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Abstract
The use of a camera in a robot control loop can be performed

with two types of architecture: the camera is said eye-in-hand

when rigidly mounted on the robot end-effector and it is said eye-

to-hand when it observes the robot within its work space. These

two schemes have technical differences and they can play very

complementary parts. Obviously, the eye-in-hand one has a par-

tial but precise sight of the scene whereas the eye-to-hand cam-

era has a less precise but global sight of it. The motivation of

our work is to take advantage of both, free-standing and robot-

mounted sensors, in a cooperation scheme. The system we present

in this paper performs two separate tasks: a positioning one that

is ensured in the global image and a tracking one performed in

the local image. For robustness considerations, the control law

stability is proved and several cooperative schemes are studied

and compared in experimental results.

1 Overview
For the last fifteen years, eye-in-hand 2D visual servoing has been

extensively studied [11, 3, 5, 7]. Central to this approach is the

image jacobian ✂ (also called interaction matrix). It relates the

variations of some image features ✄ to the robot control (generally

expressed as a velocity screw ☎ ): ✆✄✞✝✟✂✠☎ . Most of the time, the

control can be expressed as the regulation of a task function [10].

If ✄☛✡ is the desired value of ✄ , we aim at controlling the robot in

such a way that ✄✌☞✍✄ ✡ decreases to ✎ . A simple method consists

in applying the following control law:☎✏✝✑☞✞✒✔✓✂✖✕✖✗✘✄✌☞✍✄ ✡✚✙ (1)

where ✓✂ ✕ is the pseudo-inverse of the estimated jacobian. If✛✢✜✤✣ ✗✘✄ ✙✦✥ ✛✢✜✘✣ ✗✧☎ ✙ , we can show that when ✓✂ is exactly com-

puted at each time, (1) ensures an exponential decrease in ✄★☞✩✄✪✡ .
But, for several reasons [1], ✓✂ is often fixed to a constant matrix

(generally calculated at the desired position). Anyway, in that

case, if we can show positiveness of the eigenvalues of ✂✫✓✂ ✕ , lo-

cal asymptotic stability of (1) is ensured.

In [6] the results of [3] are extended to the general case of a cam-

era observing the robot being controlled. In [9] and [12], we can

find eye-to-hand systems developed for specific tasks. We should

stress the fact that, in the eye-to-hand case, the image jacobian

has to take into account the mapping from the camera frame onto

the robot control frame. If we note ✬ ✭✯✮✱✰✳✲ this mapping ( ✭ being

the rotational matrix and ✰ the translation vector), the eye-to-hand

jacobian ✂✵✴ is related to the eye-in-hand one ✂ by:✂✵✴✶✝✷☞✫✂✹✸ ✭ ☞✫✭✻✺✼✗✱☞✫✭✶✽✾✰ ✙✎ ✭ ✿ (2)

where ✺✼✗❁❀ ✙ is the skew symmetric matrix associated with vector❀ . In [6] the control law is identical to (1).

For complex tasks in natural or complex environments, we can

no longer be limited to the use of one type of camera. On the

one hand, there is no possibility for a local (eye-in-hand) camera

to interact with its whole work space. Furthermore, it can hardly

consider important modification in its environment. On the other

hand, a global (eye-to-hand) camera is not maneuverable enough

to explore the scene. Many papers deal with the use of several

cameras in computer vision: usually for 3D reconstruction with

stereo vision, sometimes for visual servoing with a pair of images

[4, 6] but rarely making global and local images cooperate [8].

The work that we describe in this paper is a first step towards such

a cooperation. We define and show feasibility of a low level visual

servoing task achieved by means of a system bringing together a

local view of the scene and a global one. This system is able to

ensure positioning while keeping visibility of a target.

In Section 2, we precisely describe and model the tasks to be

achieved by both eye-to-hand and eye-in-hand cameras and show,

in Section 3, how they merge into a single one. While stressing

the need of independence between the tasks, we will see that their

natural interaction can not be ignored and will show how to take

it into account in an efficient and robust way. In Section 4, we

present results obtained with a six degrees of freedom cartesian

robot.

2 Task description and modeling

In our system (see Figures 1 and 2), the global camera is static and

controls the translating degrees of freedom of the robot effector

to ensure its correct positioning while the local one controls its

orientation to center a static target in its image.

