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Abstract

In the eye gaze tracking problem, the goal is to determine
where on a monitor screen a computer user is looking – the
gaze point. Existing systems generally have one of two lim-
itations: either the head must remain fixed in front of a sta-
tionary camera, or, to allow for head motion, the user must
wear an obtrusive device. We introduce a 3D eye tracking
system where head motion is allowed without the need for
markers or worn devices. We use a pair of stereo systems:
a wide angle stereo system detects the face and steers an
active narrow FOV stereo system to track the eye at high
resolution. For high resolution tracking, the eye is modeled
in 3D, including the corneal ball, pupil and fovea. In this
paper, we discuss the calibration of the stereo systems, the
eye model, eye detection and tracking, and we close with an
evaluation of the accuracy of the estimated gaze point on
the monitor.

1 Introduction

The problem of gaze tracking is estimating where on the
computer monitor a user is looking – the gaze point. A num-
ber of interesting applications drives interest in this tech-
nology. In HCI, eye tracking could be used to pre-fetch
web sites or make large movements of the cursor across the
screen [1, 2]. Other applications include interfaces for the
disabled, psychological experiments on human eye motion,
car driver attentiveness, and evaluating the effectiveness of
web site design. To date, however, eye tracking systems
have been too expensive, cumbersome, and limited in track-
ing range to make inroads on these applications.

The higher accuracy eye tracking techniques acquire
high resolution imagery of the eye. This high resolution
video is acquired with either (1) a stationary camera with
narrow field of view [3], or (2) a camera on a head-mounted
device that captures a close-up shot of the eye [4]. Both of
these approaches have their challenges, though, with solu-
tion (1) limiting the head motion of the user being tracked,
and (2) requiring the user to wear a cumbersome device.
There are eye gaze tracking techniques that use wider angle
lenses [5, 6], but the accuracy of the gaze direction is about

2◦. The appearance based technique of [7] reports an accu-
racy of 0.38◦ on three users, but their appearance manifold
seems tuned for a specific head-to-monitor geometry.

In this paper, we propose using an active stereo head with
narrow FOV cameras to actively track a user’s gaze. Our
active stereo head pans, tilts, and adjusts its focus, so the
user has a range of head motion in all directions. A wide
angle stereo system detects the users head and steers the
narrow FOV system onto the user’s right eye. This allows
for freedom of head motion without the need for wearing
camera devices.

We propose a 3D tracking approach that models the 3D
anatomy of the eye. Our model includes the corneal ball, the
pupil, and the angular offset of the fovea from the optical
axis. The FreeGaze system [8] also proposes using a 3D
model for tracking, but it only models the corneal ball as a
sphere (we explore using an ellipsoid), and the fovea is not
explicitly modeled in 3D. Our model is the most detailed 3D
model of the eye used for tracking in the computer vision
community.

Using this model, we track the eye using a 3D alignment
approach. For a hypothesized pose, the model eye pupil
can be refracted though the cornea and projected into the
image. These projected model features can then be matched
to extracted image features, driving our tracking approach.

In this paper, we first describe the stereo hardware and
our 3D eye model. Then we address calibrating the system
in section 4 and in section 5 we describe how the system
detects and tracks the eye. Finally the eye gaze direction
is intersected with the monitor plane to estimate the gaze
point, and we close with an evaluation of gaze point accu-
racy.

2 Hardware setup

At the top level, the system is divided into wide angle stereo
for face detection and narrow FOV stereo for eye tracking.
The wide angle system, shown in Fig. 1, is located just be-
low the center bottom of the monitor screen. The stereo
baseline is oriented vertically since this optimizes stereo
matching on the central facial features, which are predom-
inantly horizontal edges. We use a commercially available
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Figure 1: Our gaze tracking system combines wide angle
stereo for head detection and narrow FOV stereo for high
resolution eye tracking.

stereo system, Videre Design’s MEGA-D stereo head [15].
With 4.8 mm lenses, it has a horizontal FOV of 73◦, wide
enough to cover close to 1 m of horizontal head motion
when the head is 600 mm away from the camera. As we
will explain in section 5, heads are detected using a combi-
nation of stereo and intensity-based processing. The wide
angle system steers the narrow FOV cameras when a new
head is acquired for tracking.

