
Eye-Tracking for User Modeling in  Exploratory Learning 
Environments: an Empirical Evaluation

Cristina Conati 1,2 and Christina Merten1  
1Department of Computer Science, University of British Columbia 

2366 Main Mall, Vancouver, BC, V6Z2T4, Canada 
Tel: 01-604-8224632. FAX: 01-604-822-5485 

conati@cs.ubc.ca 
 

2 Department of Information  and Communication Technology, University of Trento 
Via Sommarive 14, 3805, Povo, Trento, Italy

ABSTRACT 
In this paper, we describe research on using eye-tracking data 
for on-line assessment of user meta-cognitive behavior during 
interaction with an environment for exploration-based learning. 
This work contributes to  user modeling and intelligent 
interfaces research by extending existing research on eye-
tracking in HCI to on-line  capturing of high-level user mental 
states for real-time interaction tailoring. We first describe the 
empirical work we did to understand  the user meta-cognitive 
behaviors to be modeled. We then illustrate the probabilistic 
user model we designed to capture these behaviors with the help 
of on-line information on user attention patterns derived from 
eye-tracking data. Next, we describe the evaluation of this 
model, showing that gaze-tracking data can significantly 
improve model performance compared to lower level, time-
based evidence. Finally, we discuss work we have done on 
using pupil-dilation information, also gathered through eye-
tracking data, to further improve model accuracy.   
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INTRODUCTION 

One of the functionalities that an Intelligent User Interface 
may include is providing tailored support to help users perform 
complex tasks. Providing this functionality involves building a 
model of user traits relevant to adequately tailoring the 
interaction, i.e., a user model. Depending on the nature of the 
task and the extent of the support, the relevant user traits may 
include simple performance measures (such as frequencies of 
interface actions), domain-dependent cognitive traits (such as 
knowledge and goals), meta-cognitive processes that cut across 
tasks and domains, and affective states. Arguably, the higher the 
level of the traits to be captured, the more difficult it is to assess 
them unobtrusively from simple interaction events. This 
problem has generated a stream of research on using innovative 
sensing devices to enrich the information available to a user 
model.  

Our work contributes to this research stream by presenting 
results on using real time eye-tracking information to inform a 

user model designed to assess student meta-cognitive behavior 
during interaction with an Exploratory Learning Environment 
(ELE). ELEs are computer-based educational tools designed to 
stimulate learning through free exploration of the target domain, 
instead of through the more structured activities supported by 
traditional Intelligent Tutoring Systems [29].  

The meta-cognitive behaviors covered by the user model we 
describe include the capability to learn effectively from free 
exploration [11, 30]  and the capability to self-explain 
instructional material, i.e., to clarify and elaborate the given 
information in light of the underlying domain theory (e.g., [7] 
and [25]).  Both of these meta-cognitive skills have been shown 
to improve the quality of student learning with ELE, but it has 
also been shown that many students lack them [7, 25].   

As a consequence, there have been several efforts to support 
the acquisition of these skills in ELE. However, few of these 
efforts tried to generate support tailored to student meta-
cognitive needs. In relation to effective exploration, most work 
focused on providing interface tools that stimulate the right 
exploratory behaviors [23, 29]. In relation to  self-explanation, 
research either focused on generating untailored prompts [1], or 
relied on simple tailoring strategies such as prompting for self-
explanation after every new action or after every incorrect 
action [21]. One of the reasons for the lack of  sophisticated 
tailoring is the difficulty of assessing user meta-cognitive 
behaviors. Conati and Vanlehn [10] proposed a system that 
models user self-explanation behavior using interface artifacts 
that allow the system to obtain relevant information on user 
attention. However, it is not always possible to devise interface 
artifacts that do not interfere with the nature of the interaction. 
For this reason, we are exploring the use of eye-tracking data to 
provide information on user meta-cognition. In particular, in this 
paper we describe our inclusion of  eye-tracking information to 
track student self-explanation and exploration behavior in ACE 
(Adaptive Coach for Exploration), an ELE that supports student 
exploration of mathematical functions.  

In an ELE, an essential component of effective exploration  
involves trying out a variety of domain-exploration actions. 
However, simply trying out actions is not sufficient for learning. 
It is also important to attend to and reason  about the actions’ 
outcome, i.e, to perform self-explanation. Intuitively, self-
explanation may be more likely if the student actually attends to 
the parts of the interface showing the effects of a specific 
exploratory action.  Previous studies [22] showed  that a user’s 
gaze can be a good indicator of which parts of an interface hold 
the user’s attention. Thus, it is reasonable to assume that the 



presence or absence of certain gaze patterns (such as gaze shifts 
from the screen region where an action is executed to the region 
showing its effects) may be used to assess self-explanation 
behavior. The first objective of this work is to test this 
assumption. The second objective is to show that accurate 
assessment of self-explanation can improve assessment of 
student exploratory behavior. To meet these objectives, we set 
two  subgoals: (i) creating a student model that uses specific  
gaze patterns as evidence of   implicit self-explanation; (ii) 
evaluating  the performance of the model as a predictor of 
implicit self-explanation and sufficient exploration, particularly 
in comparison with previous model versions  that do not use 
gaze-tracking data. In this paper, we describe how we achieved 
both goals. For goal  (i), we first  illustrate a user study that tests 
assumptions on which gaze patterns indicate implicit self-
explanation and compare these patterns as predictors against a 
simpler measure based on action latency.  We then describe the 
user model we built based on the results of  this study.  

For goal (ii), we show that including gaze-tracking 
information significantly improves the model assessment of 
student self-explanation, compared to previous versions. The 
evaluation also shows that more accurate assessment of student 
self-explanation significantly improves the assessment of 
student learning through exploration. This is a significant 
contribution to the research on eye-tracking in HCI, which has 
mostly involved the use of eye-tracking for either interface 
evaluation/manipulation or on-line assessment of lower-level 
mental states.  

We also explored whether pupil dilation information may 
further improve model accuracy. Previous research found a 
positive correlation between a person’s pupil dilation and 
cognitive load in a wide variety of tasks [4]. Self-explanation 
requires cognitive effort to make sense of studied instructional 
material, thus students who self-explain may incur a higher 
cognitive load than students who do not. Since the eye-tracker 
we used in this research provides data on pupil size, we 
investigated  whether this measure  could be an additional 
predictor of self-explanation for our student model. Our findings 
contribute to the increasing body of work that has been recently 
devoted to evaluate the performance of pupil dilation as a source 
of information for interface adaptation.  

In the rest of the paper, we first discuss related work. Next, 
we  introduce  the ACE learning environment, the ELE we used 
in this project.  Then we  present previous versions of the ACE 
student model and their limitations, and we follow with  the 
illustration of  the new model. Next, we describe a  a study   to 
evaluate  the new model.  Finally, we   present our  investigation 
on whether pupil dilation information, also derived from eye-
tracking data, may contribute to model accuracy. We conclude 
with a discussion of future work 

 

RELATED WORK 

Research on self-explanation and exploration 

Several studies in Cognitive Science  have shown the 
effectiveness of  self-explanation as a learning skill in a variety 
of instructional tasks, including studying worked-out example 
solutions (e.g., [8] [25]), reading instructional text ([8]) and 
solving problems (e.g., [1]). Because there is evidence that this 

learning skill can be taught (e.g., REF), several computer-based 
tutors have been devised to provide explicit support for self-
explanation. However, all of these tutors focus on coaching self-
explanation during fairly structured interactions targeting 
problem-solving skills (e.g., [1], [10] and [21]). For instance, the 
SE-Coach [10] is designed to model and trigger students’ self-
explanations as they study examples of worked-out solutions for 
physics problems. The Geometry Explanation Tutor [1] and 
Normit-SE [21] support self-explanations of problem-solving 
steps, in geometry theorem proving and data normalization 
respectively. In this paper, we describe our extension of support 
for self-explanation to the less structured pedagogical 
interactions supported by exploratory learning environments.  

