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Abstract  

Eye-tracking devices have become widely used as clinical assessment tools in a variety of 

applied-scientific fields to measure saccadic eye movements. With the emergence of multiple 

static and dynamic devices, the concurrent need for algorithm development and validation is 

paramount. This review assesses the prevalence of current saccade detection algorithms, 

their associated validation methodologies and the suitability of their application. Medline, 

Embase, PsychInfo, Scopus, IEEEXplore and ACM Digital Library databases were searched. 

Two independent reviewers and an adjudicator screened articles describing the detection of 

saccades from raw infrared/video-based eye-tracker data. Thirteen articles were screened 

and met the inclusion criteria. Overall, the majority of reviewed saccadic detection algorithms 

used simple velocity-based classifications with static eye-tracking systems. Studies 

demonstrated validity but are limited by the static nature of testing. Heterogeneity in system 

design, proprietary and bespoke algorithmic methods used, processing strategies, and 

outcome reporting is evident. This paper suggests the use of a more standardised 

methodology to facilitate experimental validity and improve comparison of results across 

studies. 

 

Keywords: Algorithm, Detection, Eye-movements, Eye-tracker, Saccades 
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1 Introduction 

Eye movements, specifically saccades, form the basis for visual exploration as they rapidly 

shift the fovea of the eye between areas of interest within the environment (Stuart et al., 2014a, 

Otero-Millan et al., 2008). Saccadic measurement has become prominent in many research 

fields, as deficient saccadic function can be used to understand cognitive (Hutton, 2008) or 

visual (Ibbotson and Krekelberg, 2011) processes, and help with neurological 

examination/diagnosis (Termsarasab et al., 2015) or to understand functional deficits in 

everyday tasks (e.g. walking) (Stuart et al., 2017a, Stuart et al., 2018). Saccadic eye 

movements are generally classified or examined through a range of spatiotemporal and 

kinematic outcome variables, including velocity, acceleration, number/frequency, timing and 

duration (Stuart et al., 2014b, Baloh et al., 1975, Boghen et al., 1974). Previously temporal 

measures of saccades (i.e. velocity, amplitude etc.) have been obtained with high-resolution 

invasive scleral search coils (Kimmel et al., 2012) or non-invasive electrooculography (EOG) 

(Stuart et al., 2016b) techniques, but such methods lack the spatial component of eye 

movement tracking (i.e. what is an individual looking at) and are influenced by a host of 

physiological processes (e.g. muscle activity, discomfort etc.). More recently a shift to non-

invasive methods for comprehensively extracting quantitative temporal and spatial information 

are infrared/video-based eye-tracker devices (Stuart et al., 2014a). Although these devices do 

not measure eye orientation, they provide more accurate data than EOG during dynamic tasks 

(Stuart et al., 2016b) and reportedly have less variability in saccadic measurements than 

scleral coils (Smeets and Hooge, 2003), which were previously thought to be the most precise 

device for measuring eye movements. Video recordings from eye and scene cameras monitor 

eye movements and map them onto the external environment within various study protocols 

(Stuart et al., 2015, Holmqvist et al., 2011, Duchowski, 2007). The aforementioned outcomes 

are traditionally collected within static (e.g. seated or standing) tasks (Spooner et al., 1980, 

Forssman et al., 2017, Stuart et al., 2016a), but technological advances have recently 

facilitated more dynamic (e.g. navigating complex environments) test conditions (Stuart et al., 

2017a, Stuart et al., 2018, Franchak and Adolph, 2010, Hayhoe and Ballard, 2005, Bardi et 

al., 2015, Matthis et al., 2018, Matthis and Hayhoe, 2015).  

Accurate and reliable measurements of saccadic behaviours during various tasks in healthy 

(Munoz et al., 1998, Boghen et al., 1974, Tong et al., 2017) and atypical populations are 

paramount for informing clinical decisions (Stuart et al., 2017a, Stuart et al., 2018, Vidal et al., 

2012). Detecting and classifying saccades from eye-tracker signals generally requires an 

algorithm to decipher eye movement signals and quantify outcomes. Most eye-tracker 

manufacturers provide ‘black-box’ signal processing and analytical programmes for detecting 

and measuring saccades. Importantly, this does not allow researchers to assess the specific 
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methods involved (e.g. threshold settings and/or data reduction techniques) that are 

fundamental towards achieving high-quality and accurate of outcomes (Stuart et al., 2016a). 

However, some eye-tracker instruments provide raw Cartesian coordinate data (x, y) that can 

be exported via their proprietary software and can be used to process signals using 

customised algorithms leading to greater flexibility and sensitivity for more participant-specific 

outcomes (Schneider et al., 2009). Consequently, heterogeneous development in this field 

has led to a plethora of algorithms being created (Salvucci and Goldberg, 2000). The latter 

study reported that saccadic detection algorithms include velocity, dispersion and area-based 

methods can be used within eye-tracking protocols, but the authors provided no 

recommendations for algorithm use. In the process of developing robust data processing 

algorithms, it is often helpful to have informed recommendations. Thus, we examined previous 

work that developed and/or evaluated algorithms designed to derive/detect saccades from 

infrared/video-based eye-tracking data and aimed to provide recommendations concerning 

algorithm design and study methodologies.  

 

2 Methods 

2.1 Search strategy 

The key terms were “eye-tracking”, “saccades” and “algorithm” that were searched using 

‘wildcard’ markers (e.g. eye-track*, saccad*, algorithm*) within title, abstract and keywords 

(until May 2018). Key terms were matched and exploded with medical subject headings 

(MeSH) in each separate database where appropriate. Databases searched included Medline 

(from 1946), Embase (from 1974), PsychInfo (from 1806), Scopus, IEEEXplore and ACM 

Digital Library. 

