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Abstract

Visual attention is a crucial indicator of the relative im-

portance of objects in visual scenes to human viewers. In

this paper, we propose an algorithm to extract objects which

attract visual attention from videos. As human attention

is naturally biased towards high level semantic objects in

visual scenes, this information can be valuable to extract

salient objects. The proposed algorithm extracts dominant

visual tracks using eye tracking data from multiple sub-

jects on a video sequence by a combination of mean-shift

clustering and Hungarian algorithm. These visual tracks

guide a generic object search algorithm to get candidate ob-

ject locations and extents in every frame. Further, we pro-

pose a novel multiple object extraction algorithm by con-

structing a spatio-temporal mixed graph over object can-

didates. Bounding box based object extraction inference is

performed using binary linear integer programming on a

cost function defined over the graph. Finally, the object

boundaries are refined using grabcut segmentation. The

proposed technique outperforms state-of-the-art video seg-

mentation using eye tracking prior and obtains favorable

object extraction over algorithms which do not utilize eye

tracking data.

1. Introduction

Object extraction in videos is a challenging problem in

computer vision. Automated extraction of objects in a video

sequence can benefit several applications related to annota-

tion, compression, summarization, search and retrieval. A

critical bottleneck in object extraction is defining the im-

portance of objects in a video sequence. Several works

in object extraction from videos have focussed on utilizing

motion to determine importance of objects. These meth-

ods typically aim to extract a single dominant object in the

scene, determined by motion. In [27] Lee et al. identify im-

portant motion segments representing an object and extrap-

olate the object of interest throughout the video frames. In

Figure 1. A simple illustration of the proposed problem. Given a video

sequence (left), we collect eye tracking data in the sequence from multi-

ple subjects (center) and utilize this information to extract visually salient

objects (right). Best viewed in color.

Ma et al. [28], important objects are segmented by connect-

ing the extracted object candidates from all video frames

using mutual exclusiveness constraints. Also, in [35] Ra-

makanth et al. utilize video seams to segment moving ob-

jects effectively. Recently [47], Zhang et al. proposed a

framework to extract objects using objectness [12] and op-

tical flow proposals and segment the key object by dynamic

programming on a directed acyclic graph. They also utilize

a warping technique to ensure robustness to broken object

segments. All the aforementioned methods utilize motion

to define the importance of objects and can extract only a

single object of interest from a video sequence. However,

motion may not be a good metric to determine importance

of objects in videos. For example in a video sequence where

two subjects are having a conversation, the motion cues

might be misleading. We note that salient objects in a scene

can be better understood by visual attention regions. There-

fore, in this work we investigate the utility of eye tracking

to extract multiple interesting objects in a scene.

Eye movements have been shown to reflect a combina-

tion of influences of low level image properties, the ob-

server’s task, interest, and goals [18, 40, 11, 10, 11, 26].

In a free viewing task, eye movements are biased towards

high level semantics [22, 29] in static and dynamic scenes.

Therefore, visual attention can provide a robust prior to as-

sist multiple object extraction in video sequences. Recent

advancements in eye tracking technology have opened up

avenues to collect data without affecting the experience of

the viewer. State-of-the-art eye trackers are affordable [2]

and this has enabled large-scale collection of eye tracking

data from multiple subjects. Multimedia content is typi-
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cally viewed by a large number of people and collecting

eye tracking data from a small fraction of the viewers can

provide weak supervision to guide extraction of important

objects. Therefore, given a video sequence and eye tracking

data from multiple subjects in a free viewing task, the ob-

jective is to extract relevant objects of interest which attract

visual attention. A simple visual illustration of the proposed

work is shown in Fig. 1. Recently, there has been active in-

terest in eye tracking assisted computer vision algorithms.

An overview of the literature in this area is provided below.