Exploratory learning environments place less emphasis on 
supporting learning through structured, explicit instruction and 
more on allowing the learner to freely explore the available 
instructional material (e.g., [11, 30], [29]). In theory, this type of 
active learning should enable students to acquire a deeper, more 
structured understanding of concepts in the domain. In practice, 
empirical evaluations have shown that open learning 
environments are not always effective for all students (e.g., [11, 
30], [11, 30]). The degree of learning from such environments 
depends on a number of student-specific features, such as  
activity level and whether or not the student already possesses 
the meta-cognitive skills necessary to learn from exploration. 
These results highlight the importance of providing support to 
exploration-based learning that is tailored to the needs of 
individual students. 

Eye-tracking research 

Retrospective analysis of eye movement  
In HCI, retrospective analysis of eye movement data has 

been studied to evaluate usability issues and understand human 
performance. For instance, Schiessl et al. [27] used an eye-
tracker to investigate gender differences in attention behavior 
for textual vs. pictorial stimuli on websites.  An interesting 
outcome was that, when the participants were asked where in 
the interface they thought they looked, their perceptions often 
differed from reality, showing that accurate attention patterns 
could only be found with an eye-tracker. In [13], offline 
processing of eye-tracking data was used to improve the 
efficient generation of non-photorealistic images.  Users’ eye 
fixations were analyzed to determine which parts of given  
pictures users  found to be most meaningful, and the findings 
were used to design  algorithms that  draw the most “important” 
parts of the picture first.  

The research described in this paper differs from the efforts 
above because, although it includes the use of retrospective 
analysis of eye movements to design and test a student model, it 
also uses  eye-tracking data on-line to model student learning.  
On-line use of eye-tracking in interface operation 

There has also been fairly extensive research in using eye 
gaze as an alternative form of input to allow a user to explicitly 
operate an interface.  In [19], Jakob explores issues surrounding 
the real-time processing of eye data such as efficient noise 
reduction and the organization of gaze information into tokens 
from which relevant data may be extracted. He then discusses 
the potential of eye-tracking as a tool in several forms of 



interface manipulation, including object selection/movement, 
scrolling text, and navigating menus. Salvucci and Anderson 
[26] applied these ideas to design IGO (Intelligent Gaze-added 
Operating-system), a system that allows users to use their eyes 
to  perform interface operations such as opening, closing and 
dragging windows. Majaranta et al. [20] devised a system that 
allowed users to type with their eyes via an eye-tracker, given a 
picture of a keyboard for users to look and an algorithm to 
interpret small fixations as key presses. In [16], Hornof et al. 
describe EyeDraw, a  system to enable children with severe 
motor impairments to draw pictures by just moving their eyes. 
Unlike the above systems, the work discussed in this paper uses 
real-time processing of a user’s gaze to interpret user non-
explicit meta-cognitive behaviours for  on-line interaction 
adaptation. 
Eye-tracking for on-line interaction adaptation  
A parallel research stream has used eye-tracking data on-line   
for  real-time interaction adaptation. Some of this work uses 
gaze tracking to assess user task performance. For example, in 
[31], Sibert et al. describe the use of gaze tracking to assess 
reading performance in the Reading Assistant, a system for 
automated reading remediation that provides visual and auditory 
cues if user   gaze patterns indicate difficulties in  reading a 
word. In [17]. Iqbal and Bailey use gaze-tracking to determine 
which type of task the user is performing (e.g., reading email vs. 
reading a web page), with the goal of devising  an attention 
manager that balances the user’s need for minimal disruption 
with an application’s need to deliver necessary information.  

There has also been research on using gaze information for 
real-time adaptation to  user mental states such as interest or 
problem-solving strategies. In [32], Starker and Bolt describe a 
system that uses an  eye-tracker  to determine which part of a 
graphical interface a user is interested in, and then provides 
more information about this area via visual zooming or 
synthesized speech.  In [24], Qu and Johnson use eye-tracking 
for interaction adaptation within  the Virtual Factory Teaching 
System (VFTS), an  computer tutor  for teaching engineering 
skills. Eye-tracking is used to discern the time the user spends 
reading something from the time the user spends thinking before 
taking action, with the goal of   assessing and adapting to the 
motivational states of student  effort and confusion.     Gluck 
and Anderson [15] studied the use of eye-tracking to assess 
student problem-solving behaviors within the PAT Algebra I 
tutor, including  attention  shifts, disambiguation of problem 
statements and errors, processing of error messages and  other 
information critical to problem solving.  

Our  work extends this body of research by exploring if and 
how eye-tracking can help assess mental states related to the 
meta-cognitive, domain-independent skill of self-explanation. 
Using pupil dilation in adaptive interfaces 

Recently, there has been increasing interest in exploring the 
potential of pupil dilation as a source of information for an 
adaptive system, mostly because of the link that has been found 
between pupil dilation and cognitive load [3].  However, so far 
the existing  research on this topic has yielded controversial 
results. Schultheis and Jameson [28] analyzed pupil sizes of 
users reading texts of varying difficulty within an adaptive 
hypermedia system. They found that the difference in text 
difficulty – and thus cognitive load – was not reflected in pupil 

diameter changes. Iqbal et al. [18] examined the sensitivity of 
pupil size to cognitive load as users performed different tasks, 
including file manipulation and the reading of text. While, as in 
[28], pupil size failed to be an accurate indication of cognitive 
load during the reading tasks, it was found to be sensitive to task 
difficulty during certain subtasks of the file management task. 

The investigations described in this paper contributes to the 
above body of work by providing initial indications that pupil 
dilation is not a good predictor of self-explanation during 
exploration with an ELE. 

 

THE ACE LEARNING ENVIRONMENT 

ACE is a learning environment that  supports the 
exploration  of mathematical  via a set of  activities divided into 
units and exercises. Units are collections of exercises whose 
material is presented with a common theme and mode of 
interaction. Exercises within units differ in function type and 
equation.  

 
Figure 1: ACE's Plot Unit 

 
Figure 1 shows the main interaction window for the Plot 

Unit. We will focus on this unit throughout the paper because it 
is the unit most relevant to the research presented in later 
sections. In the Plot Unit, a learner can explore the relationship 
between a function’s graph and equation by moving the graph in 
the Cartesian plane and observing how that affects the equation 
(displayed below the graph area). The student can also change 
the equation parameters and see how these changes affect the 
graph. 

To support the exploration process, ACE includes a 
coaching component that provides tailored hints when ACE’s 
student model detects  that students are having difficulties 
exploring effectively. For more details on ACE’s interface and 
coaching component, see [5]. In the next section, we describe 
two preliminary  versions of  ACE’s student model, which we 
will use for performance comparison against the new model 
with eye-tracker data in the evaluation section.   



PREVIOUS VERSIONS OF ACE’S  
STUDENT MODEL 

Version with no self explanation 
ACE’s student model uses Dynamic Bayesian Networks 

(DBN) [12] to manage the uncertainty in assessing students’ 
exploratory behavior.  The main cause of this uncertainty is that 
the reasoning processes that influence the effectiveness of 
student exploration are not easily observable unless students are 
required to make them explicit. However, forcing students to 
articulate this reasoning would likely be intrusive and clash with 
the unrestricted nature of this type of learning.  

We chose  DBNs for the ACE student model because they 
are a well-established formalism for reasoning under uncertainty 
in domains where there are dynamic random variables, i.e., 
variables with values that can change over time (e.g., student 
knowledge during interaction with ACE). A DBN is a graph 
where  nodes represent stochastic variables of interest and arcs 
capture the direct probabilistic relationships between these 
variables, including temporal dependencies between the 
evolving values of dynamic variables.  Each node has an 
associated probability distribution representing the conditional 
probability of each of its possible values, given the values of its 
parent nodes. As evidence on one or more network variables 
becomes available, ad hoc algorithms update the posterior 
probabilities of all the other variables, given the observed values 

 

 
Figure 2. High-level Structure of ACE's Student Model 

 
The first version of ACE’s student model was derived from 

an iterative design process  that yielded a better understanding 
of what defines effective exploration [5]. Figure 2 shows a high-
level description of this model, which comprises several types 
of nodes to assess exploratory behaviour at different levels of 
granularity. These nodes include: Relevant Exploration Cases, 
representing exploration of individual exploration cases in an 
exercise (e.g., changing the slope of a line to 3, a positive 
number, in the Plot Unit); Exploration of Exercises and  
Exploration of Units, representing adequate exploration for the 
various ACE exercises and units, respectively; and  Exploration 
of Categories,  representing the exploration of groups of 
relevant exploration cases that appear across multiple exercises 
(e.g., all of the exploration cases involving a positive slope in 
the Plot Unit). The links among the different types of 
exploration nodes represent how they interact to define effective 
exploration. Exploration nodes have binary values representing 
the probability that the learner has sufficiently explored the 
associated items.  

