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 Abstract 

Two experiments examined word skipping in reading. In Experiment 1, skipping rates 

were higher for a preview of a predictable word than for a visually similar nonword, 

indicating full recognition in parafoveal vision. In Experiment 2, foveal load was 

manipulated by varying the frequency of the word preceding either a 3-letter target 

word or a misspelled preview. There was again a higher skipping rate for a correct 

preview, and a lower skipping rate when there was a high foveal load, but there was 

no interaction, and the pattern of effects in fixation times was the same as in the 

skipping data. Experiment 2 also showed significant skipping of nonwords similar to 

the target word, indicating skipping based on partial information. 
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Eye movements and word skipping during reading revisited 

 

How long readers look at a word is primarily determined by the ease or 

difficulty associated with the processing of that word. A very robust finding in 

research on eye movements in reading is that readers look longer at a low-frequency 

word than at a high-frequency word (e.g. Inhoff & Rayner, 1986; Rayner, & Duffy, 

1986; Rayner, Sereno, & Raney, 1996; Schilling, Rayner, & Chumbley, 1998, Vitu, 

1991). Other variables that also reflect the ease of processing, such as predictability of 

the word from the preceding context (Balota, Pollatsek, & Rayner, 1985; Binder, 

Pollatsek, & Rayner, 1999; Ehrlich, & Rayner, 1981, Rayner, & Well, 1996; 

Schustack, Ehrlich, & Rayner, 1987; Zola, 1984) or the age at which the word was 

acquired (Juhasz & Rayner, 2003, 2005), have also been shown to affect how long a 

word is looked at. While some low-level visual factors influence the decision of when 

to move the eyes, a strong case can be made that the linguistic properties of the words 

are the main determiners of that decision1. The opposite seems to be true for the 

decision of where to move the eyes: low-level visual factors, such as word length and 

spacing between words (Rayner, Fischer, & Pollatsek, 1998), are the most important 

influences on saccade length and on the landing position in a word. For example, the 

length of a saccade is influenced by the length of the currently fixated word and the 

length of the word to the right of fixation (e.g. Blanchard, Pollatsek, & Rayner, 1989; 

O’Regan, 1980; Rayner, 1979), and readers tend to make their first fixation about 

halfway between the beginning and the middle of a word (Deutsch & Rayner, 1999; 

McConkie, Kerr, Reddix, & Zola, 1988; Pollatsek & Rayner, 1982; Rayner, 1979).  

 A phenomenon in reading that eludes this convenient when/where dichotomy 

is word skipping (the phenomenon that readers do not fixate on each word in the text). 

To be precise, about 30% of the words in a text do not receive a direct fixation during 

reading (Rayner, 1998). While word skipping is clearly closer to the question of 

where to move the eyes, influences of both low-level visual factors and high-level 

linguistic factors have been shown to affect skipping behavior. One of the most robust 

findings in word skipping is that short words are skipped more often than long words 

(Brysbaert & Vitu, 1998; Drieghe, Brysbaert, Desmet, & De Baecke, 2004; Rayner, 

                                                 
1   The effect of word length on the fixation time on a word is hard to classify in that it almost certainly 
influences how difficult a word is to identify, but it also is likely to have effects that are related to eye 
movement control. 
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1979; Rayner & McConkie, 1976; Vitu, O’Regan, Inhoff, & Topolski, 1995). But it 

has also been shown that words that are predictable from the preceding context are 

skipped more often than words that are not predictable (Altaribba, Kroll, Sholl, & 

Rayner, 1996; Balota, et al., 1985; Drieghe et al., 2004; Ehrlich & Rayner, 1981; 

Rayner, Binder, Ashby, & Pollatsek, 2001; Rayner & Well, 1996; Schustack, Ehrlich, 

& Rayner, 1987) and that high-frequency words are more likely to be skipped than 

low-frequency words (even when their lengths are matched), especially when the eyes 

are close to the target word on the preceding fixation (Henderson & Ferreira, 1993; 

Radach & Kempe, 1993; Rayner & Fischer, 1996; Rayner et al., 1996). So, clearly 

both visual and lexical/linguistic variables affect whether a word is skipped. But 

arguably the most convincing piece of evidence that word skipping is not easily 

placed in the classic when/where dichotomy is that even though predictability has a 

clear effect on the skipping rates, it has no effect on the position of the landing site in 

cases where the word is actually fixated (Rayner et al, 2001; Vonk, Radach, & van 

Rijn, 2000). This indicates that there is a distinction between the mechanisms that 

determine the saccade target (which word to fixate) and the ones that determine the 

actual landing site (where to fixate in the word), a distinction we believe should be 

present in the architecture of any comprehensive model of eye movements in reading.  

Returning to the effects of predictability and frequency on word skipping, 

these effects clearly show that some words that are skipped have been identified, at 

least to a certain extent.  However, the extent to which a word that is skipped was 

processed during the prior fixation remains an issue of some debate in the literature 

(e.g. Radach & Kennedy, 2004; Rayner & Juhasz, 2004; Reichle, Rayner, & 

Pollatsek, 2003), and views on this matter differ rather dramatically. At one extreme, 

a word is skipped based on an “educated guess”, taking only coarse information about 

the target word into account (Brysbaert, Drieghe, & Vitu, 2005; Brysbaert & Vitu, 

1998; Drieghe et al., 2004). At the other extreme, a word is mainly skipped because it 

was recognized in parafoveal vision on the prior fixation (e.g. Reichle et al., 2003). 

Thus, while a broad consensus exists among researchers in the field on the 

determinants of the where/when decision, the debate on word skipping continues. 

Moreover, the debate is enlivened by data on word skipping that have proven hard to 

simulate by models that do a fairly good job in simulating fixation duration data 

(Kliegl, & Engbert, 2004; Rayner, Ashby, Pollatsek, & Reichle, 2004).  
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 Before we turn to the issues on word skipping that the current study will 

address, we will outline a model of reading which will help to frame these questions. 

The E-Z Reader model (Reichle, Pollatsek, Fisher, & Rayner, 1998; Reichle, Rayner, 

& Pollatsek, 1999, 2003; Rayner, Reichle, & Pollatsek, 1998; 2000; 2005; Pollatsek, 

Reichle, & Rayner, 2003; 2005) is a quantitative model in which the core assumption 

is that cognitive processes associated with processing the fixated word serve as the 

engine behind forward eye movements in reading2. Word recognition is considered to 

be a serial process under the control of an attentional beam, with the word in the 

attentional beam being the only word that is being processed lexically. In addition, the 

model posits two phases of word recognition. The termination of the first phase, 

which could be identified with the identification of the orthographic and phonological 

forms, cues the oculomotor system to begin programming a saccade to the next word. 

The termination of the second phase, which entails full lexical identification, causes 

the attentional beam to shift to the next word. Given the parameters of the model, the 

shift of the attentional beam usually occurs before the eyes move to the next word, 

and during the time that the attentional beam is on the next word (but the eyes are still 

on the previous word), parafoveal processing occurs. This mechanism is how the E-Z 

Reader model accounts for the fact that information is extracted from the word next to 

the currently fixated word during reading. This parafoveal preview benefit can be seen 

most clearly from the fixation time on a word that was presented in parafoveal vision 

on the prior fixation, as compared to when it was masked in parafoveal vision (e.g. 

Blanchard, et al., 1989; Morris, Rayner, & Pollatsek, 1990; Rayner, 1975; Rayner, 

Well, Pollatsek, & Bertera, 1982; Schroyens, Vitu, Brysbaert, & d’Ydewalle, 1999). 

Moreover, because the model posits that the gap in time between the eye movement 

signal to fixate the next word and the attention shift decreases as a function of the 

difficulty of processing the currently fixated word, it predicts that this preview benefit 

decreases as processing difficulty increases3. 

                                                 
2  The model is serial in that it posits that only one word is processed at a time, but letters within a word 
are assumed to be processed in parallel (possibly with the exception of long polymorphemic words).  
 
3 More precisely, the end of the 1st phase of the word recognition of wordn cues the oculomotor system 
to start programming a saccade to wordn+ 1. The amount of time needed for the programming of a 
saccade is fairly constant, so the eyes land on the next word following a certain delay after the end of 
the 1st phase.  If wordn is difficult, there is a longer 2nd phase of the word recognition processes than for 
an easy word, hence the shift of the attentional beam, caused by the termination of this 2nd phase, 
occurs later.     
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The model primarily predicts skipping by the following mechanism: If (a) the 

eyes are on wordn, (b) the attentional beam has shifted to wordn+1, and (c) if the first 

phase of word identification of wordn+1 in the parafovea is rapid enough, the 

programming of the eye movement to wordn+1 is cancelled and replaced by the 

programming of an eye movement to wordn+2. (The second phase of the identification 

of wordn+1 in the parafovea should usually complete before the eyes move to wordn+2.)  

So, while the attentional beam goes to every word in the text, the eyes do not 

necessarily fixate each word. In the model, the amount of processing needed to 

complete the first phase of word recognition is related directly to the frequency and 

the predictability of the word. In this manner the model can successfully predict the 

effects of predictability and frequency on word skipping. The model can also account 

for the word length effect in word skipping because it assumes an inverse relation 

between the extraction of letter information and the distance of a letter from the center 

of the visual field.  So the further away the eyes are from the target word, the more 

time will be needed to complete the first phase of the word recognition, and as a 

consequence of that the slimmer chances will be that the word will be skipped. This 

mechanism accounts both for the well-documented word length effect in reading 

(McConkie et al., 1988) as well as the effect of launch site (a word close-by will also 

be skipped more often independent of word length). What chiefly distinguishes this 

model from models that embrace a more low-level approach to explain word skipping 

(Brysbaert et al., 2005; Brysbaert & Vitu, 1998; Drieghe et al., 2004), is that in order 

for a word to be skipped, a significant amount of processing of the skipped word 

needs to have happened: the first phase of word recognition has been completed and 

the completion of full lexical identification of that word has occurred or is imminent.  