Related Work

Human inspired visual attention modeling [21, 17, 14,

22, 6, 7, 8, 24] has been a well-researched topic in over

a decade. Recently there has been significant interest

[30, 36, 43, 33, 42, 29, 25, 31, 44, 45, 46, 38] in eye tracking

enhanced computer vision. Relevant to our work, Mishra et

al. [30] proposed a segmentation using fixation approach

which segments objects of interest given a single fixation

point. They convert the image to polar coordinate space

and graph cut segmentation in this space corresponds to ob-

ject contour in the image domain. The approach was fur-

ther extended using optical flow to segment a single object

around a fixation point in a video sequence. The primary

limitation of [30] is that they use a single fixation point

and assume the fixation point is completely inside the ob-

ject of interest. However, the assumption can be limiting

as there is calibration error in real eye tracking data espe-

cially when we have to extract small objects. Additionally,

[36, 43] have proposed image segmentation algorithms us-

ing multiple fixations in order to overcome some of the lim-

itations of [30]. Recently, Papadopoulos et al. [33] explored

an interesting problem of weakly annotating objects using

eye tracking data to train object class detectors. The eye

tracking annotations are used in the training phase to local-

ize object bounding boxes which help train a deformable

part model [13] based detector. The final detection perfor-

mance is considerably lower than perfect ground truth an-

notations, however these annotations are obtained in about

a sixth of the time required to hand annotate the bounding

boxes which is encouraging. In [25] we propose a technique

to extract face and text semantic priors using eye tracking

data from multiple subjects and use this to enhance state-

of-the-art object detectors. The algorithm is designed for

images and is targeted for only face and text categories.

Utility of eye tracking data in action recognition techniques

[42, 29] have also shown promise. We note that the works

in [33, 25, 36, 43, 45] are designed for object localization

in images and in the proposed work we deal with object ex-

traction in videos and therefore are not directly comparable

as eye tracking data properties differ in images compared

to videos. Additionally, eye tracking provides a platform

to quickly annotate a large number of video frames which

is of greater practical use compared to image annotation as

manually annotating videos is a far more tedious task.

Therefore, in this work we propose an eye tracking as-

sisted object extraction framework which is not restricted

to specific object categories. The contributions of the pro-

posed approach are as follows.

• A method to localize visual tracks from eye tracking

data by solving a linear assignment problem, which

coarsely corresponds to object locations in video se-

quences

• A novel object extraction framework guided by visual

tracks, which extracts multiple objects in a spatio-

temporal mixed graph by solving a binary integer lin-

ear program

• A novel eye tracking dataset on standard video se-

quences

This work is organized as follows. In Section 2 we in-

troduce the eye tracking dataset. Our algorithm to extract

visual tracks from eye tracking data is described in Section

3. The novel multiple object extraction framework is also

presented in this section following which in Section 4 we

demonstrate the results of the proposed approach. Finally

the discussion, conclusions and future work are discussed

in Section 5.

2. Eye tracking dataset on videos

We collected an eye tracking dataset on videos using

Eyelink 1000 eye tracking device [1]. The videos were

viewed by 30 subjects (between ages 21 and 35). The

viewers sat 3 feet away from a 27 inch screen. The subjects

were informed that it was a free viewing experiment and

the data was collected without any apriori bias. The users

rest their head on a chin rest and the eye position is sampled

by the eye tracker at 500 samples per second. Eye tracking

data in videos typically consists of fixations, saccades and

smooth pursuit. The information gathering stage (while

observing objects) is encoded in the fixations and smooth

pursuit. The saccades represent attention shift from one

fixation to another. The video dataset consists of 20 videos

collected from SegTrack [41], GaTech [15] and Xiph.org

[3] datasets. Each video in the dataset consists of 1 to 4

dominant objects. The depicted scenes are obtained from

static and moving cameras with static and moving objects

of interest. Fig. 2 highlights example video frames and

the corresponding eye tracking data (excluding saccades)

over multiple subjects from the dataset. We notice that the

eye tracking data in individual frames is biased towards

important semantic objects and coarsely localizes them,

including objects without significant motion (faces in

the last example in Fig. 2). Therefore, this information

can be a useful prior to extract objects from video se-

quences. This dataset can be downloaded from http:

//vision.ece.ucsb.edu/˜karthikeyan/

videoObjectEyeTrackingDataset/.
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Figure 2. Shows frames from four example videos in our dataset followed

by the corresponding eye tracking data in the bottom row. We note that the

dataset consists of single and multiple stationary and moving objects with

moving and stationary backgrounds. The eye tracking data in individual

frames typically lies on high level semantic objects and coarsely local-

izes it. Especially in the last (bottom) video sequence, the eye movement

regions corresponds to faces where motion information cannot identify im-

portant objects in the scene. Therefore, this information is extremely useful

to extract salient objects from the video sequences.