Two narrow field cameras, positioned near the lower
monitor corners (Fig. 1), capture high resolution images of
the eye for gaze tracking. Due to the narrow field of view,
quick head motions would outpace pan-tilt heads. Thus, pan
and tilt are controlled using rotating mirrors on high perfor-
mance galvos that can rotate and settle in 2 ms (Fig. 2). The
motion of the galvos is synchronized with the refresh cycle
of the cameras, so galvo motion causes no image blur (head
and eye motion still does, however). The camera has a 49
mm lens and is a standard NTSC CCD camera. The long
focal length substantially reduces the depth of focus, so fo-
cusing is an issue. Thus, the lens is translated along the
camera’s optical axis by a motor; using a thin lens model
will be discussed in section 4 to calibrate and control focus-
ing. Finally, as in Morimoto, et. al. [11], a ring of IR LEDs
is placed around the lens. However, this is not used in their
differential lighting scheme to locate pupils, but to produce
corneal glints for constraints in tracking.

pan mirror

tilt mirror

lens

CCD

galvo

optical axis

focus control

galvo

bellows

IR LEDs

Figure 2: Our actively controlled narrow FOV camera. Pan
and tilt control rotates the galvo mirrors, and focus control
translates the lens along the camera’s optical axis.

optical axis

visual axis

fovea

C

1R

eR

pR

),( θφ κκ

corneal
ball

iris
pupilretina

Figure 3: Our 3D eye model. Please refer to the text for
details.

3 Eye modeling

Our tracking system uses a parameterized 3D model of the
eye. Tracking basically consists of simultaneously fitting
projected model features to extracted image features in the
two narrow FOV cameras. The main features being tracked
are the pupil edges and corneal glints, or reflections, of the
camera LEDs, so our model should be sufficiently detailed
to predict these features. Our 3D eye model is outlined in
Fig. 3.

The cornea is modeled as either a sphere or an ellipsoid
with center C. Modeling the cornea is necessary since the
IR glints are reflected off of it and the pupil edges are re-
fracted through it. For refraction, we use an index n =
1.34 [9] at the cornea/air boundary. Our earlier modeling
attempts began with using sphere to model the cornea, us-
ing a radius R1. However, the cornea is not an exact sphere;
for instance, one of the causes of myopia is a bulging or
steepening of curvature radius of the cornea. Thus, we have
also investigated modeling the eye as an ellipsoid with ra-
dius R1 along the optical axis and R2 along the remaining
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2 directions. Thus, for a subject with myopia, one would
expect R1 > R2.

The pupil is modeled as a circle at a distance Rp along
the optical axis from C and with a radius of Re. The lo-
cations of pupil edges are refracted though the cornea and
projected into the image.

The gaze direction as indicated by the pupil (the so-
called pupillary axis, which we assume is equal to the op-
tical axis for our model) is not the same as the visual axis.
The visual axis passes through the fovea, the densest area of
photoreceptors in the retina, and is a true measure of where
an eye is looking. Thus, the pupillary axis estimated from
our model is rotated by spherical angles (κφ, κθ) about C
to estimate the visual axis.

Given an estimate of the visual axis, the final step in the
gazetracker is to intersect the visual axis with the monitor
plane and map to screen coordinates. This step requires the
monitor and eye to be in the same coordinate system. In the
next section we discuss coordinate systems and we describe
the task of calibration.

4 Calibration

Camera calibration is necessary to relate 3D models to their
image projections and to relate different 3D coordinate sys-
tems via a rigid transform; i.e. from wide angle stereo to
narrow FOV stereo. Our overall system has three main co-
ordinate systems:

1. Narrow FOV stereo. Calibrating this stereo system
adds the complication of rotating mirrors to the normal
stereo calibration problem. This serves as the ”base”
coordinate system that the others are related to.

2. Wide angle stereo. This is calibrated using SRI Inter-
national’s Small Vision System software [10].

3. Monitor coordinates. This is the local coordinate sys-
tem of the monitor.

In this section, we explain how the narrow FOV system is
calibrated and how rigid transforms relating systems (1) to
systems (2) and (3) are estimated. In addition, we explain
how the focus calibration and control works.