 

2.2 Inclusion and exclusion criteria 

Studies were relevant if they incorporated terminologies that focused on development and/or 

evaluation of algorithms to detect saccades within eye-tracking data in the title, abstract and/or 

keywords. Articles were included if they reported development of algorithms to detect 

saccades from raw eye-tracker data. Articles were excluded if the methodologies involved (1) 

equipment other than infrared/video-based eye-trackers, (2) general details of commercial 

computer software packages (i.e. not detailing algorithm functionality), and/or (3) exclusive 

descriptions of fixations (including micro-saccades) and/or smooth pursuit eye movement 

detection/measurements. Articles written in English were considered for review, and 

conference abstracts, case studies, reviews, book chapters, commentaries, discussion papers 

and/or editorials were excluded.  
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2.3 Data extraction 

An initial title screen for relevant articles was performed by one reviewer (SS) once the 

database results were combined. Subsequently, both the titles and abstracts of the selected 

articles were reviewed by two independent reviewers (SS, AH) and confirmed by a third 

reviewer (AG). A full-text review was required to establish whether the study had met the 

review criteria if the title and/or abstract were ambiguous. Information including the purpose 

of the study and algorithm design details were extracted and synthesised into a table format 

(SS). Data entries were then confirmed by a second reviewer (AH). Only data pertaining to 

the detection and measurement of saccades were extracted. 

3 Results 

3.1 The evidence base 

The search strategy yielded 156 articles, excluding duplicates (Figure 1 - Adapted from Moher 

et al. (2009)). The initial screening resulted in 41 articles of interest of which 13 were identified 

for inclusion by the first reviewer (SS) and 14 by the second reviewer (AH), resulting in 1 

disagreement. A consensus was made for the inclusion of 13 articles for review following a 

consultation with the third reviewer (AG). Reasons for exclusion at abstract and full-text stage 

are highlighted in Figure 1 and summarised here:  

1. No quantitative analysis of saccade detection algorithm (Salvucci and Goldberg, 2000, 

Radant and Hommer, 1992),  

2. Description of software packages (Cercenelli et al., 2017, Andreu-Perez et al., 2016),  

3. No infrared/video-based eye-tracker (Sauter et al., 1991), 

4. Non-saccadic detection/measurement only (i.e. measurement of fixations, smooth 

pursuits, micro-saccades etc.) (Larsson et al., 2015, Duchowski et al., 2002, Falkmer 

et al., 2008, Gómez-Poveda and Gaudioso, 2016, Holland et al., 2012, Holland and 

Komogortsev, 2013, Komogortsev and Karpov, 2013, Kübler et al., 2014, Pauler et al., 

1996, Pedrotti et al., 2011, Toivanen, 2016, Zhang et al., 2009),  

5. Eye-tracking device development or frequency comparison (Espinosa et al., 2015, 

Karn, 2000, Leube et al., 2017, Lyamin and Cherepovskaya, 2017, Price et al., 2009, 

Pruehsner and Enderle, 2002, Pruehsner et al., 2003, Stuart et al., 2017b) and  

6. Did not involve human participants (Konig and Buffalo, 2014, Corrigan et al., 2017, 

Behrens and Weiss, 1992). 

<Figure 1> 

 

Page 5 of 26 AUTHOR SUBMITTED MANUSCRIPT - PMEA-102791.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



6 
 

3.2 Study design 

All included reviewed studies did not provide detailed descriptions of their study participants 

including, basic visual capabilities (acuity or contrast sensitivity), use of corrective eye-wear, 

cognitive abilities, and/or age-range. The majority of the studies involved healthy individuals 

yet no specific inclusion and/or exclusion criteria for their eye-tracking experiments were 

described, Table 1. Furthermore, one study adopted a dynamic study protocol that involved 

walking (Stuart et al., 2014b) and another used a functional task of driving (Tafaj et al., 2012a), 

while the remaining studies focused on static seated eye-tracking tasks (Table 2).  

<Table 1> 

 

3.3 Algorithm design 

Algorithms reported within the reviewed articles used a range of identification techniques to 

derive saccades from eye movement signals. However, all of the algorithms used velocity, 

acceleration, dispersion or adaptive-based algorithms either independently or combined, 

Table 2.  

The most popular algorithm design involved velocity thresholds-based for saccade detection 

(Andersson et al., 2017, Komogortsev et al., 2010, Komogortsev and Karpov, 2013, Larsson 

et al., 2013b, Liston et al., 2013, Nyström and Holmqvist, 2010, Santini et al., 2016, Stuart et 

al., 2014b, Zemblys et al., 2018, Diaz et al., 2013, Kumar et al., 2008). However, the specific 

threshold values of the algorithms varied between studies (i.e. detection velocity 20-300°/s, 

Table 2), with several providing no details of velocity-thresholds used (Tafaj et al., 2012a, Diaz 

et al., 2013) or using adaptive algorithms that change the thresholds based upon the data 

(Zemblys et al., 2018, Larsson et al., 2013a, Nyström and Holmqvist, 2010). One dynamic 

study used a higher detection velocity (250°/s) in order to account for vestibular-ocular reflexes 

that may affect data quality (Stuart et al., 2014b). Several studies examined many algorithms 

with the same eye movement data to examine different algorithm accuracies (Andersson et 

al., 2017, Komogortsev et al., 2010, Komogortsev and Karpov, 2013).  

 

<Table 2> 

 

3.4 Instruments  

Static eye-tracking devices were the primary tools used within the studies (Andersson et al., 

2017, Komogortsev and Karpov, 2013, Kumar et al., 2008, Larsson et al., 2013a, Liston et al., 
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2013, Rozado et al., 2012, Zemblys et al., 2018, Nyström and Holmqvist, 2010), while mobile 

or head-mounted eye-trackers were used in four studies (Santini et al., 2016, Stuart et al., 

2014b, Tafaj et al., 2012a, Diaz et al., 2013). 