3. Proposed approach to extract objects from

videos using eye tracking prior

The aim of the proposed approach is to utilize eye track-

ing data in conjunction with visual information from video

frames to extract objects which attract visual attention. As

eye tracking data is primarily biased towards objects, we

utilize it as a prior to guide object search. We propose

a two-step approach. First we process raw eye tracking

data and obtain dominant visual tracks which are consistent

across multiple subjects. These visual tracks help localize

object search in video frames. Next, these localized object

Figure 4. Illustrates that the scanpaths in the direction of optical flow,

shown in green, represent smooth pursuit and should be utilized along with

the fixations (red circles) for object localization. Scanpaths not in the di-

rection of optical flow indicate attention shift from one object to another

(saccades) and can be removed. Best viewed in color.

proposals are connected using a novel multiple object ex-

traction framework which is designed to simultaneously en-

sure temporally consistent and spatially distinct objects. An

overview of the proposed approach is shown in Fig. 3. The

top row indicates the eye tracking processing steps to ex-

tract dominant visual tracks from eye movement data from

multiple subjects. The bottom row describes the visual track

guided object localization and the multiple object extraction

framework on a mixed graph. Finally, the object boundaries

are refined by segmentation using bounding box prior. The

following sections provide a detailed description of the dif-

ferent modules which comprise the proposed framework.

3.1. Eye tracking data processing to obtain domi
nant visual tracks

In order to extract dominant visual tracks from eye track-

ing data, we first introduce a simple pruning step to remove

eye tracking data which has low probability of lying on ob-

jects. Eye movement data in dynamic scenes is biased to-

wards high level semantic objects as described in Section

1 and consists of fixations, saccades and smooth pursuit.

The fixations and smooth pursuit represent the information

gathering stage and saccades represent transitions between

fixations. Typically, fixations are present in video regions

representing static objects and smooth pursuit is observed

when a subject tracks a moving object. Saccades typically

do not lie on objects in a video sequence as they indicate

transitions between fixations. The eye tracker localizes fix-

ations accurately, but does not directly distinguish between

smooth pursuit and saccades and labels them as a scan path.

As smooth pursuit eye tracking samples lie on objects, we

first propose a simple technique to identify them. We uti-

lize optical flow [39] to determine the nature of the scan

paths. If the scan path lies in the direction of optical flow,

it is labelled as smooth pursuit, otherwise it is classified as

a saccade. This is illustrated in Fig. 4. We utilize fixations

and smooth pursuit for further processing.

These pruned eye tracking samples have a higher proba-

bility of lying on objects in the videos than raw eye tracking

samples. In the next stage, we associate these eye tracking

samples to extract dominant visual tracks which coarsely

correspond to objects of interest in a video sequence. This
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Figure 3. Block diagram of the proposed approach to extract multiple objects from videos using eye tracking prior. The top row indicates the eye tracking

processing stage. The bottom row is the multiple object extraction framework guided by the visual tracks. Best viewed in color.

is achieved by a two step hierarchical association process

similar to [19, 23]. First, the eye tracking samples from all

the subjects over an entire video sequence are associated

in a conservative manner using 3-D mean shift clustering.

Eye tracking samples are normalized to have standard devi-

ation one in all dimensions and clustered using a flat kernel

with unity bandwidth ensuring invariance to video resolu-

tion. This gives us visual tracklets representing eye tracking

data over small potential temporal object segments through

the video sequence. In the next step these tracklets are as-

sociated to eventually represent dominant visual tracks.