ACE’s student model also includes binary nodes 
representing the probability that the learner understands the 

relevant pieces of knowledge (summarized by the node 
Knowledge in Figure 2). The links between knowledge and 
exploration nodes represent the fact that the degree of 
exploration needed to understand a concept depends on how 
much knowledge a learner already has. Knowledge nodes are 
updated only through actions for which there is a clear 
definition of correctness. These nodes are never updated within 
the Plot Unit, since it consists of purely exploratory activities. 

Initial studies on ACE generated encouraging evidence that 
the system based on the model in Figure 2 could help students 
learn better from exploration [5]. However, these studies also 
showed that sometimes the ACE student model – labeled 
Action_Based model from now on – overestimated students’ 
exploratory behaviour, because it considered  interface actions 
to be sufficient evidence of good exploration, without taking 
into account whether a student was self-explaining the outcome 
of these actions. For instance, a student who quickly moves a 
function graph around the screen in the Plot Unit – but never  
reflects on how these movements change the function equation – 
performs many exploratory actions but can hardly learn from 
them because she is not reflecting on (self-explaining) their 
outcomes. We observed this behavior in several study 
participants. 

 

Extending ACE to Track and Support Self-
Explanation 
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Figure 3. Original ACE student model with self-explanation 

  
To address the model limitation described above, we started 

extending ACE’s interface and student model to track and 
support self-explanation [6]. The original version of ACE only 
generated hints indicating that a student should further explore 
some elements of a given exercise. Augmenting ACE with the 
capability to track self-explanation allows ACE not only to 
detect when a student’s exploration is sub-optimal, but also to 
understand if the cause is a lack of self-explanation and generate 
tailored hints to correct this behavior.  

There are two types of self-explanation that ACE needs to 
detect: (i) explicit self-explanation, i.e., self-explanation that the 
student generates using menu-based tools available in the 
interface; and (ii) implicit self-explanation that students generate 
in their head. The latter is the most difficult to detect, due to the 



lack of hard evidence of its occurrence. Implicit self-explanation 
is the focus of the extensions to the student model we describe 
in the next sections. The first version of the ACE student model 
with an assessment of self-explanation [6] used only time spent 
on each exploratory action as evidence of implicit self-
explanation. We will refer to this model as Time_Based model 
from now on.  Figure 3 shows a time slice1 in this model, 
corresponding to an implicit self-explanation action (similar 
slices capture the occurrence of explicit self-explanation). 

Nodes representing the assessment of self-explanation are 
shaded grey. In this figure, the learner is currently exploring 
exercise 0 (node e0) in the Plot Unit, for which two relevant 
exploration cases (e0Case0 and e0Case1 in Figure 3) are shown. 
Each exploration case influences one or more exploration 
categories (positive intercepts and negative intercepts in the 
figure). Here the learner performs an action corresponding to 
e0case1.  In this new version of the model, the probability that a 
learner’s action implies effective exploration of a given case 
depends on both the probability that the student self-explained 
the action and the probability that she knows the corresponding 
concept, as assessed by the set of knowledge nodes in the model 
(summarized in Figure 3 by the node Knowledge). Factors 
influencing the probability that implicit self-explanation occurs 
include the time spent exploring the case and the stimuli that the 
learner has to self-explain. Low time is always taken as negative 
evidence for implicit explanation. The probability of self-
explanation with longer time spent on an action depends on 
whether there is a stimulus to self-explain, i.e., on the learner’s 
general tendency to self-explain and on whether the system 
generated an explicit hint to self-explain. 

Time, however, can be an ambiguous predictor for self-
explanation. First, it is hard to define for different learners what 
is insufficient time for self-explanation. Furthermore, a student 
may be completely distracted during a long interval between 
exploration cases. Thus, we chose to explore an additional 
source of evidence of self-explanation behavior, i.e., the 
student’s attention patterns during the exploration of a given 
case.  

 

ADDING EYE-TRACKING TO ACE – 
PRELIMINARY INVESTIGATION 

The intuition for using an eye-tracker to assess self-
explanation is that self-explanation is  more likely to have 
occurred  if the student actually attends to the interface’s regions 
showing the effects of a specific exploratory action. As an 
example, if a student has modified the function equation, a gaze 
shift pattern suggestive of self-explanation would start from the 
equation region and then hover around the graph region above. 

However, monitoring user gaze with an eye-tracker can be 
expensive and laborious.  Thus, we ran a study to compare  the 
effectiveness of gaze tracking as predictor of self-explanation 
against a simpler time-based predictor. Although the study was 

                                                                 
1 In a DBN, a time slice represents the model’s variables at a 

particular point in time. The temporal evolution of dynamic 
variables is represented by a sequence of time slices 
connected by links that encode the temporal dependencies 
between slices. 

discussed in [8] we report it here, expanding on the 
experimental design and data analysis,  because it lays the 
groundwork for the new model and evaluation methodology 
described  later. 

Study Design 
The 19 participants recruited for the study were university 

students who had not yet taken any college level math, but had 
had high school calculus.  We set this requirement to have 
subjects with limited knowledge of mathematical functions, so 
that it would be meaningful for them to explore this topic 
through ACE. We needed subjects with  some initial 
understanding of the subject, however,  because ACE does not 
offer any background instruction and total novices wouldn’t 
know where to start. 

The study consisted of individual sessions lasting 
approximately 80 minutes. In each session, the student first 
completed a pre-test  to determine his/her initial knowledge of 
mathematical functions. This was followed by interaction with 
ACE2, while a student’s eye movements were recorded by an 
head-mounted eye-tracker. This particular eye-tracker was used 
because it was readily available through the Psychology 
Department at the University of British Columbia. However, the 
same data could be obtained through a completely non-intrusive 
remote eye-tracker, consisting of a small camera that  sits on top 
of the monitor or on some other flat surface (e.g., IView X Red 
from SensoMotoric Instruments, USA). 

Before starting the interaction with ACE, participants 
underwent an eye-tracker calibration phase.  Next, we used a 
standard script to instruct participants to “think aloud”,  i.e., to 
verbalize what they thought during interaction, even if it seemed 
unimportant.  Finally, participants went through each of the 
ACE units at their own pace. After exiting ACE, each 
participant completed a post-test very similar to the pre-test, the 
only differences being the constants used in the functions and 
the ordering of different questions.   

In addition to the paper pre-test and post-test, each session 
yielded a log file from the ACE system, which included each 
exploratory action and the time when it was taken. The eye-
tracker also generated a log file containing the coordinates and 
duration of each fixation. In addition, we collected video and 
audio recordings of the interaction, showing the ACE screen and 
allowing for later analysis of the user’s speech.  

Data Analysis  
Setting the “gold standard” 

In order to assess the performance of latency and gaze 
patterns as predictors of implicit self-explanation, it was 
necessary to first classify students’ self-explanation behavior. In 
particular, we needed to isolate exploratory actions 
accompanied by implicit self-explanation (termed positive self-
explanation cases from now on) and those that were not (termed 
negative self-explanation cases), so that  these classifications 
could be tested for correlations with those predicted by time and 
gaze shifts. Note that here  “negative self-explanation” indicates 
situations in which the students did not self-explain, not 

                                                                 
2 In this study, we used the original version of ACE, which does 

not include tools to support explicit student self-explanation. 



situations in which students self-explained incorrectly, 
consistent with the original definition of self-explanation [8].  

