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Abstract— A position-based visual servoing algorithm using
an hybrid eye-in-hand/eye-to-hand multi-camera configuration
is presented in this paper. Based on an extended Kalman filter,
this approach exploits the data provided by all the cameras
without “a priori” discrimination, allowing real-time object
pose estimation. A suitable algorithm is in charge of selecting
an optimal subset of image features on the basis of the desired
task and of the current configuration of the workspace. Only
this subset is considered for feature extraction, thus ensuring
a computational cost independent of the number of cameras.
Experimental results are reported to demonstrate the feasibility
and the effectiveness of the proposed technique.

I. INTRODUCTION

The adoption of visual feedback for closed-loop control
of robot manipulators is becoming a common practice both
in research and in industrial areas. This approach is known
as visual servoing. Moreover, the increase in the perfor-
mance/cost ratio of machine vision is opening new scenarios
where multi-camera systems are employed (see [1] and [2]).

The two most adopted camera configurations are known as
eye-in-hand, where one or more cameras are rigidly attached
to the robot end effector, and eye-to-hand, where the cameras
are fixed in the workspace [3]. The first one guarantees good
accuracy and the ability to explore the workspace although
with a limited sight; the second one ensures a panoramic
sight of the workspace, but a lower accuracy. Hence, the use
of both configurations at the same time makes the execution
of complex tasks easier and offers higher flexibility in the
presence of a dynamic scenario.

Recently, some effort has been made to design visual
servoing systems based on hybrid eye-in-hand/eye-to-hand
camera configurations. In [4] an eye-to-hand camera is in
charge of the robot tool positioning while an eye-in-hand
camera is in charge of the robot tool orientation. A similar
approach is used in [5], where an eye-to-hand camera is
employed to estimate the robot tool pose with respect to the
workspace and an eye-in-hand camera is employed as data
source for object pose estimation. Further, in [6], a camera
mounted on the end effector of a robot has been adopted
as an eye-to-hand camera for another robot to benefit of the
advantages of a mobile camera.

All the above approaches do not fully exploit the potential-
ities of hybrid camera configurations. In fact, the information
provided by different types of cameras (fixed or mobile) is
employed for different goals. Hence, a complete integration
is not really achieved. Moreover, the possibility to adopt a
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multi-camera visual system for both camera configurations
is not considered.

In this work, a new approach based on the Extended
Kalman Filter (EKF) is proposed to achieve a complete
data fusion in a multi-camera eye-in-hand/eye-to-hand visual
system. This approach allows the data provided by all the
cameras to be used at the same time, without any kind of
“a priori” discrimination. A suitable image-feature selection
algorithm is in charge of dynamically selecting the data
required for the execution of a specific task depending
on the current configuration of the workspace. Only the
selected features are grabbed and elaborated to achieve the
measurements, and thus the computational time spent for
image processing is independent of the number of cameras.

The Kalman filter computes the estimate of the pose of
an object in motion in the visible workspace, which is fed
back to a position-based visual servoing algorithm. Since
the frequency of the pose estimation algorithm is limited by
the camera frame rate (25–60 Hz), while a higher control
bandwidth (more than 100 Hz) is required to guarantee
stability and disturbance rejection for position control of a
robot manipulator, an “indirect” visual servoing algorithm
is implemented [3]. This scheme is based on an inner/outer
feedback loop where the inner position feedback loop runs
at a frequency higher than the outer visual feedback loop.

This paper is organized as follows. In Section II the model
of the visual system and of the workspace is presented.
The formulation of the EKF is illustrated in Section III. In
Section IV the pose estimation algorithm is described, and
the position-based visual servoing control scheme is briefly
outlined. Experimental results for the case of two robots
performing a vision-guided master/slave trajectory following
task are presented in Section V.

II. MODELING

Consider a system of nf video cameras fixed in the
workspace (eye-to-hand cameras) and nm video cameras
mounted on the end effector of one or more robots (eye-in-
hand cameras), with n = nf +nm. The geometry of the sys-
tem with respect to a generic camera can be described using
the classical pinhole model (see Fig. 1). In the following, the
symbols F and M will denote the set of eye-to-hand cameras
and eye-in-hand cameras respectively; moreover, the index ci
will be used to denote the quantities referred to the camera
frame ci. For each camera, a frame Oci–xciycizci attached to
the camera ci is considered, with the zci-axis aligned to the
optical axis and the origin in the optical center. The sensor
plane is parallel to the xciyci-plane at a distance −λci

e along
the zci-axis, where λci

e is the effective focal length of the
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Fig. 1. Reference frames for the camera ci and for the object according
to the pinhole model.

camera lens. The image plane is parallel to the xciyci-plane
at a distance λci

e along the zci-axis. The intersection of the
optical axis with the image plane defines the principal optical
point O′

ci, which is the origin of the image frame O′
ci–ucivci

whose axes uci and vci are taken parallel to the axes xci and
yci respectively.