Let the set of all tracklets be denoted by T =
{T1, T2...TN}, where Ti denotes an individual track-

let. Similarly, the set of all tracks is denoted as S =
{S1, S2...SM}. A linkage probablity Plink(Tq|Tp) is de-

fined between every pair of tracklets p and q. We encour-

age linkages between tracklets within close spatio-temporal

proximity and visual characteristics by defining it as a prod-

uct of two terms Plink(Tq|Tp) = Pm(Tq|Tp)Papp(Tq|Tp).
Here, we use a linear model to predict the position of the

head of one tracklet from the tail of another. The error e in

predicting the head of tracklet Tp from the tail of Tq is used

to calculate the motion affinity using gaussian distribution,

Pm(Tq|Tp) = N (e; 0, σ2
eI2×2). The appearance affinity is

calculated using histogram distance over the video frame

pixels corresponding to the eye tracking samples. The his-

togram distance (d) between the head of Tp and tail of

Tq is computed using χ2 metric. The appearance affinity

is calculated by an exponential distribution evaluated at d,

Papp(Tq|Tp) = λ exp(−λd).
Here we assume the likelihoods of the input tracklets are

conditionally independent given S and the tracks {Sl} are

independent of each other. Now, the association term is de-

composed as

P(S|T ) ∝ P(T |S)P(S)

=
∏

Tk∈T

P(Tk|S)
∏

Sl∈S

P(Sl) (1)

We also assume that a larger tracklet by size has a higher

probability of being a true positive, i.e., corresponding to

observing an object of interest. Therefore, the true positive

likelihood of a tracklet is defined as P(Tk|S) = φ|Tk|

∑
k φ|Tk| ,

where |Tk| ∈ (0, 1] is the fraction of eye tracking samples

in Tk.

The tracklet association priors in (1) are modeled as

Markov Chains.

P(Sl) = Plink(Tk1
|Tk0

)...Plink(Tkpl
|Tkpl−1

) (2)

where pl refers to the number of tracklets associated to form

the track Sl. Thus, the association prior is a product of

transition terms representing linkage probabilities between

tracklets.

As we need to maximize (1), first we convert it into a cost

function by taking negative logarithms. The cost described

in (1) can be optimized by the Hungarian algorithm similar

to the one proposed in [19]. In brief, to associate n tracklets

an n×n cost matrix Clink is built with the non-diagonal en-

tries denoting the tracklet association costs. Another n× n

cost matrix obtained from the true positive probabilities in

the diagonal entries is concatenated with Clink to generate

a n × 2n matrix. The optimal tracklet associations which

minimize the cost globally is obtained by the Hungarian as-

signment on this cost matrix. Therefore, the joint cost ma-

trix CJ of dimensions n× 2n is expressed as

CJ(p, q) =















− lnPlink(Tq|Tp)−
1
2 [lnP(Tp|S) + lnP(Tq|S)]

if p, q ≤ n and p 6= q

− lnP(Tp|S) if p+ n = q

+∞ otherwise

(3)

The optimal tracks are obtained by the Hungarian algo-

rithm on CJ which assigns every row to a unique column.

Finally, tracks containing above > 20% of the eye tracking

samples are classified as dominant visual tracks. An ex-

ample of visual tracklets and tracks on a video sequence is

shown in Fig. 5. We note that the parameters were chosen

empirically (λ = 1, σe = 0.2) to give good visual results,

as we do not have ground truth for visual tracks.
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Figure 5. An example of visual tracklets (center) and visual tracks (right)

on a video sequence (left) shown in 3-D. The visual tracklets are associated

using Hungarian algorithm to obtain the tracks. The horizontal axis in the

visual tracks and tracklets represents image frames. Best viewed in color.