The mobile landmark from which the global image features will

be extracted is mounted at the end of the translating joints of the
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Figure 1: Eye-in-hand / Eye-to-hand cooperation

robot arm. This way, the end effector rotational motions do not

influence the global image. This provides us with more indepen-

dence between both tasks.
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Figure 2: Initial and desired images for eye-to-hand (on the

top) and eye-in-hand (on the bottom) systems

2.1 Translation control
The global image must control three degrees of freedom. We thus

need to extract at least three independent features from the image.

For stability proof convenience, we chose only three of them: the

coordinates of the center of gravity (c.o.g.) of the observed target

in the image and the projected surface. We further assume that

the observed target is planar and parallel to the image plane. First,

this results in the fact that the c.o.g of the target can be considered

as a physical point of the target and its evolution is governed by:

✸ ✆❂❄❃✆❅ ❃ ✿ ✝❇❆❉❈❊●❋ ✎ ☞✦❍ ❋❊●❋✎ ❈❊●❋ ☞❏■ ❋❊●❋▲❑◆▼❖ ✆P ❃✆◗ ❃✆❘ ❃❚❙❯
where ✗ ❂ ❃ ✮ ❅ ❃ ✙ are the coordinates (expressed in meters) of the

c.o.g. in the image for a one meter focal length and ✗ P ❃ ✮ ◗ ❃ ✮ ❘ ❃ ✙
are the coordinates of the c.o.g of the target expressed in the cam-

era frame. Second, the evolution of the projected surface ✺ is

given by: ✆✺❱✝✑☞❲✗✘❳❨✺✾❩ ❘ ❃ ✙ ✆❘ ❃ . Both previous relations amount to

▼❖ ✆❂❬❃✆❅✾❃✆✺ ❙❯ ✝ ▼❭❖ ❈❊●❋ ✎ ☞ ❍ ❋❊●❋✎ ❈❊●❋ ☞❏■ ❋❊●❋✎ ✎ ☞✩❪❴❫❊●❋ ❙❛❵❯❜ ❝❡❞ ❢❣✐❤ ▼❖ ✆P ❃✆◗ ❃✆❘ ❃ ❙❯ (3)

We chose to express the translation control ❥ in the static robot

control frame. It means that the displacement from the eye-to-

hand camera frame onto the control frame ✬ ✭✯✮✱✰❦✲ is constant. Be-

sides, if we denote ✄ ✽ the feature vector, equations (2) and (3)

lead to: ✆✄ ✽ ✝❧✂ ✽ ❥♠✝❧✂✵♥✚✭✻❥ (4)✂ ✽ is called the translational jacobian. The associated control law

ensuring an exponential decrease in the feature vector is given by:❥✑✝✑☞✞✒ ✽♣♦✂ ✽ ✕ ✗✘✄ ✽ ☞✍✄ ✽ ✡ ✙ (5)

where ✄ ✽ ✡ is the desired feature vector and ♦✂ ✽ is the estimated

jacobian. In order to chose a suitable ♦✂ ✽ , we now propose to

determine the stability domain of the control law (5) under the

assumptions presented before.q
Stability proof

To deal with internal calibration we remind the meter to pixel

transformation. If we consider no radial distortion and assuming

that image axes are perfectly orthogonal:

▼❖ ✆❂❄❃✆❅ ❃ ✆✺ ❙❯
pixels

✝ ▼❭❖srt✈✉ ✎ ✎✎ rt✈✉ ✎✎ ✎ r①✇t✈✉①t③②
❙ ❵❯❜ ❝❡❞ ❢④ ▼❖ ✆❂❄❃✆❅ ❃ ✆✺ ❙❯

m

(6)

where ⑤ , ⑥⑧⑦ and ⑥⑧⑨ are respectively the focal length, the width

and hight of a pixel in meters. According to (4) and (6), we no-

tice that the global translational jacobian matrix is ✂⑩✝❷❶✞✂❸♥❹✭
where ❶ , ✂ ♥ and ✭ are non singular. We have to study pos-

itiveness of the eigenvalues of ✂✫✓✂ ✕ ( ✝❺✂✫✓✂❼❻ ❈ in the present

case). Denoting ✓P the estimate of P , and ✭✷✝ ✛ ✭❾❽ ✓✭ , we obtain:✂ ✓✂ ❻ ❈ ✝❿❶✞✂❸♥ ✛ ✭ ♦✂❸♥ ❻ ❈ ✓❶ ❻ ❈ . We propose to study two different

cases:

