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Models of gaze allocation in complex scenes are derived mainly from studies of static picture viewing. The dominant
framework to emerge has been image salience, where properties of the stimulus play a crucial role in guiding the eyes.
However, salience-based schemes are poor at accounting for many aspects of picture viewing and can fail dramatically in
the context of natural task performance. These failures have led to the development of new models of gaze allocation in
scene viewing that address a number of these issues. However, models based on the picture-viewing paradigm are unlikely
to generalize to a broader range of experimental contexts, because the stimulus context is limited, and the dynamic, task-
driven nature of vision is not represented. We argue that there is a need to move away from this class of model and find the
principles that govern gaze allocation in a broader range of settings. We outline the major limitations of salience-based
selection schemes and highlight what we have learned from studies of gaze allocation in natural vision. Clear principles of
selection are found across many instances of natural vision and these are not the principles that might be expected from
picture-viewing studies. We discuss the emerging theoretical framework for gaze allocation on the basis of reward
maximization and uncertainty reduction.
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Introduction

Visually guided behaviors require the appropriate
allocation of gaze in both space and time. High acuity
foveal vision must be directed to locations that provide
information for completing behavioral goals. Behavior-
ally informative locations change with progress through
a task, so this allocation of gaze must not only be to
the right places but must also be at the right times to
serve behavior. Understanding the principles that under-
lie the deployment of gaze in space and time is, there-
fore, important for understanding any visually guided
behavior.
In this article, we review the current state of models of

eye guidance for complex scene viewing and whether they
can generalize to natural behavior. In particular, we
review the dominant class of models that has emerged to
explain gaze allocation in picture viewing: those that are
based on low-level image properties, often operationalized
as image salience. While this approach has provided
insights into oculomotor selection and has given rise to a

considerable volume of research, we argue that most
current models offer only a limited description of human
gaze behavior. Moreover, we argue that the dominant
paradigmVthat of picture viewingVis an inappropriate
domain of explanation if we wish to understand eye
movement behavior more generally. While most models
have been built around a core of low-level feature
conspicuity, some emerging models attempt to base
selection on higher level aspects of scenes. We consider
the direction that these models are taking and whether this
will allow insights into vision in natural settings. We
approach this by considering what a model of natural eye
guidance should be able to explain. That is, we highlight
the principles of fixation selection in natural tasks that can
be found to generalize across many real-world situations;
these are the components of eye movement behavior that
need to be explained by any theoretical model. The
common underlying principles for eye guidance suggest
that behavioral relevance and learning are central to how
we allocate gaze. These principles necessarily change
the emphasis of what should be modeled and we suggest
that a framework incorporating behavioral rewards will
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provide a useful approach for understanding the manner
in which models of eye guidance may be implemented in
the future.

Image salience and eye
movement behavior

The extensive psychophysical literature on visual search
has demonstrated that basic visual features can capture
and guide attention (see Wolfe, 1998). If a target differs
from a set of distractors in just a single feature dimension,
such as color or orientation, it can be detected very
rapidly, and detection time remains fast irrespective of the
number of distractors present (Treisman & Gelade, 1980).
This “pre-attentive” capture (“popout”) suggests that
features can drive the allocation of attention. Similarly,
more complex search, where targets are defined by the
unique conjunction of two features, can successfully be
explained using serial selection driven by image features.
Models such as Treisman’s feature integration theory
(Treisman & Gelade, 1980) or Wolfe’s (2007) guided
search model produce human-like search behavior using
only low-level featural information. A natural extension of
this work was to ask whether this principle could be
applied to understanding how attention is allocated in
more complex scenes. These models of visual search
underlie the most influential class of models of gaze
patterns in picture viewing based on low-level image
features. One computational implementation of this class
of model is the notion of the “salience map,” a spatial
ranking of conspicuous visual features that could be

candidates for covert or overt attention (Itti & Koch,
2000; Itti, Koch, & Niebur, 1998; Koch & Ullman, 1985).
The salience map concept has had a profound influence on
the research field and has become an integral component
of many subsequent models of gaze allocation. In the
original implementation of the salience model, when
presented with a scene, low-level features are extracted in
parallel across the extent of the viewed scene (Figure 1).
Local competition across image space and feature scales
results in feature maps for luminance contrast, color
contrast, and orientation contrast. These individual feature
maps are combined by weighted sum to create an overall
distribution of local feature contrast, known as the “salience
map.” Attention is then allocated to locations in the scene
according to the salience in the computed map using a
winner-takes-all principle. To avoid attention becoming
“stuck” at the most salient location, a local, transient
inhibition is applied to each attended location. Each
iteration of the modelVa winner-takes-all selection of the
most salient location followed by inhibition at the attended
locationVeffectively represents a relocation of attention.

Explanatory power of the salience map

Visual conspicuity models such as Itti and Koch’s salience
map can explain aspects of human attention allocation.
The salience model described in Figure 1 can localize
popout targets in a single iteration of the model. However,
conjunction targets can take several iterations of the model
before they are selected, and the number of iterations
depends upon the number of distractors present (Itti &
Koch, 2000). This serial search behavior with search times
dependent upon the distractor set size mirrors human

Figure 1. Schematic of Itti’s salience model. Figure from Land and Tatler (2009); redrawn from Itti and Koch (2000).
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search behavior. When presented with a complex photo-
graphic scene, the model predicts serial search behavior
in which visually conspicuous locations are selected for
“fixation,” in a manner that appears superficially similar
to human eye movement patterns.

Empirical evaluation of salience-based
selection in complex scenes

It is clear that under certain circumstances image
salience (or other feature-based models) can provide a
good explanation of how humans orient their attention.
However, the evidence so far discussed is derived almost
exclusively from situations in which the stimulus is a
simple visual search array or in which the target is
uniquely defined by simple visual features. These studies
provide a proof of principle for the notion that the visual
system can select fixation targets on the basis of
conspicuity. Indeed, the original goal of such models
was to explain attentional capture rather than to provide a
model of eye movements in complex scenes. It seems
reasonable to ask whether the principles derived from
simple paradigms might generalize to viewing more
complex scenes. However, a real-world scene provides a
much greater range of information types than these simple
search displays. It is, therefore, important to empirically
evaluate whether visual conspicuity contributes signifi-
cantly to fixation selection when a greater range of
information is available. Empirical evaluations of the
salience model using complex, natural scenes show that
more fixations lie within regions predicted by the salience
model than would be expected by chance (e.g., Foulsham
& Underwood, 2008) and salience at fixated locations
is significantly higher than at control locations (e.g.,
Parkhurst, Law, & Niebur, 2002). Findings such as these
are widespread, suggesting a correlation between low-level
features in scenes and fixation selection by humans. However,
as argued by previous researchers, these correlations alone
should not be taken to imply any causal link between features
and fixation placement (Henderson, 2003; Henderson,
Brockmole, Castelhano, & Mack, 2007; Tatler, 2007).
Despite the widespread interest in this model and the

considerable successes that it has had in predicting fixation
selection at above-chance levels, it is important to consider
just how much fixation behavior can be explained by a
feature-based model of selection. Empirical evaluations of
the extent of the difference in salience at fixated and control
locations are informative in this respect. Using signal
detection approaches, it is possible to consider not only
whether statistically significant differences in the salience
at fixated and control locations can be found but also the
magnitude of these differences (see Tatler, Baddeley, &
Gilchrist, 2005). Essentially, the technique can be used to
determine the extent to which fixated and control locations
can be discriminated on the basis of low-level feature
information. The magnitude of the difference describes

how well fixation selection can be described by low-level
features. Such evaluations have found areas under the
receiver–operator curve in the region of 0.55 to 0.65 (where
0.5 is chance), which suggests that the proportion of
fixation behavior that can be accounted for by image
salience is modest (e.g., Einhäuser, Spain, & Perona, 2008;
Nyström & Holmqvist, 2008; Tatler et al., 2005). When
the viewer’s task is manipulated, this modest predictive
power can disappear (e.g., Foulsham & Underwood, 2008;
Henderson et al., 2007). The weak statistical support for
low-level factors in fixation selection can be contrasted to
the support offered for other factors in fixation selection.
Using the same logic of attempting to discriminate between
fixated and control locations on the basis of a particular
source of information, areas under the receiver–operator
curve for other factors can be compared to those found for
image salience. Einhäuser, Spain et al. (2008) found that
fixated and control locations can be better distinguished by
object-level information than by image salience. Tatler and
Vincent (2009) found that fixated and control locations
can be better distinguished by biases in how we move our
eyes than by image salience.
Despite these empirical shortcomings of the original