3.2. Visual track guided object extraction from
videos

The visual tracks coarsely localize attentionally impor-

tant objects in a video sequence and thereby reduce the

search space for these objects in the scene. Specifically,

visual tracks provide the following two critical pieces of in-

formation

• Number of visually salient objects in the scene

• Coarse spatial localization of the objects of interest

In this section we propose a novel principled framework

to extract important objects of interest guided by the visual

tracks. As visual tracks provide coarse priors on the object

locations, we extract visual track localized bounding box

based objectness proposals [4]. For every visual track, we

compute the spatial standard deviation σ = (σx, σy), which

is indicative of the size of the object. Therefore, in every

frame, we compute the mean position of visual track and

search for objects within 5σ around the mean. Additionally,

we only retain object proposals which contain more than

50% of the visual tracks samples in the frame. We notice

that objectness [4] provides several overlapping bounding

boxes around an object of interest. Each bounding box is

assigned a score (objectness) which indicates the probabil-

ity of the bounding box enclosing an object. We refine this

score to reflect motion information by adding an additional

term which measures optical flow magnitude contrast [39]

within and outside the bounding box. Let the optical flow

magnitude average inside a bounding box i and frame f be

O
if
in and outside it be O

if
out. Then, the optical flow score is

measured as S
if
opt = 1 − e

−
(O

if
in

−O
if
out

)2

τopt . The overall unary

scores which combines objectness and optical flow score for

bounding box i in frame f is a linear combination of indi-

vidual scores and is given by Sif
unary = S

if
obj + αS

if
opt. In

this work, we select 35 object proposals within every frame

which have the highest Sunary as our candidate objects.

Now given a set of bounding boxes in every frame, and

the number of objects k (number of visual tracks), we want

to extract k distinct objects from the video sequence. Each

box has a unary score indicated by Sunary . In addition

we also define pairwise costs across bounding box pairs

in successive frames. This score is determined from spa-

tial overlap distance and color histogram distance between

the bounding boxes in the two frames. Let bif and b
j
f+1

Figure 6. The spatio-temporal graph to extract multiple objects is high-

lighted here. The bounding boxes in each frame are shown as red circles.

The temporal costs shown as blue directed edges indicate inter-frame costs

to connect a path through two bounding boxes in successive frames. The

intra-frame spatial costs are indicated as green undirected edges. They

penalize extraction of the same object in multiple paths. Best viewed in

color.

represent two bounding boxes in successive frames f and

f + 1, then the pairwise score is represented as S
ijf
pair =

S
ijf
overlap + βS

ijf
color, where S

ijf
overlap =

Area(bif∩b
j

f+1)

Area(bi
f
∪b

j

f+1)
and

S
ijf
color = e

−
χ2(hi

f
,h

j
f+1

)

τcolor , where hi
f and h

j
f+1 are the color

histograms of the bounding boxes in frames f and f + 1.

Therefore, the overall combined temporal (unary and pair-

wise) score is represented as S
ijf
temp = Sif

unary + S
j(f+1)
unary +

γS
ijf
pair. The overall temporal cost between bounding boxes

bif and b
j
f+1 is C

ijf
temp = 1− S

ijf
temp.

We construct a graph as shown in Fig. 6. The nodes

of the graph represents the bounding boxes. The directed

edges (across successive frames) shown in blue has weights

denoting the temporal cost C
ijf
temp. We also include addi-

tional source (s) and terminal (t) nodes. We want to extract

k paths throughout this graph from the source to the termi-

nal node which will represent k extracted objects. How-

ever, as the objectness metric extracts multiple bounding

boxes around an object of interest, it is possible to ex-

tract the same object in several paths. In order to mitigate

this we introduce spatial costs within a frame. The spa-

tial cost penalizes the extraction of overlapping objects in

multiple paths through the graph. The spatial cost asso-

ciated with two bounding boxes bif and b
j
f in frame f is

C
ijf
spatial =

Area(bif∩b
j

f
)

Area(bi
f
∪b

j

f
)
. This spatial cost C

ijf
spatial is denoted

by the undirected green edges (intra-frame) in the graph in

Fig. 6.

