas refer to the same Brodmann areas (BA44, 45 and 47). In the 
current paper we use the term IFG.
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STS/TPJ, and FFA hypoactivation in ASD and suggest that 
interventions to improve eye gaze may have flow-on benefits 
for social-cognitive functioning in children on the autism 
spectrum (Lassalle et al., 2017). The results also highlight 
the importance of controlling for gaze in future research on 
neural differences in ASD. It should be noted, however, that 
only one of the studies reviewed in this section compared 
gaze manipulation to free viewing (Perlman et al., 2011). 
Future research is therefore necessary to clearly establish 
that reduced eye gaze plays a causal role in hypoactivation 
of these brain regions.

Importantly, some brain regions show atypical patterns of 
activity in ASD, even in gaze cuing paradigms. Specifically, 
participants on the autism spectrum show reduced connec-
tivity between the amygdala and vmPFC when viewing fear-
ful expressions—suggesting reduced prefrontal regulation of 
amygdala-mediated arousal responses may be implicated in 
eye avoidance (Lassalle et al., 2017). Furthermore, the insula 
and inferior frontal regions exhibit hypoactivity for certain 
facial stimuli, even in gaze cueing paradigms (Dapretto et al., 
2006; Davies et al., 2011; Zürcher et al., 2013a, 2013b). 
Importantly, however, hypoactivity in these brain regions 
is not universally observed. Instead, it is evident in response 
to faces with averted gaze (Zürcher et al., 2013a, 2013b), 
happy faces (Lassalle et al., 2017) and in studies that tested 
neural response to combinations of emotional expressions 
(Dapretto et al., 2006; Davies et al., 2011). Future research 
is necessary to understand factors that modulate responses 
to eye gaze in these fronto-insular regions.

Future Directions

Findings from this review provide evidence in support 
of the eye avoidance hypothesis. Most importantly, gaze 
cuing studies have shown that people on the autism spec-
trum experience amygdala hyperactivity for certain facial 
stimuli, including faces with direct gaze and fearful, neutral 
or ambiguous expressions. Furthermore, directing attention 
to the eye region of faces appears to normalise activity in 
certain areas of the social brain in ASD, although studies 
comparing gaze manipulation to free viewing are neces-
sary to confirm that reduced eye gaze plays a causal role 
in hypoactivation of these regions. As a matter of priority, 
more gaze cuing research is needed to confirm the findings 
of this review, given the small sample of studies considered. 
Moreover, given studies included in this review used sam-
ples consisting predominantly of males with higher function-
ing ASD, future studies should be conducted using more 
varied samples in order to understand factors that might 
moderate the relationship between neural activity and eye 
gaze. Notwithstanding, the findings of this review provide a 
strong argument that future research should carefully control 

for participant gaze, as eye avoidance is likely to confound 
experimental scenarios (Lassalle et al., 2017; Morris et al., 
2007).

Some important questions remain under-investigated. 
Firstly, many authors have speculated that eye avoidance 
is driven by amygdala-mediated arousal; to date, however, 
no study has directly tested whether cueing gaze to the eye 
region increases physiological arousal in people on the 
autism spectrum, relative to free viewing. Research using 
direct measures of autonomic arousal, for example, pupil-
lometry or heart rate variability, is necessary to test this 
hypothesis (Dalton et al., 2005). In addition, gaze manip-
ulation studies with free viewing control conditions have 
tended to focus on discrete ROIs (Hadjikhani et al., 2017a, 
2017b; Kliemann et al., 2012; Tottenham et al., 2014). ROI 
approaches have been criticised on the basis of increasing 
false positives and poor replicability (Gentili et al., 2019, 
2021). Furthermore, widespread differences in brain activ-
ity have been reported when people on the autism spectrum 
view faces (Lassalle et al., 2017; Zürcher et al., 2013a, 
2013b) that cannot be identified using ROI approaches. 
Future research comparing whole brain responses in gaze 
cuing and free viewing conditions is necessary to bet-
ter understand neural responses to eye gaze in the social 
brain (Gentili et al., 2019, 2021). Importantly, focussing on 
activity in discrete brain regions neglects the importance of 
interactions within the neural system (Betzel, 2022). Future 
studies addressing whole brain connectivity using systems 
neuroscience methodologies are clearly necessary to bet-
ter understand mechanisms responsible for eye avoidance 
in ASD, including the potential role of neural networks and 
brain hubs for information transfer (Johnson et al., 2021).