implementation of the saliencemodel (and of similar models),
conspicuity-based accounts continue to feature prominently
in much of the recent work on eye guidance (e.g., Xu, Yang,
& Tsien, 2010; Yanulevskaya, Marsman, Cornelissen, &
Geusebroek, 2010; Zehetleitner, Hegenloh, & Mueller, 2011;
Zhao & Koch, 2011, and many others). Recent special issues
ofCognitive Computation (Taylor & Cutsuridis, 2011) and
of Visual Cognition (Tatler, 2009) reflect the continuing
prominence of image salience and similar conspicuity-based
factors in current research. Indeed, even recent emerging
models often continue to retain a key role for visual con-
spicuity (e.g., Ehinger, Hidalgo-Sotelo, Torralba, & Oliva,
2009; Kanan, Tong, Zhang, & Cottrell, 2009), a point we
will return to later in this article. However, this conspicuity-
based class of computational model of eye guidance requires
a set of assumptions that are conceptually and empirically
problematic. In the section that follows, we highlight these
assumptions and evaluate empirical evidence about their
validity. Following this, we will consider the emerging
models that overcome some of these limitations, including
models that place less emphasis on visual conspicuity. We
then consider situations in which conspicuity models may
provide useful descriptions of human behavior.

Assumptions in models of scene
viewing

Assumption 1: Pre-attentive features drive
fixation selection

One of the essential assumptions behind salience
models is that simple features are extracted pre-attentively

Journal of Vision (2011) 11(5):5, 1–23 Tatler, Hayhoe, Land, & Ballard 3



at early levels of visual processing and that the spatial
deviations of features from the local surround can, there-
fore, provide a basis for directing attention to regions of
potential interest. While there exist statistically robust
differences in the low-level content of fixated locations,
compared with control locations (e.g., Mannan, Ruddock,
& Wooding, 1997; Parkhurst et al., 2002; Reinagel &
Zador, 1999), the magnitude of these differences tends to
be small (see above), suggesting that the correlation
between features and fixation is relatively weak. Further-
more, correlations are only found for small amplitude
saccades (Tatler, Baddeley, & Vincent, 2006) and,
crucially, disappear once the cognitive task of the viewer
is manipulated (e.g., Foulsham & Underwood, 2008;
Henderson et al., 2007). This does not mean that stimulus
properties are unimportant. A high signal-to-noise ratio
will make a variety of visual tasks such as search faster
and more reliable. The question is whether simple
stimulus features are analyzed pre-attentively and can,
thus, form the basis for a bottom-up mechanism that can
direct attention to particular locations. When walking
around a real or virtual environment, feature-based
salience offers little or no explanatory power over where
humans fixate (Jovancevic, Sullivan, & Hayhoe, 2006;
Jovancevic-Misic & Hayhoe, 2009; Sprague, Ballard, &
Robinson, 2007; Turano, Geruschat, & Baker, 2003). In a
virtual walking environment in which participants had to
avoid some obstacles while colliding with others, image
salience was not only unable to explain human fixation
distributions but predicted that participants should be
looking at very different scene elements (Rothkopf,
Ballard, & Hayhoe, 2007). Humans looked at mainly the
objects with only 15% of fixations directed to the back-
ground. In contrast, the salience model predicted that
more than 70% of fixations should have been directed to
the background. Thus, statistical evaluations of image
salience in the context of active tasks confirm their lack of
explanatory power. Hence, the correlations found in
certain situations when viewing static scenes do not
generalize to natural behavior. In ball sports, the short-
comings of feature-based schemes become even more
obvious. Saccades are launched to regions where the ball
will arrive in the near future (Ballard & Hayhoe, 2009;
Land & McLeod, 2000). Crucially, at the time that the
target location is fixated, there is nothing that visually
distinguishes this location from the surrounding back-
ground of the scene. Even without quantitative evaluation,
it is clear that no image-based model could predict this
behavior. Similar targeting of currently empty locations is
seen in everyday tasks such as tea making (Land, Mennie, &
Rusted, 1999) and sandwich making (Hayhoe, Shrivastava,
Mruczek, & Pelz, 2003). When placing an object on the
counter, people will look to the empty space where the
object will be placed. As has been pointed out before, it is
important to avoid causal inferences from correlations
between features and fixations (Einhäuser & König, 2003;

Henderson et al., 2007; Tatler, 2007), and indeed, higher
level correlated structures such as objects offer better
predictive power for human fixations (Einhäuser, Spain
et al., 2008).

Assumption 2: There is a default bottom-up
mode of looking

An implicit assumption in salience-based models is that
there is a “default” task-free, stimulus-driven, mode of
viewing and that vision for tasks is special in some way.
The possibility of such a default viewing mode that can be
overridden by other factors is discussed by several recent
authors (e.g., Einhäuser, Rutishauser, & Koch, 2008;
Underwood, Foulsham, van Loon, Humphreys, & Bloyce,
2006). Higher level factors are conceptualized as modu-
lators of this basic mode of looking (see below). This
assumption can be found at the heart of a wide range of
studies and has motivated the use of “free-viewing” as a
condition in studies of picture viewing, in an attempt to
isolate task-free visual processing (e.g., Parkhurst et al.,
2002). Here, the viewer is given no specific instructions
during the experiment other than to look at the images.
The assumption that “free-viewing” is a task-free con-
dition for the viewer is questionable. It seems more likely
that free-viewing tasks simply give the subject free license
to select his or her own internal agendas (Tatler et al.,
2005). A reasonable assumption about what people may
be doing when asked to simply look at images is to
recognize and remember the contents, but we cannot be
sure of their internal priorities. Consequently, we are not
studying viewing behavior while free of task, but rather
we are studying viewing behavior when we have no real
knowledge of what the viewer has chosen as the purpose
of looking. Of course, the fixation behavior we engage in
when “freely viewing” an image will be very different
from that when engaged in a specific task such as search,
but this does not imply that the former reflects any
“default” task-free mode of looking. Not only is free-
viewing a conceptually problematic task, but even when
participants are freely viewing images, correlations
between features and fixations are weak (Einhäuser, Spain
et al., 2008; Nyström & Holmqvist, 2008; Tatler, 2007).

Assumption 3: Target selection from the map

Within the salience map framework, the decision about
where to fixate arises from the computation of salience
across the entire visual field, followed by a winner-takes-
all process to select the most salient location. In order for
this to allow more than one saccade, there is transient
inhibition at each attended location. While this scheme
seems like a reasonable computational solution to the
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problem of creating an iterative model of target selection,
there exist at least two problems with this aspect of
models.