 

3.5 Computer coding language 

MATLAB® (MathWorks, MA, USA) was the preferred coding language used to implement eye-

tracker saccade detection algorithms across the studies (Andersson et al., 2017, Larsson et 

al., 2013b, Liston et al., 2013, Nyström and Holmqvist, 2010, Santini et al., 2016, Stuart et al., 

2014b, Zemblys et al., 2018), while C# (Microsoft Corporation, WA, USA) and PythonTM 

(Python Software Foundation, DE, USA) were used in two other studies (Diaz et al., 2013, 

Tafaj et al., 2012b). Four studies did not, however, provide details of the coding language used 

to develop their algorithms (Komogortsev et al., 2010, Komogortsev and Karpov, 2013, 

Rozado et al., 2012, Kumar et al., 2008) (Table 2). There were also few studies that combined 

eye-tracking software pre-processing (e.g. iViewXTM, SensoMotoric Instruments, Germany) 

with custom computer coding to evaluate their eye-tracking data (Diaz et al., 2013, Larsson et 

al., 2013b).  

 

3.6 Algorithm outcomes and evaluation 

The reviewed studies provided a range of algorithm-derived saccadic outcomes, including 

velocity, acceleration, amplitude, duration, timing, and number/frequency. However, outcome 

reporting varied between the studies, with some studies providing comprehensive details 

(Larsson et al., 2013a, Stuart et al., 2014b, Zemblys et al., 2018) and others not providing any 

outcomes (Diaz et al., 2013, Kumar et al., 2008, Rozado et al., 2012), Table 2. 

Additionally, the evaluation of algorithm accuracy was performed in an unstandardized 

manner. Several studies used human ‘expert’ coders as a reference for their algorithms, which 

involved inspection of eye-tracker signals and videos to compare human saccade detection to 

algorithm detection and measurement. Other studies reported a range of algorithm 

comparisons using previously published algorithms as a validation comparison. Performance 

of some algorithms (e.g. Nyström & Holmqvist (NH) or Identification by Hidden Markov Model 

(IHMM)) was dependent upon the evaluation method, with different results for human or 

previous algorithm detection (Andersson et al., 2017).  

Studies sparsely reported statistical analysis methods, but largely used correlation coefficients 

(e.g. Cohens Kappa or Interclass correlation coefficients) or percentages of matched events 
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from direct comparisons to humans or other algorithms. While most studies demonstrated 

good to excellent agreement between methodologies it is unclear if the statistical analysis is 

accurate due to the small sample sizes involved and the lack of basic statistical reporting (e.g. 

normality of data, reasons for non-parametric or parametric analysis, statistical software used 

etc.). Furthermore, studies did not examine statistical bias, assumed that relative and absolute 

agreement were captured within the same test, and did not provide limits of agreement or 

equivalent tests.  

 

4 Discussion   

This review examined 13 studies that developed algorithms to detect saccadic eye movements 

within static or dynamic infrared video-based eye-tracker signals. This review has 

demonstrated that there is limited robust evidence on the development of a standardised 

approach to saccadic detection algorithm. Similarly, methodological limitations of previous 

studies impact the ability to understand and implement earlier algorithms with current 

technology. Further work is warranted to establish appropriate study and algorithm design to 

accurately tailor the saccadic detection methodology to static or dynamic tasks.  

 

4.1 Study design 
All studies provided sparse details of study protocols/design which limits the ability of future 

researchers to replicate methodological procedures and algorithms. The shortcomings in 

methodologies and barriers to transferability of algorithms is further impacted by the limited 

range of populations involved, only two studies involved atypical participants (Stuart et al., 

2014b, Tafaj et al., 2012a), Table 2. The reviewed studies provided exclusive details regarding 

algorithm development, but lacked basic inclusion and exclusion criteria for their participants. 

This may limit the applicability of their algorithms across populations as understanding and in-

depth analysis of the quality of the sample is lacking. Furthermore, without inclusion of 

alterative populations, it is unclear if the developed saccadic detection algorithms could be 

accurately applied to a range of participants. Indeed, one study did not disclose any 

information about their participants (Diaz et al., 2013) and therefore results must be 

considered with caution when implementing the algorithm. The sample size of the participant 

groups also varied with most studies involving small groups (<30 participants), which can 

impact the generalisability of results and limits the power of statistical analysis. It is also difficult 

to know whether results would be influenced by a greater number of participants or recorded 

eye movements, which should be considered within future algorithm assessments.  
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Many algorithms were developed during static (in particular seated) tasks, with only one study 

examining algorithm performance during a dynamic task (walking) (Stuart et al., 2014b) and 

another during a functional task (driving) (Tafaj et al., 2012a). With the increasing use of 

mobile eye-tracking devices there is a need to shift focus to evaluate saccadic detection 

algorithms during dynamic and/or functional tasks to ensure robust and accurate outcomes 

across a range of tasks. This is important as static-based eye-tracker algorithms may not 

perform as well during dynamic tasks (Stuart et al., 2017b).  

 

4.2 Algorithm design 
4.2.1 Standardisation 

Algorithm suitability and adaptability is dependent upon many factors including (1) type of task 

(i.e. static or dynamic), (2) data quality (i.e. clean or noisy), (3) eye-tracking devices (i.e. 

sampling frequency, binocular or monocular, fixed or mobile with rigid or flexible eye-

cameras), (4) required saccadic outcomes, (5) features available for saccade identification 

(i.e. root mean square, bivariate contour ellipse area etc.), and (6) the research question. 

Currently there is no standardised approach for deriving saccadic information from eye-tracker 

signals, although some reviewed articles had considered human ‘expert’ coders as the 

reference standard (Andersson et al., 2017, Zemblys et al., 2018). However, our findings 

suggest the use of velocity-based thresholds could be the foundation for an 

automated/objective standard as most studies adopted this approach. There was, however, 

little consensus or justification for the specific thresholds used for accurate saccade detection 

as they were either undisclosed or ranged from 20-300º/s (Table 2). Although, dynamic testing 

reportedly used a higher velocity-based threshold (>250º/s) to rule of small eye movements 

due to vestibular-ocular reflexes that may occur when moving. However, this substantial 

variation makes direct comparisons across studies difficult. Therefore, deciding upon an 

optimal velocity threshold for saccadic detection is challenging due to differences in study 

methodologies and instrumentation. Future research should report thresholds used and 

potentially evaluate the influence of differing threshold levels across different populations. 