One phenomenon that is predicted by the E-Z Reader model is that fixations 

on a word should be longer when the next word is skipped than when the next word is 

not skipped (all else being equal).  This follows from the model because skipping 

results from the cancellation of the program to fixate wordn+1 by the program to fixate 

wordn+2.  Thus, a later program replaces an earlier program.  In fact, such an inflated 

fixation duration has been observed in several studies (Pollatsek, Rayner, & Balota, 

1986; Pynte, Kennedy, & Ducrot, 2004; Rayner et al., 2004), but not in others 

(Drieghe et al., 2004; Engbert et al., 2002; Radach & Heller, 2000).  As a result, 

trying to explain this phenomenon has been viewed by some as an important arena for 
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understanding word skipping, and eye movements in reading more generally.  We will 

return to this issue below. 

A second phenomenon that is not directly related to word skipping but is 

related to the amount of processing that parafoveal words receive is the so-called 

parafoveal-on-foveal effect.  This effect refers to the possibility that the processing of 

parafoveal information from a word not only aids later foveal processing and 

sometimes leads to skipping a word, but that it also can affect the processing time on 

the prior word (other than by the mechanism discussed in the prior paragraph).  This 

phenomenon has been a primary reason why some researchers have rejected the serial 

processing assumption of the E-Z Reader model and proposed parallel processing of 

foveal and parafoveal words.  In fact, a number of studies have indicated that the 

foveal viewing time can be altered by the words presented in the parafovea (e.g. 

Inhoff, Radach, Starr, & Greenberg, 2000; Kennedy, 1998; 2000; Kennedy, Pynte, & 

Ducrot, 2002; Pynte, et al., 2004; Schroyens, et al., 1999; Starr & Inhoff, 2004; 

Underwood, Binns, & Walker, 2000; Vitu, Brysbaert, & Lancelin, 2004). However, 

there are methodological problems associated with some of these studies, as well as 

failures to obtain consistent effects across experiments.  We think a fair summary is 

that it is clear that an unusual beginning of the wordn+1 can produce longer fixations 

on wordn (Inhoff, Starr, & Shindler, 2000; Underwood, et al., 2000), but that it is far 

less clear that the meaning of wordn+1 influences the fixation time on wordn (for a 

review see Rayner, White, Kambe, Miller & Liversedge, 2003).  In a recent study, 

Kennedy and Pynte (2005) used a large corpus of eye movement data and claimed to 

find further evidence of the meaning of the word to the right of fixation influencing 

the current fixation (particularly when wordn+1 was a short word).  However, there are 

problems with corpus analyses in that there is no control over difficulty levels 

associated with the location in the text from which two consecutive words are culled.  

However, as we will elaborate below, parafoveal-on-foveal effects are not necessarily 

inconsistent with a serial processing model such as the E-Z Reader model because the 

model predicts that not all saccades land on the intended word.  In fact, there are 

abundant data indicating that eye movements, like other motor movements, have 

variability and usually do not land exactly on their target (McConkie et al., 1988).  In 

particular, it is quite reasonable from the quantitative data accumulated by McConkie 

et al. and others to conclude that it is not rare for saccades to fall short of the targeted 

word so that wordn is fixated even though wordn+1 was the intended target and is the 
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attended word (see also, Rayner, Warren, Juhasz, & Liversedge, 2004).  Whether E-Z 

Reader (or a serial model) can predict these effects quantitatively, however, is an open 

question. 

 Largely spurred by these two phenomena, several models have appeared that 

have argued for parallel processing of foveal and parafoveal words, notably SWIFT 

(Engbert, Longtin, & Kliegl, 2002) and Glenmore (Reilly & Radach, 2003).  That is, 

lexical processing in these models is spatially distributed across words and a 

competition for processing resources between the different words is constantly going 

on; for example a difficult word will use most of the resources leaving few resources 

for the processing of the other words. In the SWIFT model for example, lexical 

processing is distributed over a four-word attentional gradient, and (contrary to the E-

Z Reader model), lexical processing is not the engine behind eye movements during 

reading to the same extent as in the E-Z Reader model.  Instead, saccades are initiated 

after a variable (random) time interval to maintain a preferred mean rate of eye 

movements.  Obviously, such parallel processing models do have the capability of 

predicting parafoveal-on-foveal effects.  Whether they give an adequate explanation 

of such effects we think is also an open question, as well as whether they can account 

for when such effects do not occur. 

How do these models explain skipping?  Again using SWIFT as an example, 

saccades are directed towards words that have the highest level of excitation, which 

occurs at intermediate amounts of lexical processing. (That is, the default saccade 

target is not the following word, as in the E-Z Reader model.)  Thus, wordn+1 will be 

skipped if wordn+2 has a higher level of excitation, and the model successfully predicts 

that this occurs when wordn+1 is more frequent, more predictable, and shorter. 

However, because SWIFT does not assume that the next word is the default saccade 

target, there is no predicted “cost” in canceling a planned saccade to the next word, as 

it is the case in the E-Z Reader model.  Kliegl and Engbert (2004) attempted to 

resolve the inconsistency in the literature we discussed earlier on whether there is a 

cost in skipping on the fixation time on the prior word.  In a study using a large corpus 

(where other factors were controlled post-hoc), they found that fixations before 

skipped words were shorter before short or highly frequent words and longer before 

long or low frequency words. However, this issue is complex as assessing this effect 

depends on essentially correlational analyses. That is, whether the reader skipped a 

word or not was determined by the reader, so that one never can achieve the same 



 9

amount of stimulus or participant control over the situations in which readers skip and 

the situations in which they don’t, as in for instance fixation times.   

 The current study examines word skipping using the E-Z Reader model as its 

focus, as we don’t think that the phenomena discussed above are fatal to E-Z Reader’s 

explanation of skipping or other parafoveal phenomena in reading.  In particular, we 

wish to highlight the two major assumptions that E-Z Reader makes to explain word 

skipping.  First, the model states that a word is skipped because it is recognized 

(processed up though the first stage) on the prior fixation by means of parafoveal 

processing.  Second, it states that some skipping will occur because of saccadic error.  

However, for now, we will focus on the first mechanism. In particular, there appear to 

be two prior studies whose results seem somewhat at odds with the assumption that 

skipping results from a fairly full analysis of the parafoveal word.   

The first study (Balota et al., 1985) examined the skipping of misspelled 

parafoveal words in sentences such as: “Since the wedding was today, the baker 

rushed the wedding cake to the reception”, where the target word (italicized) was 

quite predictable. This study used the eye-contingent display change paradigm, the 

boundary paradigm (Rayner, 1975), in which a preview stimulus was replaced by 

either a predictable target word cake or by an unpredictable target word pies when the 

reader crossed the invisible boundary located before the target. Of major interest for 

the present purposes is how often various preview stimuli were skipped when a 

certain word was fairly predictable.  In fact, when the predictable word cake was in 

the parafovea, it was skipped 11% of the time, whereas the non-predictable (but 

sensible) word pies was only skipped 2% of the time.  (A non-word that was visually 

dissimilar to the predictable word picz and a word that was semantically anomalous in 

the sentence frame bomb also had low skipping rates.)  However, a non-word that was 

visually similar to the predictable word cahc was skipped 11% of the time.  This study 

was one of the first to show that a predictable word is skipped more often than an 

unpredictable word in the same location, and thus that skipping was due to the word 

that was actually there rather than simply due to guessing that the word was likely to 

be there.  However, there are a few features of this study we would like to address.  

First, as noted above, Balota et al. reported no difference between a 

predictable word (cake) and a non-word preview that was visually similar to the 

predictable word (cahc). This led them to conclude that the decision to skip the target 

word was not based on a full analysis of the parafoveal word.  This conclusion, 
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however, is somewhat at odds with the E-Z Reader model we presented earlier. That 

is, if a word is skipped because it is almost fully recognized, how can there be no 

difference at all between a predictable word and a visually similar non-word?  

However, it is not inconceivable that when a word that is skipped from a far launch 

site, it is skipped based on coarse information. The system would accommodate for 

this sub-optimal processing by compensating for it on the fixation after the skipping. 

This latter assumption would be compatible with the findings of Binder, Pollatsek, 

and Rayner (1999) who reported that readers often still attend to a word after it is 

skipped (plausibly when a saccade overshot the target word) and with the data 

reported by Reichle et al. (1998) that the duration of a fixation after a skip is also 

inflated. Thus, perhaps this lack of difference in the Balota et al. experiment was 

because a majority of the skips were from a reasonably distant launch site.  

Unfortunately, Balota et al. did not report skipping rates as a function of different 

launch sites. 

The first experiment reported here is essentially a replication of the Balota et 

al. study, but an important difference is that we also examined the skipping data as a 

function of launch site.  In order to create a sensitive test of whether there would be a 

difference between the predictable word and the visually similar non-word preview at 

close launch sites, we increased the visual similarity by reducing the difference to a 

single letter. In addition, there is the question about whether there is a difference 

between a preview of an unpredictable word (pies) and a preview of a non-word (picz) 

derived from the unpredictable word that is both visually dissimilar to the predictable 

word (cake).  That is, analogous to the question about the predictable word, does it 

make a difference in skipping rate that one is a word and one is not?  The original 

Balota et al. data are not diagnostic, because there were likely to have been floor 

effects. To amend this, the original study was replicated in Experiment 1 but all the 

words longer than 6 letters were taken out of the stimulus set.  Because short words 

are skipped more often than long words, this should increase the overall skipping rates 

and thus make floor effects less likely.  Finally, we also added an extra condition in 

which a preview was presented that was an unpronounceable, orthographic illegal 

non-word. This condition was added to determine whether the visually dissimilar 

condition constituted the lower boundary of skipping behavior. 