Retinal sampling and eccentricity

In most accounts of salience-based schemes, the retinal
position of image information is not accounted for; thus,
decreasing retinal acuity in the periphery is overlooked
(see Wischnewski, Belardinelli, & Schneider, 2010, for
further information about the failure to consider peripheral
sampling limits in most recent accounts of fixation
selection). Some recent models do account for retinal
sampling and we will consider these later. However, we
first consider the problems associated with failing to
account for this aspect of visual sampling. Vincent,
Troscianko, and Gilchrist (2007) showed that feature
coding becomes unreliable in the periphery once the
variable resolution retina is taken into account. The
feature maps and resultant salience maps generated when
accounting for the variable spatial resolution outside the
human fovea are very unlike those generated if uniform
resolution sampling is assumed. This means that salience
maps computed without taking into account the resolution
of peripheral vision are biologically implausible. More-
over, salience computations that do account for spatial
sampling heterogeneity fail to discriminate natural object
targets in photographic scenes (Vincent et al., 2007).
Retinal anisotropies in sampling result in tendencies to
move the eyes in particular ways (Najemnik & Geisler,
2008). Humans tend to select nearby locations more
frequently than distant locations as targets for their
saccades (e.g., Bahill, Adler, & Stark, 1975; Gajewski,
Pearson, Mack, Bartlett, & Henderson, 2005; Pelz &
Canosa, 2001; Tatler et al., 2006). Similarly, when
viewing pictures, horizontal saccades dominate (e.g., Bair
& O’Keefe, 1998; Lappe, Pekel, & Hoffmann, 1998; Lee,
Badler, & Badler, 2002; Moeller, Kayser, Knecht, &
König, 2004). Incorporating these tendencies into models
of fixation selection dramatically improves the predictive
power of the model (Tatler & Vincent, 2009); indeed,
these motor biases alone predicted fixation selection better
than a model based on homogenous salience computation
or homogenous edge feature extraction. We must, there-
fore, account for where information is in the retinal image
rather than simply where peaks in any arbitrary whole-
scene feature map might occur. Failing to account
properly for where the winner is in the salience map
results in distributions of saccade amplitudes that do not
match human eye behavior (Figure 2).
It is interesting to compare the logic behind a winner-

takes-all selection process and how we typically view the
need to move the eyes. The general conception of the need
to move the eyes is to bring the fovea to bear on
information that is not fully available in the limited acuity
peripheral vision. Thus, eye movements serve to provide

new information about the surroundings, maximizing
information gathering or reducing uncertainty about the
visual stimulus (e.g., Najemnik &Geisler, 2005; Renninger,
Verghese, & Coughlan, 2007). This contrasts with the
winner-takes-all approach of selecting the region with the
biggest signal as the next saccade target.

Inhibition of return

To allow attention to move on from the most salient
peak in the salience map, transient inhibition of each
attended location is included in the model. The inclusion
of transient inhibition at attended locations is based on
psychophysical experiments suggesting that there is an
increase in latency when returning to recently attended
locations (Klein, 1980, 2000; Klein & MacInnes, 1999;
Posner & Cohen, 1984). However, empirical evidence
suggests that there is no reduction in tendency to return to
recently fixated locations when viewing photographic
images (Smith & Henderson, 2009; Tatler & Vincent,
2008). Hooge, Over, van Wezel, and Frens (2005) found
that while saccades back to the previously fixated location
were preceded by longer fixation times (showing temporal
IOR), there was no evidence of any decrease in the
frequency of saccades back to previously fixated loca-
tions. Whether we observe something resembling inhib-
ition of return or not depends upon the statistics of the
dynamic environment being observed (Farrell, Ludwig,
Ellis, & Gilchrist, 2010) and tasks that require refixations
between objects show no evidence of IOR (Carpenter &
Just, 1978). When specifically engaged in foraging
behavior, refixations are rare (Gilchrist, North, & Hood,
2001), but it is not clear whether this is due to a low-level
inhibitory mechanism, particular oculomotor strategies
specific to foraging, or simply memory for previously
visited locations (Gilchrist & Harvey, 2006). Indeed,
Droll, Gigone, and Hayhoe (2007) demonstrated that
locations are fixated more frequently if they are more
likely to have the target.
The implementation of IOR in computational models of

salience presents an obvious problem when attempting to
simulate extended viewing. If the inhibition is long
lasting, then refixations are impossible; if the inhibition
is transient, then the model predicts cyclic eye movement
behavior. Neither of these is compatible with human
behavior. When viewing a picture of a face, participants
will cycle around the triangle of central facial features
(Yarbus, 1967). However, this cyclic behavior is not
commonly found in more complex scenes and is certainly
not an unavoidable consequence of looking at the same
scene for more than a few seconds. Figure 3 compares
fixation patterns for a human observer viewing a scene for
an extended period to Itti and Koch’s (2000) salience
model inspecting the scene for the same number of
fixations. Thus, it seems likely that a different mechanism
is required to explain the transition from one fixation to
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the next. This is likely to be a more active mechanism,
driven by a particular goal such as search or information
acquisition.

Assumption 4: Time and target selection

A reasonable starting point when developing a model of
eye movement behavior is to make the simplifying
assumption that a first goal should be to explain spatial
rather than temporal aspects of viewing behavior. It is
becoming increasingly clear, however, that important
information about the underlying mechanisms for saccade
target selection also lies in the temporal domain. Fixation
durations vary from a few tens of milliseconds to several

hundred milliseconds and, in certain situations in real-
world behaviors, can last for several seconds (Hayhoe et al.,
2003; Land et al., 1999). Work on the importance of
fixation duration in picture viewing is beginning to
emerge (Henderson & Pierce, 2008; Henderson & Smith,
2009; Nuthmann, Smith, Engbert, & Henderson, 2010).
Evidence from natural tasks emphasizes the need to
consider fixation durations: fixation durations depend
critically on the on the time required to acquire the
necessary information for the current act (Droll, Hayhoe,
Triesch, & Sullivan, 2005; Hayhoe, Bensinger, & Ballard,
1998; Hayhoe et al., 2003; Land et al., 1999). If fixation
durations vary according to the information extraction
requirements, then ignoring this source of information
when evaluating and constructing models of eye guidance

Figure 2. Saccade amplitudes from humans and the salience model. (A) Sample scan path from one participant looking at a photographic

scene for 5 s. (B) Overall distribution of saccade amplitudes from humans looking at photographic scenes (N = 39,638 saccades). Data

are taken from 22 participants, viewing 120 images for 5 s each. These data are drawn from the participants in Tatler and Vincent (2009)

and full participant information can be found in this published paper. (C) Sample scan path from Itti’s salience model. Simulation data are

generated using the latest version of the saliency tool box downloaded from http://www.saliencytoolbox.net using the default parameters.

Full details of the model can be found in Walther and Koch (2006). The simulation shown here was for the same number of “saccades” as

recorded for the human data shown in (A). (D) Overall distribution of simulated saccade amplitudes from the salience model (N = 39,638

simulated saccades). Separate simulations were run for 22 virtual observers “viewing” the same 120 images as the human observers

used in (B). For each image, the virtual observer made the same number of simulated saccades as the human observer had on that

scene. The salience model produces larger amplitude saccades than human observers and does not show the characteristic positively

skewed distribution of amplitudes.

Journal of Vision (2011) 11(5):5, 1–23 Tatler, Hayhoe, Land, & Ballard 6
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misses a fundamental aspect of the control of attentional
allocation.
Within the context of both simple laboratory paradigms

and complex natural behavior, there is evidence that
sequences of fixations may be planned in parallel (Zingale
& Kowler, 1987). Unusually short fixations are often
interpreted as implying that they are part of a pre-
programmed sequence and the evidence for this in simple

tasks is considerable. Express saccades are found predom-
inantly when they are part of an ordered sequence of
fixations in the same direction as each other (Carpenter,
2001). In the antisaccade task, erroneous prosaccades are
frequently followed by short duration fixations before a
corrective saccade to the opposite hemifield, a result that
is interpreted as reflecting parallel programming of both
the erroneous and corrective saccade before the error is
initiated (Massen, 2004). The prevalence of very short
fixation durations in some natural tasks (e.g., Hayhoe et al.,
2003) could be interpreted in the same manner as short
duration fixations have in simple viewing paradigms: as
part of a pre-programmed sequence of eye movements.
From picture-viewing experiments, we know that the

consistency between observers changes over time, such
that different people will pick more similar locations for
their first few fixations than for later fixations (Buswell,
1935). One possible explanation for this has been that the
first few fixations in a viewing period are primarily driven
by image properties (e.g., Parkhurst et al., 2002). However,
subsequent studies have not supported this notion, suggest-
ing that the correlations between features and fixations do
not change over time (e.g., Nyström & Holmqvist, 2008;
Tatler et al., 2005). Consequently, the changes in viewing
behavior that are found across viewing time must come
from higher level factors. Thus, time within a viewing
epoch may prove to be an informative component for
modeling the underlying target selection processes.