The aim is to select paths through the graph which min-

imize the overall spatio-temporal cost. Let the decision

variables for the temporal costs be denoted by x
ij
f between

bounding boxes i in frame f and j in f + 1. Also, let the

decision variables for the spatial costs be denoted by y
ij
f

between bounding boxes i and j in frame f . Assuming the

total number of frames is F , the optimization problem can

be formulated as

3245



minimize
x
ij

f
,y

ij

f

∑

i,j,f

C
ijf
tempx

ij
f +

∑

i,j,f

C
ijf
spatialy

ij
f (4)

subject to:
∑

j

x
sj
0 = k (Flow from source node = k) (5)

∑

i

xit
F = k (Flow to terminal node = k) (6)

∑

i

x
ij
f =

∑

k

x
jk
f+1 ∀j, f (Conservation of flow) (7)

∑

i

x
ij
f ≤ 1 ∀j, f (At most one active temporal path)(8)

y
ij
f = (

∑

k

xik
f )(

∑

k

x
jk
f ) ∀i, j (Spatial Constraint) (9)

x
ij
f and y

ij
f ∈ {0, 1} (10)

The edges in the spatio-temporal graphs are either se-

lected (active = 1) or not selected (inactive = 0). This for-

mulation aims to identify the appropriate active x
ij
f and y

ij
f

such that the overall spatio-temporal cost represented in (4)

is minimized. The constraints (5) and (6) ensure exactly k

paths are selected by our algorithm. The conservation of

flow constraint (7) enforces the number of incoming active

temporal edges is equal to the number of outgoing active

temporal edges at each node. The constraint (8) implies

that there can be at most one active temporal path through a

node. Finally, the spatial constraint (9) ensures that if there

are two temporal paths across nodes p and q in the same

frame (f ), the corresponding spatial cost (undirected green

edge in Fig. 6 ) connecting them is activated or y
pq
f = 1.

The spatial constraint in (9) is quadratic, however can

be linearized as y
ij
f ≥

∑

k

xik
f +

∑

k

x
jk
f − 1 as

∑

k

xik
f and

∑

k

x
jk
f ∈ {0, 1} due to constraint (8). This results in a bi-

nary integer linear program. We utilize the GUROBI [16]

solver to get the optimal solution to the problem which

eventually extracts k distinct paths from the graph. Finally,

the bounding box tracks extracted from the spatio-temporal

graph are iteratively refined in every frame individually us-

ing grabcut segmentation [37]. We note that in our exper-

iment we set the cost-function weights as α = 0.2, β =
0.5, γ = 1, which gave the best results. We also set rcolor =
and ropt = 5.

4. Experimental results

In this section we evaluate the performance of object ex-

traction using the proposed approach. We first discuss the

procedure to obtain the ground truth for important objects in

the video sequence which attract visual attention followed

by the evaluation metric. Subsequently, we show quantita-

tive comparison with state-of-the-art.

Figure 7. The top-left image is the video sequence. The top-right shows

eye tracking samples in a frame from the sequence. The bottom-left figure

highlights the exhaustive manual object annotations in the scene. Finally,

the bottom-right illustrates the important ground truth objects which attract

visual attention obtained according to Section 4.1. Best viewed in color.

4.1. Ground truth creation

In this section, we provide a concrete definition for se-

lecting important objects in a video sequence from eye

tracking data. Our eye tracking dataset is obtained from

30 subjects and we randomly select 10 subjects to create

the ground truth and the rest for the proposed eye track-

ing based object extraction algorithm to avoid confirmation

bias. In order to obtain ground truth objects from eye track-

ing data, we first manually annotated (every fifth frame)

several meaningful objects in a video sequence. The ground

truth objects are assumed to be a subset of these annotated

objects. An object in a video sequence is considered im-

portant if it captures more than a threshold (x%) of the vi-

sual attention from all the observers. Previous studies have

indicated that humans can track upto four objects reliably

[5, 20] in video sequence. Therefore, in order to account

for slightly uneven distribution of attention among impor-

tant objects and some attention loss due to calibration error,

the threshold is set at x = 20%. Also, an attention region

should correspond to a unique object. Therefore, the ground

truth is obtained by first sorting the annotations by number

of pixels and selecting the annotation which has more than

20% of the attention from the smallest to the largest anno-

tation. Once an object is identified (> 20% attention), we

remove its attention region from the pool and repeat the pro-

cess and localize subsequent objects. In total we obtain 30

ground truth objects after annotating 136 objects manually.