We used the  audio recordings of each interaction for 
detecting the presence or absence of implicit self-explanation. 
As described earlier, these recordings consisted of explicit 
verbalization by the subjects as to their thoughts. Similar to 
other studies on self-explanation [3, 21], using subjects’ 
verbalizations is acceptable since the participants were 
instructed to share all of their thoughts and were not told 
anything about the data analysis process or the actual purpose of 
the study. Thus, the episodes we related to presence or absence 
of self-explanation in the data can accurately be described as 
“internal” since they reflect the subjects’ thoughts, which are 
unknown to the ACE system. Further, with existing technology, 
this is as close as we could come to reading the students’ 
thoughts in our search for evidence of implicit self-explanation 
or lack thereof.   

To maximize objectivity in the analysis of the audio data, 
two observers (the second author and another graduate research 
assistant) independently analyzed the audio data and then 
created links between the verbal episodes and the corresponding 
exploration cases in the log files. This turned out to be a fairly  
laborious process, because of two main factors. 

First, we needed to devise a detailed coding scheme in order 
to objectively convert fragments of audio data into isolated 
episodes of positive or negative self-explanation. While coding 
schemes exist for self-explanation study during problem solving 
(see, for instance, [8]), ours was  the first attempt to evaluate 
self-explanation during independent exploration. This problem 
was addressed by having the two observers independently label 
a subset of the audio data, then compare their classifications, 
possibly reconcile them and devise the coding scheme based on 
this discussion. 

 
Table 1: Coding scheme for self-explanation episodes 

Evidence of positive self-
explanation 

Evidence of negative self-
explanation 

Verbalized conclusions about 
domain-specific principles 
related to the exploration 
process (regardless of 
correctness) 
Prediction of an action just 
before it occurred 

Simple narration of the 
interaction 
Isolated statements of 
confusion 
Expressions of inattentiveness 

 
In the coding scheme, student utterances were classified as 

self-explanation if they expressed a conclusion about a domain-
specific principle related to the exploration process (e.g., “when 
I increase the coefficient here, the line gets steeper”) regardless 
of correctness, or if they predicted the result of an action just 
before it occurred (e.g., “putting a negative sign here will turn 
the curve upside-down”). Simply narrating the outcome of each 
action once it happened (e.g., “this number just changed to a 
3”), obvious statements of inattentiveness (e.g., “I’m just 
playing”) or isolated statements of confusion (e.g., “I don’t 
understand what’s happening”) were not considered self-
explanation. However, tentative explanations followed by 
expressions of confusion were coded as self-explanation. This 
classification scheme is summarized in Table 1. It should also 
be noted that whenever an exploratory action was followed by 

evidence of both positive and negative self-explanation, the 
action was considered self-explained. The coded data for two 
episodes appears below.  

 
Here, the various tags describe each episode, as follows. 

ACE_TIME gives the system time when the action occurs; 
VID_TIME gives the time as kept by the video-recorder;  
ACTION describes the exploratory action occurred;  SE_TYPE 
gives the aforementioned experimenters classification of self-
explanation episodes.  Here a Y (yes), N (no) or ? (inconclusive) 
always appears;  SE_DESCRIPTION gives the student’s 
statement used to define SE_TYPE;  LOG_PTR gives the 
action’s line number in the ACE log file for quick reference  
For each coded episode, the experimenter records  the relevant 
utterance in the SE_DESCRIPTION tag, as shown in the two 
coded episodes above. The VID_TIME tag  gives the video-
recorder time of  when the speech occurred, and the SE_TYPE 
tag gives the corresponding observers’ classification. A post-
processing program helps find the ACE action associated with a 
given utterance by using the synchronization line appearing at 
the start of each coded file, which gives the time when ACE was 
started in both forms. From this line, the  program derives the  
ACE_TIME for each coded utterance from its  corresponding 
VID_TIME tag, and then  retrieves the co-occurring action from 
the ACE log file, filling the ACTION, and LOG_PTR tags 
accordingly.  

The second factor   contributing to  the complexity of data 
analysis was that knowing the time of occurrence was not 
always sufficient to map utterances with  actions. The observers 
at first assumed that subjects’ utterances always pertained to 
whatever exploratory action they had just taken. However, 
subsequent analysis of the video data showed that this was not 
always the case, particularly for users who showed great 
reluctance to think aloud. These learners had to be repeatedly 
prompted by the observers to speak, so some of the conclusions 
they shared weren’t reached when they spoke, but related to 
self-explanation that occurred a few minutes earlier. The 
observers solved this problem by studying every coded episode 
and using its content to match it to its corresponding action. For 
example, if a user made a comment about even exponents, it 
was matched with an exploratory action which involved even 
exponents, even if this action occurred slightly earlier. Thirteen 
coded episodes were discarded because the match was 
ambiguous. 

Each observer individually applied the above coding criteria 
to code the audio data, and then their results were compared. 
The intercoder reliability was 93% , which suggests a high level 
of objectivity in the classification scheme. Only episodes on 

CODED DATA FOR TWO VERBALIZATION EPISODES 

<ACE_TIME: 16:59:23> <VID_TIME:02:38:34> 

(a) <ACE_TIME: 17:07:08> <VID_TIME:> <ACTION: 
Moved constant function> <SE_TYPE:N> 
<SE_DESCRIPTION: "I’m not sure what’s 
going on"> <LOG_PTR: 1057> 

(b) <ACE_TIME: 17:07:27> <VID_TIME:> <ACTION: 
Moved linear function> <SE_TYPE:Y> 
<SE_DESCRIPTION: "moving the line changes 
the y intercept in the equation"> 
<LOG_PTR: 1127> 



which the coders fully agreed were used in the rest of the 
analysis. 

While all the factors mentioned above  resulted in the 
elimination of data points, the factor that had the greatest impact 
on the amount of data that could be obtained from the study was 
students’ willingness to verbalize their thoughts. A number of 
students were incapable or unwilling to think aloud, even if they 
were periodically reminded to do so. Without such 
verbalization, the coders could not tell whether a student had 
self-explained or not. Thus, of the 567 exploration cases 
recorded in the log files for all students, only 149 could be 
classified in terms of associated self-explanation and used to 
explore the correspondence between self-explanation, gaze 
information and time, as described next3. 
Time and gaze shifts as predictors of self-
explanation 

To analyze the relationship between time per exploration 
case and self-explanation, we first checked whether there was 
any difference between average time spent on exploration cases 
with self-explanation (24.7 seconds) and without (11.6 seconds). 
The difference is statistically significant at the 0.05 level (two-
tailed t-test), suggesting that time per exploration case is a fairly 
reliable indicator of self-explanation. We then used ROC curve 
analysis  to determine the optimal threshold to indicate 
sufficient time for self-explanation, which we determined to be 
16 seconds (see [9] for more details). The reader should recall 
that both positive and negative self-explanations are verbalized, 
so higher time for positive self-explanation is not an artifact of 
verbalization. 

 

 
Figure 4: Sample gaze shift 

 
Raw eye-tracker data was parsed by a pattern detection 

algorithm developed to detect gaze patterns we hypothesized to 
be associated with self-explanation in the plot unit4.  These 
patterns consist of switches of attention (“gaze shifts”) between  
the graph panel and  the equation area. We considered as gaze 
shifts both direct switches of attention  between the plot and 
equation regions, as well as switches where the gaze moves to 
non-salient regions in between (indirect gaze shifts). We did so 
because we  believe that both types of shifts can indicate student 
attention to the relationship between changes in the function 
                                                                 
3 Each of the 36  participants generated at least some relevant  

verbalizations, thus no student was eliminated by this process. 
4 This algorithm was devised  by Dave Ternes, an undergraduate 

research assistant in the  computer science department at UBC.  

equation and in its  plot5. A sample (direct) gaze shift appears in 
Figure 4. Here a student’s eye gaze (shown as the dotted line) 
starts in some untracked area below the screen, moves to the 
equation region and then hovers around the graph region above. 
The data-parsing algorithm uses fixation coordinates from the 
eye-tracker and matches them to appropriate ACE interface 
regions. Next, it searches the data for the pattern of looking at 
one region and then another, i.e., having a gaze shift.  In post-
processing mode, when a gaze shift is found, a tag is placed in 
the ACE log file to synchronize the switch with the appropriate 
exploration case6.  