 Experiment 1 focused on the question of how much processing of a parafoveal 

word is necessary to modulate skipping.  This question was also addressed in 
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Experiment 2, but the focus in Experiment 2 was on the question of whether word 

skipping is modulated by foveal load. Henderson and Ferreira (1990) showed that 

when foveal load is increased (e.g. a low-frequency word prior to the target word) the 

parafoveal preview benefit is reduced (see also Kennison & Clifton, 1995; Schroyens 

et al., 1999; White, Rayner, & Liversedge, 2005). Models such as the E-Z Reader 

model explain this phenomenon by stating that because the processing of the word n 

takes longer, the time window for parafoveal processing to occur between the arrival 

of the attentional beam and the actual arrival of the eyes on word n+1 will be smaller, 

hence less processing will have occurred. Because the E-Z Reader model relies 

heavily on parafoveal processing in explaining skipping behavior, the model would 

clearly predict that a higher foveal load will be accompanied by a lower skipping rate 

of the following word.  If this is observed, then it would be another piece of data 

indicating that word skipping is importantly determined by word processing, contrary 

to other “where to move the eyes” decisions. This is even more so the case since 

previous research has shown that foveal load has only a small effect on the saccade 

length originating from the target word (e.g., Rayner, Ashby et al., 2004).  

The second study that seemed problematic for the E-Z Reader model’s account 

of word skipping was by White (2004), as she reported finding no effect of foveal 

load on the skipping of the following word. She used five to six-letter foveal words 

and four-letter target words (i.e., the words whose skipping rates were assessed). The 

preview of the target word was either correct or misspelled. While there was a main 

effect of preview (the correct previews were skipped more often than the incorrect 

previews), no other significant effects were observed with the exception of an 

incorrect preview being skipped less often when it was preceded by a low frequency 

word. These findings can clearly not be accounted for by the mechanisms 

incorporated in the E-Z Reader model.  However, because the overall skipping rates in 

this study were rather low, the lack of an effect of foveal load could have been due to 

a lack of power.  As a result, we decided to use shorter target words.  In Experiment 2, 

we employed three letter target words (for which the preview was either correct or 

misspelled) which were preceded by either a high-frequency or a low-frequency five 

letter word.  

EXPERIMENT 1 

 The primary question explored in Experiment 1 was whether the findings of 

Balota et al. (1985), indicating that there is no difference in skipping rate between a 
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predictable word and a nonword that was visually similar to it, would still be true if 

one examined situations in which the prior fixation was close to the target region (i.e., 

at a close launch site). In addition, to make the test more sensitive, we used shorter 

stimuli than were used than in the original study to avoid floor effects. 

If skipping is merely based on a crude estimate of whether a predictable word 

was present, then skipping rates should be about the same when the predictable word 

and a nonword visually similar to it are present in the parafovea and those skipping 

rates should be higher than the other conditions in which the preview of the target 

word is orthographically different from the predictable target word.  Moreover, if the 

preview is orthographically different from the target word, then skipping rates should 

not be affected by whether it is a word or nonword and/or whether the word fits in 

with the sentence.  We expected that this might be the pattern when the launch site is 

far from the target word region.  However, we thought that at close launch sites, there 

would be a more complete analysis of the preview stimulus, and thus that skipping 

rates would be at least sensitive to whether the preview was the predictable word or 

the nonword that was visually similar to it.  It was less clear whether skipping rates 

would be at all influenced by the lexicality or sensibility of the preview if it wasn’t a 

candidate for the predictable word. 

METHOD 

Participants. Twenty-four members of the University of Massachusetts 

community participated in this experiment. All were native speakers of American 

English and had 20/20 vision or contacts. They were either given extra credit in a 

Psychology course or paid $8 for their participation. 

Apparatus. Participants were seated 61 cm from a 15-inch NEC MultiSync 

FGE color monitor.  All sentences were displayed on a single line with a maximum 

length of 80 characters. At this distance, 3.8 character positions equaled 1 degree of 

visual angle. An eye contingent boundary technique was used (Rayner, 1975) in 

which display changes occurred within 5 ms of detection of when an invisible 

“boundary” was crossed; the boundary was between the last letter of the prior word 

and the space preceding the target word.  Eye movements were recorded using a 

Fourward Technologies Dual Purkinje Eyetracker (Generation V) interfaced with a 

Pentium computer. Although reading took place binocularly, eye movements were 

recorded only from the participants’ right eye, sampling the eye’s position every 

millisecond. 
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Materials. The sentences were selected from the materials used by Balota et 

al. (1985). In the original study, 96 sentence frames were used. Two separate norming 

procedures were used to assess the predictability of the predictable and unpredictable 

(but not anomalous) words. In the first procedure, 20 participants were presented with 

the sentences up to and including the target word. Their task was to indicate, on a 5-

point scale, how well the base word fit into the sentence (1 = the word did not fit very 

well; 5 = the word fit very well). The mean ratings for the predictable and 

unpredictable words were 4.47 and 2.32, respectively. In the second procedure, 20 

participants who did not participate in the first norming study, were given the 

sentence frame up to, but not including, the target word and were asked to generate 

the next word in the sentence. The predictable words were generated 64% of the time, 

whereas the unpredictable words were generated less than 1% of the time. Target 

words ranged in length from 4 to 8 characters, with a mean of 5.2 characters. For the 

current experiment we removed the 7 and the 8 letter words from the Balota et al. 

stimulus set, maintaining 84 sentence frames from the original 96 sentence frames. 

The average word length of the reduced stimulus set was 4.7 characters. 

For each sentence, the target word was always the predictable word, and there 

were six possible previews that were either taken from the Balota et al. study or 

adapted given the criteria below for constructing the nonword previews.  (An example 

is shown in Table 1.) The preview was either the predictable (P) word (e.g. liver), an 

unpredictable (U) word (e.g. heart), or a word that was semantically anomalous (SA) 

in the sentence frame (e.g. files). The materials for these three conditions came from 

the original study. The visually similar condition (VS) was formed by altering the 

penultimate letter of the predictable word, creating a non-word (e.g. livor). If the 

penultimate letter was an ascender or a descender, this letter was replaced by 

respectively an ascender or descender. The same procedure was used to make the 

preview for the visually dissimilar (VD) condition (e.g. heant, which is visually 

dissimilar to the predictable word) where the base word was the unpredictable word. 

Finally the condition, which for the sake of convenience will be called the 

orthographically illegal (OI) condition, was a non-word whose first three letters 

always constituted a unpronounceable combination that does not appear in the English 

language as letters at the beginning of a word (e.g. frhos). The previews were always 

the same length as the target.  The average word frequency, based on the Francis and 

Kuĉera (1982) norms were 58.2 per million for the predictable words, 58.1 per million 
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for the unpredictable words, and 88.9 per million for the semantically anomalous 

words. As each of the 84 sentence frames was read only once by a participant, there 

were 14 sentences per condition per participant. The 84 experimental sentences were 

embedded in a pseudorandom order in 60 filler sentences.  

INSERT TABLE 1 ABOUT HERE 

Procedure. When a participant arrived for the experiment, a bite bar was 

prepared, which served to eliminate head movements. Participants were given a 

general description of the experimental procedure and were asked to read sentences 

on the monitor as their eye movements were monitored. They were also told that they 

would be asked questions about the sentences and were instructed to read for 

comprehension. The initial calibration of the eye-tracking system required about 5 

minutes. Each participant read 10 practice sentences to become familiar with the 

procedure. Prior to the presentation of each sentence, a series of five boxes appeared 

on the monitor, extending from the first to the last character position of an 80-

character sentence. During this calibration check, participants looked at each box so 

that the experimenter could verify that the eye position was accurately recorded. If the 

calibration was not accurate, the participant was recalibrated. If the calibration was 

accurate, the participant looked at the first box and the experimenter displayed the 

sentence. Questions about the meaning of the sentence were asked after 25% of the 

trials and participants had little difficulty answering the questions (accuracy 96%). 

The experiment lasted about 35 minutes. 

RESULTS 

 Our primary interest in this experiment was the probability of skipping the 

target word during the first pass through the text (not taking regressions into account). 

In addition to the overall skipping probability, we examined the skipping probability 

conditional on the distance of the launch sites from the target word.  For the cut-off 

point between a close and a far launch site we chose 5 character positions, since this 

allowed an approximately even division of the data (45% of the saccades, regardless 

of whether the target word was skipped or fixated, were launched from 5 or fewer 

character positions from the space in front of the target word).  