Research comparing neural responses to different types 
of facial stimuli, including dynamic vs static faces, faces 
with varying gaze direction, and faces with different emo-
tional expressions, is also necessary to better understand 
the response to eye gaze in ASD. Importantly, participants 
on the autism spectrum have hypoactivity in a wide variety 
of brain regions when they view fearful faces with averted 
compared to direct gaze, even when their own gaze is cued 
to the eye region of facial stimuli (Zürcher et al., 2013a, 
2013b). Given most gaze cuing research to date has used 
facial stimuli with direct gaze, it will be important for future 
studies to disentangle how neural responses vary in relation 
to gaze direction. Use of dynamic stimuli in future research 
may also be important, given dynamic face processing acti-
vates different neural pathways from static tasks (Kilts et al., 
2003; Pitcher & Ungerleider, 2021; Trautmann et al., 2009) 
and people on the autism spectrum show more pronounced 
reductions in eye fixation and brain activity when viewing 
dynamic scenes (Sato et al., 2012; Speer et al., 2007). While 
there is some evidence that people on the autism spectrum 
experience hyperactivity in key regions of the social brain 
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when viewing fearful faces, but hypoactivity for happy 
faces (Lassalle et al., 2017), gaze cuing studies have not yet 
provided consistent findings regarding neural responses to 
socially rewarding expressions in ASD. Research to clarify 
activation patterns in response to varying emotional expres-
sions may help to integrate arousal-based and social motiva-
tion theories of ASD.

Given evidence that ASD represents the culmination of an 
atypical developmental pathway, understanding its aetiology 
is best advanced through prospective longitudinal research 
initiated in infancy (Constantino et al., 2021; Johnson et al., 
2021). However, the vast majority of research, including the 
papers reviewed here, use between-subjects approaches to 
identify differences between people with and without diag-
noses of ASD. Longitudinal eye-tracking studies commenc-
ing prior to ASD diagnosis may help to better understand 
the relationship between autonomic arousal, eye gaze and 
the development of social communication difficulties. For 
example, a recent study showed that infants at risk of ASD 
have greater pupillary arousal responses to emotional faces, 
with these responses predicting greater attention to faces at 
9 months of age, but reduced attention to faces and lower 
social functioning at 18 months of age (Wagner et al., 2016). 
Additional longitudinal research is necessary to determine if 
hyperarousal in response to faces is an inherited physiologi-
cal trait with downstream consequences for eye avoidance 
and social development or, instead, a consequence of ASD 
itself.

Although preferential gaze to the eye region is highly 
heritable (Constantino et al., 2017), infants later diagnosed 
with ASD cannot be reliably differentiated from typically 
developing infants on the basis of eye gaze until 12 months 
of age (Rozga et al., 2011; Zwaigenbaum et al., 2005). In 
fact, at six months of age, infants later diagnosed with 
ASD may show greater preference for looking at faces, and 
the eyes within faces, than their typically developing peers 
(Elsabbagh et al., 2013; Ozonoff et al., 2010). However, 
eye contact in these infants declines significantly between 
2 and 24 months of age (Jones & Klin, 2013; Ozonoff 
et al., 2010), with steeper declines associated with more 
severe social difficulties (Jones & Klin, 2013). A declining 
trajectory of eye contact during the first two years of life 
suggests that genetic liabilities are not sufficient to cause 
reductions in eye gaze, but instead interact with environ-
mental factors in an iterative fashion (Constantino et al., 
2017). Furthermore, morphological studies indicate that 
amygdala volume also changes over time in people on the 
autism spectrum—with increased volumes in toddlers and 
children and decreased volumes in adolescents and adults 
(Bellani et al., 2013). It is currently unknown when in 
development amygdala overgrowth and atrophy occurs. 
However, both volume increases in children and reduc-
tions in adults have been associated with social difficulties 

(Bellani et al., 2013). In order to understand ASD’s aetiol-
ogy, longitudinal studies are necessary to track how envi-
ronmental and neurobiological factors interact to reduce 
or maintain eye gaze (Constantino et al., 2017; Jones & 
Klin, 2013).

Importantly, this future research may help to uncover pro-
tective factors that could be augmented through early inter-
vention (Constantino et al., 2021; Klin et al., 2020). There 
is emerging evidence that interventions commencing during 
the first 2 years of life, when the first signs of atypical devel-
opment are observed and the brain is rapidly developing, 
may lead to a beneficial impact on developmental outcomes 
in later childhood (Carter et al., 2011; Green, 2020; Kasari 
et al., 2014; Rogers et al., 2012; Whitehouse, 2017). For 
example, a recent randomised controlled trial found that the 
delivery of a social communication intervention to infants 
showing early signs of ASD significantly reduced the likeli-
hood of them receiving a diagnosis of ASD at age three years 
(Whitehouse et al., 2019, 2021). Given gaze cuing normal-
ises activity in some areas of the social brain, it is plausible 
that social attention therapies may also accentuate activity in 
these areas, with potential benefits for social communication 
in children on the autism spectrum. Indeed, a recent study 
has shown that social cognition training increases activity in 
key regions of the social brain (amygdala, mPFC, and insula) 
in children on the autism spectrum during social perception 
tasks (Ibrahim et al., 2021). Importantly, increases in mPFC 
activity were associated with increases in social functioning, 
as measured by the Social Responsiveness Scale (Ibrahim 
et al., 2021). Greater understanding of the cognitive and bio-
logical underpinnings of differences in eye contact will pro-
vide insight into the developmental pathways contributing 
to ASD, and how tailored interventions can be provided to 
infants and children to support their long-term development.