A point P with coordinates pci =
[
xci yci zci

]T
in the

camera frame is projected onto the point of the image plane
whose coordinates can be computed by the equation[

uci

vci

]
=

λci
e

zci

[
xci

yci

]
(1)

which is known as perspective transformation. A spatial
sampling can be applied to the image plane by expressing
the coordinates in terms of number of pixels

[
rci
0 cci

0

]T
.

Without loss of generality, the case of a single moving
object is considered. The position and orientation of a frame
attached to the object Oo–xoyozo with respect to a base
coordinate frame O–xyz can be expressed in terms of the
coordinate vector of the origin oo =

[
xo yo zo

]T
and of

the rotation matrix Ro(ϕo), where ϕo =
[
φo αo ψo

]T
is the vector of the roll, pitch and yaw angles. The vector
xo =

[
oT

o ϕT
o

]T
defines a minimal representation of the

object pose with respect to the base frame.
Consider s feature points of the object. The homogeneous

coordinate vector p̃j =
[
xj yj zj 1

]T
of the feature

point Pj (j = 1, . . . , s) can be expressed in the base frame
as

p̃j(xo) = Ho(xo)p̃o
j , (2)

where p̃o
j is the homogeneous coordinate vector of Pj

expressed in the object frame and Ho is the homogeneous
transformation matrix that represents the pose of the object
frame referred to the base frame:

Ho(xo) =
[
Ro(ϕo) oo

0T 1

]
,

where 0 is the (3 × 1) null vector. The constant vector p̃o
j

is assumed to be known, and can be computed from a CAD
model of the object or via a suitable calibration procedure.
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Fig. 2. Eye-in-hand/eye-to-hand cameras.

Analogously, the homogeneous coordinate vector of Pj can
be expressed in the camera ci frame as

p̃ci
j = H−1

ci p̃j , (3)

where Hci is the homogeneous transformation matrix that
represents the pose of the frame of camera ci referred to the
base frame.

For the eye-to-hand cameras, the matrix Hci is constant,
and can be computed through a suitable calibration proce-
dure [7], while for the eye-in-hand cameras (see Fig. 2),
this matrix depends on the robot current pose and can be
expressed in the form:

Hci = HriH
ri
ei(x

ri
ei)H

ei
ci (4)

where Hri is the homogeneous transformation matrix of
the base frame of the robot ri carrying the camera ci with
respect to the common base frame, Hri

ei is the homogeneous
transformation matrix of the end effector ei with respect to
the base frame of the robot ri, and Hei

ci is the homogeneous
transformation matrix of the camera ci with respect to the
frame ei of the end effector where the camera is mounted.
Notice that Hri and Hei

ci are constant and can be estimated
through suitable calibration procedures (see [8]), while Hri

ei

depends on the current end-effector pose xri
ei and may be

computed using the robot kinematic model.
Considering (2), (3), and (4), the following equations are

obtained
p̃ci

j (xo) = H−1
ci Ho(xo)p̃o

j (5)

if i ∈ F , and

p̃ci
j (xo,x

ri
ei) = (HriH

ri
el(x

ri
ei)H

ei
ci)

−1Ho(xo)p̃o
j (6)

if i ∈ M. By plugging (5) and (6) in (1), a system of
2ns nonlinear equations is achieved, which depend on the
measurements of the s feature points in the image plane of
the n cameras and on the nm current robot poses. Obviously,
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the six components of the vector xo are the unknown
variables. To solve these equations at least six independent
equations are required.

The computation of the solution is nontrivial and for visual
servoing applications it has to be repeated at a high sampling
rate. The recursive Kalman filter provides a computationally
tractable solution, which can also incorporate redundant
measurement information.

III. EXTENDED KALMAN FILTER

In order to estimate the position and orientation of the
object, a discrete-time state space dynamic model has to be
considered, describing the object motion. The state vector
of the dynamic model is chosen as w =

[
xT

o ẋT
o

]T
. For

simplicity, the object velocity is assumed to be constant over
one sample period T . This approximation is reasonable in the
hypothesis that T is sufficiently small. The corresponding
dynamic modeling error can be considered as an input
disturbance γ described by zero mean Gaussian noise with
covariance Q. The discrete-time dynamic model can be
written as

wk = Awk−1 + γk, (7)

where A is the (12 × 12) block matrix

A =
[
I6 TI6

06 I6

]
,

with I6 and 06 denoting the identity and the null (6 × 6)
matrices, respectively.