We also calculated the fixation times on the target word. When the target word 

was fixated, in 91.7% of the cases it received a single fixation. Therefore, we will 

restrict the fixation duration analyses to when there was a single fixation on the target 

word.  Since our materials in this experiment were identical up to the target word, we 
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were also able to examine the fixation duration of the last fixation prior to either 

skipping of or landing on the target word. And finally, although not the focus of the 

present article, we also examined the fixation duration prior to the target word 

regardless of whether it was skipped or not as our incorrect previews constitute an 

interesting situation for examining potential parafoveal-on-foveal effects.  Fixation 

durations of less than 100 ms and more than 1200 ms on the target word were 

removed from the analyses. Trials on which the eye-tracker lost track of the eye 

position were also excluded from the analyses, as well as trials in which the eyes 

triggered the boundary but remained on the word before the target (usually the last 

letter of this word)4. Finally, when the fixation duration was greater than three 

standard deviations from the mean for that participant in that condition, it was also 

removed (this was the case for 1 observation). As a result, about 16% of the trials 

were excluded from the analyses, and these trials were approximately equally 

distributed across conditions5. A series of repeated measures analyses of variance 

(ANOVAs) were undertaken with participants (F1) and items (F2) as random 

variables.  

Skipping the target word.  The skipping rates associated with Experiment 1 are 

shown in Table 2. The effect of preview on the skipping rates of the target word 

during first pass reading was close to significant, F1(5,115) = 2.13, MSe = 96, p = 

.067, F2(5,415) = 1.962, MSe = 440, p = .083.  Contrasts showed that this was mostly 

due to the 5% difference in skipping rate between the predictable word preview and 

the average of the other five conditions, F1(1,23) = 6.18, MSe = 116.26, p < .05; 

F2(1,83) = 5.16, MSe = 589.14, p < .05.  There also appeared to be a difference 

between the U, SA, and VS condition on the one hand and the VD and OI condition 

on the other; however, contrasts showed that this was not significant, F1(1,23) = 3.76, 

MSe = 68.96, p > .05; F2(1,83) = 1.82, MSe = 320.16, p > .10.  In addition, there was 

no longer any significant effect of preview when the predictable condition was 

removed from the analysis (Fs <1).  

INSERT TABLE 2 ABOUT HERE 

When we restricted the data set to saccades launched from five or fewer 

character positions from the target word, the effect of preview on the skipping rates 
                                                 
4 On some occasions, the Dual Purkinje Eye-tracker will register a saccade that crosses the boundary 
(triggering the display change), but the eye then (within a few milliseconds) “hooks” back to land on a 
character prior to the boundary location.    
5 Deleted cells were treated as missing cases. 
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was significant, F1(5,115) = 3.35, MSe = 291.2, p < .01; F2(5,415) = 3.14, MSe = 

1573, p < .01. A predictable word was skipped 14% more often than the average of 

the other conditions, F1(1,23) = 17.54, MSe = 235.79, p < .001; F2(1,83) = 16.30, 

MSe = 1568.25, p < .001, and there was no significant difference among the other five 

conditions (Fs < 1).  Finally, when the skip was launched from six or more character 

positions from the target word, there was virtually no difference among the 

conditions, with skipping rates being low in all conditions (Fs < 1). 

Table 2 also includes the overall skipping probability.  In this measure, if the 

word was initially skipped but then regressed back to, it isn’t counted as a skip.  This 

presumably should index whether the reader realized there was something wrong after 

they skipped the target word. In the original Balota et al. study there was no difference 

in this measure between the P and the VS condition. The effect of preview on these 

skipping rates was significant, F1(5,115) = 3.66, MSe = 0.01, p <.01; F2(5,415) = 

3.46, MSe = 0.04,  p < .01. Contrasts showed that this variance was again mainly due 

to the 8% difference between the predictable word and the other conditions, F1(1,23) 

= 11.71, MSe = 0.01, p < .01; F2(1,83) = 9.42, MSe = 0.05, p < .01. There was no 

significant difference among the other five conditions, F1(4,92) = 1.06, MSe = 0.01, p 

> .20; F2(4,332) = 1.32, MSe = 0.04, p > .20. Although the overall skipping appears 

to be a bit smaller for non-word previews than for word previews, this effect was not 

significant, F1(1,23) = 2.24, MSe = 0.01, p > .10; F2(1,83) = 1.52, MSe = 0.04, p > 

.20.  

Fixation times.  Fixation times in Experiment 1 are shown in Table 3. As 

mentioned above, since the vast majority of gaze durations on the target consisted of a 

single fixation, we shall only report the single fixation duration, the mean fixation 

duration when there was a single fixation on the target6. The effect of preview on the 

single fixation duration times was significant, F1(5,115) = 11.42, MSe = 638, p < 

.001; F2(5,415) = 5.81, MSe = 4362, p < .001. Contrasts showed that three groups 

could be distinguished: the fixation times in the predictable condition were about 20 

ms less than those in the U and VS conditions, which were in turn about 20 ms less 

than those in a 3rd group containing the SA, the VD and the OI conditions.  However, 

some of the comparisons were no longer significant in the analysis across stimuli after 

the p values were Bonferroni adjusted (P versus U & VS, F1(1,23) = 8.65, MSe  = 

                                                 
6 Single fixation durations and gaze durations show exactly the same pattern. 
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724.43, p < .01, F2(1,83) = 4.49, MSe = 3803.32, p < .12; U & VS versus S, VD & 

OI, F1(1,23) = 9.17, MSe = 1524.33, p <.01; F2(1,83) = 13.69, MSe  =3623.54, p < 

.001; P versus S, VD, & OI, F1(1,23) = 61.62, MSe = 510.85, p < .001, F2(1,83) = 

25.70, MSe = 3851.90, p < .001).    

INSERT TABLE 3 ABOUT HERE 

The effect of preview on fixation durations prior to the target word was not 

significant (all Fs < 1) (shown in Table 3, columns 2), regardless of whether the target 

word was skipped or fixated. An examination of the means, however, indicates that 

the overall fixation time in the predictable word condition was somewhat shorter than 

in the other conditions. To make sure we did not miss a potential parafoveal-on-foveal 

effect on these viewing times, we divided the fixations into two categories: those that 

were close to the target word and those that were further away, and computed the 

mean fixation times separately for these two categories. We selected a cut-off point 

such that the close launch sites were three character positions or fewer from the target 

word and the far launch sites were four or more character positions from the target 

word because this cut-off allowed the most even division of the data (42.4% of the 

data were in the near launch site category). These fixation times are shown in Table 3 

(column 3 and 4). The effect of preview was not significant (all Fs < 1) but contrasts 

showed that the 20-25 ms difference between the fixation duration in the predictable 

condition and the other conditions was significant for the analysis across participants, 

F1(1,20) = 6.06, MSe = 1980.93, p < .05, but not for the analysis across items, F2 < 1. 

There were clearly no reliable differences among the conditions when the launch site 

was at least three characters from the target word (all Fs < 1).   

Turning to the question of whether there was an inflated fixation duration prior 

to skipping, when we compared the last fixation duration on the prior word 

conditional on whether the target word was skipped (shown in Table 3, columns 5 and 

6), we did indeed find that this fixation time was about 34 ms greater when the target 

word was skipped than when it was fixated, F1(1,8) = 15.17, MSe = 3129.38, p < 

.0017.    

DISCUSSION 

                                                 
7 No F2 analyses are reported for this comparison due to a high number of missing cells in the fixation 
duration prior to skipping matrix. The high number of missing cells also made any further analysis for 
these data unwarranted.  
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We had anticipated replicating the finding by Balota et al. (1985) that there 

was no significant overall difference in skipping rates between a predictable word and 

the nonword that was visually similar to it, but that we would find a difference when 

the prior fixation was at a suitably close launch site. Contrary to our expectations, we 

found that there was a difference between the predictable words and the visually 

similar nonwords in both the overall analysis and the analysis restricted to a close 

launch site, even though the visual similarity between the P and VS condition was 

higher than in the original study.  In fact, we found little difference in skipping among 

the conditions in which the preview was not the predictable word. One possibility for 

the discrepancy between the present study and the original study may be the viewing 

conditions of the experiments. First, the quality of monitors has improved (with many 

more pixels per character) in the 20 years between the original study and the present 

study. This may have made extraction of parafoveal information more efficient in the 

present study.  Second, in the original study, three characters equaled 1 degree of 

visual angle, whereas in the present study 3.8 characters equaled 1 degree of visual 

angle. This closer packing of the information in the present study may have also made 

extraction of parafoveal information more efficient. Thus, the original lack of finding 

a difference between the predictable and the visually similar conditions may have 

been due to poorer parafoveal viewing conditions. The present findings are therefore 

consistent with the assumption that the decision to skip the target word was based on a 

full analysis of the parafoveal word, as the difference between the P and the VS 

condition was a single letter.  In contrast, the skipping rates of the VS condition were 

not different of those of the VD condition even though the orthographic difference 

was large.  It should also be noted that virtually the entire skipping effect occurred 

when the launch site was close, again indicating that the effect was likely to be due to 

fairly full processing of the skipped word. 

Another interesting finding in the skipping data is the lack of difference 

between the non-predictable conditions. In the original Balota et al. (1985) study, 

there were also no significant differences between the N, VD and SA conditions, but 

this could have been due to floor effects. The fact that there is no difference in 

skipping between a neutral word and a semantically anomalous word in the present 

study could be expected based on previous research (Altarriba, Kambe, Pollatsek, & 

Rayner, 2001; see also Rayner, Balota, & Pollatsek, 1986) showing that semantically 

related words are not skipped more often than semantically unrelated words. In the E-
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Z Reader model this finding is explained by stating that the decision to skip a word is 

instigated by the completion of the first phase of word identification of the target 

word. Whereas predictability appears to boost performance in this phase, the 

extraction of semantic features from the parafoveal word apparently does not (or at 

least doesn’t do it fast enough), explaining the lack of an effect of semantic inhibition 

in the SA condition. Indeed, the mechanism explaining skipping behavior 

incorporated in the E-Z Reader model does not make any differential predictions on 

skipping behavior in terms of inhibition. Rayner and Well (1996) showed that to 

obtain an effect of predictability on skipping you need a large enough difference 

between the predictable and the unpredictable target words in terms of sentence 

completion ratio. A medium constraint target word resulted in faster viewing times 

when the target word was actually fixated but did not differ from an unpredictable 

word in terms of skipping. The system apparently decides to cancel the planned 

saccade to the target word only when the speed of the first phase of word recognition 

of the target word is boosted a lot.   