 

4.2.2 Velocity-based threshold methodologies 

Our findings suggest that simple velocity-based threshold techniques are adequate for both 

static and dynamic testing conditions, which may be enhanced with the addition of other 

spatiotemporal and/or kinematic parameters (e.g. acceleration, dispersion (amplitude) and/or 

duration thresholds). However, a single filtering methodology or threshold for every eye-

Page 9 of 26 AUTHOR SUBMITTED MANUSCRIPT - PMEA-102791.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



10 
 

tracking device/signal and participant is unlikely to produce accurate results. It is important to 

mention that filtering or smoothing eye-tracking signals can result in an artificial reduction of 

saccade peak velocities and broadening of saccade durations, which can differ dependent on 

the eye movement signal and the filtering technique used (Diaz et al., 2013). Similarly due to 

between participant variability, physiological considerations of eye movement classification 

may be required in order to obtain a reasonable threshold range for each individual 

(Komogortsev et al., 2010, Salvucci and Goldberg, 2000), or at least be based upon a wide 

range of normative data. Although some studies suggest the use of adaptable algorithms to 

customise the thresholds and filters for the individual signals to manage the aforementioned 

issues (Nyström and Holmqvist, 2010, Zemblys et al., 2018), further work is required to 

establish which features are essential for robust and accurate saccade detection from various 

eye-tracking signals.  

 

4.2.3 Self-validation methodologies 

With the emergence of advanced data analytics and intelligent systems, the most complex 

algorithms used in the observed eye-tracking studies included probabilistic methods, including 

(1) Bayesian decision theory (i.e. pattern classification when underlying patterns are known), 

(2) online mixture methods (i.e. involves generating repeated realisation of random variables 

from probabilities of a known simple distribution) and (3) machine learning (i.e. data driven-

predictions based on training sets of input observations). These techniques provide a unique 

opportunity for self-validation in the absence of a comparative measure. The provision of open-

source data-sets from previously validated study paradigms could greatly improve the 

development of these new analysis methods by providing learning data, and encourages 

consistency in experimental set-ups between simple and complex methods. As data modelling 

methods become more widely used in bio-informatics studies, it is important to explore their 

suitability for application in advanced eye-tracking data systems. However to date, with the 

presence of effective simple velocity-based algorithms, studies lacked justification for further 

levels of algorithm complexity.  

 

4.3 Instruments and coding language 
Several studies showed the application of static-based algorithms to dynamic tasks, which 

was made possible with the use of mobile eye-tracking technology. However, the progression 

from static to dynamic tasks require some pragmatic considerations. Static eye-trackers have 

higher sampling frequencies and require constrained movements and it is unknown whether 
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the algorithms developed for these devices can be robustly applied to mobile devices with 

lower sampling frequencies and unrestricted movements. Our findings indicated that there 

were limited methodological descriptions such as eye-tracker hardware features, software 

versions, and even the pixel-to-degree conversion factors used. We found that methodologies 

varied across several studies (sampling frequencies ranging from 25 to 50Hz) that used a 

similar device Dikablis®, Essential and Professional Glasses Ergoneers GmbH, Berlin, 

Germany) (Santini et al., 2016, Stuart et al., 2014b, Tafaj et al., 2012a). As minimum of 50Hz 

is required for accurate saccadic detection with robust outcomes (Holmqvist et al., 2011, 

Andersson et al., 2010), this suggest that inaccurate and technically flawed algorithms have 

been developed (Santini et al., 2016). Furthermore, only one study provided detailed 

descriptions of the pixel-to-degree conversion factor used (Stuart et al., 2014b), which is an 

essential input for accurate eye movement velocity calculations. This input factor is determined 

from the relative distance between the eye and the eye camera, and is often standardised for 

use across all participants. Such technique may be inappropriate especially for mobile eye-

trackers with flexible eye cameras (e.g. Dikablis Professional Glasses, Ergoneers GmbH, 

Germany) as the eye positions relative to the eye cameras can vary significantly across 

participants, impacting both the eye movement signals and velocity output data (Santini et al., 

2016), and ultimately influencing the performance of the algorithm developed.       

All-but-two algorithms were developed with MATLAB®, Table 2. Adoption of a single language 

facilitates more immediate replication and direct comparison of study findings across 

independent groups. Alternatively, this limits development or more widespread adoption. As 

this field matures, new coding environments will be used. Yet care must be taken on the 

replication of algorithms between platforms (e.g. MATLAB® vs. Python™) as implementation 

differences on recursive functions can lead to accumulation errors (Ladha et al., 2016). 

However, exact replication of algorithms may only be possible with the provision of specific 

coding scripts used to derive the saccadic detection and metrics. None were provided by any 

of the reviewed articles. Future algorithm development would benefit from open access 

publication of algorithm code to allow independent validation and/or application to a variety of 

devices, tasks, participants and eye movement signals. Alternatively, algorithms protected by 

intellectual property or within iterative stages of development could be best represented using 

pseudocode (Komogortsev and Karpov, 2013, Salvucci and Goldberg, 2000) or mathematical 

notation (Kim et al., 2018), aided by the provision of flow diagrams (Stuart et al., 2014a, Stuart 

et al., 2017b).  
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4.4 Evaluation of algorithm outcomes 
Accuracy of some algorithm outputs depended on the particular evaluation method used (i.e. 

human experts or other previously validated algorithms), with a single human expert being 

more similar to newly developed algorithms, i.e. knowing exact signal characteristics and 

nuances. However, human coding is time-consuming and may bias the data (Andersson et 

al., 2017) as the human coder is often involved in the algorithm development, leading to 

inflated agreement. Further work is required to develop optimal means of evaluating algorithm 

performance. This is complicated as many of the reviewed algorithms are not entirely similar. 