1. ✭❧✝ ✓✭ (i.e.
✛ ✭❧✝✏➀ ✛ )

In that case, the eigenvalues of ✂✫✓✂✌❻ ❈ are:➁
r➃➂
❊●❋
➂
t✈✉t✈✉ ❊●❋✫➄
r

✮ r➅➂
❊●❋✫➄t③②t③② ❊●❋✫➄
r

✮ r①✇
➄t③② ❫ ➂
❊●❋
➂
t✈✉t✈✉ ❊●❋✼➄❫ ➄r ✇
t③②⑩➆

As a consequence, the local asymptotic stability of

the system is always ensured since the conditions⑤➃✮ ✓⑤➇✮●⑥ ⑦ ✮❴⑥ ⑨ ✮ ✓⑥ ⑦ ✮ ✓⑥ ⑨ ✮ ❘ ❃ ✮ ♦❘ ❃ ✮❡✺ and ✓✺➉➈➊✎ are not restrictive

at all and whatever the estimations ➋❂ ❃ and ♦❅ ❃ .

2. ❶➌✝❇✓❶ and ✂❸♥✫✝ ♦✂❸♥
This time ✂✫✓✂ ❻ ❈ ✝➍❶♣✂✵♥ ✛ ✭✶✂✵♥ ❻ ❈ ❶ ❻ ❈ so

✛ ✭ and ✂✫✓✂ ❻ ❈
are similar and have the same eigenvalues. We just need

to study positiveness of the real part of the eigenvalues of✛ ✭ which are ✗✱➎❨✮❴➏✪➐✈➑➒✮●➏➒❻➓➐✈➑ ✙ where ➔ is the rotation angle.

This means that, for any rotation axis, the system is locally

asymptotically stable if☞✦→ ❳↔➣ ➔ ➣ → ❳ ↕
Judging from this stability study, we can afford to fix ♦✂✵♥ to a

constant value while ensuring the convergence of control. For

the application, we chose to fix ➋❂❬❃ , ♦❅✾❃ and ♦❘ ❃ to their desired

values, ♦❘ ❃ being coarsely approximated by hand. The constant

value of ✭ is also estimated by hand.



2.2 Rotation control
The principle of the second task is to control the eye-in-hand cam-

era orientation such that the center of a static target appears and

remains at the center of the image (see Figure 2). This intends to

force the visibility of the target during the positioning task.

If the observed object is a point then the movement of the

point projection ✗ ❂ ✮ ❅ ✙ is related to the rotating command ➙♠✝✬ ➙ ❍ ✮●➙ ■ ✮●➙❼➛➜✲ by the following equation:✸ ✆❂ ✆❅ ✿ ✝➉✸ ❂➝❅ ☞❲✗✱➎❸➞ ❂ ❪ ✙ ❅➎✖➞ ❅ ❪ ☞ ❂➝❅ ☞ ❂ ✿❜ ❝❡❞ ❢❣➠➟ ➙
✂✖➡ is the rotational jacobian. If ✄①➡✟✝◆✗ ❂ ✮ ❅ ✙ denotes the cur-

rent eye-in-hand feature vector, ✄①➡★✡ the desired one and ♦✂✖➡ the

estimated jacobian, the associated tracking law is given by:➙➢✝✷☞✞✒➓➡ ♦✂❸➡ ✕ ✗✘✄①➡✩☞➤✄ ✡➡ ✙ (7)

As previously, we can show that the stability domain of this con-

trol law is very large. For future experiments, ♦✂ ➡ is computed

once using ✓❂ ✝♠✎ and ✓❅ ✝✟✎ .In that case, a sufficient condition

to local asymptotic stability is ⑤➃✮ ✓⑤➇✮●⑥ ⑦ ✮ ✓⑥ ⑦ ✮●⑥ ⑨ ✮ ✓◗ ➈✟✎ . Computing♦✂✖➡ at each iteration is also very easy to implement.