4.1 Narrow FOV stereo system

While most stereo systems have a fixed baseline between
left and right cameras, our active narrow FOV system is
constantly in motion, and hence continually changing the
transform between left and right cameras. In this subsec-
tion, we discuss how this calibration is parameterized in
terms of galvo rotation angles. A related class of stereo sys-
tems from the robotics community, head-eye systems, often

checkerboard
target

right
camera

left
camera

galvo rotation galvo rotation

target
motion

iM

image set 0 
(reference)

image set i

Figure 4: When calibrating the narrow FOV stereo system,
multiple image sets are taken of the calibration target. For
each image set, the calibration target is fixed and a number
of views are taken under different pans and tilts. The pose
of the target in the ith image set is defined as a motion Mi

to the target in image set 0, the reference image set.

face the same calibration problem. These systems typically
build binocular stereo systems from pan-tilt heads, as op-
posed to our use of galvos and mirrors. But a larger dis-
tinguishing factor of our system is its narrow FOV for cap-
turing a high resolution image of the eye. This difficulty
is addressed in this section by using a large but highly de-
tailed calibration target, a large number of views, and using
2D image dotcode for corresponding image features to tar-
get model features.

Our system is a bundle adjustment approach using mul-
tiple views of a planar calibration target. Recently planar
calibration targets have become popular for monocular [18]
and stereo calibration [19]. Our target is a large checker-
board target that is visible by both cameras (Fig. 4). Due to
the small FOV, the checkerboard squares are only 3mm on
the side. Covering the potential area visible under all pans
and tilts requires a large pattern, on the order of 150 by 100
squares. As Fig. 5 shows in the sample target image, only a
small portion of the target is visible in any particular view.
This creates a feature correspondence problem, for which
model features are within the field of view? To address this
issue, we add a 2D dotcode (Fig. 5, right) to correspond
features to their 3D model features.

Given 2D image features in correspondence with their
3D calibration target features, we would like to construct a
projection matrix P to map the 3D target to images. P will
be parameterized by the galvo rotations θL and θR; for the
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Figure 5: Example image of calibration target and exam-
ple checkerboard square of our dotcode pattern for (x, y)
location within the target.

left camera, we have

P (θL) = ALTL(θL),

where AL is a 3x3 matrix of intrinsics and TL(θL) is a
4x4 matrix of the extrinsics. Fix one view of the target as a
reference view and translate all galvo angles such that θL =
0 at the reference. Then we have

P(0) = ALTL(0)
= ALTL

where TL is a simple 6 DOF rigid transform.
The projection matrix of other views will be created by

modifying the reference. Given a new view where only the
galvo mirrors θL have changed, we have

P(θL) = ALGL(θL)TL,

where G(θL) represents the mirror rotation and is described
the appendix. When focus control translates the lens to
maintain focus (to be described in section 4.4), this z trans-
lation FL is inserted as

P(θL) = ALGL(θL)FLTL.

Finally, views are grouped into image sets, views of the
target at a particular pose. The reference views are from
image set 0, the reference image set. As shown in Fig. 4,
the pose of the target in the ith image set is represented as a
motion Mi from the target to its pose in the reference image
set. Thus, the complete projection matrix is

PL(θL, i) = ALGL(θL)FLTLMi, (1)

where M0 = I.
In bundle adjustment, for each image set i, we have a set

of views j, and each view j has a number of features k. For
2D image feature fi,j,k in correspondence with 3D target
feature Qi,j,k, first project the model feature

qi,j,k = P
[
ALGL(θL

i,j)F
LTLMiQi,j,k

]

where P is homogeneous divide for projection, and then
fi,j,k ≈ qi,j,k. Our calibration procedure uses a nonlinear
optimization on the error function

∑
i

∑
j

∑
k

‖fi,j,k − qi,j,k‖

taken over both the left and right camera views. Our cali-
bration uses 3 image sets containing a total of 71 left views
and 70 right views. Feature correspondence is completely
automatic, using an X junction detector to find the square
corners and the dotcode to place them within the 3D planar
target.

In summary, given galvo angles θL and θR, we can com-
pute projection matrices PL and PR for the target poses in
the image sets. In the runtime system, we simply use the
reference image set i = 0 as the narrow FOV coordinate
system. As with a normal stereo system, the computed left
and right projection matrices can be used for tasks such as
3D reconstruction, computing the fundamental matrix, or
computing a rectififying homography. For 3D reconstruc-
tion, this reconstructs points in the coordinate system of the
reference pose of the calibration target, but this is rigidly
attached to the galvo system, so this is fine.