An excerpt of a synchronized log file appears in Figure 5. 
Here, the user begins by typing a new value for the slope into 
the equation (line 1 in the figure).  

 

 
Figure 5: Excerpt of ACE log file with added gaze shift tags 

 
Then several gaze shifts occur (lines 2-4). Log entries for 

gaze shifts only report the region where the shift originated, 
since  the region where the gaze  shifted to is implicit in the 
definition of gaze shift. So, for instance, the log entry in line 2 
represents an   indirect gaze shift that starts from the equation 
area,  moves to an (unreported)  irrelevant region (e.g., ACE 
help menu on the screen or the keyboard on the table) and then 
ends in the  graph region. The next two entries represent  two 
consecutive direct gaze shifts from the graph to the equation 
area and back. Next the user moves the curve without looking 
down at the function region (line 5). Finally, the user moves the 
curve again and then shifts her gaze down to the function region 
and back (lines 6-8). 
                                                                 
5 Although we also believe  that the distinction between direct and 

indirect gaze shifts  may be utilized to make finer-grain  inferences on 
student self-explanation, we felt we did not have enough data to 
explore the  differences in this work. However, we kept  the 
distinction in the log files for future work. 

6 In on-line processing mode, the detection of a gaze shift or lack thereof 
is passed as evidence to the ACE student model, as we will describe in 
a later section. 

1 <EXPLORE><TEXT BOX>*17:11:22*new_slope 
8 
2 <INDIRECT FIX 
CHANGE>*17:11:23*Previous Region:          

Equation 
3 <DIRECT FIX CHANGE>*17:11:24*Previous 

Region: Graph  
4 <DIRECT FIX CHANGE>*17:11:24*Previous 

Region: Equation 
5 <EXPLORE>*17:11:26*Moved power 

function to: new Coeff:    
  8.0 new yInt: 2.02 xInts: 
1.3533333333333333 
6 <EXPLORE>*17:12:19*Moved power 
function to: newCoeff:   
  8.0 new yInt: 2.02 xInts: -
0.819999992847464 
7 <DIRECT FIX CHANGE>*17:12:24*Previous 
Region: Graph  
8 <DIRECT FIX CHANGE>*17:12:25*Previous Region: Equation 

 



After the synchronized log file has been generated, a 
program merges it with the coded data from the observers to 
create a file containing all data for one user in a concise form. 

Results and Discussion 
 
Table 2: Classification Accuracy of different predictors  

 Eye-
tracker 

Time  Eye-tracker 

+ Time 

True Positive Rate 
(sensitivity) 

61.6% 71.7% 85.8% 

True Negative Rate 
(specificity) 

76.0% 68.0% 62.0% 

Combined Accuracy 68.8% 69.85% 73.9% 

 
Table 2 shows different measures of self-explanation 

classification accuracy if the predictor used is: (i) the eye-
tracker to detect gaze shifts; (ii) time per exploration case, 
where the occurrence of self-explanation is predicted if time is 
greater than the 16 seconds threshold; (iii) a combination of the 
two, where the occurrence of self-explanation is predicted if 
there is a gaze shift or time is greater than the threshold7. 
Accuracy is reported in terms of true positive rate (i.e., 
percentage of positive self-explanation cases correctly classified 
as such, or sensitivity of the predictor), true negative rate (i.e., 
percentage of negative self-explanation cases correctly 
classified as such, or the specificity of the predictor) and the 
average of these two accuracies. As the table shows, time alone 
has a higher sensitivity than gaze shift, i.e., the episodes 
involving self-explanation were more likely to take over 16 
seconds than to include a gaze shift8. However, the eye-tracker 
alone has comparably higher specificity, i.e., the cases without 
self-explanation were more likely to involve the absence of a 
gaze shift than shorter time per exploration case. The two 
predictors have comparable combined accuracy. Alternate 
analysis was performed to check if multiple gaze shifts would 
serve as a good predictor, with or without time. When two gaze 
shifts were required to indicate self-explanation, the specificity 
of the eye-tracker alone dropped to 51.7%, and the sensitivity 
only rose to 79.5%, resulting in a combined accuracy of 60.6%. 
Adding time raised the combined accuracy to 67.9%, but this is 
still lower than the results for a single gaze shift. Requiring 
more then two gaze shifts continued to lower the sensitivity to 
unacceptable levels. 

These results seem to suggest at first that the gain of using 
an eye-tracker is not worth the cost of adding this information to 
the ACE model. However, there are a few counterarguments to 

                                                                 
7 Note that an alternative, possibly more intuitive  way to combine the 

two predictors  is to use  an AND condition, to  catch cases where a 
long time elapses because students are distracted, not because they are 
self-explaining.  But the OR condition works better with our data 
because  we have few such cases. Thus, elapsed time is indeed a good 
predictor for the presence of self-explanation, as we discuss later in 
the section. 

8 Note that we cannot report statistical significance on these results, as 
they represent individual numbers (percentages of cases classified 
correctly).  

this conclusion. First, it should be noted that time accuracy here 
is artificially high. One of the drawbacks of using time as a 
predictor of self-explanation is that the amount of time elapsed 
tells the model nothing about a student’s behavior between 
actions. During a long time spent on a given case, a student may 
be doing or thinking of something completely unrelated to ACE. 
This seldom occurs in our data, as indicated by the high 
sensitivity of time,  but it should be kept in mind that students 
were in a laboratory setting with little available distraction, in 
the presence of an observer and wearing a rather intrusive 
device, making  it more difficult for the students’ thoughts to 
wander and  resulting in time being a more reliable indicator of 
self-explanation than it would be in actual practice. 

Second, the sensitivity of the eye-tracker as a predictor may 
be artificially low due to errors in the eye-tracking data. Eye 
tracker calibration proved very difficult for participants with 
heavy eyelashes or thick glasses. The eye-tracker would 
function with a reading of “GOOD CALIBRATION” or “POOR 
CALIBRATION”, and for  several subjects “POOR 
CALIBRATION” was the best that could be achieved. Also, 
calibration could sometimes be compromised when a student 
sneezed or touched her face. Problems with calibration would 
make it more difficult for the eye-tracker to detect eye 
movements, and thus some gaze shifts could go unrecorded. 
These calibration problems are specific to a head-mounted 
device and would likely be less of an issue with a desk-mounted 
one.  It should be noted that when we recomputed these 
accuracies using only the data points associated with the eleven 
students out of nineteen for whom “GOOD  CALIBRATION” 
was achieved, sensitivity increased to 63.8%. Although this does 
not seem like a substantial increase, the reader should bear in 
mind that it is based on only 79 episodes (about 50% of the 
available data points) and possibly included students whose 
calibration was compromised during the interaction with ACE.   
  

Finally, combining gaze shift and time into one predictor 
substantially improves sensitivity. That is, if an action is 
classified as self-explained when there is either a gaze shift or 
more than 16 seconds elapsed time, most of the self-explanation 
episodes (85.8%) are correctly recognized. This increase also 
causes the combined accuracy to improve.  

However, as sensitivity increases with the combined OR 
predictor, specificity is reduced, such that only 62% of the 
episodes that lack self-explanation were discovered by the 
model. Here a tradeoff appears between sensitivity and 
specificity. Depending on how the system is used, it may be 
more important to correctly classify self-explanation when it 
occurs than to detect the lack thereof. This is the situation when 
letting natural self-explainers explore without interruption is 
given highest priority. Here, using the combination of the eye-
tracker and time data is best. Alternatively, it may be more 
important to make sure that the system intervenes wherever it is 
necessary. Thus,  failing to identify lack of self-explanation is a 
bigger problem than failing to detect it when it occurs. In this 
case, the eye-tracker alone is a more appropriate predictor, 
because students who need help will be more likely to get it. 

There are also practical considerations. In some situations 
an eye-tracker might not be available due its cost or other 
factors.  Then time, which is always simple and efficient to 
measure,  would be the only predictor available.  However, 
there may also be settings in which ACE users are surrounded 



by such high levels of distraction (e.g., a noisy classroom) that 
time would perform exceptionally poorly. Then an eye-tracker 
would be preferable to present a much more reliable  picture of 
the focus of the student’s attention. 