Assumption 5: Saccades precisely target
locations for processing

Eye guidance in picture viewing is often assessed by
comparing image statistics at fixated and control locations,
extracting image properties over a small window (1–2 degrees
of visual angle) centered at fixation (e.g., Parkhurst et al.,
2002; Tatler et al., 2006; and many others). This approach
assumes that the information at the center of gaze contains
the intended target of each saccade. This seems plausible
from the perspective of eye movement behavior in simple
laboratory-based viewing paradigms. When required to
fixate a small peripheral target, saccades that land short
will almost always be corrected so that the fovea is
brought to bear precisely upon the target (e.g., Becker,
1972, 1991; Carpenter, 1988; Deubel, Wolf, & Hauske,
1984; Kapoula & Robinson, 1986; Prablanc & Jeannerod,
1975). However, it is unclear whether such precision, evi-
denced by the presence of small corrective saccades, is a
feature of natural image viewing (Tatler & Vincent, 2008).
In the context of more natural tasks, such precision may

be unnecessary. When moving an object past an obstacle,
getting the center of vision within about 3 degrees
was sufficient: saccades that brought the foveae within
3 degrees of the obstacle were not corrected (Johansson,
Westling, Backstrom, & Flanagan, 2001). Similarly, in tea
making, saccades of amplitudes less than 2.5 degrees are

Figure 3. Behaviour during extended viewing for (left) a human

observer and (right) the salience model. The human observer

viewed the scene for 60 s with no instructions. The model

simulated the same number of fixations as made by the observer

during viewing (N = 129 fixations). Data are shown for the entire

viewing period (top row). Note that the salience model simply

cycles around a small number of locations, whereas the observer

does not. The lower three rows show data divided into the first 10 s,

the middle 10 s, and the final 10 s of viewing, with matched

portions from the simulated sequence of fixations generated by

the salience model. Simulation data were generated using the

latest version of the saliency tool box downloaded from http://

www.saliencytoolbox.net using the default parameters. Full details

of the model can be found in Walther and Koch (2006).

Journal of Vision (2011) 11(5):5, 1–23 Tatler, Hayhoe, Land, & Ballard 7

http://www.saliencytoolbox.net
http://www.saliencytoolbox.net


very rare (Land et al., 1999). These findings suggest that
getting the eye close to but not necessarily precisely on to
a target is sufficient to serve many aspects of natural
behavior, particularly when the objects being dealt with
are large in the field of view. When making large
relocations from one side of the room to another, gaze
will sometimes be shifted in one large combined move-
ment of eyes, head, and body. However, on other
occasions, the relocation may involve one or more short
duration fixations en route to the intended target (Land
et al., 1999). In this case, the fixations made en route do
not appear to land on any particular locations in the scene.
It seems unlikely that these were intentionally targeted
fixations; rather, they represent incidental stops during a
planned relocation to the final, intended object. As such,
the contents of these en passant fixations are unlikely to
have played a key role in saccade targeting and modeling
their visual characteristics of these fixations is likely to be
misleading.
One question that arises when considering eye move-

ments during natural behavior is whether all of the
fixations we make are strictly necessary for serving the
current behavioral goal or whether there is a certain
amount of redundancy. Figure 4 shows an example of eye
movements made while waiting for the kettle to boil.
Many of these seem unlikely to be strictly necessary for
the primary task and may reflect a variety of other
purposes. It is entirely possible that these non-essential
fixations are not targeted with the same precision or using
the same selection criteria as other fixations. In general,
the tight linking of fixations to the primary task will vary,
depending on such factors as time pressure or behavioral
cost. For example, fixations during driving may be more
critical than when walking, where time is less critical. It is
probably a mistake to think that every fixation must have
an identifiable purpose and should be targeted with the
same precision or selection criteria. It may be under

conditions of reduced cognitive load that conspicuity-
based fixations are most likely to be manifest.

Emerging alternative accounts

Not all of the issues identified above are fatal for
existing approaches to the computational modeling of
fixation selection. For example, incorporating peripheral
acuity limits (Assumption 3) into models is tractable and
several authors have incorporated aspects of this in
computational models (e.g., Peters, Iyer, Itti, & Koch,
2005). Recent models emphasize the importance of
inhomogeneous retinal sampling (e.g., Wischnewski et al.,
2010; Zelinsky, 2008). Similarly models can incorporate
information about when in a viewing epoch a fixation
occurs or the duration of the fixation (Assumption 4).
Models of fixation durations in scene viewing are begin-
ning to emerge (Nuthmann et al., 2010).
Several recent models that attempt to incorporate higher

level factors into accounts of fixation selection have been
developed, a limitation of the original salience model that
was recognized from the outset (Itti & Koch, 2000). One
possibility is to suggest that top-down control is used to
selectively weight the feature channels in the salience
model to emphasize features that define the target of a
search (Navalpakkam & Itti, 2005). A successful approach
has been to incorporate prior knowledge of where
particular objects are likely to be found in a scene in order
to guide eye movements (Torralba, Oliva, Castelhano, &
Henderson, 2006). In this model, a salience map of low-
level conspicuity is modified by a contextual map of
where particular targets are likely to occur. Contextual
guidance and low-level features combine to provide good
predictive power for human fixation distributions (Ehinger
et al., 2009). In addition to using spatial expectations to
refine the search space in a scene, prior knowledge of
the appearance of objects of a particular class can be
used (Kanan et al., 2009). Using the combination of a
probabilistic appearance map, spatial contextual guidance
and low-level feature salience can again be used to predict
a sizeable fraction of human fixations (Kanan et al., 2009).
While the majority of recent computational models have

retained a central place for low-level visual conspicuity,
some models depart from this and build around alternative
cores. The two most developed of these alternatives come
from Wischnewski, Steil, Kehrer, and Schneider (2009;
Wischnewski et al., 2010) and Zelinsky (2008). In
Zelinsky’s Target Acquisition Model, retinal inhomoge-
neity of sampling for the visual image is computationally
implemented. Visual information is represented not as
simple feature maps but as higher order derivatives, and
knowledge of the target is incorporated. This model is
successful at replicating human-like search of photo-
graphic scenes and the direction of the first saccade in a

Figure 4. Profligacy in eye movement behavior. From Land and

Tatler (2009).
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viewing epoch. The model can generalize to simpler
stimuli and reproduce phenomena such as the center of
gravity effect, where saccades land between potential
targets (Zelinsky, Rao, Hayhoe, & Ballard, 1997).
Wischnewski et al.’s (2010) model builds upon

Bundesen’s (1990) Theory of Visual Attention.
Wischnewski et al. attempt not only to move away from
simple static visual features but also to overcome some
of the problematic assumptions described above. In this
model, retinal inhomogeneity of feature processing is
included and the model centers around the integration of
static features, dynamic features, proto-objects, and task.
The emphasis in this model is not how static features are
modified by other factors, but rather that the representation
underlying saccade targeting is an integration across these
levels of processing. These authors suggest that the differ-
ent levels of information are integrated into an overall,
retinotopic attention priority map. The notion of an
attention priority map that integrates low-level and high-
level cues has been suggested several times in the neuro-
physiological literature (Fecteau & Munoz, 2006). The
neural implementations of such a priority map include
the superior colliculus (McPeek & Keller, 2002), pulvinar
(Robinson & Petersen, 1992), V1 (Li, 2002), V4 (Mazer
& Gallant, 2003), LIP (Gottlieb, Kusunoki, & Goldberg,
1998), and the frontal eye field (Thompson & Bichot,
2005). Indeed, the emergence of a priority map to reflect
the choice of either a target or an action in the posterior
parietal cortex and subsequent areas is well supported and
is clearly necessary to mediate targeted movements. It is
also commonly accepted that both bottom-up and top-
down signals contribute to such priority maps (Bichot &
Schall, 1999; Gottlieb et al., 1998). The way that such
activity emerges from the combination of stimulus and
task context is unresolved, however, and beyond the scope
of this review.
Wischnewski et al.’s notion of proto-objects as a key

component in fixation selection is similar to recent
suggestions by Henderson, Malcolm, and Schandl
(2009). These authors suggested that selection proceeds
from a representation of proto-objects ranked by cognitive
relevance.
One other notable feature of Wischnewski et al.’s model

is the incorporation of dynamic features. The need to
account for dynamic stimuli and the inclusion of motion
as a feature in models have been recognized for some time
(see Dorr, Martinetz, Gegenfurtner, & Barth, 2010), and
several versions of conspicuity-based models have incor-
porated dynamic features (e.g., Itti, 2005). However, it
remains the case that the vast majority of studies of eye
movements when viewing complex scenes use photo-
graphic images of real scenes, which necessarily fail to
capture both the dynamics of real scenes and the complex,
time-dependent, nature of task influences. Given this
paradigmatic dominance of picture viewing, we will first
consider whether this paradigm is a suitable domain in

which to study eye guidance, before considering what can
be learned from studying eye movements in dynamic and
immersive contexts.