Fig. 7 shows an example of a video sequence, eye tracking

data, multiple object annotations and extracted ground truth

objects which corresponds to faces. It is well known that

faces attract visual attention [9]. This is corroborated by the

proposed ground truth extraction scheme.

4.2. Evaluation metric

The output of the object extraction algorithm is a set

of object tracks in every frame. These binary masks are

matched to the ground truth contour regions obtained ac-
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Figure 8. An example highlighting the importance of the spatial con-

straint in the proposed framework in Section 3.2. The top row indicates

three frames from a video sequence where the yellow square moves hor-

izontally, the green square expands and moves horizontally and the blue

square undergoes linear slant motion. The second row shows the three ob-

jects extracted by the proposed algorithm without the spatial constraint.

We notice two overlapping bounding boxes on the blue square. This is

avoided by the proposed approach with the spatial constraint in row 3,

where all three objects are extracted accurately. Best viewed in color.

cording to Section 4.1. A match score m, between two

object tracks is determined as the intersection area di-

vided by the union area between the ground truth and ob-

tained tracks. For a given object track t the best match-

ing track mb in a set of tracks T is defined by mb(t, T ) =
max{m(t, t′)|t′ ∈ T }. This leads us to the definitions of

Precision and Recall as Precision =
∑

te∈E mb(te,G)

|E| and

Recall =

∑
tg∈G mb(tg,E)

|G| . Here, G and E are the sets of

ground truth and estimated object tracks respectively. The

precision and recall are combined to a single quantity called

F -measure which is defined as F = 2.Precision.Recall
Precision+Recall

.

4.3. Importance of spatial constraint

This section shows a synthetic example which illustrates

the importance of the spatial constraint in our proposed

framework in Section 3.2. Fig. 8 shows an example with

three squares moving over multiple frames. In the proposed

algorithm, we extracted 35 candidate bounding boxes which

have multiple overlapping bounding boxes over each of the

squares. When we set number of objects, k = 3 and ex-

tracted three paths without the spatial constraint, two paths

overlapped on the same object. However, the spatial con-

straint which penalizes overlap extracted the three objects

accurately. Therefore, we note that without the spatial con-

straint the optimization can be solved by a simpler linear

program. However, it does not yield favorable results for

multiple object extraction.

4.4. Performance of multiple object extraction

The video dataset presented in this work contained 30

ground truth objects in total. The proposed approach ex-

tracted 31 objects from the visual tracks of which two were

false positives, and one false negative was obtained. After

extracting the visual tracks from 20 subjects, we want to

segment the objects of interest from the videos. Our graph

based object extraction algorithm extracts bounding boxes

representing important objects in the scene which are re-

fined by grab cut segmentation. Our approach is compared

with [30] to evaluate the capability of multiple object ex-

traction using eye tracking prior. As [30] requires a unique

fixation point per object, we extract the median of the visual

track in every frame to represent the fixation point which

provides the pivot for the segmentation. A comparison of

our multiple object extraction algorithm with [30] is high-

lighted in Table 1. We notice that the proposed approach

outperforms [30], which is state-of-the-art in eye tracking

assisted object extraction, by a significant margin. Addi-

tionally, we also obtain better performance than state-of-

the-art video object segmentation algorithms [32, 34] which

do not utilize eye tracking data.

We also want to understand the role of eye tracking and

object extraction module individually to localize objects in a

video. For this purpose, we selected bounding boxes around

every visual track by using µ ± 2σ, where µ and σ are the

mean and variance of the visual track in every frame. These

eye tracking based bounding boxes ignore visual informa-

tion from the video sequence. Additionally, the multiple

object extraction module is individually run on the video se-

quence without the eye tracking based localization prior to

quantify the performance of the multiple object extraction

framework without utilizing the eye tracking data. How-

ever, here we utilize the number of visual tracks to extract k

objects from the video sequence. We notice in Table 1 that

the proposed approach outperforms individual eye track-

ing and object extraction methods. Some example bound-

ing box based object extraction results using the proposed

spatio-temporal graph are shown in Fig. 9. The final multi-

ple object video segmentation results (after applying grab-

cut) on a few example videos are shown in Fig. 10. We also

illustrate some results where our algorithm outperforms that

of [30] in Fig. 11. This is attributed to the high sensitivity

of [30] to the location of the fixations and noise in fixation

localization.