Given the above arguments, we felt that it is worthwhile 
adding eye-tracker data to the ACE model, and in such a way 
that allows for flexibility in deciding which predictor (or 
combination of predictors) to use, as we describe in the next 
section. 

 

THE NEW ACE STUDENT MODEL 
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Figure 6. The revised ACE student model 
 

Figure 6 shows the revised student model over two time 
slices, where the shaded nodes indicate the part of the model 
that we modified to include evidence from eye-tracking. In this 
model, after an exploratory action occurs (e.g., the action 
represented by the node e0Case1 in slice T), time is kept and eye 
movements are monitored until the next action. When the next 
action is carried out, a new slice is created; in parallel, if the 
new action is not an action indicating explicit self-explanation 
(i.e., a selection of predefined self-explanations in an interface 
menu), an implicitSE node is created for the previous action in 
slice T, along with time, gaze shift and tendency-to-SE nodes 
with the appropriate values. These new nodes are used to assess 
the effectiveness of the exploration case, updating the 
corresponding node, e0Case1, shown in Figure 6. This update 
further propagates to the exploration of exercise (node e0 in 
Figure 6) and the other relevant exploration nodes shown in 
Figure 2.  The second time slice shows the addition of 
analogous SE nodes after the student performs an exploratory 
action corresponding to the exploration case  e0Case2 

As Figure 6 shows, the revised model – termed Gaze_Based 
model from now on – relies on   a clear separation between the 
causes of implicit self-explanation and its effects, i.e., gaze 
shifts and time on action. These effects are encoded as 
independent predictors, as in a naïve Bayesian classifier.   

The main advantage to this approach is that it is highly 
modular, allowing the gaze shift and time nodes to be easily 
used or ignored as needed. Modularity, along with the fact that 

all the variables in this part of the model are observable,  also 
facilitates learning the relevant conditional probabilities tables 
(CPTs, shown in Table 3) from frequencies in our  dataset. For 
instance, the probability that there is a gaze shift if a student  
self-explains (first entry on   the right in Table 3) is computed as 
the ratio of the number of  data points showing both self-
explanation and a gaze shift over the total number of   data 
points corresponding to self-explanation episodes.  Similarly, 
the probability that time on action is greater than 16 seconds   if 
a student  self-explains (first entry on   the left in Table 3) is 
computed as the ratio of number of data points showing both 
self-explanation and time greater that 16 seconds over the total 
number of data points corresponding to self-explanation 
episodes. In the previous model, the portion that tracks self-
explanation was based on intuition and reasonable estimates of 
conditional probabilities.  

 
Table 3: CPTs for time and gaze shift in the new model 

implicitSE P(time < 16s)  implicitSE P(gaze shift) 

Y 0.71  Y 0.61 

N 0.32  N 0.24 

 
The disadvantage of this structure is that it assumes 

independence between time and the presence of gaze shifts, 
which is not necessarily true. In fact, our data actually suggests 
a small positive correlation between the two. However, similar 
assumptions in pure naïve Bayesian classifiers have been shown 
to perform surprisingly well in practice, even when this 
independence cannot be guaranteed. 

Note that the version of the model in Figure 6 does not 
include the Coach’s hints to SE  nodes, nor the Stimuli-to-SE 
nodes shown in Figure 3. The Coach’s hints to SE  were 
removed because no hints were provided during the preliminary 
user study, and thus we had no data to set the relevant 
conditional probabilities. The Stimuli-to-SE nodes were 
removed because they were redundant, given that we were left 
with only one possible stimulus, the student’s SE tendency. 

To determine the relationship between tendency to self-
explain and implicit self-explanation, the study participants 
were divided into self-explainers – those who self-explained at 
least 20% of the time – and non-self-explainers – those who did 
not. We found that  self-explainers and non-self-explainers self-
explained 79.8% and 13.3% of the time, respectively. These 
frequencies were then used to set the conditional probabilities 
for the Implicit SE node: the probability that there is a self-
explanation episode if a student is a self-explainer was set to 
0.8, while the probability that there is a self-explanation episode 
if the student is a non-self-explainer was set to 0.1  

It should also be mentioned here that when we compared the 
average learning gain (difference from pre-test to post-test) of 
self-explainers and non-self-explainers, we found a  mean 24% 
gain for the self-explainers, against a  5.7% for non-self-
explainers.  The difference was found to be statistically 
significant at the 0.05 level (two-tailed t-test), confirming that 
self-explanation has a significant effect on overall learning.  

 



TESTING THE NEW STUDENT MODEL 

In this section, the performance of the new, Gaze_Based,  
model, is evaluated using new user data. For purposes of 
comparison, we also tested the two previous versions of the 
ACE model:  Action_Based model,  which does not include 
self-explanation at all, and Time_Based model,  with time only. 
This allows for an assessment of the incremental effects of 
adding self-explanation and then the gaze data to the ACE 
model.  

In order to gain data for model testing, we ran 18 more 
subjects with the same experimental setup and data analysis 
adopted for the first study. As in the previous study, participants 
were university students who had not taken any college level 
math. This new set of subjects yielded 109 exploration cases 
with self-explanation and 68 without, which were then used to 
assess the performance of the three models.  

In the reminder of this section, we first report the accuracy 
of the new model on this new data in assessing self-explanation 
(first subsection) and exploration (second subsection). We then  
describe a cross-validation analysis we carried out to  provide a 
more precise picture of the overall model performance and 
stability in assessing individual students. In the last subsection, 
the model is tested using different evidence of implicit self-
explanation. 

Accuracy of Implicit SE Assessment  
 

Table 4 Values of implicitSE nodes corresponding to actions 
in study data 

action Experts SE 
assessment 

Time_Based 
model  

(time only) 

Gaze_Based model   
( time and gaze shifts) 

1 Y 0.698 0.723 

2 N 0.287 0.180 

3 Y 0.409 0.645 

 
To test model accuracy in assessing implicit self-

explanation, we needed a threshold probability to decide when 
an implicitSE node predicts the occurrence of self-explanation. 
We derived this probability from data from the previous study, 
as follows. Using a simulated student program, the log files 
from the first study (training data) were run through each of the 
two models that do assess implicit self-explanation, e.g., the 
Time_Based model and the Gaze_Based model. The 
probabilities of  implicitSE nodes were then compared against 
the coded data points from the first study. Recall that each data 
point corresponds to a user action classified by human coders as 
self-explained or not. The implicitSE node in each model (see 
Figure 3 and Figure 6) also yielded probabilities that self-
explanation occurred at the time of this action. These 
probabilities were compared to coder assessments to test the 
predictive performance of each model. A small fragment of this 
data appears in Table 4 .  

To determine a good threshold over implicit SE nodes for 
each model, a Receiver Operating Characteristic (ROC) curve 
was constructed for these implicitSE probabilities. A ROC curve 
is a standard technique used in machine learning to evaluate the 
extent to which an information filtering system can successfully 

distinguish between relevant data (episodes the filter correctly 
classifies as positive, or true positives) and noise (episodes the 
filter incorrectly classifies as positive, or false positives), given 
a choice of different filtering thresholds. 

Figure 7 shows the ROC curves for our two models, where 
the filter is the threshold over implicit SE probabilities. From 
these curves, we chose for each model the threshold that 
optimizes the tradeoff between true positive rate and false 
positive rate, as is standard practice in machine learning. These 
thresholds are marked by an  asterisk in Figure 7. 

 
Table 5 Accuracies of implicitSE nodes 

 Time_Based 
model  

(time only)  

Gaze_Based model      
(time and gaze shifts) 

True Positive rate 
(sensitivity) 

65.1% 71.6% 

True Negative rate 
(specificity) 

62.6% 74.3% 

Combined  63.9% 73.0% 

 
Next, the user log files from the new study (test data) were 

run through each model. Using the thresholds found from the 
training set, the model’s implicitSE nodes were tested for 
accuracy against the new set of coded data. Table 5 shows the 
sensitivity,  specificity and combined accuracy for the two 
models.  