The picture-viewing paradigm

Can we learn about how we allocate gaze in natural
environments and during natural behavior from how
people look at pictures? While it is clear that models of
picture viewing have utility for understanding tasks that
involve looking at images on a computer monitor, it is
important to consider whether we can use them to infer
principles for fixation selection when behaving in natural
environments. We are not the first to ask questions about
the suitability of pictures as surrogates for real environ-
ments. Henderson (2003, 2006, 2007) has discussed this
issue on several occasions. We wish to draw attention to
two particular issues: biases introduced by the framing of
the scene and effects of sudden scene onset.
The physical difference between photographs and real

environments is obvious: the dynamic range of a photo-
graph is much less than a real scene; many depth cues
(stereo and motion parallax) are absent in static images;
motion cues (both egomotion and external motion) are
absent when viewing photographs; the observer’s view-
point in a still image is fixed and defined by the viewpoint
of the photographer, which typically reflects composi-
tional biases (Tatler et al., 2005). Not only is the field of
view limited to the angle subtended by the display
monitor, but also the scale of the image is typically
undefined and depends on an inference by the observer.
For example, a plate in a real setting might subtend
10 degrees, depending on the location of the observer, but
in a picture of a scene it may subtend only a degree or
two, and the subject must infer the viewpoint. This seems
like a fairly sophisticated computation and is at odds with
the essential idea of salience that low-level pre-attentive
image features control gaze, with only limited perceptual
analysis. Not only are the contents of photographs far
removed from real images, but also placing the images
within the bounds of the computer monitor’s frame
introduces strong biases in how the scenes are viewed.
There is a strong tendency to fixate the center of images
on a monitor irrespective of the scene’s content (Tatler,
2007; Vincent, Baddeley, Correani, Troscianko, & Leonards,
2009). If, as Vincent et al. suggest, up to 34–56% of eye
movements are best accounted for by a bias to fixate the
screen center, then modeling the visual contents of these
fixations will be very misleading.
Picture-viewing paradigms typically take the form of a

series of trials characterized by the sudden onset of an
image, followed by a few seconds of viewing, followed by
the sudden offset of the image. Sudden onset may, in
itself, influence inspection behavior. As discussed earlier,
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viewing patterns appear to change over time: there is
inter-observer consistency in the locations fixated early in
viewing, but this decreases with increasing viewing time
(e.g., Parkhurst et al., 2002; Tatler et al., 2005). While this
observation has given rise to a continuing debate about
whether this arises because of an early dominance of
salience followed by a switch toward more top-down
control later in viewing, a more fundamental issue is what
the implications of early differences are for the general-
izability of findings. If viewing is different for the first few
seconds after sudden scene onset (an observation that
authors are in agreement about), then the selection criteria
for these first few fixations are different for those later in
viewing. The problem arises because there is no real-
world analogue of the sudden onset of an entire scene, and
it is known that the activity of neurons involved in target
selection is very different for sudden onsets (Gottlieb et al.,
1998). Even opening a door to a room is not like a sudden
onset: here, the scene still emerges as the door opens. If
we accept that sudden whole-scene onsets are peculiar to
static scene paradigms, then the targeting decisions that
underlie saccades made early in viewing periods may be
specific to the sudden onset paradigms. Because such
experiments typically only show scenes for a few seconds
(in the region of 1–10 s in most studies), this could
influence a sizeable fraction of the eye movements that are
modeled.
It could be argued that the “purpose” of vision is very

different when looking at a static scene to when engaging
in real-world behavior. In natural tasks, a key goal of
vision can be seen as extracting the visual information and
coordinating the motor actions required to complete the
task. However, when viewing photographic scenes, there
is rarely a task that involves the active manipulation of
objects in the environment. Rather, in static scene view-
ing, the task may be to search for a target, to remember
the scene, or to make some judgement about the content
of the scene. These classes of task are only a subset of the
repertoire of behaviors we execute in the real world. Thus,
the principles governing saccade targeting decisions in the
tasks used in picture-viewing paradigms are most likely
different from those used when engaged in active, real-
world tasks.

Videos as surrogates for real-world settings

The shortcomings of static pictures as surrogates for
real environments has been recognized by numerous
investigators (e.g., Henderson, 2007; Shinoda, Hayhoe,
& Shrivastava, 2001). As a result of this recognition, a
growing number of studies are starting to use videos
because these stimuli include dynamic information (e.g.,
Carmi & Itti, 2006; Itti, 2005; ’t Hart et al., 2009).
Dynamic features can be strong predictors of eye move-
ment behavior (Itti, 2005). However, this may not
generalize to natural behavior because the frequent

editorial cuts that are found in many movie sequences
present an unusual and artificial situation for the visual
system. Editorial cuts result in memorial and oculomotor
disruptions to normal scene perception (Hirose, Kennedy,
& Tatler, 2010). Moreover, such cuts result in behavior
that is unlike how we view continuous movies with no
cuts (Dorr et al., 2010; ’t Hart et al., 2009). When viewing
continuous movies of a dynamic real-world environment,
the predictive power of both static and dynamic feature
cues was vanishingly small (Cristino & Baddeley, 2009).
Thus, movie-style edited video clips may be problematic
stimuli. It is also possible that the framing effects of the
monitor continue to induce central biases to scene viewing
that are ecologically invalid: while the central bias is
weaker for continuous movies, it still remains and
explains a considerable fraction of eye movement behavior
(Cristino & Baddeley, 2009; Dorr et al., 2010; ’t Hart et al.,
2009).

A role for visual conspicuity?

It should be reiterated at this point that the original goal
of conspicuity models was not really to explain eye
movements but rather to explain attentional capture,
evaluating this by using eye movements. In this respect,
such models were not really designed to explain eye
movements in general and should not be expected to
generalize to natural behavior. There is a large literature
on attentional and oculomotor capture that we will not
review here. In general, the findings of this literature are
mixed. There is good evidence that specific stimuli such
as sudden onsets, new objects, or motion transients have
substantial power to attract attention (Franconeri &
Simons, 2003; Gibson, Folk, Teeuwes, & Kingstone,
2008; Irwin, Colcombe, Kramer, & Hahn, 2000; Lin,
Franconeri, & Enns, 2008; Theeuwes & Godijn, 2001). It
is less clear whether certain classes of stimuli attract
attention in an obligatory fashion, independently of the
subject’s task set or ongoing cognitive goals (Jovancevic
et al., 2006; Yantis, 1998). While much of natural
behavior might be under task-driven control, there is
clearly a need for a mechanism to capture attention and
change the ongoing cognitive agenda. Many aspects of
natural environments are unpredictable and there must be
some mechanism to alert the observer to unexpected
hazards. Our subjective impression that attention and gaze
are reliably drawn to unusual stimuli or events in the
environment argues for some mechanism like salience. It
is a valid question whether salience models can work in
these cases. The essential difficulty is that free viewing of
static images is probably not a good paradigm either for
attentional capture or for natural vision, as we have
discussed. The problem in natural vision is that a stimulus
that is salient in one context, such as peripheral motion
with a stationary observer, may not be salient in another
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context, such as when the observer is moving and
generating complex motion on the retina. To address this
problem, Itti and Baldi (2006) suggested that “salient”
events or locations are those that are unexpected or
surprising, where surprise is defined as a statistical
deviation from the recent history of visual stimuli.
Surprising stimuli, therefore, correspond to statistical
outliers in time, whereas salient stimuli are statistical
outliers in space. A recent paper by Bruce and Tsotsos
(2009) reflects this idea in the space domain by defining
salience as a “surprisal” value or the extent to which a
region differs from its neighborhood. Some kind of
surprise mechanism is essential for attracting attention to
stimuli that are important but not encompassed by the
current task set. There is only a little work on the
statistical basis for the formation of a surprise signal. Itti
and Baldi conjecture that the visual system learns the
statistics of images by estimating the distribution of
parameters of probability distributions that can explain
recent image feature data. In the context of video
sequences, as subsequent image frames are processed,
Bayesian inference updates the priors with the posterior
from the previous frame. They measure surprise as the
shift between the posterior and prior probabilities of
model parameters. Itti and Baldi’s model is a complex
multi-parameter simulation of early visual processing and
works on very short time scales (100s of ms). Thus, it is
unlikely to reflect the long-term memory factors involved
in natural behavior. Most scenes are highly familiar and
observers have the opportunity to build extensive long-
term memory representations built up over thousands of
fixations. Brockmole and Henderson (2005, 2008) and
Matsukura, Brockmole, and Henderson (2009) showed
that subjects are more likely to fixate changes in scenes
when they have previously viewed the scene for a few
seconds. Uke-Karacan and Hayhoe (2008) showed that
several minutes experience in a virtual environment led
to increased fixations on changed objects in the scene.
Thus, stimuli that are surprising with respect to a prior
expectation might constitute a robust means of attracting
attention.
It is, therefore, clear that there are circumstances in