2.3 Interaction
Whereas rotational motions do not influence global image fea-

tures, translating movements of the end effector result in move-

ments in the eye-in-hand image. More precisely, the movement

of the point projection is related to the translating control ❥ by

the following equation:✆✄①➡➥✝ ✸ ☞✻➎✚❩ ❘ ✎ ❂ ❩ ❘✎ ☞✻➎①❩ ❘ ❅ ❩ ❘ ✿ ✭♣➦❜ ❝❛❞ ❢❣ ➟➅➧ ❥
where ❘ is the depth of the static target from the local camera

and ✭ ➦ is the rotation from the local camera frame onto the robot

static control frame. When estimating ➋✂❸➡ ✽ , we will fix ✓❂ , ✓❅ to

their desired values ( ✎ ) and ✓❘ to a constant value ❘ ✡ . ✭ ➦ will be

computed thanks to odometry.

3 Cooperation

We now aim at making both previous tasks cooperate in a single

control scheme. Judging from previous modeling, the estimated

global task jacobian is:

✓✂➤✝❇❆ ♦✂ ✽ ✎➋✂❸➡ ✽ ♦✂❸➡ ❑ ✝❚❆ ♦✂★➨♦✂❸➩ ❑➭➫ eye-to-hand➫ eye-in-hand

On the one hand, using a classical control (1) where ✓✂ has a cou-

pling term ( ➋✂ ➡ ✽➉➯✝❇✎ ) will lead to unexpected behaviors such

as sweeping movements in the images and loss of feature if ✓✂ is

not perfectly estimated. These fears were observed during exper-

iments ; that is why we aim at controlling both tasks independent-

ly. In addition, if independence is preserved, global stability will

be ensured as long as each task is stable.

But on the other hand, if we fix ➋✂ ➡ ✽ ✝➲✎ , we assume that both

tasks are independent. This inaccuracy in modeling the system

leads to tracking error. This error can be seen in Figure 3-b.

The problem appears all the more dangerous since sometimes the

point is about to vanish from the image. In order to suppress

the tracking error while keeping independence between tasks, we

compare two kinds of methods.

3.1 Estimating the perturbation
The translation of the effector can be seen as an unknown per-

turbation acting on the eye-in-hand features velocity measures.

Because of this unknown perturbation, we must write:✆✄ ➡ ✝➵➳ ✄①➡➳➓➸ ✛ ➸✛ ✰ ➞⑩➳ ✄①➡➳ ✰ ✝➌✂ ➡ ➙❱➞⑩➳ ✄①➡➳ ✰
where ➸ denotes the effector position. If we still want to ensure

an exponential decrease in ✄①➡➥☞↔✄①➡ ✡ , the corresponding control

law is given by [2]:➙➢✝✑☞✞✒➓➡ ♦✂❸➡ ✕ ✗✘✄①➡➺☞➤✄✪➡ ✡✚✙❜ ❝❛❞ ❢
classical control

law

☞ ♦✂❸➡ ✕ ➋➳ ✄✪➡➳ ✰❜ ❝❡❞ ❢
tracking error

compensation

(8)

Thus we must estimate the part of image features velocity due to

the perturbation, that is ➻➳ ✄ ➡ ❩ ➳ ✰ . Several ways have been investi-

gated to compute this estimation:➼ Odometry: If we have access to the robot odometry, ❥ can

be measured and the estimation is computed by ➻➳ ✄ ➡ ➳ ✰❾✝✂✖➡ ✽ ❥ . However, we should note that only few robots can

afford an accurate measure of their translational motion. For

example mobile robots, which constitute an important ap-

plication field of our work, rarely have such equipments.➼ Iterative scheme: This method directly comes from con-

trol theory and consists in inserting an integrator into the

control loop. The integrator is simply achieved by the fol-

lowing iterative scheme:✗ ➋➳ ✄①➡➳ ✰ ✙❴➽ ✕ ❈ ✝✷✗ ➋➳ ✄①➡➳ ✰ ✙❴➽ ➞➤➾✵✗✘✄✪➡ ➽ ☞❱✄①➡ ✡✚✙ (9)

where ➾ is a compensation gain. Let us note that, when

stationarity is reached, ✄①➡ ➽ ✝❧✄①➡ ✡ .➼ Observation / Prediction: An other method consists in