Further evidence for a restriction of this mechanism to the condition with the 

predictable preview is provided by the strength of the word length effect in the current 

experiment. As noted previously, a considerable amount of prior research has clearly 

demonstrated that short words are skipped more often than long words, presumably 

due to reduced visibility in the case of long words. If the skipping rates are higher in 

the predictable condition due to enhanced word recognition of the target word, then 

the low-level visual effect of word length would be relatively smaller as compared to 

the other conditions that do not have this influence. We ran a simple regression 

analysis on the skipping data of the six conditions with word length as a predictor. 

Word length was not a significant predictor for the skipping rates in the predictable 

condition (P: F(1,82) = 1.33, p > .20) but was in all the other conditions (U: F(1,82) = 

23.77, p < .001; SA: F(1,82) = 3.91, p = .05; VS: F(1,82) = 9.17, p < .01; VD: F(1,82) 

= 7.30, p < .01; OI: F(1,82) = 17.68, p < .001). Even though we have no doubt that, 

given a very large data set, the effect of word length in the predictable condition 

would also become a significant predictor, we take this analysis as some indication 

that there is a less pronounced word length effect in the predictable condition because 

of enhanced encoding of the parafoveal target word due to its predictability from the 

preceding context. Taking all these arguments into account, the fact that the 5 non-

predictable conditions do not differ from each other is in agreement with the E-Z 
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Reader model. However, what is incompatible with the model is the high rate of 

skipping “garbage” words and nonwords, an issue we will address in more detail in 

the General Discussion. 

The single fixation durations on the target showed a pattern of P < U and VS < 

SA, VD, and OI. That the predictable word should receive the shortest fixation times 

is not surprising, since it was the only condition in which the preview matched the 

target word after the boundary change had occurred. That some inhibition could be 

expected from the S, VD, and OI condition is also not surprising. The fact that the 

target word in the VS condition was read faster was undoubtedly due to orthographic 

overlap with the target word after the reader had landed upon it, however this 

orthographic overlap was not strong enough for the visually similar non-word to be 

read significantly faster (5 ms) than the unpredictable word, perhaps due to some 

inhibition from the non-wordness of the VS preview attenuating the orthographic 

overlap advantage.   

The fixation durations prior to the target word were very interesting. We did 

find that the fixation duration prior to skipping a word was inflated, adding further 

evidence for the existence of this effect (Pollatsek et al., 1986).  Furthermore, we 

found that when the eyes were very close to the target word (three or fewer character 

positions), the fixation durations in the five non-predictable conditions were longer 

than the fixation durations in the predictable preview condition. We will also defer 

discussion of these two effects to the General Discussion. 

EXPERIMENT 2 

The primary goal of Experiment 2 was to explore whether there is an influence 

of foveal load on the skipping of the following word. Previous research (Henderson & 

Ferreira, 1990; Kennison & Clifton, 1995; White et al., 2005) demonstrated that a 

high foveal load leads to reduced parafoveal preview benefit.  In the E-Z Reader 

model, a word is skipped because it is recognized in parafoveal vision.  Thus, it 

follows that the chances of recognizing the parafoveal word would be reduced when 

the amount of parafoveal preview is reduced. Accordingly, we expected that a high 

foveal load would lead to a reduced skipping rate of the following word. As we noted 

earlier, a prior study (White, 2004) did not find an effect of foveal difficulty of wordn 

on skipping rates of wordn+1.  However, there may have been a power problem as the 

skipping rates in this study were quite low, probably because 5-6 letter foveal words 

and 4 letter target words were used.  As a result, we used shorter words for both the 
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foveal words whose difficulty is being manipulated (5 letters) and for the ensuing 

target words that are being examined for skipping probabilities (3 letters). Note that 

the same prediction is made by parallel models that assume a constant competition for 

processing resources between the different words; a difficult word will use most of the 

resources leaving few resources for the processing of the other words. Because less 

parafoveal processing has occurred, the next word will become a more attractive 

candidate to program a saccade to, and thus it is less likely to be skipped.  

METHOD 

Participants. Twenty members of the University of Massachusetts community 

participated in this experiment. All participants were native speakers of American 

English and had 20/20 vision or contact lenses. They were either given extra credit in 

a Psychology course or paid $8 for their participation. 

Apparatus. The apparatus was the same as in Experiment 1. 

Materials. 32 sentence frames were created so that the word prior to the target 

word was either a low- or high-frequency adjective8. The mean frequencies, as 

assessed in the Francis and Kuĉera norms (1982), were 5 counts per million for the 

low-frequency adjectives and 270 counts per million for the high frequency 

adjectives. Word length was controlled: the word prior to the target word was always 

a 5 letter word adjective, and the target word was always a 3 letter noun. The mean 

frequency of the three letter target words was 135 counts per million.  Two possible 

previews were created: a correct preview and a misspelled preview. In the misspelled 

condition, the middle letter of the 3 letter noun was always replaced by the letter x. 

This manipulation ensured that all resulting non-words were illegal non-words.  As 

Experiment 1, in which we made the visually similar preview as visually similar to the 

target word as possible (by maintaining ascenders and descenders) showed a 

significant difference between the visually similar and identical preview conditions, 

we thought the manipulation here of orthographic similarity (a difference of one 

character) was sufficient.  The combination of the two possible adjectives preceding 

the target (low- and high-frequency) and the two possible previews (correct and 

incorrect) produced a 2 x 2 design of which an example is given in Table 4.  As each 

of the 32 sentence frames was read only once by a participant, there were 8 sentences 

per condition per participant. The 32 experimental sentences were embedded in a 

                                                 
8 All materials are available from the first author upon request, denis.drieghe@ugent.be  
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pseudorandom order in 112 filler sentences. The boundary was set, as in Experiment 

1, between the last letter of the prior word and the space preceding the target word. 

To ensure that any differences that were found between the skipping of a 

target word preceded by either a low- or high-frequency adjective were not due to 

differences in predictability, we assessed how predictable the target words were in the 

two frequency conditions.  Fourteen participants who did not participate in the eye-

tracking study were given the sentence frame up to and including one of the two 

possible preceding adjectives, and were asked to generate the next word in the 

sentence. In fact, there was virtually no difference in predictability between the two 

conditions: the target word was generated 6.25% of the time given the sentence frame 

with a high-frequency adjective and 6.70% of the time given the sentence frame with 

a low-frequency adjective.  

INSERT TABLE 4 ABOUT HERE 

Procedure. The procedure was the same as in Experiment 1. 

 

RESULTS 

Our primary interest in this experiment was the probability of skipping the 

target word during the first pass through the text. We will also report the fixation 

times on the word prior to the target word, to confirm that our frequency manipulation 

was effective, and fixation times on the target word. The latter is interesting in terms 

of replicating the basic finding of Henderson and Ferreira (1990) that the parafoveal 

preview benefit is reduced in the case of high foveal load.  Contrary to Experiment 1, 

we will not report an analysis of the fixation duration on the word prior to the target 

word as a function of skipping or landing, or as a means to look for potential 

parafoveal-on-foveal effects. Because the word prior to the target word was not 

identical in every condition, both the suitability of this design and its statistical power 

to examine these effects is considerably reduced.  

As the target word was very short, it is not surprising that in the vast majority 

of the cases when there was a fixation on the target word, only one fixation occurred 

(97.5%). Therefore, as in Experiment 1, only single fixation durations will be reported 

for the target word. Since one of the manipulations was foveal load, it is of course 

essential that the word prior to the target word was fixated. Therefore we will restrict 

all our analyses to those trials in which there was a single fixation on the adjective 

preceding the target word. A single fixation on the adjective was the most frequent 
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event when the word was fixated (94.6%), but more importantly, single fixation 

duration is the cleanest measure to use in this situation, as a second fixation would 

allow two opportunities to get a parafoveal preview, making the analysis 

unnecessarily complicated.   

Target fixation durations of less than 100 ms and more than 1200 ms were 

removed from the analyses, as well as trials on which the eye-tracker lost track of the 

eye position. We also removed trials in which the eyes triggered the boundary but 

remained on the word before the target (usually on its last letter). Finally, when the 

fixation duration was greater than three standard deviations from the mean for that 

participant in that condition, it was also removed (this was the case for 1 observation). 

All in all, the reported analyses were carried out on 572 trials, or 74% of all the trials9. 

Because a Latin square design was used with relatively few observations in the 

different cells, the counterbalancing group variable was included in all analyses 

reported below to increase the power of the design (Pollatsek & Well, 1995).  A series 

of 2 (foveal load) x 2 (preview) repeated measures analyses of variance (ANOVAs) 

were undertaken with participants (F1) and items (F2) as random variables. 