The aims of the algorithms are similar (i.e. obtain meaningful outcomes from eye movement 

signals), but the means by which outcomes are obtained varies, with some examining 

saccades exclusively while others may require fixation-related data and/or attempt to identify 

all eye movement events. Improvements were found within the reviewed algorithms when 

combinations of saccade-fixation detection filters and thresholds were used, alongside the 

presence of setting adjustments or addition of adaptive threshold adjustments. However, the 

extent of these improvements appeared relatively minor when compared with human coders, 

and thus the added benefits over simple saccade detection methods (i.e. identification with 

velocity-based threshold) is unknown.  

Another accuracy limiting factor is the diverse range that exists in both occulography systems 

and their associated algorithms. Comparisons between research paradigms, especially during 

a period of rapid innovation within the field, is complex when comparisons were not made 

between ‘like-for-like’ systems. The variety that already exists in research grade devices 

including, static and mobile units, and their wide variety of hardware designs and housing set-

ups makes direct comparison between systems difficult. This can potentially confound the 

processing of raw data as the physical design of hardware systems often generates noise 

within the resultant data itself, especially in mobile eye-tracking devices (Stuart et al., 2016a). 

The absence of standardised processing and analysis pipelines implied that not all algorithms 

were assessed robustly against reference measures or validated algorithms, with either no 

comparisons being made (Kumar et al., 2008) or subjective reports of adaptive algorithms 

(Tafaj et al., 2012a). Some studies also reported that there were notable differences found 

between certain algorithms (Nyström and Holmqvist, 2010) and that meaningful saccadic data 

can be lost depending on thresholds set (Liston et al., 2013). Therefore, there is little evidence 

within the reviewed studies of an established ‘gold standard’ system or algorithm for saccade 

detection.  
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4.5 Recommendations for future research 
Based on the findings of this review, we make the following recommendations for future 

research into saccade detection algorithms within static and dynamic conditions:  

1. Robust study design reporting is required, which should include adequate detail for 

the results to be replicated.  

2. Comparison of algorithms within both static and mobile eye-tracking is required to 

allow appropriate algorithm selection based upon robust methodological findings.  

3. Algorithms need to be assessed within the specific context of the study, for example 

assessment during dynamic rather than static tasks for mobile eye-tracker signals. 

4. Determination of appropriate saccadic thresholds dependent upon sampling 

frequency, device, task and participant group.  

5. Adopt and report suitable eye-tracker calibration methods prior to testing. 

6. Open access code publication for further validation by other researchers. 

 

5 Conclusions 
In summary, we reviewed studies pertaining to saccade detection within infrared/video-based 

eye-trackers. No consensus was found for the optimal means of detecting saccades, but the 

majority of algorithms used a velocity-based threshold identification method. This is likely due 

to the lack of a ‘gold standard’ saccade detection method and reflects the difficulty of 

developing an algorithm without a robust comparator. Future work is required to establish a 

more harmonised reporting format with transparent saccade detection algorithms.  
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2009. 1038-1044. 
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Figure 1. PRISMA flow chart of study design. This illustrates the yield of the search strategy 

at each stage of the study selection process. 
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TABLES 

 

Table 1: Study participant characteristics, inclusion and exclusion criteria 
 

Reference Participants Inclusion criteria Exclusion 
criteria 

Andersson et al. 
(2017) 

 34 participants NR NR 

Diaz et al. (2013) NR NR NR 
Komogortsev and 
Karpov (2013) 

 11 participants  18-25 years 

 No prior eye-tracking 
experience 

NR 

Komogortsev et al. 
(2010) 

 22 participants (9 males, 13 females, 21.2 ± 
3.1 years) 

 18-25 years 

 Positional accuracy 
during calibration better 
than 1.7⁰ 

 Less than 20% invalid 
data 

NR 

Kumar et al. (2008)  15 participants (11 males, 4 females, 26 
years) 

NR NR 

Larsson et al. 
(2013a) 

 33 participants (31.2 ± 9.9 years)  Students NR 

Liston et al. (2013) NR NR NR 
(Nyström and 
Holmqvist, 2010) 

 300 participants (reading task) 

 10 participants (scene perception task) 

 Students 

 Manually observed high 
quality eye-tracker data 

NR 

Rozado et al. 
(2012) 

 10 participants NR NR 

Santini et al. (2016)  Six participants (4 males, 2 females, 31.5 ± 
2.6 years). Two participants wore corrective 
glasses for myopia 

NR NR 

Stuart et al. (2014b)  Five participants with Parkinson’s disease 

 Five healthy older adults control participants 

 >50 years NR 

Tafaj et al. (2012a)  Homonymous visual field deficit participants 

 Glaucoma participants 

 Control participants 

NR NR 

Zemblys et al. 
(2018) 

 Five participants. Only one participant was 
used for the testing dataset 

NR NR 

* NR – Not reported 
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Table 2: Study characteristics including algorithm methodologies 
 

Reference Aims 
Task and test 
conditions 

Device Algorithm 
Pre/Post 
Processing 

Algorithm Thresholds 

Coding 
platform, 
outcomes and 
accuracy 

Andersson et 
al. (2017)  

Evaluated 10 eye-
movement 
classification 
algorithms, and 
compared against 
data from human 
coders 

Static Static eye-tracker 
(500Hz, ( 
iViewXTM Hi-
Speed 1250, 
SensoMotoric 
Instruments 
GmbH, Berlin, 
Germany)  

Various algorithms that 
involved: 
 