4.5. Performance of single object extraction

We also compare the performance of the proposed object

extraction algorithm with state-of-the-art video segmenta-

tion algorithm [47]. As [47] extracts a single object of in-

terest, we set number of objects, k = 1 in the proposed ap-

proach. We compare the extracted object to the ground truth

annotations using the precision metric. We do not compute

the recall metric as we are limited to single object extraction

where recall is not meaningful. The proposed approach ob-

tains a precision of 0.557 while [47] obtains a precision of

0.374. Therefore, the proposed algorithm outperforms [47]

in our dataset, which establishes that our eye tracking based

object extraction is suitable for single object extraction too.
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Our algorithm without

eye tracking data
Visual tracks

only
Active

segmentation [30]
Ochs

et al. [32]

Papazoglou

et al. [34]

Our algorithm

bounding boxes

Our algorithm

with grabcut

Precision 0.263 0.253 0.448 0.255 0.354 0.439 0.513

Recall 0.251 0.271 0.483 0.245 0.264 0.476 0.526

F-Measure 0.257 0.262 0.465 0.250 0.303 0.457 0.519

Table 1. Comparison of the performance of our multiple object extraction algorithm with state-of-the-art. We also selectively compare the performance of

different sub-blocks of our model. We notice that both the object extraction module and eye tracking data contribute equally to extract objects which attract

visual attention.

Figure 9. Shows example results using the proposed approach to ex-

tract multiple objects represented by bounding boxes. We see the proposed

approach is able to localize different visually salient objects in the video

sequences with reasonable accuracy. Best viewed in color.

Figure 10. Shows example results from the proposed approach after

applying grabcut based video segmentation to the extracted multiple object

bounding boxes. We see the proposed approach is able to segment multiple

objects in the video sequences with good accuracy. Best viewed in color.

Figure 11. Shows some segmentation results using [30]. We notice that

in the top row, possibly due to fixation localization error, the segmentation

[30] breaks down. In addition, the algorithm suffers from similar issues in

the bottom row as well, where it is not robust to the occluding pole.

5. Summary, Discussion and Future Work
Recent advances in eye tracking technology has enabled

collection of eye movement data on a large scale. Multime-

dia applications can significantly benefit from the availabil-

ity of such technology. Towards this end, we utilize human

eye movements to extract important objects in videos. The

algorithm first clusters the eye tracking data using 3-D mean

shift to obtain visual tracklets, which are in turn associated

to get visual tracks. The visual track guided object search

provides object proposals in every frame. Further, this in-

formation is used to build a spatio-temporal mixed graph

and we extract paths representing objects from this graph by

inference using binary integer linear programming. The ex-

tracted bounding box based objects are refined using grab-

cut segmentation to get object contour based segmentation.

To the best of our knowledge, the proposed work is the

first attempt to tackle multiple object extraction from videos

guided by eye tracking data in a free viewing task. This

work was implemented in MATLAB on a 8-core 2.26 GHz

machine, with computationally intensive functions in C++.

The spatio-temporal multiple object inference is fast, takes

less than 10 seconds on 100 frames. We note that the op-

tical flow and objectness computations can be parallelized.

We choose bounding box based objectness in [4] as it was

significantly faster than contour based approaches [12].

In the future, we want to investigate how the number

of subjects affects object extraction performance. It would

also be interesting to explore utility of eye tracking in other

problems such as image and video retrieval. Finally, we be-

lieve single subject eye tracking guided algorithms need fur-

ther research as they will enable applications beyond multi-

media where it can be combined with wearable technology.
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