4.2 Wide angle stereo system

As previously mentioned, the wide angle system is cali-
brated using SRI’s Small Vision System [10], so the remain-
ing task is to find a rigid transform Rw from the wide an-
gle system to the narrow FOV system. Computing Rw is
straightforward since both the wide and narrow stereo sys-
tems are calibrated. We simply track a point feature (manual
initialization) in both 3D systems and record a set of corre-
sponding reconstructed 3D points. Then the best rigid trans-
form Rw aligning the set of points in 3D is found by mini-
mizing the 3D distance between the narrow FOV points and
Rw applied to the wide angle points. We have performed
this 3D alignment a few times on a dataset of around 10
points, and the residual alignment error is on the order of
a few mm. The transform Rw will be used in the track-
ing system to map wide angle face detections to the narrow
FOV system and steer the galvos.

4.3 Monitor

In monitor calibration, the goal is to determine the pose of
the monitor plane in the narrow FOV coordinate system. At
first this seems challenging since the monitor is not visible
from the narrow field cameras, but we improvised by plac-
ing a mirror to reflect the monitor image into the narrow
field cameras. The same checkerboard pattern with dot-
codes is taped to the monitor plane and it’s ”virtual” pose
is computed in the reflected image. To extract the ”real”
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Figure 6: The thin lens equation can be used to relate focal
length f, distance to object Z, and the back focal distance z.

pose from the virtual one, the plane of the mirror needs to
be estimated, and then a reflection transform can be com-
posed with the virtual pose (see appendix A). The mirror
plane is estimated by placing the planar calibration target at
the same location of the mirror. In the eye tracking system,
the 3D foveal axis is intersected with the monitor plane to
estimate the eye gaze point.

4.4 Focus

One technique for auto focusing is to vary focus while max-
imizing high frequency content of the image. Since we have
3D information available to us, however, we can use the thin
lens equation to relate object depth Z to the focal length f
and the back focal distance z (see Fig. 6). Using similar
triangles, one can show that

y =
fY

Z
, and f2 = zZ.

The latter equation is of use in focus control. In the eye
tracking system, Z is supplied from the wide angle tracking,
and f is estimated during calibration, making it straightfor-
ward to estimate z at run time. (During calibration, Z is
estimated from the 3D calibration target model.) To cali-
brate the focus control, we estimate a linear mapping from
z to the focus motor ticks from two example focused images
at known depths Z.

5 Detection and Tracking

Our eye gaze tracking system detects the computer user’s
face using the wide angle stereo system, and then the nar-
row FOV is steered onto the user’s right eye to begin high
resolution eye tracking and gaze point estimation. In this
section, we discuss face detection, eye tracking, and some
quantitative experiments on the accuracy of the gaze point
estimates.

stereo mean eigen 0 eigen 1 eigen 2
template

Figure 7: Stereo template used to detect face shapes in the
disparity map (left), and eigenspace (right) for tracking and
localizing faces in the intensity image.

5.1 Wide Angle Detection

The goal of the wide angle stereo processing is to detect
the face, estimate the 3D location of the user’s right eye,
and pass this information on to the narrow FOV system.
It is advantageous to use stereo for this face detection/eye
localization task, as opposed to competing techniques such
as color segmentation, background subtraction, and motion.
While all these techniques can quickly segment out the face
from the background, only stereo can estimate the location
of the eye in 3D, a requirement in steering the narrow FOV
system.

Our wide angle tracking system uses eigenfeatures[12]
and is very close to eigentracking[13]. Before the face is
detected, the range map is scanned at a coarse spatial res-
olution (i.e. coarse pyramid level) for shape blobs that re-
semble the interior features of the face. This is performed in
a scanning operation in depth: stereo disparities are thresh-
olded in a small depth range, say 10 cm, and then the bi-
nary mask is correlated with the stereo mask in Fig. 7. Re-
gions scoring high in this correlation test are further exam-
ined with an eigentracking technique. The face region being
tracked is extracted using an affine transform and matched
against an eigenface model shown on the right in Fig. 7.
Face matching is done in a coarse-to-fine manner, produc-
ing the final tracking results in Fig. 8.