1. Fixation Dispersion Algorithm 
based on Covariance (CDT): 
Veneri et al. (2010) fixation 
dispersion algorithm  
2. Engbert & Mergenthalser 
(EM): Derived from algorithm by 
Engbert and Kliegl (2003) 
3. Identification by Dispersion-
Threshold (IDT): based on 
Widdel (1984) data reduction 
algorithm 
4. Identification by Kalman 
Filter (IKF): Generates 
predicted eye velocity signal 
based on acceleration modelled 
as white noise 
5. Identification by Minimal 
Spanning Tree (MST): Creates 
a ‘data-tree’ that generates 
multiple data branches 
6. Identification by Velocity 
Threshold (IVT): Velocity 
computed for every eye 
position, then compared against 
a threshold and marked as a 
FIX orpart of a SAC 
7. Identification by Hidden 
Markov Model (IHMM): Similar 
to IVT. Classes fixations or 
saccades but implements a 
Viterbi sampler (Forney, 1973) 
and a re-estimation algorithm 
(Baum et al., 1970) 
8. Nyström & Holmqvist (NH): 
adaptive algorithm that adjusts 
velocity threshold based on 
presence of noise 
9. Binocular Individual 

Bilateral filter 
 
Kalman filter 
(Required for IKF 
algorithm) 

Variable thresholds 
used 
 
CDT:  

13-sample window 
EM:  

SAC Velocity parameter 
separating from noise.  

SAC Duration ≥6 
samples.  
IDT:  

FIX Duration ≥55ms, 
FIX Dispersion ≥2.7°.  
IKF:  

Chi-square threshold 
=3.75, 5-window 
sample, deviation value 
= 1000. 
IMST:  

SAC Amplitude ≥0.6°, 
200-sample window. 
IHMM:  

SAC Velocity ≥45°/s.  
IVT:  

SAC Velocity ≥45°/s. 
NH:  

FIX Duration ≥55ms. 
BIT:  

FIX Duration ≥56ms. 

MATLAB® 
 
SAC: 
Humans, EM, 
IDT, IKF, IMST, 
IHMM, IVT, NH, 
LNS 
 
Outcomes: 
SAC Velocity 
SAC Duration 
 
Accuracy 
(Cohen’s Kappa, 
κ, comparison to 
humans) 
 
EM: 0.64-0.67 
IDT: 0.26-0.45 
IKF: 0.46-0.58 
IMST: 0.30-0.54 
IHMM: 0.60-0.71 
IVT: 0.63-0.76 
NH: 0.60-0.68 
LNS: 0.75-0.81 
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Reference Aims 
Task and test 
conditions 

Device Algorithm 
Pre/Post 
Processing 

Algorithm Thresholds 

Coding 
platform, 
outcomes and 
accuracy 

Threshold (BIT): van der Lans 
et al. (2011) algorithm 
examines velocity of both eyes 
simultaneously 
10. Larsson, Nyström & Stridh 
(LNS): Adaptive algorithm using 
velocity-based thresholds 

Diaz et al. 
(2013) 

Detection of SAC 
when using a head-
mounted virtual 
reality display to 
counteract 
vestibulo-ocular 
reflex 

Static virtual reality in a 
controlled setting. 

Mobile infra-red 
eye-tracker 
(60Hz, Arrington 
Research Inc., 
Scottsdale, AR, 
USA) 

Velocity threshold-based 
classification 

Median (3-units 
wide) and Gaussian 
(3-units) filters to 
remove signal 
outliers and jitter 
respectively 

NR PythonTM, 
Viewpoint 
software (version 
2.9.2.6) and 
EYE-TRAC®6 
(Applied Science 
Laboratories, 
USA) 

Komogortsev 
and Karpov 
(2013) 

Developed new and 
modified existing 
eye-tracking 
algorithms for 
ternary classification 
(i.e. FIX, SAC, and 
smooth pursuits). 

Static in a controlled 
setting.  
 
Manual observations 
vs. proposed 
algorithms 

Static eye-tracker 
(1000Hz, EyeLink 
1000, SR 
Research, 
Canada) 

Various algorithms that 
involved: 
 
1. Modified the IVT algorithm 
with a second threshold to 
create the velocity and velocity 
threshold identification (IVVT)  
2. Velocity and movement 
pattern identification (IVMP)  
3. The newly proposed velocity 
and dispersion threshold 
identification (IVDT). Separation 
of SAC similar to IVVT and 
IVMP but then separates 
smooth pursuits from FIX by 
applying modified dispersion 
threshold within a temporal 
window of size Tw 

Manual filtering of 
noise 

SAC Velocity ≥70°/s. 
 
IVVT:  
FIX Velocity ≤26°/s,  
FIX Amplitude >3.5°, 
FIX Duration <4ms. 
IVMP:  
Magnitude of movement 
Tw =0.2,  
Temporal window =120-
140ms.  
IVDT:  
Dispersion threshold TD 
=2°,  
Temporal window =110-
150ms. 

NR 
 
Extension of the 
I-VT (IVVT) does 
not provide 
meaningful 
classification. 
 
The IVMP and 
IVDT provided 
classification 
close to manual 
observations but 
the latter were 
only done for 3 
participants (out 
of 10). 
 
The IVDT had 
smaller 
performance 
variability and 
dependence on 
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Reference Aims 
Task and test 
conditions 

Device Algorithm 
Pre/Post 
Processing 

Algorithm Thresholds 

Coding 
platform, 
outcomes and 
accuracy 
thresholds vs. 
IVMP. 

Komogortsev 
et al. (2010) 

Evaluated five 
algorithms to 
classify oculomotor 
behaviour. To 
develop a common 
basis for comparing 
algorithms through 
qualitative and 
quantitative scores 

Static in a controlled 
setting. 

Static eye-tracker 
(120Hz, Tobii 
x120, Tobii 
Technology AB, 
Stockholm, 
Sweden) 

Various algorithms that 
involved:  
1. IVT 
2. IHMM:  
3. IKF:  
4. IMST:  
5. IDT 

Kalman filter 
(Required for IKF 
algorithm) 

Variable thresholds 
used  
 
IVT:  
SAC Velocity =5-300°/s. 
IHMM:  
SAC Velocity =5-300°/s. 
IMST:  
Dispersion =0.033-2°. 
IKF:  
Threshold values =1-60. 
IDT:  
Dispersion =0.033-2°. 
FIX Duration ≥100ms. 