Skipping the target word.  The skipping probabilities in Experiment 2 are 

shown in Table 5. The 12% overall difference between the correct and incorrect 

preview conditions was significant, F1(1,16) = 7.16, MSe = 372.4, p < .05; F2(1,27) = 

5.79, MSe = 517.1, p < .05, and the 8% overall difference between conditions with 

high and low foveal load was significant across participants, F1(1,16) = 7.14, MSe = 

191.9, p < .05, and marginally significant across items, F2(1,27) = 3.46, MSe = 302.2, 

p = .07.  Although there was a greater effect of the correctness of the preview in the 

high foveal load conditions than in the low foveal load conditions, the interaction of 

correctness by foveal load was not close to significant, F1< 1, F2(1,27) = 2.70, MSe = 

585.3, p = .11.  Post-hoc t-tests revealed that there was no significant difference in 

skipping between a correct and an incorrect preview in the case of a low foveal load, 

t1(19) = -1.21, p > .20; t2 < 1, nor was there between a high foveal load and a low 

foveal load in the case of a correct preview, all ts < 1. These results indicate that most 

of the variance in the skipping data can be accounted for by the difference in skipping 

rate between an incorrect preview with a high foveal load, and the other three 

conditions. 

                                                 
9 Deleted cells were treated as missing cases. 
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INSERT TABLE 5 ABOUT HERE 

Fixation times.  The fixation times are shown in Table 6. For single fixation 

durations on the adjective prior to the target word there was a 27 ms effect of foveal 

load (i.e., the frequency of the adjective), F1(1,16) = 7.01, MSe = 2106, p < .05; 

F2(1,27) = 4.81, MSe = 2700, p < .05, but there was no effect of the correctness of the 

preview of the following noun (all Fs < 1), nor any interaction between these two 

factors (all Fs < 1). The 15 ms effect of correctness of the preview in the low foveal 

load condition was also not significant, t1(19) = -1.34, p = .19; t2(31) < 1. 

INSERT TABLE 6 ABOUT HERE 

For the single fixation duration on the target word itself both the 39 ms 

advantage when the preview was correct, F1(1,13) = 4.78, MSe = 2141, p < .05; 

F2(1,21) = 11.89, MSe = 2399,  p < .01, and the 29 ms advantage when the foveal 

load was low were significant, F1(1,13) = 5.47, MSe = 5380, p < .05; F2(1,21) = 5.43, 

MSe = 3911, p < .05 (this latter effect could be a frequency spillover effect).  The very 

small (3 ms) interaction between these two factors in the predicted direction was not 

close to significant (all Fs < 1).  

 

DISCUSSION 

 Even though our frequency manipulation on the word prior to the target word 

was effective, we did not replicate the basic finding of Henderson and Ferreira (1990; 

see also Kennison & Clifton, 1995; Schroyens et al. 1999; White et al., 2005) that the 

parafoveal preview benefit is reduced in the case of a high foveal load; there was only 

a small and insignificant interaction between the foveal load and the preview 

condition on the single fixation duration on the target word. What we did find were 

large main effects of foveal load and preview condition on the single fixation times: 

an average 39 ms effect of preview and an average 29 ms effect of foveal load.  

A possible explanation for this discrepancy could lie in the difference in how 

the incorrect preview was implemented in the studies. In the Henderson and Ferreira 

(1990) study, both a visually similar parafoveal preview and a visually dissimilar 

parafoveal preview were used besides the correct preview, and whereas the similar 

preview maintained the first three letters of the correct preview, the dissimilar preview 
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consisted of a random string of letters10. The effects reported by Henderson and 

Ferreira were entirely due to the difference in preview benefit observed between the 

correct and the visually similar condition on the one hand and the dissimilar condition 

on the other hand. Based on this analysis, it is possible that our incorrect preview was 

not dissimilar enough to elicit the interaction because only the middle letter was 

changed in the incorrect preview condition. However, that explanation seems unlikely 

because we did obtain large preview effects (i.e, differences between the correct and 

incorrect preview) on the fixation times on the target word.  In addition, a large spill-

over effect from the frequency manipulation on the prior word was also observed, 

indicating that our foveal load manipulation was powerful. So while our experiment 

did not replicate the interaction effect of preview and foveal load reported by 

Henderson and Ferreira (1990), we did obtain substantial preview and foveal load 

effects.  Spillover has been explained within the E-Z Reader model as one of the 

consequences of a reduced parafoveal preview. A large foveal load will reduce the 

amount of parafoveal processing that can be done before the eyes arrive on the next 

word, causing a longer fixation after a difficult word because more processing is still 

left to be done in order to identify the newly fixated word. So while our fixation times 

on the target did not replicate a reduced parafoveal preview, as it is traditionally 

assessed by comparing the fixation time when there was a correct preview versus an 

incorrect preview, there were indications that our foveal load manipulation was 

effective in reducing the amount of parafoveal processing. We will explore alternative 

explanations for the essentially additive pattern of data we obtained in the General 

Discussion. 

Turning to the skipping rates, effects of foveal load and preview were also 

observed, but mostly because the skipping rate of the incorrect preview with a high 

foveal load was considerably lower than the other conditions. We should note that our 

pattern of skipping rates is similar to that of White (2004) except that she did not 

obtain any significant effect of foveal load on skipping rates.  That is, she also found 

that the lowest skipping rates were associated with a high foveal load and an incorrect 

preview.  Although the patterns of effects observed in the single fixation times and the 

skipping rates seem to suggest a common underlying cause (i.e. reduced parafoveal 

                                                 
10 A random string of letters also constituted the incorrect preview in the Kennison and Clifton and 
White et al. studies, whereas Schroyens, et al. (1999) used a random permutation of pixels. No visually 
similar condition was used in these studies. 
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processing), the fact that the high foveal load and incorrect preview condition stands 

out in the skipping data leads us to believe that the story may be more complicated for 

saccade target selection. We will also discuss this issue further in the General 

Discussion. 

GENERAL DISCUSSION 

 We will first discuss what we think we have learned about the causes of 

skipping, then discuss the effects of skipping on processing neighboring words, and 

finally touch on related issues, such as the effects of our manipulations on the fixation 

durations on the target word and neighboring words. 

The first issue is why words are skipped.  Our data raise two issues: (a) the 

causes for the differences in skipping rate between our conditions and (b) why letter 

strings are skipped even when they are nonwords or words that are anomalous in the 

sentence context.  Clearly, the fact that we obtained differences in skipping rate for 

target words as a function of the letters that were there (with the length of the letter 

string held constant) indicates that processing of the word to the right of fixation is 

influencing the frequency with which it is skipped. Moreover, this assertion is 

relatively uncontroversial.  However, the extent of the processing of the skipped word 

that is causing these differences in skipping rates remains an issue of some debate in 

the literature (e.g. Radach & Kennedy, 2004; Rayner & Juhasz, 2004; Reichle, 

Rayner, & Pollatsek, 2003).  For example, the E-Z Reader model (Reichle et al., 1998, 

2003) posits that one of the primary mechanisms for skipping a word is when a word 

(wordn+1) is recognized very quickly in parafoveal vision. This very rapid recognition 

produces a program to fixate the following word (wordn+2), which occurs early 

enough to cancel the program to fixate wordn+1. In contrast, other models (e.g. 

Brysbaert et al. 2005; Brysbaert & Vitu, 1998; Drieghe et al., 2004) assume that 

skipping is based on coarser visual information.  

A major motivation for Experiment 1 was that Balota et al. (1985) found no 

difference between the skipping rates for a predictable word and for a non-word that 

was visually similar to the predictable word – a finding at odds with the assumption 

that full processing of the parafoveal word was a major cause of skipping.  As we 

argued earlier, however, such a pattern might occur when the launch site for a typical 

saccade comes from some distance from the skipped word, and thus the difference 

between the predictable word and a nonword that is orthographically similar to it 

might not be discriminated by the visual system.  As a result, we attempted to 
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replicate the experiment, but examining carefully the locations of where saccades 

were launched that either did or didn’t result in skipping the target word.  Our 

findings were (a) that there was a large difference in skipping probability between the 

predictable word and the visually similar nonword from near launch sites, but (b) 

almost no difference in skipping probability between these conditions from far launch 

sites. 

This, of course, raises the question of why there was a difference between the 

two experiments.  One possibility is that virtually all of the skipping in the Balota et 

al. study was from far launch sites; however, this seems improbable.  Instead, we 

think that the most likely reason for the difference between the two experiments is 

that the parafoveal information was more difficult to extract in the original Balota et 

al. experiment, largely because the font in their display system was not nearly as 

legible as the fonts in current computer display systems and possibly because our 

words, on average were somewhat shorter than in Balota et al. As a result, we think 

the discrepancy between the present results and those obtained by Balota et al. 

indicates that one needs comparable viewing conditions across studies in reading in 

order to be sure that one can be sure about why there are differences in the patterns of 

data in two studies.  

If one only pays attention to significant results, this would be the end of the 

story: predictable words are skipped more than anything else in the same location.  

However, there is a suggestion that the words in the other two parafoveal word 

conditions and the nonwords in the visually similar condition were skipped a bit more 

(3-4%) than the other two nonword conditions.  In terms of the E-Z reader model, this 

could be explained by assuming (a) that the words in the other two conditions were 

identified rapidly a small fraction of the time without the aid of predictability and (b) 

that the visually similar nonword was occasionally misidentified as the predictable 

word.  However, it is an open question as to whether this could really be predicted by 

the model quantitatively. 

 In sum, the results of Experiment 1 indicate that the differences in skipping 

rates between the conditions is based chiefly on a complete identification of the word 

in the parafovea, consistent with the E-Z Reader model.  Moreover, we think we have 

made a strong test of this because the difference between the predictable word and the 

visually similar non-word was a single letter. This leaves open the question of why 

there was over a 10% skipping rate even for nonwords that presumably didn’t look 
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like any word.  The two mechanisms posited by E-Z Reader seem the most plausible.  