The output of the Kalman filter is the vector of the
normalized coordinates of the s feature points in the image
planes of the n cameras (nf eye-to-hand cameras plus nm

eye-in-hand cameras)

ζk =
[
ζc1

k

T
. . . ζcn

k
T
]T

k
, (8)

where

ζci
k =

[
uci

1

λci
e

vci
1

λci
e

. . .
uci

s

λci
e

vci
s

λci
e

]T

k

.

By taking into account the equation (1), the output model
of the Kalman filter can be written in the form:

ζk = g(wk) + νk, (9)

where νk is the measurement noise, which is assumed to
be zero mean Gaussian noise with covariance R, and the
function g(wk) is

g(wk) =

⎡
⎢⎣

gc1(wk)
...

gcn(wk)

⎤
⎥⎦ (10)

with

gci(wk) =
[
xci

1

zci
1

yci
1

zci
1

. . .
xci

s

zci
s

yci
s

zci
s

]T

k

,

where the coordinates of the feature points pci
j are computed

from the state vector wk via equation (5) for the eye-to-hand

cameras, and from the robots poses and the state vector via
equation (6) for the eye-in-hand cameras. Matrix R can be
evaluated during the calibration procedure of the cameras or
by means of specific experiments.

Since the output model is nonlinear in the system state, the
EKF must be adopted. The first step of the EKF algorithm
provides an optimal estimate of the state at the next sample
time according to the recursive equations

ŵk,k−1 = Aŵk−1,k−1 (11a)

P k,k−1 = AP k−1,k−1A
T + Qk−1, (11b)

where P k,k−1 is the (12 × 12) covariance matrix of the
estimate state error. The second step improves the previous
estimate by using the input measurements according to the
equations

ŵk,k = ŵk,k−1 + Kk(ζk − g(ŵk,k−1)) (12a)

P k,k = P k,k−1 − KCkP k,k−1, (12b)

where Kk is the (12 × 2ns) Kalman matrix gain

Kk = P k,k−1C
T
k (Rk + CkP k,k−1C

T
k )−1, (13)

being Ck the (2ns × 12) Jacobian matrix of the output
function

Ck =
∂g(w)

∂w

∣∣∣∣
w=ŵk,k−1

=
[
∂g(w)
∂xo

02ns×12

]
w=ŵk,k−1

, (14)

where 02ns×12 is a null (2ns × 12) matrix corresponding
to the partial derivative of g with respect to the velocity
variables, which is null because function g does not depend
on the velocity. The partial derivative of g with respect to
the pose variables is

∂g(w)
∂xo

=
[

∂g

∂xo

∂g

∂yo

∂g

∂zo

∂g

∂φo

∂g

∂ϑo

∂g

∂ψo

]
,

and taking into account the expression of g in (10), the
elements of this the matrix have the form:

∂

∂α

(
xci

j

zci
j

)
=

(
∂xci

j

∂α
zci
j − xci

j

∂zci
j

∂α

)
(zci

j )−2 (15a)

∂

∂α

(
yci

j

zci
j

)
=

(
∂yci

j

∂α
zci
j − yci

j

∂zci
j

∂α

)
(zci

j )−2 (15b)

where α = xo, yo, zo, φo, ϑo, ψo, i = 1, . . . , n, and j =
1, . . . , s.

The partial derivatives on the right-hand side of (15a) and
(15b) can be computed as follows.

In view of (5) and (6), the partial derivatives with respect
to the components of vector oo =

[
xo yo zo

]T
are the

elements of the Jacobian matrix

∂pci
j

∂oo
=

{
RT

ci = const if i ∈ F
(RriR

ri
el(x

ri
ei)R

ei
ci)

T if i ∈ M.
(16)

In order to express in compact form the partial deriva-
tives with respect to the components of the vector ϕo =
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Fig. 3. Block scheme of the pose estimation algorithm.