comparing the velocity we observe in the image and the ve-

locity we can predict from the computed control law. The

difference between both terms should correspond to the part

of the movement due to perturbation. At time ➚ , the esti-

mate is: ➻✸ ➳ ✄①➡➳ ✰ ✿ ➽ ✝ ✄①➡ ➽➪ ✰❜ ❝❛❞ ❢
observation

☞ ✄①➡ ➽➹➶❡➽ ❻ ❈➪ ✰❜ ❝❛❞ ❢
prediction

where ✄①➡ ➽➹➶❡➽ ❻ ❈ ✝❧✄①➡ ➽ ❻ ❈ ➞➘✂❸➡★➙ ➽ ❻ ❈ ➪ ✰ . Thus:➻✸✖➳ ✄ ➡➳ ✰ ✿ ➽ ✝ ✄✪➡ ➽ ☞➤✄①➡ ➽ ❻ ❈➪ ✰ ☞❱✂✖➡✔➙ ➽ ❻ ❈ (10)



At time ➚ , we must have access to ➙ ➽ ❻ ❈ . This is done either

assuming that ➙ ➽ ❻ ❈ is the previous computed value of the

control law or measuring it. The last technique is the one

we implemented since the first one assumes an ideal time

response of the system. Let us note that rotational motion-

s are always easier to measure accurately than translational

ones.

Estimating scheme (10) would be perfect assuming that da-

ta are not noisy. As not iterative, this one does not filter

noise due to the inaccuracy in the measure of ✄①➡ and in the

measure of ➙ at each time. In order to filter it, we can use

either a simple filter➻ ✗✚➴✪➷ ➟➴☛➬ ✙ ➽ ✝ ➮✖❽➱✗ ➷ ➟➇✃ ❻ ➷ ➟✾✃✚❐➅❒❮ ➬ ☞❰✂ ➡ ❽ ➙ ➽ ❻ ❈ ✙➞ ✗✱➎✌☞❰➮ ✙ ❽ ➻ ✗ ➴✪➷ ➟➴✪➬ ✙❛Ï ➽ ❻ ❈✳Ð (11)

where ➮ is a forgetting factor, or a Kalman filter as the one

proposed in [2]. Obviously, this last technique implies that

we should know an approximation of the evolution model

of ➴✪➷ ➟➴✪➬ but it is well-known that Kalman filtering is quite

robust to this knowledge. We chose a model with a constant

velocity state and a constant correlation.

Let us note that observation / prediction techniques can also

deal with a mobile target. In that case, no difference can be

made between perturbation due to the unknown translation

of the effector and the one related to the unknown target

motion, but it does not matter in the system behavior.

3.2 Task redundancy
An other method is to consider the tracking task as the main task.

As it does not constrain all the robot degrees of freedom, we can

use the task redundancy approach [10, 3]. A secondary task Ñ ➷
can thus be performed regulating the task function:➏♣✝❧Ò✷✕✖✗✘✄ ➡ ☞✍✄ ➡ ✡✚✙ ➞❧✗❁➀✻☞➤Ò✷✕✠Ò ✙ ➮ ❪ Ñ ➷ ✽
where Ò is a full rank matrix such that Ker ÒÓ✝ Ker ♦✂✵➩ if we

set ♦✂✵➩❏✝❇✬ ➋✂❸➡ ✽ ♦✂✖➡Ô✲ . Matrix ➀❬☞✏Ò ✕ Ò is thus a projection

operator onto the kernel of ♦✂ ➩ . It means that the secondary task

realization will have no effect on the main one as long as ♦✂❸➩ is

a good approximation of ✂✵➩ . In our case, the main task jacobian✂ ➩ ✝❿✗✤✂ ➡ ✽ ✂ ➡ ✙ is full rank so we can set ÒÕ✝ ♦✂ ➩ . Besides,

the secondary task is a positioning one in the eye-to-hand imageÑ ➷ ✝✑Ö×✗✘✄ ✽ ☞➘✄ ✽ ✡ ✙ where Ö is a combination matrix. Applying☎Ø✝➉☞✞✒➃➏ , the evolution of ✄ ✽ if ✄①➡ has converged is given by✆✄ ✽ ✝✷☞✞✒➅➮ ❪ ✂ ➨ ✗❁➀✼☞ ♦✂❸➩ ✕ ♦✂✵➩ ✙ Ö×✗✘✄ ✽ ☞➺✄✪✡✽ ✙ . A necessary condition