First, there is quite a bit of evidence that indicates that there is error in saccadic 

programming, such that there is a non-trivial probability that the word targeted is not 

the word fixated.  Thus, there is a reasonable probability that a saccade intended for 

the target word or nonword overshot the word and resulted in a skip.  There is some 

confirmation for this hypothesis when one looks at the regressions back to the target 

word.  When the preview was the predictable word, the rate was only 2%, whereas it 

varied from 3-7% in the other conditions, suggesting that the preview was processed, 

intended to be fixated, and then there was a “double-take”. A second mechanism 

posited by E-Z Reader 8 (Pollatsek et al., 2005; Rayner et al., 2005) is that some 

skipping is based solely on predictability.  That is, a decision is made to skip the 

following word based on no visual information other than that the parafoveal string is 

approximately the length of the predicted word. Whether these two mechanisms can 

predict a 12% skipping rate for orthographically illegal strings of the correct length is 

an open question. 

 Are the results of Experiment 2 compatible with these conclusions?  As 

indicated earlier, the major results of Experiment 2 were: (a) that a correct preview of 

the target word was skipped more than a visually similar nonword; (b) that skipping 

rates were higher when the word before the target word was higher frequency; (c) but 

that most of the above two differences were due to skipping rates being lower for 

nonword previews preceded by low frequency words than in the other three 

conditions.  The first finding of a difference in skipping rates between the correct 

word and the nonword is quite compatible with Experiment 1.  As the target words 

were short and relatively frequent, identification times for these words could have 

been short enough to produce increased skipping, even without being predictable.  

Similarly, making the prior word lower frequency would delay the beginning of 

parafoveal processing (according to the E-Z Reader model) and thus reduce the 

amount of skipping. 

There are two problematic aspects to the data, however: the pattern of the 

effects mentioned in point (c) above; and the fact that skipping rates were still 25% in 

the worst condition (a nonword following a low-frequency word).  Let’s consider the 

second phenomenon first.  Are these skipping rates abnormally high?  First, the target 

words are all short reasonably high frequency nouns. As a result, one would expect 

them to be identified reasonably quickly, especially as the prior words were also 
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reasonably short (about 5 letters) and thus the fixation prior to the target word was 

likely to be pretty close to it.  However, this doesn’t explain why visually similar 

nonwords would also be skipped.  The simplest explanation is that some of the time, 

the nonword is misidentified as the word and that, in these cases, the misidentification 

doesn’t slow processing all that much.  This explanation, however, appears to run into 

trouble because when fixation times on the target word were examined there was a 

healthy (35-40 ms) difference in fixation time between when the correct and incorrect 

preview were presented.  This might not be a problem, though, if one considers the 

cases when the target word was skipped as those trials when the incorrect (middle) 

letter was misidentified and the cases when the word was fixated as those trials when 

the incorrect letter was correctly identified.  Clearly, this is a speculative post-hoc 

explanation that would need to be verified somehow. To interpret the size of the 

skipping rates obtained in Experiment 2, it is also important to note that the analysis 

was restricted to instances in which the reader fixated on the 5-letter adjective 

preceding the target word (a 3-letter noun). Taking into account the fact that the 

average saccade length reported in the literature is 8 character positions and that the 

perceptual span for letter identification expands 7 to 8 letters to the right of the 

fixation (see Rayner, 1998 for a review of studies examining these factors), it is safe 

to say to our target word was in an area of high visibility and that skipping the word 

would not entail executing an especially large saccade11. Keeping this in mind, the 

selection of the fixation data carried out in Experiment 2 has another important 

consequence. Prior research (McConkie et al., 1988) has established the existence of a 

so-called range effect; the oculomotor system tends to undershoot targets at a large 

eccentricity and to overshoot targets at a small eccentricity. By restricting our 

analyses to those instances on which there was a fixation on the 5 letter adjective 

preceding the target word, we are also increasing the chances of involuntary 

overshooting of the target (as compared to studies that do not select close-by launch 

sites). This latter phenomenon would also explain some of the high skipping rates 

regardless of condition.  

The pattern of the effects, however, seems harder to understand.  According to 

the E-Z Reader model, skipping occurs only when identification of wordn+1 is really 

rapid, and thus we had expected the opposite interaction: skipping rates would be 
                                                 
11 In Experiment 2 the average saccade length based on the three saccades prior to encountering the 
target word was 7.5 character positions. 
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higher when the preview was correct and the prior word was high frequency than 

those in the other three conditions.  It seems more difficult to explain why there 

should be a bigger difference in skipping rates between the correct and incorrect 

preview conditions when the prior word is low frequency, and thus presumably less 

processing of the parafoveal word is taking place.  It might seem that a possible 

explanation is that fixation times on the prior word are 30 ms longer when that word 

is lower frequency and thus allows more processing of the target word.  However, 

according to the E-Z Reader model, the lower the frequency of a word, the less time 

there is to process the next one parafoveally because the signal for an eye movement 

precedes the attention shift to the next word, and furthermore the gap between these 

two events increases with decreasing frequency of the word.  Although it is possible 

that a more parallel encoding model might be able to explain this interaction by 

pointing to the increased fixation time on the target word, it is far from clear that it 

can.  That is, the issue is not how much total time there is to process the parafoveal 

word, but how much time there is before the signal to skip the word. 

We also wondered whether these strange effects could be due to fast readers 

and slow readers each having a different pattern than the overall pattern, with the 

overall pattern being the result of averaging the two different patterns.  Another 

possibility we considered was that the interaction was largely due to fast readers 

having developed a strategy that allows them to skip words more frequently.  That is, 

given that fast readers make fewer fixations and have longer saccades (Rayner, 1998) 

they may adopt a strategy of skipping short words by default and only canceling such 

saccades when everything points in the direction of a long saccade being 

inappropriate. To examine this issue in more detail, we split our participants into two 

groups containing the 10 fastest readers and the 10 slowest readers, based on the 

overall reading speed; the 10 fastest readers had an average total viewing time of the 

sentences in the experiment that was shorter than 3005 ms. As can be seen in Table 7, 

there was little evidence for a difference between the groups in terms of the pattern of 

the effects, even though the 10 fastest readers skipped 37% more, on average, and 

made 17% more regressions back to the target word after skipping.  Thus, we view the 

pattern of effects in the skipping data a problem we still haven’t solved. 

INSERT TABLE 7 ABOUT HERE 

To quickly summarize the above, in spite of a couple of aspects that are not 

easy to explain, the overall pattern of skipping data is consistent with the following 
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principles.  First, a reasonable amount of skipping is explained by the parafoveal word 

being easy to identify fully, either on the basis of it being predictable, short, and/or 

high frequency.  Second, there is a residue of skipping that seems to be explained by 

mistargeting of saccades, which would lead to more skipping for shorter words.  

Third, it appears that some additional skipping might be explained when a string that 

is similar to either a frequent and/or predictable word is misidentified as that word.  

Fourth, some additional skipping might be due merely to guessing that the next 

stimulus is a predictable word if the parafoveal string is approximately the right 

length12. 

Now let us move on to other phenomena related to skipping.  The first is how 

skipping wordn+1 affects fixation times on the prior word.  As indicated in the 

introduction, the phenomenon of inflated fixations prior to word skipping has been 

considered a cornerstone in the discussion of the time course of foveal and parafoveal 

processing.  The E-Z Reader model, which posits serial processing of words, predicts 

a cost associated with the canceling of the saccade to wordn+1 and the replacement by 

a saccade to wordn+2. Parallel models, such as SWIFT (Engbert et al., 2002) or 

Glenmore (Reilly & Radach, 2003), do not assume such a cost associated with the 

skipping of a word. In Experiment 1, we observed a large (34 ms) inflation of fixation 

time on the prior word if the target word was skipped as did Pollatsek et al. (1986) 

and Rayner et al. (2004). Admittedly there are results to the contrary (e.g., Kliegl & 

Engbert, 2004).  However, as we indicated earlier, the comparison is complicated as 

any such comparison is correlational because the reader, and not the experimenter, 

decides when a word is skipped.  One such correlational artifact that could work to 

produce these inflated times prior to skipping is that when a fixation is longer, it gives 

the reader more time to process the next word and hence skip it.  However, we think 

that the most plausible artifacts of the correlational structure of this comparison would 

work against finding this cost due to skipping and could explain why null results are 

sometimes found. That is, words are more likely to be skipped by good or motivated 

readers (or readers paying close attention at that moment) and such readers are also 

more likely to produce shorter fixation times.  We should point out that the existence 

of inflated fixation durations prior to skipping is not necessarily threatening to parallel 

models for the reason indicated above:  longer fixation durations on the foveal word 
                                                 
12 Although prior research (Drieghe et al., 2004) has shown that this effect is difficult to obtain in the 
complete absence of any orthographic overlap with the predictable target word.  
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(e.g. due to random variations in fixation times) will allow increased parafoveal 

preview, and as a consequence more skipping.  

The second finding is that the prior fixation durations in the five non-

predictable conditions were longer than the prior fixation duration in the predictable 

preview condition in Experiment 1. These results are compatible with parafoveal-on-

foveal effects.  However, the effect was localized to trials when the prior fixation was 

on the last three characters prior to the beginning of the target word.  Such an effect 

was first reported by Rayner (1975). He found that the fixation durations at the launch 

site were longer when the following letter string was a nonword than when the launch 

site was three or fewer character positions away from the beginning of the target word 

(similar to our finding in Experiment 1).  Rayner, Warren et al. (2004) also reported 

what could be assumed to be a parafoveal-on-foveal effect in a study dealing with 

plausibility.  When wordn+1 was anomalous, Rayner, Warren et al. (2004) found that 

readers’ fixations were longer in the three character region preceding the target word. 