[
φo ϑo ψo

]T
, it is worth considering the following equal-

ities

dRo(ϕo) = S(dωo)Ro(ϕo)

= Ro(ϕo)S(RT
o (ϕo)dωo) (17a)

dωo = T o(ϕo)dϕo (17b)

where S(·) is the skew-symmetric matrix operator, ωo is the
angular velocity of the object frame with respect to the base
frame, and the matrices Ro and T o, in the case of roll, pitch
and yaw angles, have the form

Ro(ϕo) =

⎡
⎣cφo

cϑo
cφo

sϑo
sψo

− sφo
cψo

sφo
cϑo

sφo
sϑo

sψo
+ cφo

cψo

−sϑo
cϑo

sψo

cφo
sϑo

cψo
+ sφo

sψo

sφo
sϑo

cψo
− cφo

sψo

cϑo
cψo

⎤
⎦

T o(ϕo) =

⎡
⎣0 −sφo

cφo
cϑo

0 cφo
sφo

cϑo

1 0 −sϑo

⎤
⎦ ,

with cα = cos α and sα = sin(α). By virtue of (17) and
the properties of the skew-symmetric matrix operator, the
following chain of equalities holds

d(Ro(ϕo)p
o
j) = d(Ro(ϕo))p

o
j

= Ro(ϕo)S(RT
o (ϕo)T o(ϕo)dϕo)p

o
j

= Ro(ϕo)S
T (po

j)R
T
o (ϕo)T o(ϕo)dϕo

= ST (Ro(ϕo)p
o
j)T o(ϕo)dϕo,

hence

∂Ro(ϕo)
∂ϕo

po
j = ST (Ro(ϕo)p

o
j)T o(ϕo). (18)

At this point, by virtue of (5), (6) and (18), the following
equality holds

∂pci
j

∂ϕo

=

⎧⎪⎪⎨
⎪⎪⎩

RT
ci

∂Ro(ϕo)
∂ϕo

po
j if i ∈ F

(RriR
ri
el(x

ri
ei)R

ei
ci)

T ∂Ro(ϕo)
∂ϕo

po
j if i ∈ M.

IV. POSITION-BASED VISUAL SERVOING

The proposed algorithm based on the EKF is the core of
the pose estimation algorithm shown in Fig. 3. Four main
blocks are indicated, corresponding to the main elaboration

Pose Control

Visual System

Dynamic
Trajectory

Planner

Motion
Control

Robot

Joint feedback

( )500Hz

Visual feedback

( )26Hz

Desired
Task

Pose
Estimation

Fig. 4. Indirect position-based control scheme.

steps needed to the estimation of the pose of an observed
object.

The prediction of the object pose and velocity at the next
sampling time, computed by the EKF, is input to an occlusion
prediction algorithm that evaluates, for each camera, the set
of visible object image features as well as an estimate of
their projection on the image plane [9].

From this set, an optimal subset of image features is
evaluated at each sample time via a feature selection al-
gorithm [10]. Suitable quality indexes are used to perform
this selection, aimed at maximizing the tracking performance
using the minimum number of image features in the current
configuration of the workspace. Notice that the number of
selected image features is limited. Therefore, the computa-
tional cost of the feature extraction process is independent
of the number of cameras. Moreover, a windowing technique
is used to compute the size and location of the windows of
the image plane to be grabbed for image processing. This
considerably reduces the computational charge of the frame
grabbing operations.

Finally, a feature extraction algorithm is applied to the
selected windows to achieve the measurements used by the
EKF algorithm. Notice that the set of input measurements
is variable, therefore the output equations of the EKF is
dynamically built on the basis of those image features that
are effectively available.

The pose estimated by the algorithm described above is
used to realize position-based visual servoing. Since the
estimation algorithm runs at a frequency too low for the
pose control loop, an “indirect” visual servoing scheme [3]
is adopted, represented in Fig. 4. The presence of the
high frequency inner feedback loop guarantees stability and
disturbance rejection.

In detail, pose control is performed through an inner-outer
control loop running at different frequency. The inner loop,
running at the higher frequency (500 Hz in the experiments),
implements motion control (independent joint control or any
kind of joint space or task space control). In the outer loop,
the block named dynamic trajectory planner computes the
trajectory for the end effector on the basis of the current
object pose and on the desired task. The input of this block
is updated at the lower frequency (26 Hz in the experiments,
corresponding to the frame rate of the employed cameras),
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Fig. 5. Object trajectory. Top: position trajectory; bottom: orientation
trajectory.

while the output is available at the higher frequency, thanks
to a second order interpolating filter. The pose estimation
algorithm provides the measurements of the target object
pose at the lower frequency.