for an exponential decrease is Ö❷✝❇✗ ♦✂ ➨ ✗❁➀✦☞ ♦✂✵➩ ✕ ♦✂❸➩ ✙❴✙ ✕ . As a

conclusion, the task function is given by:➏Ù✝ ♦✂ ➩ ✕ ✗✘✄ ➡ ☞❱✄ ➡ ✡ ✙➞ ✗❁➀✻☞ ♦✂✵➩ ✕ ♦✂❸➩ ✙ ✗ ♦✂ ➨ ✗❁➀✻☞ ♦✂✵➩ ✕ ♦✂✵➩ ✙❴✙ ✕ ➮ ❪ ✗✘✄ ✽ ☞❱✄ ✽ ✡ ✙
4 Experimental results
This section and Figures 3,4 and 5 show the experimental results

we obtained for all the presented methods. The gains have been

chosen as follows: ✒ ✽ ✝✟✒➓➡Ú✝❧✎✐❽✈➎ . The mobile landmark where
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Figure 3: Independent control of both tasks

eye-to-hand features ✄ ✽ are extracted from, is the white unknown

and complex shape that can be seen on figure 2-a. ✄ ✽ ✡ was previ-

ously learned (figure 2-b) but the value of ✄ ✽ ✡ could also be fixed

by the operator.

When we control both tasks independently and add no compen-

sation (see Figure 3), we can notice that, as really independent,

the translation control has a good exponential behavior whereas

the centering one can not be achieved until the translation one has

converged. This is exactly what we call tracking error.

Estimation and compensation of the tracking error
For these methods, the translation control does not change and its

performances are exactly the one presented in Figure 3.

The results obtained using an integrator (see (9)) are presented on

Figure 4-a. The gain was fixed to ➾✩✝➌✎✐❽ ✎✐➎ . This method increas-

es the convergence rate but we observe that ➾ is quite difficult to

adjust. Performances are not optimal due to non-constant veloci-

ty. The use of an estimator for ➴✪➷ ➟➴✪➬ leads to better performances

(see Figure 4-b). Using a simple filtering given by (11) for which➮↔✝➲✎✐❽ Û , the noise on the control is significant. Its effect on the

errors in the image is naturally filtered by the robot dynamic. The

Kalman filter shows really good performances (see Figure 4-c).

Finally, using odometry also appears very efficient (see Figure

4-d) but the corresponding performances mainly depend on the

robot internal sensors accuracy.

Redundancy approach
The redundancy formalism presents the advantage of specifying

the importance of one task against the other. Figure 5 shows how



-a- Compensation with integrator
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-b- Compensation with estimation + simple filtering
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-c- Compensation with estimation + kalman filtering
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-d- Compensation with odometry
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Figure 4: Tracking task using an estimate of Ü➒Ý ➟Ü☛Þ



the priority of the main task delays convergence of the secondary

one. But since it has converged, the secondary task follows an

exponential decrease. We also note that the primary tasks is dis-

turbed by the secondary one only during the first iterations. This

is due to the inexact estimation of the kernel.

-a- Positioning task -b- Tracking task
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Figure 5: Redundancy approach

5 Conclusion

We have investigated a cooperation scheme successfully integrat-

ing a fixed camera and a robot-mounted one. Keeping indepen-

dence between the tasks allowed us to prove stability of the con-

trol law. Most of the available techniques for visual servoing were

adapted to the use of our two sensors and experimentally com-

pared. All of them showed their ability to solve our task but some

methods like Kalman filtering or odometry proved to be very ef-

ficient as regards their robustness.

The application we developed constitutes a good basis to build

higher level tasks. Our future work will be dedicated to the de-

velopment of exploration strategies with both global and local

cameras. Very basic issues will arise: finding a suitable knowl-

edge representation that should allow integration and comparison

of new, uncertain and partial sensor measures, planning new sen-

sor placement to improve knowledge while avoiding obstacles,

making decisions according to current knowledge and the task to

achieve.
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