which conspicuity-based models of eye guidance and
attention can provide explanations of human behavior.
When the visual signal in the environment is large (as is
the case in simple feature-based search arrays and sudden
onset paradigms or when an unexpected event occurs),
then this signal will drive eye movement behavior. It is an
empirical question whether attentional capture by large
signals, that is, the mechanisms of surprise, constitutes a
significant portion of ordinary oculomotor behavior.
Learned strategies such as searching for Stop signs at
intersections can certainly deal with many of the vicissi-
tudes of the natural world, but clearly some attention-
getting mechanism is essential. Understanding how the
visual world is coded in memory to form the basis of prior
expectations and allow reliable detection of surprising

stimuli is an important question that needs to be resolved.
A related question is the extent to which mechanisms of
surprise might be modulated by behavioral goals. For
example, one can imagine that the visual system might
have the task of looking for surprising stimuli as a priority
in many circumstances, or alternatively, vision might only
prioritize surprising stimuli when there is no other
pressing demand. The answer to these questions would
help determine the extent to which results from picture
viewing might generalize to natural behavior.

Eye guidance in natural behavior

We have argued that the conspicuity-based theoretical
models are unable to explain many aspects of human
fixation behavior and that picture viewing (and perhaps
movie viewing) is a problematic paradigm for under-
standing eye movement behavior. Given that a fundamen-
tal function of vision is to provide information necessary
for survival, if we are to understand the principles that
underlie fixation selection, we must consider eye move-
ments in the context of behavioral goals, where the
requirement is to seek out relevant information at the
time when it is needed. Most contemporary models of
fixation selection acknowledge the importance of
accounting for cognitive control of eye movements.
However, few engage with the need to consider visual
selection as being fundamentally and intricately linked
to action. One exception to this is Schneider’s (1995)
Visual Attention Model, which distinguishes “what” and
“where” components of target selection, with the latter
considering selection for action. Despite its conceptual
and empirical strengths (Deubel & Schneider, 1996), the
importance of selection for action in models of eye guidance
has not featured prominently in more recent models.
Empirical evaluations show that conspicuity-based

theoretical models lack explanatory power in the context
of natural behavior (e.g., Rothkopf et al., 2007). Thus, we
argue that conspicuity-based approaches are not a suitable
theoretical framework for understanding eye movements
in the context of natural behavior. The challenge, there-
fore, for this field is to develop a suitable theoretical
alternative. Moreover, models that make empirically
testable predictions of fixation selection are required. In
the sections that follow, we first consider the key findings
from studies of natural tasks that are common across
multiple instances of behavior. Our aim in this section of
the article is to bring together common findings from a
range of different natural task settings in order to identify
common principles for fixation selection rather than to
provide extensive details on any one natural task. Under-
standing the common observations allows us to identify
general principles that underlie eye movements in natural
tasks. From these principles, it is clear that the issues that
must be explained by any theory of natural eye guidance
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are rather different from those typically considered in
current models. The principles identified here offer the
essential elements from which theoretical models might
be built.

Spatial coupling between gaze and behavioral
goal

Cognitive control of eye movements was well estab-
lished before the development of salience models (e.g.,
Buswell, 1935; Kowler, 1990; Yarbus, 1967). This case
has been strengthened by more recent work in natural
tasks. All studies of eye movements during natural
behavior show that there is an intimate link between
where we look and the information needed for the imme-
diate task goals (Epelboim et al., 1995; Hayhoe et al.,
2003; Land & Furneaux, 1997; Land et al., 1999; Patla &
Vickers, 1997; Pelz & Canosa, 2001). The link between
our behavioral goals and the allocation of overt visual
attention is highlighted by the fact that when engaged in a
natural task essentially all the fixations fall on task-
relevant objects (Hayhoe et al., 2003; Land et al., 1999),
whereas before beginning a task (such as sandwich
making) the distribution of fixations between task-relevant
and -irrelevant objects is about equal (Hayhoe et al., 2003;
Rothkopf et al., 2007). The extent to which fixation
placement is driven by the information-gathering require-
ments for an interaction with an object was demonstrated
by Rothkopf et al. (2007) in an immersive virtual reality
environment. Here, fixations on identical objects varied

considerably depending upon whether the participant was
attempting to approach or avoid the object (Figure 5). This
result highlights the importance of understanding the
function of each fixation for understanding fixation
placement.

Similarity between different individuals

The intimate link between vision and action is reflected
in the consistency that is observed between individuals
who complete natural tasks. Different individuals show a
high degree of consistency in where and when they look at
informative locations while engaged in natural behaviors.
Drivers look consistently at or close to the tangent point of
a bend or the lane ahead, with around 50% of fixations
made by three drivers falling within an area subtending
only about 3 degrees in diameter (Land & Lee, 1994).
Fixations on other pedestrians when walking are very
consistent across individuals: despite a lack of any explicit
instructions, there was a high degree of consistency in
when and for how long oncoming pedestrians were fixated
(Jovancevic-Misic & Hayhoe, 2009). When cutting a
sandwich, subjects always fixate the initial point of
contact with the knife and move their gaze along the
locus of the cut, just ahead of the knife (Hayhoe et al.,
2003). The similarity in fixation sequences of different
individuals when taking the kettle to the sink to fill it is
illustrated in Figure 6 (Land et al., 1999).
A similarly impressive degree of inter-observer consis-

tency can be found when recording gaze behavior of

Figure 5. When subjects navigating a virtual environment are told to approach and pick up an object, their fixations tend to be centered on

the object, but when the subjects are told to avoid the object, their fixations hug the edge of the object. The salience of the object is

identical, but its associated uses have changed, dramatically changing the fixation distribution characteristics. From Rothkopf et al.