Once in tracking mode, the eigen model is the primary
tracking mechanism. Stereo is used for robustness, effec-
tively monitoring the tracking process and eliminating the
track if it slips off the face. For in this case, the face re-
gion in the thresholded range map will no longer match the
stereo mask initially used for detection.

Given the 3D location Pwide of the right eye in the wide
angle system, this is mapped to the narrow system using
Pnarrow = RwPwide . Steering angles θL and θR are esti-
mated using nonlinear optimization such that the projection
of Pnarrow is in the image center of both narrow field cam-
eras.
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Figure 8: Results of wide angle tracking (left) and color-
coded disparity map (right).

5.2 Narrow FOV Tracking

The wide angle system has steered the narrow FOV cameras
onto the eye, and the focusing mechanism from section 4.4
has brought the left and right input images into focus. The
goal of the narrow field tracking system is to fit projected
model features from our 3D eye model to detected image
features. Then the visual axis is intersected with the monitor
plane and the gaze point reported.

The parameters from the 3D eye model in section 3 can
be divided into three groups for narrow FOV tracking:

1. Eye extrinsics. 3D eye position C and optical axis N.
N is a direction and is parameterized using 2D spheri-
cal coordinates.

2. Fixed eye intrinsics. These parameters of the eye
should remain fixed during a tracking session, but may
change slowly over the years. They include corneal
ball radii R1 and R2, foveal offsets κφ and κθ, and the
pupil radial offset Rp.

3. Variable eye parameters. These parameters change the
shape of the eye model and include the pupil radius
Re.

Under normal tracking conditions (after the user’s eye in-
trinsics have been calibrated), only the parameters in (1) and
(3) would be allowed to vary during the 3D model fit. User
calibration is required to estimate the parameters in (2), and
thus far we have divided the estimation of the intrinsics into
two stages. The first stage estimates parameters R1, R2, and
Rp solely from a set of input images – the model fit drives
the parameter estimation. However, the foveal offsets are
not observable from the input images, so estimating these
parameters requires feedback from the user. We describe
this step in more detail in the experiments section below.

Figure 9: Feature detection of glints (green) and pupil edges
(red) in narrow FOV tracker, left and right views of right
eye.

The image features used for matching to the 3D model
include the glints of the IR LEDs and the pupil edges. To
detect them in the narrow field images, first we coarsely
estimate the center of the pupil. This is done using an iter-
ative affine registration technique that registers a synthetic
sclera/iris/pupil template to the input images. It operates in
a coarse-to-fine manner and uses motion templates [14] to
update the affine transform. This estimates the pupil cen-
ter within a few pixels, which is sufficiently accurate for
the next step that collects edge pixels for the pupil and glint
boundaries.

For the glint boundaries, we search the iris/pupil region
using vector correlation with a gradient template matched to
the expected circular, inward-pointing glint gradient. Once
the glints are roughly located, their location is refined by (a)
radially searching for the glint edges, (b) estimating them
to subpixel resolution, (c) fitting an ellipse to the edge pix-
els [17], and (d) reporting the center of the ellipse. The
detected glint edges are masked out of the image before the
pupil edges are located. The pupil edges are found in a sim-
ilar manner, but the ellipse fitting step in (c) is made more
robust by using a leave-n-out strategy. A number of ellipses
are fit to the data; for each ellipse, four of the potential pupil
points are left out as potential noise. The best fitting ellipse
and its nearby supporting points are reported as the pupil
edges. Fig. 9 shows the estimated glint centers and pupil
points for a sample stereo pair.

Finally, the 3D model is fitted to the detected features
using a nonlinear estimation technique, a version of the
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Figure 10: 3D eye model fit displayed with features from
Fig. 9. The pupil ellipse is shown in blue and the glint pro-
jections are in black.

Levenberg-Marquardt algorithm from MINPACK. When
the face and eye are first detected, the initial conditions for
the model center C are set from the wide angle tracking, and
the initial conditions for the optical axis is pointing along
the z-axis. When in tracking mode, the initial conditions
are simply the previous model state; future work includes
incorporating a Kalman filter framework into the tracker.
The constraints for the MINPACK routine include (a) the
image distance between model and feature glints, and (b)
the distance from each pupil edge feature to the model el-
lipse projected into the image. Fig. 10 shows the model fit
for the input image in Fig. 9.