NR 
 
SAC number, 
amplitude and 
quantitative 
score 

Kumar et al. 
(2008) 

Real-time SAC 
detection and 
fixation smoothing 

Static in a controlled 
setting.  
 
Red balloons (n=20) 
were presented on a 
screen. The balloon 
popped when looked 
at and moved 
locations.  

Static eye-tracker 
(Tobii 1750, Tobii 
Technology AB, 
Stockholm, 
Sweden) 

Gaze movement threshold 
where two gaze points 
separated by a Euclidean 
distance of more than a given 
SAC threshold. Similar to IVT 
with modifications: measure 
displacement relative to current 
estimate of fixation location 
and; look ahead one 
measurement and reject 
movements over SAC 
threshold. 

Kalman filter SAC smoothing 
algorithm introduces an 
additional 20ms latency 
at SAC thresholds 

NR 

Larsson et al. 
(2013) 

To detect SAC and 
post-saccadic 
oscillations in the 
presence of smooth 
pursuits  

Static in a controlled 
setting.  
 
Compared to manually 
annotated eye 
movements and 
another algorithm 
(Nyström and 
Holmqvist, 2010).  
 
Testing consisted of 
images, texts, moving 
dots, short video clips, 
and a scrolling text. 

Static eye-tracker 
(500Hz, 
(iViewXTM Hi-
Speed 1250, 
SensoMotoric 
Instruments, 
GmbH, Berlin, 
Germany) 

Combines saccade detection in 
the acceleration domain with 
specialised on and offset 
criteria for saccades and post-
saccadic oscillations (PSO). 
This is in 3 stages: pre-
processing, detection and PSO. 

9-point binocular 
calibration in 
iViewXTM followed 
by 4 validation 
targets. 
 
Pre-processing 
excluded 3 different 
disturbances: 
screen outliers, 
blinks (700ms 
threshold) and one-
sample spikes. For 
the latter a median 
filter (length = 3) 

Adaptable SAC Velocity 
and Acceleration 
thresholds. 
 
Sample-to-sample 
Velocity ≤20% of Peak 
Velocity for SAC 
start/end to be 
classified.  
 
Time between SAC 
≥20ms. SAC Duration 
≥6ms. 

MATLAB® and 
iViewXTM 

 
SAC number, 
duration and 
peak velocity 
 
Good agreement 
between 
algorithm and 
manual 
observations (κ ≈ 
0.8). 
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Reference Aims 
Task and test 
conditions 

Device Algorithm 
Pre/Post 
Processing 

Algorithm Thresholds 

Coding 
platform, 
outcomes and 
accuracy 

was used to avoid 
supressing PSO. 
PSO described by 
an all-pole model. 

Liston et al. 
(2013) 

Three stage 
algorithm to detect 
SAC during smooth 
pursuits 

Static in a controlled 
environment.  
 
Presented an ideal-
observer analysis to 
benchmark detection 
performance vs. 
manual observations.  

Static video-
based eye-tracker 
(ISCAN RK-726 
PCI), ISCAN, 
Burlington, USA) 

Three stages:  
 
1. Median filter to process eye-
velocity trace;                              
2. Linear detector based ideal 
observer approach measuring 
SAC likelihood as well as 
threshold to flag possible 
saccades                                     
3. Clustering to mitigate effects 
of uncertainty and tracker noise 

Non-linear median 
filter, sliding window 
of odd size which 
computes the 
median velocity 
within the window 
 
Algorithm 
parameters: window 
size, SAC amplitude 
threshold, min. SAC 
duration, min 
refractory 
period 

SAC Velocity =0.20 to 
60°/s, with ~30ms cross-
correlation template. 

MATLAB®.  
 
SAC velocity, 
amplitude and 
duration. 
Efficiency varied 
as a function of 
minimum 
duration (20-
40%).  
 
Threshold too 
high, small SAC 
not be detected. 
Threshold too 
low, small 
number of false 
SAC. 

Nyström and 
Holmqvist 
(2010)  

Developed an 
adaptive algorithm 
to detect SAC, while 
overcoming 
glissades.  

Static in a controlled 
setting.  
 
Compared against two 
other algorithms 
(Salvucci and 
Goldberg, 2000, and 
Smeets and Hooge, 
2003) 

Static eye-tracker 
(500Hz, 
(iViewXTM Hi-
Speed 1250, 
SensoMotoric 
Instruments, 
GmbH, Berlin, 
Germany) 

Adaptable velocity threshold-
based classification, with 
removal of glissades.  

Savitzky-Golay finite 
impulse response 
smoothing filter, 2nd 
order with a length 
of ×2 min. saccade 
duration. 

Used an iterative data-
driven approach to find 
SAC velocity threshold 
based on initial value = 
100-300°/s (≤1000°/s),  
SAC Acceleration 
≤100000°/s2, 
SAC Duration ≥10ms, 
FIX Duration ≥40ms.  
 
Window length for 
glissade search = SAC 
end + min. fixation 
duration 

MATLAB®.  
 
SAC velocity, 
acceleration and 
duration. 
 
Notable 
differences 
between 
algorithms.  
 
Detection of 
glissades 
feasible and 
found to occur in 
high proportions 
of participants 
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Reference Aims 
Task and test 
conditions 

Device Algorithm 
Pre/Post 
Processing 

Algorithm Thresholds 

Coding 
platform, 
outcomes and 
accuracy 

Rozado et al. 
(2012) 

Detection of gliding 
gaze gestures and 
SAC gaze gestures 
in real-time 

Static in a controlled 
setting.  
 