(2007).
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observers watching a magician perform a trick. When
making a cigarette and lighter “disappear,” observers
consistently fixate certain locations at the crucial moments
in the performance (Kuhn & Tatler, 2005). This trick is
based on the simple principle of distracting the observer
while first the lighter and then the cigarette is dropped. At
these crucial points, the observers consistently look to the
opposite hand to that being used to drop the object (Kuhn

& Tatler, 2005; Tatler & Kuhn, 2007). This misdirection
to the inappropriate hand is tightly controlled in space and
time, so that about 300 ms before the object is dropped,
most participants will be looking at the same (inappro-
priate) location (Tatler & Kuhn, 2007). Of course, the
question must be asked as to how the magician ensures the
consistent misdirection of the audience at these crucial
moments. These authors have shown that it is the magician’s

Figure 6. Scan patterns of three people taking the kettle to the sink in order to fill it prior to making tea (from Land et al., 1999).
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own direction of gaze that is the key to successfully
misdirecting the observer (Kuhn, Tatler, & Cole, 2009).
A clear implication of the spatial and temporal

consistency that is found between participants in natural
tasks is that the decisions about where and when to
allocate gaze must be governed by the same underlying
principles in different individuals. Given the role of eye
movements in gathering information to accomplish tasks,
it makes sense that fixation patterns between individuals
should be similar, as they will reflect the physical and
dynamic properties of the environment as well as common
behavioral goals. This stability in fixation patterns makes
the investigation of natural behavior unexpectedly acces-
sible to experimental investigation. The high degree of
consistency found in gaze allocation in natural settings is
in contrast to the often quite low consistencies found
between individuals when viewing static scenes. Espe-
cially after a few seconds from the onset of a static scene,
there is often very little consistency in where different
observers fixate (Tatler et al., 2005). Consequently, one
could argue that the principles underlying fixation selec-
tion during natural tasks may be more robust than those
that researchers have tried to capture in models of eye
guidance when viewing static scenes.

Timing of gaze shifts

A striking feature of natural behavior is that there is not
only a tight spatial coupling between the eye and the
target of the current motor act but also there is a tight
temporal coupling between vision and action. This was
elegantly demonstrated by Johansson et al. (2001), who
measured the departure time of the eye relative to the
hand as the subject maneuvered an object past an obstacle.
Gaze moved onto the next target just at the point that the
object cleared the obstacle. Similar time locking of the
fixations and actions has been observed in driving (Land
& Lee, 1994; Land & Tatler, 2001), making tea or
sandwiches (Hayhoe et al., 2003; Land et al., 1999), music
sight reading (Furneaux & Land, 1999), walking (Patla &
Vickers, 2003), and reading aloud (Buswell, 1920). The
ubiquity of this eye–action temporal coupling underlines
the necessity to consider placement of the eyes in time as
well as in space. Moreover, it may well be that the correct
temporal placement of the eyes is more crucial to
successful completion of behaviors than precise spatial
placement and that skilled performance is as dependent
upon the correct allocation of gaze in time as in space
(Land & McLeod, 2000).

The roles of learning

Implicit in much of the research on natural tasks is the
finding that people must learn what to look at and when

(Chapman & Underwood, 1998; Land, 2004; Land &
Furneaux, 1997; Land & Tatler, 2009). For example, in a
virtual driving environment, Shinoda et al. (2001) asked
participants to look for Stop signs while driving an urban
route. Approximately 45% of fixations fell in the
neighborhood of intersections during this task, and as
might be expected from this, participants were more likely
to detect Stop signs placed near intersections than those
placed in the middle of a block. This result suggests that
drivers have learned that traffic signs are more likely
around intersections and so to preferentially allocate their
gaze to these regions. At a more detailed level, people
must learn the optimal location for the specific informa-
tion they need. For example, where on the kettle a subject
will look depends on what they need to do with that kettle.
When waiting for it to boil, they will look mainly at the
fill level indicator and switch (Figure 4). When placing it
on its base, fixations will alternate between the bottom of
the kettle and the fixings protruding from the base (on the
work surface). When pouring water from the kettle,
fixations will be made to the water stream in the receiving
vessel. People must learn not only the locations at which
relevant information is to be found but also the order in
which the fixations must be made in order to accomplish
the task. Thus, when making a sandwich an individual
must locate the peanut butter and the bread before picking
them up, pick up the knife before spreading, and so on.
This means that a complete understanding of eye move-
ments in natural behavior will require an understanding of
the way that tasks are learned and represented in the brain,
much of which presumably occurs over long time periods
during development. In adult life, skills can be learned
more rapidly, because they build on related skills already
acquired.
In a study that explored the development of eye–hand

coordination in a novel task, Sailer, Flanagan, and
Johansson (2005) used a mouse-like control task to show
that initially the eyes lagged behind action, apparently
providing feedback information about the success of the
last maneuver. However, once skilled at this task (after
about 20 min), the eyes led the movement of the mouse
cursor systematically by about 0.4 s, anticipating the next
goal of the cursor on the screen. Similarly, learner drivers
fixate just ahead of the car when cornering, whereas more
experienced drivers look into the bend and fixate points on
the road that will be reached as much as 3 s later, thus
anticipating any need for future action (Land, 2006; Land
& Tatler, 2009).
In stable environments, the observer needs only to

update the locations of items that are moved or monitor
items that are changing state. In dynamic environments,
such as driving, walking, or in sports, more complex
properties must be learned. In walking, humans need to
know how pedestrians typically behave and how often to
look at them. The fact that humans do indeed learn such
statistics was demonstrated by Jovancevic-Misic and
Hayhoe (2009). In a real walking setting, they were able
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to actively manipulate gaze allocation by varying the
probability of potential collisions. Manipulation of the
probability of a potential collision by a risky pedestrian
(i.e., one with a past record of attempting collisions) was
accompanied by a rapid change in gaze allocation. Subjects
learned new priorities for gaze allocation within a few
encounters and looked both sooner and longer at potentially
dangerous pedestrians. This finding generalizes earlier
work, for example, by He and Kowler (1989), showing
the sensitivity of saccades to stimulus probability.
Further evidence for learning the dynamic properties of

the environment comes from the fact that saccades are
often proactive, that is, they are made to a location in a
scene in advance of an expected event. In walking,
subjects looked at risky pedestrians before they veered
onto a collision course. In cricket, squash, and catching
balls, players anticipate the bounce point of the ball by
100 ms or more (Land & McLeod, 2000). This ability to
predict where the ball will bounce depends on previous
experience of the ball’s trajectory in combination with
current sensory data. This suggests that observers have
learned models of the dynamic properties of the world that
can be used to position gaze in anticipation of a predicted
event. Indeed, given neural delays between the eye and
cortex, in time-critical behaviors such as driving and ball
sports, action control must proceed on the basis of
predictions rather than perceptions.
It is clear from these examples that the types and time

scales of learning in the above examples vary consid-
erably. Thus, any theoretical model must be able to
explain learning across this broad range.

Reward-based models of gaze
allocation

If we are to place learning at the center of theoretical
accounts of eye guidance, it is important to consider how
it might be implemented in the brain. The reward system,
which has been implicated in a variety of aspects of
learning, offers a suitable system for implementing the
learning that is required for deploying gaze in natural
behavior.

Neural substrates for learning gaze allocation
in task execution

It has become increasingly clear that the brain’s internal
reward mechanisms are intimately linked to the neural
machinery controlling eye movements. Schultz et al. have
shown that dopaminergic neurons in the basal ganglia
signal the reward expected from an action. The role of
dopamine in expected reward is signaled as it is handed
out in anticipation of the result of a behavior (e.g.,
Schultz, Tremblay, & Hollerman, 2000). Sensitivity to

reward is manifest throughout the saccadic eye movement
circuitry. Caudate cell responses reflect both the target of
an upcoming saccade and the reward expected after making
the movement (Hikosaka, Nakamura, & Nakahara, 2006).
Saccade-related areas in the cortex (LIP, FEF, SEF, and
DLPF) all exhibit sensitivity to reward (Dorris &
Glimcher, 2004; Glimcher, 2003; Glimcher, Camerer,
Fehr, & Poldrack, 2009; Platt & Glimcher, 1999; Stuphorn
& Schall, 2006; Stuphorn, Taylor, & Schall, 2000; Sugrue,
Corrado, & Newsome, 2004). The neurons involved in
saccadic targeting respond in a graded manner to both the
amount of expected reward and the probability of a
reward in the period prior to execution of the response.
Sensitivity to both these variables is critical for learning
and, consequently, for linking fixation patterns to task
demands. The cortical saccade-related areas converge on
the caudate nucleus in the basal ganglia, and the cortical–
basal ganglia–superior colliculus circuit appears to regu-
late the control of fixation and the timing of planned
movements. Such regulation is a critical requirement for
task control of fixations.
The relevance of the neurophysiological work on

reward may not be immediately obvious for ordinary
human behavior. In neurophysiological paradigms, usually
a primary reward such as juice or a raisin is delivered after
the animal performs an action. This, of course, does not
happen in real life when one makes an eye movement.
However, eye movements are for the purpose of obtaining
information, and this information is used to achieve
behavioral goals, such as making a sandwich, that are
ultimately important for survival. Thus, visual information
acquired during a fixation can be thought of as a
secondary reward and can mediate learning of gaze
patterns by virtue of its ultimate significance for adapta-
tion and survival. Indeed, several researchers have
quantified the intrinsic reward associated with looking at
particular visual stimuli. Deaner, Khera, and Platt (2005)
and Shepherd, Deaner, and Platt (2006) measured how
much liquid reward monkeys were willing to give up in
order to obtain visual information about members of their
social group. In this case, liquid is the measurable,
external equivalent of an internal reward resulting from
gaze. Thus, the dopaminergic machinery appears to be
intimately related to the sensitivity of eye movement
target selection to behavioral outcomes.