 
Figure 7. ROC curves for models as predictors of implicit 
self-explanation over training data 

 
Here, the addition of the eye-tracker causes an increase in 

each of the measures, with the increase being more substantial 
for specificity. This is consistent with the assumption, supported 
by data in the first study,  that the use of eye-tracking will catch 
many of the false positives inherent in the use of time as a 
predictor. To further compare the accuracy of the two models, 
we generated the ROC curves of their performance as predictors 
of implicit SE over the  new data set  (Figure 8). 

 



 
Figure 8. ROC curves for models as predictors of implicit 
self-explanation over testing data 

 
The area under a ROC curve is equal to the probability that 

a randomly selected positive case will be given a higher 
probability by the model than a randomly selected negative case 
[14].  Thus, ROC curves with larger area correspond to better 
predictors over the data. As shown in Figure 8, the Gaze_Based 
model yields a ROC curve with greater area than that of 
Time_Based model. This difference in area is statistically 
significant to the z > 1.96 level [14]. 

 Accuracy of Exploration Assessment 
Each of the three versions of the ACE model (including the 

the Action_Based model, which does not assess self-
explanation) was also evaluated as a predictor of adequate 
exploration. Data for this evaluation was collected as follows. In 
both user studies, participants completed a post-test on the 
mathematical concepts represented in the ACE model, 
immediately after interacting with ACE. A correspondence was 
then created between these concepts and specific post-test 
questions. These questions were then used to determine the 
student’s aptitude in each of the concepts (e.g., positive 
intercepts and negative intercepts) at the end of the experiment. 
In addition, when a student’s log file is run through any of the 
three models, the final probabilities of the exploration of 
categories nodes (e.g., nodes Negative Intercept and Positive 
Intercept in Figure 2) represent the model assessment that the 
student understands these concepts at the end of the interaction 
(i.e., that she adequately explored this material). This 
assessment can then be compared with the corresponding post-
test scores to evaluate model accuracy over effective 
exploration.  

 
Table 6: Accuracies of exploration nodes 

 Action_Based 
model  

 

Time_Based 
Model  

(time only ) 

Gaze_Based 
model  

(time and gaze 
shifts) 

True Positive   
rate (sensitivity) 

62.7% 70.4% 73.9% 

True Negative  
rate (specificity) 

55.2% 71.5% 76.3% 

Combined   59.0% 71.0% 75.1% 

 

As before, a ROC curve was constructed for each model 
over the training data to determine the best threshold at which 
an exploration node could predict adequate exploration – and 
thus understanding – of the material. These thresholds were then 
used to determine the accuracy of each model over the testing 
data, resulting in the accuracies listed in Table 6. Each of the 
accuracies increased with each successive model, indicating that 
the addition of self-explanation and gaze shift data yielded 
improvements. It also confirms that an increase in the accuracy 
of implicit self-explanation detection does in fact cause an 
increase in the accuracy of exploration assessment. 
    ROC curves were also generated to compare each model’s 
performance on exploration assessment over the test set; these 
appear in Figure 9. As shown in the figure, the area under the 
curve increased with the inclusion of self-explanation in the 
student model. The addition of gaze-shift data also caused an 
increase. Both of these increases were found to be statistically 
significant at the z > 1.96 level [14]. 

 

 
Figure 9. ROC curves for models as predictors of sufficient 
exploration over testing data 
 

It should, however, be noted that the increase in accuracy 
caused by the addition of the eye-tracker is higher for the 
implicitSE nodes than for the exploration nodes. This is due to 
the difference in the way each is measured. Each implicitSE 
probability is taken at the time that the associated action occurs 
while only the probabilities of the exploration nodes at the end 
of the interaction are used in the analysis. Thus, while the 
implicitSE nodes represent the state of the user at a specific time 
and are strongly affected by the presence or absence of a gaze 
shift, the exploration nodes’ final probabilities are the result of 
many actions throughout the interaction and are influenced by 
other factors. Given these results, we can conclude that the main 
benefit in adding eye-tracking versus using time only is  the 
more accurate assessment of implicit self-explanation, which 
allows ACE to generate more precise real-time interventions 
during the student’s interaction with the system.  

Cross-validation Analysis 
We conducted a cross-validation analysis to get a better 

picture of how the various models performed on individual 
students.  For each student model, leave-one-out cross-
validation was performed using all 36 students from both 
studies. This involved isolating a student and then setting model 
thresholds and conditional probabilities using  the data from all 
remaining students. This procedure was performed for each of 
the 36 students, and the accuracy results from each student were 
averaged.  



We started the analysis by assigning a generic prior 
probability of 0.5 to knowledge and tendency to SE nodes in 
each set. The mean combined accuracies and the standard 
deviations for the implicitSE nodes for each model with generic 
priors  are given in the first row of  
 
Table 7: Cross-Validation results for ImplicitSE nodes for 
different models and priors 

 Time_Based 
model 

Gaze_Based 
model 

Combined 
Accuracy 62.1% 71.6% Generic priors 
St, Dev. 8.1% 7.9% 

Combined 
Accuracy 65.8% 75.2% Customized 

Knowledge 
Node Priors St, Dev. 7.4% 7.2% 

Combined 
Accuracy 67.2% 76.4% Customized 

Knowledge  
and SE 

Tendency 
Node Priors 

St, Dev. 7.6% 7.1% 

 
Table 8: Cross-validation results for ImplicitSE nodes for 
different models and priors 

 Action_Based 
model 

Time_Based 
model 

Gaze_Based 
model 

Combined 
Accuracy 57.3% 65.3% 71.6% Generic 

priors St. Dev. 11.6% 9.4% 8.7% 
Combined 
Accuracy 64.7% 69.9% 76.8% Customized 

Knowledge 
Node 
Priors St. Dev. 10.1% 9.3% 8.4% 

Combined 
Accuracy 68.4% 70.4% 77.5% Customized 

Knowledge  
and SE 

Tendency 
Node 
Priors 

St. Dev. 9.2% 10.3% 7.9% 

 

Table 7. These values show improved performance with the 
addition of the eye-tracker as well as slightly higher stability. 
The performance difference is statistically significant at the 0.05 
level (one-tailed t-test). 

The first row of Table 8 shows analogous results for the 
exploration nodes. As before, there is an improvement in mean 
accuracy with each successive model. ANOVA analysis showed 
statistical significance in the differences within the set of mean 
accuracies, and a one-tailed T-tests showed that the differences 
between each model are statistically significant. 

We then looked at the   influence of assigning student 
tailored priors on each model’s performance. Knowledge node 
priors were set based on each participant’s performance on the 
study  pre-test.  If the student answered the corresponding pre-
test items correctly, a prior probability of 0.85 was assigned to 
the corresponding knowledge node. Otherwise, the probability 
was set to 0.15. These values were chosen as reasonable 
estimates since they are close to 1 and 0, but they still allow for 
those students who guess correctly or make errors even though 
they understand the concept. Also, early analysis showed that 

the model is not sensitive to small changes in these prior 
probabilities (e.g., using 0.9 and 0.1 instead). 

Cross-validation was then performed again using 
customized prior probabilities for knowledge nodes. The mean 
accuracies for the implicitSE nodes appear in the second row of 
Table 7. While customizing these prior probabilities causes an 
increase in accuracy and stability for each model, this increase 
was statistically significant only for the model that uses time 
and gaze shifts to detect self-explanation. Results with 
customized priors are also given for the exploration nodes in the 
second row of Table 8. Here, the customization causes a 
statistically significant increase in the mean accuracy for each 
model, as well as an increase in stability. 