Testing for suitable 
combination using 
Needleman-Wunsch 
algorithm and 
Hierarchical Temporal 
Memory networks 

Head-mounted 
ITU gaze tracker 
with infra-red 
webcam (30Hz, 
Sandberg 
Nightcam 2, 
Sanberg A/S, 
Denmark) 

Combination of saccadic gaze 
gesture and Needleman-
Wunsch (movement pattern 
recognition) was found to be 
best 

Pilot testing 
informed larger test. 
Findings suggested 
use of saccadic 
gaze gestures only 
and not gliding. 
Testing involved 3 
tasks: accuracy, 
browsing and 
velocity.  

Dwell time ≥ 500ms NR 
 
Approx. 91-95% 
dependent upon 
dwell time 

Santini et al. 
(2016) 

Ternary 
classification of eye 
movements.  

Static in a controlled 
setting.  
 
Collected 24 datasets 
involving both induced 
and natural eye 
movements compared 
with IVDT algorithm 
(Komogortsev and 
Karpov, 2013) 

Mobile eye-
tracker (Dikablis 
Professional 
Glasses, 60Hz, 
Ergoneers 
GmbH, Berlin, 
Germany).  
 
Only monocular 
data was 
collected at 30Hz.  

Bayesian online mixture model 
to automatically track the visual 
attention in dynamic visual 
scenes.  
 
Utilises Gaussian, Gamma and 
Dirichlet distributions and is 
IVDT: velocity and dispersion 
based. 

No calibration step 
was performed by 
using pupil position 
signal as input and 
so applied unjittering 
function (Stampe, 
1993) 

IBDT:  
SAC Duration ≥ 80ms. 
 
IVDT:  
FIX Duration ≥ 100ms. 

MATLAB®.  
 
SAC velocity, 
amplitude and 
duration. 
 
Precision, 
specificity 
(95.6%, 95.4%) 
compared to 
IVDT (89.6%, 
92.1%) 

Stuart et al. 
(2014b) 

To detect SAC 
during walking 

Dynamic in a 
controlled laboratory 
setting. 
 
5m walking compared 
with manual 
classifications. 

Mobile infra-red 
eye-tracker 
(50Hz, Dikablis 
Essential 
Glasses, 
Ergoneers 
GmbH, Berlin, 
Germany) 

Velocity and acceleration 
threshold-based classification. 
Utilises point to point change of 
x/y co-ordinates, conversion of 
pixels to degrees 

Initial calibration 
procedure involving 
SAC at 5° distance 
while standing static 

SAC Velocity: 
≥ 240°/s, < 1000°/s.  
SAC Acceleration:  
> 3000°/s², <100000°/s².  
SAC Amplitude:  
≥ 5°. 
SAC Duration: ≤100ms. 

MATLAB®.  
 
SAC number, 
frequency, 
velocity, 
amplitude, 
direction, 
duration and 
timing. 
 
Good reliability 
with ICC (2,1) 
between PD 
(0.94) and HC 
(0.94) 
participants.  
 
SAC detection:  
PD (85%), HC 
(81%). 
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Reference Aims 
Task and test 
conditions 

Device Algorithm 
Pre/Post 
Processing 

Algorithm Thresholds 

Coding 
platform, 
outcomes and 
accuracy 

Tafaj et al. 
(2012) 

To detect SAC and 
FIX points in real-
time (online) 
dynamic scenes 
during 

Static while performing 
a driving task.  
 
General observations 
from algorithm 
deployment. 

Mobile infra-red 
eye-tracker 
(25Hz, Dikablis 
Essential 
Glasses, 
Ergoneers 
GmbH, Berlin, 
Germany) 

Identified by Random Forest 
Classifier (IRF): produces many 
decision trees that can use the 
14 features provided to derive 
SAC.  

3-point calibration 
procedure 
 
No pre-processing 
was, however, 
performed by the 
equipment used) 

NR C# and 
Infer.NET.  
 
The latter was 
also utilised 
Variational 
Message 
Passing for 
probalistic 
inference. 
 
SAC points 
Algorithm 
showed promise 
to adapt quickly 

Zemblys et 
al. (2018) 

Introduce a new 
design principle for 
saccade detection 
using machine 
learning for 
selection of 
appropriate 
thresholds. 
Compared against 
human coder and 
NH algorithm 
(Nyström and 
Holmqvist, 2010), as 
well as across 
different sampling 
frequencies. 

Static in a controlled 
environment. Tracked 
a silver 0.2° dot with 
2x2 pixel black centre, 
which jumped around 
a 7x7 grid, with pauses 
of 1s at each position.  

Static eye-tracker 
(1000Hz) 
(EyeLink 1000) 

IRF: produces many decision 
trees that can use the 14 
features provided to derive 
SAC.  
 
14 features:  
- sampling frequency 
- root mean square (rms) 
- standard deviation (SD)              
- bivariate contour ellipse area 
(bcea)                                           
- dispersion                                   
- velocity/acceleration                    
- median distance                           
- mean distance                             
- Rayleigh test                               
- i2mc (Identification by two-
means clustering)                          
- rms/SD/bcea difference 

Low-pass 
Butterworth filter 
with cut-off 
frequency of x0.8 
Nyquist frequency of 
the new data rate, 
with a 20ms-
window.  
Data re-sampled at 
60, 120, 200, 250, 
300, 500 and 
1250Hz. 

No user adaptable 
settings from the 
heuristics used by the 
IRF. 

MATLAB® 
 
Saccade 
velocity, 
acceleration, 
amplitude and 
duration. 
 
Accuracy (κ): 
IRF: 0.91 (vs. 
humans), 
0.58 (vs. NH 
algorithm) 

Page 25 of 26 AUTHOR SUBMITTED MANUSCRIPT - PMEA-102791.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46



26 
 

Reference Aims 
Task and test 
conditions 

Device Algorithm 
Pre/Post 
Processing 

Algorithm Thresholds 

Coding 
platform, 
outcomes and 
accuracy 

FIX – Fixation, min. – minimum, NR – Not reported, SAC – Saccade, vs. – versus. PD – Parkinson’s disease, HS – healthy controls 
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