Finally, ASD is a highly heterogeneous diagnostic cat-
egory (Waterhouse et al., 2016), in which diverse neurobio-
logical factors may result in common endophenotypes (Con-
stantino et al., 2021; Jones & Klin, 2013). In fact, Joseph 
et  al. (2008) reported substantial differences in arousal 
responses to facial stimuli in participants on the autism 
spectrum. It is possible that reduced eye gaze has differ-
ent aetiologies, with excessive arousal the defining feature 
of one particular pathway (Joseph et al., 2008). Moreover, 
as several authors note, reduced reward and/or increased 
arousal in response to eye contact are not mutually exclu-
sive and may both influence the expression of ASD (Cuve 
et al., 2018; Kaartinen et al., 2012; Kliemann et al., 2012). 
Specifically, Kliemann et al. (2012) and Cuve et al. (2018) 
have proposed that ASD should be dimensionally conceptu-
alised, with different contributions of reduced orientation or 
increased avoidance contributing to its manifestation. Lon-
gitudinal studies specifically measuring these indices may 
provide clarity on this matter.
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In addition to the possibility that the aetiology of reduced 
eye gaze in people on the autism spectrum is heterogene-
ous, it is also possible that eye gaze itself differs between 
individuals, as has been reported for other social differ-
ences, such as difficulty with expression recognition (Loth 
et al., 2018). In support of this possibility, findings from 
eye tracking studies measuring gaze in people on the autism 
spectrum have been mixed. A recent review by Cuve et al. 
(2018) reported that, of sixteen eye tracking studies, nine 
reported reduced eye fixation in participants on the autism 
spectrum compared with controls; however, five reported no 
difference in eye fixation. It is possible that individual dif-
ferences across different experimental samples contributed 
to differences in study findings. One source of individual 
differences may be varying levels of alexithymia between 
individuals on the autism spectrum (Bird et al., 2011). Alex-
ithymia is a personality trait which involves difficulties in 
identifying and describing one’s own emotions, in addition 
to externally oriented thinking (Taylor & Bagby, 2000). 
Alexithymia is also associated with difficulties identifying 
the emotions of others (Cook et al., 2013). The ‘alexithy-
mia hypothesis’ suggests that emotional difficulties that can 
be experienced by people on the autism spectrum might in 
fact reflect co-occurring alexithymia, rather than ASD per 
se (Bird & Cook, 2013).

As with ASD, higher levels of alexithymia have been 
linked to reduced eye gaze (Bird et al., 2011; Cuve et al., 
2021). In fact, research with participants on the autism spec-
trum suggests alexithymia may be a stronger predictor of 
attenuated eye gaze than ASD itself (Bird et al., 2011; Cuve 
et al., 2021). Interestingly, the response to eye gaze may vary 
among people on the autism spectrum, based on their level 
of alexithymia. In participants on the autism spectrum, for 
example, gaze away from the eye region of facial stimuli 
has been associated with less accurate emotional recogni-
tion (Kliemann et al., 2012). However, in people with high 
levels of alexithymia, increased eye fixation has been asso-
ciated with less accurate emotional recognition (Fujiwara, 
2018). While eye gaze appears to normalise activity in many 
regions of the social brain for people on the autism spec-
trum, eye fixation is associated with decreases in social brain 
activity among people with high levels of alexithymia (Zim-
mermann et al., 2021). Future research should attempt to dis-
entangle the interplay between alexithymia, neural response 
to eye gaze, and features of ASD.

Conclusion

In conclusion, reduced eye contact is an important endophe-
notype that may play a role in the development of ASD. To 
explain the mechanisms underpinning eye contact differences, 
it is often argued that faces and eyes lack salience for people on 
the autism spectrum. In fact, since autism was first described 
by Kanner (1968), there has been an assumption that lack of 
eye contact in children on the autism spectrum signals social 
indifference. However, recent research suggests this assump-
tion may be far from the truth for at least some people on 
the autism spectrum. Studies that have directly measured the 
relationship between neural activity and eye gaze indicate that 
eye avoidance is a strategy used to reduce amygdala-related 
hyperarousal for people on the autism spectrum. These studies 
suggest that previous findings of hypoactivity in many regions 
of the social brain in ASD may be the result of eye avoid-
ance—highlighting the importance of controlling for gaze in 
future studies.

Rather than being apathetic, people on the autism spectrum 
may instead be hypersensitive to certain social stimuli and 
what appears to be indifference, may in fact, reflect avoidant 
behaviour (Lassalle et al., 2017). Importantly, the eye avoid-
ance hypothesis appears more consistent with the lived reality 
of many people on the autism spectrum, who often report that 
eye contact is a source of stress and anxiety (Trevisan et al., 
2017). As one respondent to an online survey stated, “… eye 
contact triggers a fight or flight response so strong that it over-
rides everything else …” (Trevisan et al., 2017, p. 8). Longitu-
dinal studies should be prioritised to determine if this hypera-
rousal is an inherited physiological trait or a consequence of 
ASD itself. Arousal responses may prove an important thread 
to follow in the effort to understand how eye avoidance devel-
ops in ASD and how its developmental consequences might 
be mitigated.
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