V. EXPERIMENTS

The experimental setup consists of two industrial robots
Comau SMART-3 S. One arm is mounted on a sliding
track which provides an additional degree of freedom (DOF)
with respect to the standard six-DOF of the other arm.
Both robots are controlled by a single PC with RTAI-Linux
operating system. The experimental setup is completed with
a stereo visual system composed by a PC equipped with
two Matrox GENESIS boards and two Sony 8500CE B/W
cameras (576 × 763 pixels). The Matrox boards are used
both as frame grabber and for partial image processing (e.g.,
image windows extraction), while the PC host is in charge of
executing vision-based algorithms (e.g., occlusion prediction
and object motion estimation) and guarantees communication
with the PC performing robot control via a standard serial
connection. The first camera (with focal length fe = 16 mm)
is fixed and observes the entire workspace from a distance
of about 1.5 m , while the second camera (with focal length
fe = 8 mm) is mounted on the end effector of the seven-
DOF robot.

To test the effectiveness of the proposed algorithm, a
visual synchronization task has been realized. The six-DOF
robot (master robot) is used to move an object in the visual
space of the fixed camera; thus the object position and
orientation with respect to the base frame can be computed
both from the joint position measurements, via the direct
kinematic equation, and from visual measurements. The
other robot (slave robot) is visually guided to preserve a
fixed mutual pose with respect to the object. Notice that
the measurements of the object pose computed from joint

x

yz

Fig. 6. Time history of the pose estimation error for the first case study.
Top: position error. Bottom: orientation error.

position measurements are used here only to evaluate the
pose estimation error of the visual system.

An important issue is the calibration of the camera setup.
In detail, the eye-to-hand camera was calibrated with respect
to the base frame using the calibration algorithm proposed
in [7], while the eye-in-hand camera was calibrated with
respect to the end-effector frame of the slave robot using
the calibration algorithm proposed in [8].

The value of the matrix P 1,0 has been set to zero; more-
over, the initial value of the state vector w1,0 have been set
null for the velocity components, while the pose components
has been roughly estimated through direct measurements.
Finally, the covariance matrixes Q and R have been cho-
sen as: Q = diag {0, 0, 0, 0, 0, 0, 5, 5, 5, 20, 20, 20} · 10−6,
R = diag {9, 9, · · · , 9, 9}, where R is a (2s × 2s) matrix
being s the number of selected features. The values of the
observation noise covariances have been evaluated during the
camera calibration procedure while the values of the state
noise covariances have been set on the basis of the velocity
range of the object trajectories.

Two different case studies are considered. In the first case
study both cameras are employed to estimate the pose of
the objects, while in the second case study only the fixed
camera is used. This allows comparing the pose tracking
performance of the hybrid configuration with respect to that
of the eye-to-hand configuration.

The trajectory of the object is represented in Fig. 5. The
pose is referred to the initial object pose. The orientation is
represented using roll, pitch and yaw angles.

The time history of the pose estimation error for the
first case study is shown in Fig. 6. The orientation error
is evaluated as the angle of an axis/angle representation
corresponding to the rotation matrix of the slave end-effector
frame with respect to the estimated object frame. Notice that
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Fig. 7. Time history of the pose error for the first case study. Top: position
error. Bottom: orientation error.
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Fig. 8. Time history of the pose estimation error for the second case study.
Top: position error. Bottom: orientation error.

the position error for the three components has the same
magnitude and is lower than 1 cm; moreover, the orientation
error is lower than 3 deg. Notice also that the errors are not
significantly influenced by the velocity of the object; this
is due to the adoption of a camera moving with the slave
robot according to the object motion, in addition to the fixed
camera.

In Fig. 7 the time history of the pose error of the end-
effector frame of the slave robot with respect to the estimated
object frame. The errors are higher with respect to the
estimation errors of Fig. 6 because of the time delay caused
by the low frame-rate of the visual system.

The time history of the pose estimation error for the

second case study is shown in Fig. 8. Due to the adoption of
only one fixed camera, the estimation error is sensibly higher
than in the first case study. Moreover, the pose estimation
error is quite sensible to the velocity of the object, especially
for the orientation. The pose error of the end-effector frame
of the slave robot with respect to the estimated object
frame is not affected by the camera configuration and is not
reported here for brevity.

VI. CONCLUSION

A position-based visual servoing algorithm based on an
hybrid eye-in-hand/eye-to-hand multi-camera configuration
is presented in this paper. The data provided by all the
cameras are fully exploited, so that the benefits of both eye-
in-hand and of the eye-to-hand configurations are preserved.
Moreover, the adoption of a selection algorithm in charge
of choosing an optimal subset of image features ensures a
low computational cost for image processing, independent
of the number of cameras. The experimental results have
confirmed the feasibility of the proposed approach and have
shown the superior performance of the hybrid configurations
with respect to the eye-to-hand configuration in terms of pose
tracking accuracy. A similar comparison with respect to the
eye-in-hand configuration is not significant because the main
advantage offered by the hybrid configuration is the wider
sight.
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