In terms of processing speed, both the wide and narrow
FOV tracking system run at a frame rate of roughly 10 Hz
on a dual processor Pentium III at 933 MHz. We are in
the process of upgrading to a 2.8 GHz Xeon dual processor
machine, and we anticipate a frame rate of 20 Hz on the new
machine. This is fast enough for our current target study
area of evaulating readers/learners on the web, as humans
fixate on words for roughly 200-250 ms when reading[20].

5.3 Experiments

5.3.1 User Calibration - R1, R2, and Rp

In the 3D fitting process, the instrinsic parameters R1, R2

and Rp can be included as variables and estimated along
with the eye extrinsics. However, since these parameters are
fixed, one can increase their accuracy by fitting a set of eye
stereo pairs simultaneously. We took a set of 18 stereo pairs
of author DB’s right eye, where DB gazed at 9 points on
the monitor screen from two different head positions. The 9
points were distributed mostly along the edges of the mon-
itor where one would expect fitting error to be higher. The
intrinsics were estimated as follows: R1 = 9.08 mm, R2 =
9.02 mm and Rp = 5.5 mm, with an average image error of
1.6 pixels. Note that the user does not need to look at spe-

cific screen locations to perform this intrinsic calibration.

5.3.2 User Calibration - foveal angles

The foveal angles are not observable from the input images,
so one needs to use feedback from the user to estimate these
parameters. To estimate the foveal angles, the user is asked
to gaze at specific monitor points to collect stereo pairs with
ground truth on the gaze point. The error metric in the non-
linear fitting code is then switched to measure error between
the estimated gaze point and ground truth data. In addition
to estimating foveal angles κφ and κθ, we also include a
refinement of the monitor pose. The foveal angles were es-
timated for author DB, and the angle κφ estimated between
the optical and visual axes is about 3.6◦, which close to the
expected value of 5◦. The other angle κθ seems to be less
stable with higher variance on its estimation; stabilizing this
parameter is the subject of future work.

5.3.3 Gaze point accuracy

To estimate gaze point accuracy, we took a test data set of
author DB looking at 22 known locations on the monitor
and evaluated the error between ground truth and reported
gaze. Overall the average fit error in the eye model dropped
to 1.1 pixels, probably because more of the test points were
in the central area of the monitor. The average monitor er-
ror is 18.8 pixels = 6.6 mm for our monitor. Person DB
was estimated to be 622 mm away from the monitor, so this
translates into 0.6◦ accuracy in gaze direction.

6 Summary

In this paper we have developed an eye gaze tracking system
that allows for freedom of head motion without the need for
wearing any camera devices. The user’s head is acquired
by a wide angle stereo system that detects the face, and the
detected eye location is used to steer an active narrow FOV
stereo system onto the eye. The eye is modeled with a 3D
model that includes the corneal ball, pupil, and fovea – the
most complete eye model used in the computer vision com-
munity. After fitting this model to the two stereo narrow
field views, the visual axis is intersected with the monitor
plane to estimate the gaze point. Experiments have been
performed to calibrate the instrinsic parameters of the eye,
and the resulting system achieved a gaze point accuracy of
0.6◦ on a set of 22 stereo pairs.
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A Galvo Rotations

Given galvo rotations θL, how does one construct the trans-
formation matrix GL(θL) representing the rotation of the
galvo mirrors used in equation (1)? First, consider the trans-
formation of a reflection in a planar mirror. Let the equation
of the mirror plane be

n · (x, y, z)T + d = 0

where n is the plane normal and d its distance to the origin.
The mirror reflection transform D is

D =
[

I − 2nnT 2dn
0 1

]
.

In the galvo, the mirror plane is rotating an angle θ about
the galvo’s 3D axis. Thus, n(θ) and d(θ) can be written
as a nominal n0 and d0 rotated about the galvo axis, and
likewise, D is a function of θ, D(θ).

The overall transform G is the composition of two re-
flections for the pan and tilt mirrors. Since the reference
transform TL is a ”virtual” camera position, we first apply
the reflection at θ = 0 to ”undo” the reflection at the virtual
position. Then we reapply the reflection at the given θ. This
yields

G(θL) = D0(θL
0 )D0(0)D1(θL

1 )D1(0)

where subscripts 0 and 1 are for pan and tilt, respectively.
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