Modeling eye movements using reward

The reward sensitivity of the eye movement circuitry
provides the neural underpinnings for reinforcement
learning models of behavior (Montague, Hyman, &
Cohen, 2004; Schultz, 2000). The mathematics of rein-
forcement learning is potentially useful for understanding
how complex gaze patterns might be generated (Sutton &
Barto, 1998). Dopaminergic cells signal the reward
expected from an action, and reinforcement learning
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models are pertinent because they allow an agent to learn
what actions or action sequences will lead to reward in the
future. Given a set of possible states, and actions that
might be associated with those states, reinforcement

learning algorithms allow an agent to learn a policy for
selecting actions that will ultimately maximize reward.
There have been few attempts to model the eye

movements observed in complex behavior. However, one

Figure 7. The model of Sprague et al. (2007). (A) A virtual agent in a simulated walking environment. The agent must extract visual

information from the environment in order to do three subtasks: staying on the sidewalk, avoiding blue obstacles, and picking up purple

litter objects (achieved by contacting them). The inset shows the computation for staying on the path. The model agent learns how to

deploy attention/gaze at each time step. (B) The agent learns a policy for choosing an action, given the current state information from

gaze for a given task. Each action has an associated value, and the agent chooses the option with the highest value. (C) Seven time

steps after learning. The agent chooses the task that reduces uncertainty of reward the most. The red lines indicate that the agent is using

visual information to avoid the obstacle. The blue line indicates that the agent is using information about position on the sidewalk, and the

green lines show the agent using vision to intersect the purple litter object.
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such model, by Sprague et al. (2007; Figure 7), shows
how a simulated agent in a virtual environment can learn
to allocate gaze to avoid obstacles and control direction in
walking (see also Ballard & Hayhoe, 2009; Rothkopf &
Ballard, 2009; Rothkopf et al., 2007). The model assumes
that visual computations required in the real world can be
broken down into a set of subtasks, or modules, such as
controlling direction, avoiding obstacles, and so on. Each
subtask is associated with some reward value. For
example, obtaining visual information that allows avoid-
ance of an obstacle presumably provides secondary
reward. These authors have provided a computational
account of how we can successfully distribute attention
and gaze between these visual subtasks in a dynamic
environment. Their chosen paradigm involves walking
along a virtual path with three simultaneous tasks: stay on
the path, avoid obstacles, and pick up “litter.” The
proposed model assumes that we can only attend to one
location at any moment in time and that our uncertainty
about unattended tasks grows over time. The decision
about which task to attend to is based on the expected
reward of switching attention to another task, evaluated
every 300 ms. To choose between ongoing competing
tasks, in their model, uncertainty increases (together with
an attendant cost) when gaze is withheld from an
informative scene location. The model assumes that eye
movements are selected to maximize reward by reducing
uncertainty that could result in suboptimal actions.
Framing the decision about where to look in terms of
uncertainty reduction has been effective in explaining
aspects of static scene viewing (Najemnik & Geisler,
2005, 2008; Renninger, Coughlan, & Vergheese, 2005) as
well as dynamic scene viewing.
Reward is a central component of recent applications of

statistical decision theory to understanding control of
body movements. In this approach, the concepts of reward
(costs and benefits of the outcome of the action),
uncertainty (of both sensory state and outcome), and
prior knowledge (probability distributions associated with
world states) are central to understanding sensory-motor
behavior (e.g., Tassinari, Hudson, & Landy, 2006;
Trommershäuser, Maloney, & Landy, 2008). When
reward is externally defined (e.g., by monetary reward), it
has been shown that subjects making rapid handmovements
learn a complicated spatially distributed target reward
system and behave in a nearly optimal manner to maximize
reward (e.g., Seydell, McCann, Trommershäuser, & Knill,
2008; Trommershäuser, Maloney, & Landy, 2003). Sim-
ilar targeting experiments using saccadic eye movements
with monetary rewards and losses showed that reward
affected saccadic targeting, although stimulus strength
also affected the movements particularly at short latency
(Stritzke, Trommershäuser, & Gegenfurtner, 2009). Other
evidence for the role of reward in saccade targeting has
been demonstrated by Navalpakkam, Koch, Rangel, and
Perona (2010) who showed that subject’s saccade behav-
ior in a visual search is consistent with an ideal Bayesian

observer, taking into account both rewards and stimulus
detectability. Thus, it is plausible that the patterns of eye
movements observed in the natural world takes into
account both the reward structure of the environment
and stimulus uncertainty (Trommershäuser, Glimcher, &
Gegenfurtner, 2009).
Models that use reward and uncertainty as central

components are in their relative infancy and are not yet
at the stage of providing a computational model that
explains eye movements across multiple instances of
natural behavior. However, such models offer the poten-
tial to include ubiquitous aspects of fixation selection that
cannot be explained within conspicuity-based models. For
example, the common tendency to look into empty spaces
in anticipation of an event is very problematic for
conspicuity models but can be explained if gaze allocation
is based on expected (secondary) reward. Developing eye
guidance models based on reward is a difficult endeavor
because it essentially requires a model of task execution.
Not only this, but as we have seen the types and time
scales of learning that we must be able to model vary
considerably. At present, models based on reward focus
on the immediate time scale of the current behavioral
situation but reflect the outcome of longer time scales of
learning. Reinforcement learning, for example, presum-
ably functions on a developmental time scale, so adults’
gaze patterns would reflect the end product of such
models. Many fundamental questions require empirical
support. For example, is it appropriate to model behavior
as a set of semi-independent subtasks? This assumption of
behavioral modules is critical to make the problem
computationally tractable (Rothkopf & Ballard, 2010),
but it is not known whether it is a good model of sensory-
motor behavior. However, it is clear that reward is intrinsic
to many aspect of cortical function (Glimcher et al., 2009)
so the reward-based approach seems likely to provide a
key building block from which to develop future theories
and models of gaze behavior.

Conclusions

Investigation of eye guidance in scenes has been driven
largely by studies of static scene viewing. The latest
models of this behavior can be thought of as modifications
to the image salience framework, where a core bottom-up
mode of looking is modified by various high-level
constraints. We argue that the basic assumptions at the
heart of such studies are problematic if we wish to try to
generalize these models to how gaze is allocated in natural
behavior. That is, models developed from static scene-
viewing paradigms may be adequate models of how we
look at pictures but are unlikely to generalize to gaze
behavior in other situations. Developing computational
models of gaze allocation that can generalize across many
instances of natural behavior is a difficult goal. However,
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we see already from studies of gaze selection in natural
behavior that there is a consistent set of principles
underlying eye guidance involving behavioral relevance,
or reward, uncertainty about the state of the environment,
and learned models of the environment, or priors. These
factors control the decision mechanisms that govern what
we should attend to on the basis of where we will gain
information for fulfilling the current behavioral goals.
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Trommershäuser, J., Maloney, L. T., & Landy, M. S.
(2003). Statistical decision theory and the selection of
rapid, goal-directed movements. Journal of the
Optical Society of America A, 20, 1419–1433.
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