They attributed the finding to (a few) mislocalized saccades (undershoots).  It is 

interesting in the present experiment (as well as Rayner, 1975) that not only were the 

fixations longer in the three character region preceding the target word for all the 

other conditions than when the predictable word was in the parafovea, but the 

fixations on the target word region were also longer for these other conditions. This is 

not surprising, because when readers undershoot a target word, the duration of the 

mislocated fixation should plausibly be increased (because the reader is really 

processing the target word) and they would then fixate directly on the target word (to 

confirm what they have already read).  But, of course, in our experiment (as well as 

Rayner, 1975), a display change occurs between the two fixations and the difference 

between the pre-display change word and the post-display change is also likely to lead 

to longer fixations. 

To summarize this last discussion, our experiments were not really designed to 

examine fixation durations, and hence not designed to test these predictions of serial 

and parallel models of attention in reading.  However, we think there is nothing in the 

data to indicate that the serial processing assumption of the E-Z Reader model is 

wrong, and the large cost of skipping on the fixation time of the prior word observed 

in Experiment 1 is quite compatible with such an assumption and might be hard to 

parallel models to predict quantitatively.   
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The other issue our experiments addressed is the relationship between the 

difficulty of processing a word and the amount of parafoveal processing that occurs 

on the next word.  In our discussion above, we examined this issue with respect to 

skipping rates, and found that the pattern of results in Experiment 2 was different 

from that predicted by the E-Z Reader model and also at odds with the findings 

reported by Henderson and Ferreira (1990; see also Kennison & Clifton, 1995; 

Schroyens et al., 1999; White et al., 2005).   That is, in the prior findings, there was a 

greater benefit from a correct preview (and/or cost from an incorrect preview) when 

processing the prior word was easy (e.g., high frequency).  As indicated earlier, in the 

skipping data, we observed the opposite interaction, but in the fixation times on the 

target word (which was the focus of the earlier studies), we observed additive effects 

of whether the preview was correct or not and whether the prior word was high or low 

frequency. There are two differences between our stimuli and those in the prior 

experiments that may explain the difference.  First, as indicated earlier, our incorrect 

preview was less distorted than the previews previously used in research examining 

the effects of foveal load on parafoveal processing (Henderson and Ferreira, 1990; 

Kennison & Clifton, 1995; Schroyens et al., 1999; White et al., 2005), as there was 

only the change of a single internal letter.  However, the difference in pattern between 

Experiment 2 and these other studies can’t merely be due to insensitivity of the 

present design, as there was almost a 40 ms main effect due to the correctness of the 

preview in the fixation time data.  Second, our target words were only three letters, 

and there may be something different about how these short words are processed that 

explains the pattern of effects, although the data do not offer any obvious clues for 

what would account for the difference in pattern. 

The prediction of the E-Z Reader for the interactive pattern in which there is a 

bigger preview effect when the prior word is high frequency is based on the 

assumption that the second stage of lexical processing, L2 is solely a function of word 

frequency.  However, this is undoubtedly an oversimplification and other factors are 

likely to come into play.  One possibility is that competition among possible lexical 

entries is another factor influencing the later aspects of word identification. In an 

activation-verification model (Paap, Newsome, McDonald, & Schvaneveldt, 1982), 

for example, such a competition among lexical entries is explicitly the second stage of 

lexical access. Thus, one possibility for three letter words is that the frequency of the 

word is only a minor determinant of the time for later stages of word identification, 
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and that factors such as neighborhood size and whether there is a higher frequency 

neighbor play a more important role in these later stages of lexical identification and 

thus in the amount of preview benefit.  This process might also be modulated by a 

rapid identification of the “outside” letters relative to identification of the middle 

letter due to less lateral inhibition of these letters.  

In conclusion, we have found strong evidence that word skipping is usually 

based on a full identification of the word in the parafovea, consistent with the 

mechanisms described in the E-Z Reader model. Our first experiment showed that 

even when a preview of a word is different from the preview of a predictable word by 

only one single letter, this manipulation is already sufficient to cause a difference in 

skipping behavior. The fact that in the second experiment our frequency manipulation 

on the prior word led to comparable patterns in the fixation times and skipping data of 

the following word adds further evidence to the argument that both factors are 

influenced by a common phenomenon, the amount of parafoveal processing.  

However, we did not find a reduced parafoveal preview benefit in the case of high 

foveal load as reported by Henderson and Ferreira (1990), possibly due to parafoveal 

processing reaching ceiling values or due to there being something different about 

how three-letter words are accessed. Inconsistent with earlier E-Z Reader models and 

with most other models of eye movements in reading (e.g. the SWIFT model, 

Engbert, et al., 2002), we found a non-trivial amount of skipping of “garbage” 

words13. This was especially true when the eyes were close to the target word and the 

target word was very short. It was by the use of shorter stimuli in both experiments, as 

compared to most previous research on word skipping, that this finding was 

established. These data indicate that sometimes a reader prefers to skip a word based 

on more coarse information, presumably by relying on extra processing that will be 

done on the fixation after the target. Whether this “guessing” mechanism constitutes a 

real default or whether our reported results were due to individual strategies (e.g., 

those of fast readers) will have to be examined in future research. In both cases, 

models of eye movements in reading will have to take into account an amount of 

skipping based on an incomplete identification. 

                                                 
13 E-Z Reader 8 (see Pollatsek et al., 2005; Rayner et al., 2005, incorporates a “guessing” mechanism 
from predictability that is consistent with such a phenomenon) 
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Table 1. An example sentence from Experiment 1 with each of the 6 parafoveal preview 
conditions. 
1. Predictable word. 
The doctor told Fred that his drinking would damage his liver very quickly. 
2. Unpredictable word. 
The doctor told Fred that his drinking would damage his heart very quickly. 
3. Semantically anomalous word. 
The doctor told Fred that his drinking would damage his files very quickly. 
4. Visually similar non-word. 
The doctor told Fred that his drinking would damage his livor very quickly. 
5. Visually dissimilar non-word. 
The doctor told Fred that his drinking would damage his heant very quickly. 
6. Orthographic illegal word. 
The doctor told Fred that his drinking would damage his frhos very quickly. 
Note: The stimuli shown in italics indicate the preview for each condition prior to the eyes’ 
crossing of the display change boundary. The preview was always replaced by the predictable 
word after the boundary had been crossed. 
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Table 2. Probability of skipping the target word during first pass for all the data (All), , saccades 
launched from 5 or less character positions (45 % of the data), saccades launched from 6 or more 
characters (55 % of the data) and for all the data not restricted to first pass (All + regr). 

Skip critical word Preview Conditions 

All ≤ 5 ≥ 6 All + regr. 
Predictable word .20 .50 .06 .18 
Unpredictable word .16 .39 .05 .12 
Sem. Anomalous word .16 .35 .06 .09 
Visually similar non-word .16 .36 .07 .13 
Visually dissimilar non-word .13 .31 .04 .10 
Orth. Illegal non-word .12 .37 .04 .08 
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Table 3: Fixation times (in ms) of the single fixation duration on the target word, of the last 
fixation prior to the target word, the last fixation prior to the target word restricted to fixations 
positions at 3 or less character positions from the target word, last fixation restricted to more 
than three character positions away from the target word, last fixation prior to skipping the 
target word and the last fixation prior to landing on the target word. 

Target 

word  

Prior to the target word  

Single 

fixation 

Overall Overall 

≤ 3 

Overall 

> 3 

Before 

skipping 

Before 

landing 
Predictable word 262 225 228 241 276 227 
Unpredictable word 284 236 253 236 258 237 
Sem. Anomalous word 305 236 250 242 266 237 
Visually similar non-word 279 239 255 242 248 242 
Visually dissimilar non-word 301 239 247 253 291 239 
Orth. Illegal non-word 305 242 248 242 289 242 
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Table 4. An example sentence from experiment 2 with each of the 4 parafoveal preview 
conditions. 
1. Low foveal load – correct preview 
The artist painted a brown sky which clashed with the orange flowers. 
2. High foveal load – correct preview 
The artist painted a lilac sky which clashed with the orange flowers. 
3. Low foveal load – correct preview 
The artist painted a brown sxy which clashed with the orange flowers. 
4. High foveal load – incorrect preview 
The artist painted a lilac sxy which clashed with the orange flowers. 
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Table 5. Skipping probabilities as a function of preview and foveal load. Skipping probabilities 

taking regressions into account are shown in parenthesis. 

 Correct Preview Incorrect Preview 

High foveal load - 

Low frequent word 

.40 (.28) 

 

.25 (.14) 

Low foveal load - 

High frequent word 

.45 (.37) 

 

.37 (.24) 
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Table 6. Fixation times (ms) on the word prior to the target word and on the target word. 

Single fixation times  

Prior word 

Single fixation times 

Target 

 

Correct 

Preview 

Incorrect 

Preview 

Correct 

Preview 

Incorrect 

Preview 

High foveal load - 

Low frequent word 

315 310 296 333 

Low foveal load - 

High frequent word 

278 293 266 306 
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Table 7. Skipping probabilities of the 10 fastest and slowest readers as a function of preview and 

foveal load. Skipping probabilities taking regressions into account are shown in parenthesis. 

10 fastest readers 10 slowest readers  

Correct 

Preview 

Incorrect 

Preview 

Correct 

Preview 

Incorrect 

Preview 

High foveal load - 

Low frequent word 

.57 (.36) 

 

.38 (.18) .23 (.19) 

 

.12 (.09) 

Low foveal load - 

High frequent word 

.63 (.49) 

 

.50 (.32) .27 (.24) 

 

.23 (.17) 

 

 