Priors for the tendency to SE node were derived from our 
previously  discussed classification  of study participants into 
self-explainers – those who self-explained at least 20% of the 
time – and non-self-explainers – those who did not. If a student 
was classified as a self-explainer, the prior probability for her 
tendency to SE node was set to 0.85, while for a non-self-
explainer, a value of 0.15 was used (these values were 
arbitrarily picked after trying a few for both the high and low 
probabilities and realizing that the model was not sensitive to 
small changes over them). Repeating the cross-validation 
procedure using tailored priors for both knowledge and 
Tendency to SE nodes yielded the results given in the third rows 
of Table 7 and Table 8. In each case, for each model the 
improvement brought about by the customization of the 
Tendency to SE node failed to achieve statistical significance, 
showing that the model is not very sensitive to this parameter. 
However, we believe it is still worth keeping this node in the 
model, for two reasons. First, it provides ACE with an extra 
piece of information on potential causes of  poor exploration by 
a student (i.e., low self-explanation tendency). Second, its 
influence may become more relevant in the presence of the 
“coach hint to self-explain” node, which we plan to add as an 
additional cause of implicit self-explanation once we add data 
on the effect of these hints on student behavior. 

In summary, we found that adding eye-tracking to the 
student model causes a statistically significant improvement in 
the assessment of both implicit self-explanation and sufficient 
exploration. It is also advantageous to use pre-test results, if 
available, to customize the prior probabilities of the knowledge 
nodes. Tailoring the tendency to SE prior probabilities, 
however, fails to bring about a significant improvement. 

Performance with Different Evidence 
This section illustrates how the new model’s (Gaze_Based 

model) performance changes depending upon the type of 
evidence used  (time alone, gaze shifts alone or both).  

The log files of the new study participants were run through 
the new model two more times, once withholding eye-tracking 
data, once withholding time data. For each run, the accuracy of 
the model’s assessment over implicit self-explanation and 
exploration were computed as described earlier, yielding the 
results in Table 9. For purposes of comparison, the table also 
repeats the accuracies of the model that receives evidence from 
both time and gaze shifts. As shown in the table, information on 
time alone generates higher  sensitivity than information on 
gaze shifts alone,  while the latter generates higher specificity. 
These findings match those of the original user study [9]. They 
are also consistent with the assumption that time overestimates 



self-explanation behavior by assuming that the user spends all 
idle time considering the exploration. For each measure, the 
combined predictor outperforms either on its own 

.   
Table 9: ImplicitSE accuracies for ACE Gaze_Based model 
using different predictors as evidence of implicit self-
explanation 
 Time 

evidence 
only 

Eye-tracking 
evidence only 

Time and eye-
tracking 
evidence 

True positive rate 
(sensitivity) 

67.9% 62.3% 71.6% 

True negative rate 
(specificity) 

64.8% 67.8% 74.3% 

Combined  66.3% 65.1% 73.0% 

 
A similar analysis was performed to assess the influence of 

evidence type over exploration assessment, with results reported  
in Table 10. As with the implicitSE nodes, information on time 
alone has a higher sensitivity than using only gaze shifts. 
However, gaze shifts alone achieve higher specificity. These 
predictors combine to yield the highest accuracy for each 
measure. This is due to the fact that accuracy improves with 
more evidence used. It should also be noted that each single 
predictor seems to succeed where the other fails, so this 
complementary behavior likely contributes to the high accuracy 
of the combined predictor.    

 
Table 10: Exploration accuracies for ACE Gaze_Based 

model using different predictors as evidence of implicit self-
explanation 

 Time 
evidence 

only 

Eye-tracking 
evidence only 

Time and eye-
tracking 
evidence 

True positive rate 
(sensitivity) 

71.2% 69.8% 73.9% 

True negative rate 
(specificity) 

72.9% 73.4% 76.3% 

Combined 72.1% 71.6% 75.1% 

 
Notably, the accuracies generated by the new model when 

only time information is used are comparable to (although 
slightly higher than) the  accuracies of the Time_Based model, 
despite the differences in structure and method of  CPT 
definition (data-based for the Gaze_Based model and expert-
based for the Time_Based model). 

Pupil Dilation as Predictor of Self-
explanation 
 

In the previous sections, we showed that gaze-pattern 
information as detected by an eye-tracker can improve real-time 
assessment of user self-explanation, and consequent exploration 
behavior, during interaction with an ELE. The eye-tracker we 
used also records user pupil size during fixations. Pupil size has 
been shown to have a positive correlation with cognitive load. 
Since self-explanation requires cognitive effort that may 
increase a user’s cognitive load, we wanted to check whether we 

could use pupil size as an additional means of  detecting  self-
explanation in the ACE student model. In this section, we 
describe the results of this investigation. 

Data collection 
  In the user studies described in previous sections, the eye-

tracker generated  a log file containing, in addition to gaze data,  
the diameter of the user’s pupil throughout the interaction. 

Several factors are known to influence pupil size in addition 
to cognitive load [4], including ambient lighting, the size of the 
eye itself and even nonvisual stimuli such as sound.  Since it is 
not possible to keep environmental conditions adequately 
constant from one study session to the next or to ensure that 
users have similar pupils, it is common practice  to use 
normalization to get a pure correlation between pupil size and 
cognition. One standard normalization method [28] involves 
taking a baseline measurement at a time when all users should 
have the same cognitive state. This baseline encapsulates all 
information regarding each user’s pupil attributes, as well as 
environmental conditions. When the baseline is subtracted from 
all other pupil size values it yields a normalized measure that 
can  then be compared across users.     

We collected baseline measurements for all 18 subjects in 
the second ACE study. Participants were asked to turn off the 
computer monitor and stare at the blank screen for a few 
seconds after completing their interaction with ACE. This 
baseline was chosen because it was assumed that sitting idle 
while staring at the same visual stimulus at the close of the 
interaction with ACE would bring the  participants to  the same 
cognitive state.  

Recall that the second user study resulted in a set of 
exploration cases in which observers determined the presence or 
absence of  self-explanation. For each of these data points, we 
computed the user’s average pupil size after the action but 
before the next action9.  This was carried out as follows. During 
the time interval between actions, the learner made a series of 
eye fixations recorded by the eye-tracker. In addition to location 
coordinates, the data for each fixation included the length of the 
fixation in milliseconds and the user’s pupil size (given as 
image area in pixels) when it occurred. For each of these 
fixations, the pupil size and duration were multiplied. These 
values were then summed and divided by the total elapsed time, 
resulting in a weighted average pupil size between actions. 
Finally, the baseline measurement was subtracted, resulting in a 
normalized value. Table 11 shows a sample of this data. Note 
that each normalized value in the table is negative. While one 
might expect that users had a low cognitive load – and thus 
small pupil size – during  baseline recording, this could not be 
guaranteed. For baseline purposes, it was only necessary that 
students be in the same cognitive state. Further, students would 
naturally have larger pupils when staring at a blank monitor than 
when looking at a lit screen. 

After determining a normalized average pupil size value for 
each of the available data points, we checked  whether there was 
any  difference in the pupil size when  users were self-
explaining and when they were not. We found that users had a 
mean normalized pupil size of -56 when they self-explained and 
                                                                 
9 We actually excluded from the original data set those points in which 

self-explanation did not happen immediately after the action, to 
simplify data analysis.  



-59 when they did not. However, due to the large standard 
deviations (14.4 and 10.5, respectively), this difference fails to 
achieve statistical significance (as measured by a  two-tailed T-
test). 

A ROC curve was also created for these points to test the 
performance of pupil size as a predictor of self-explanation for 
different normalized pupil size thresholds. This curve appears in 
Figure 10. The area under the curve is 0.43, less than the area of 
0.5 given by random chance. Thus, over this data, pupil size is 
definitely not an acceptable predictor of self-explanation.  

 

 
Figure 10: ROC curve for pupil size as a predictor of self-
explanation 

 
One  possible cause  for this result may relate to the 

assumption that all users who stared at the blank screen after 
interacting with ACE were in approximately the same cognitive 
state. This might not have been the case, generating an 
inappropriate baseline. To test this theory, we tried a different 
data normalization technique, i.e., we used Z-scores to 
normalize pupil sizes among participants. Each mean pupil size 
was normalized according to the following formula: 

                         Xk - m 
       Xk’  =   --------------- 
                            s 
where Xk’ is the normalized mean pupil size after action k, 

Xk is the mean pupil size after action k (see  values in the third 
column of Table 11), m is the average value of Xk over all 
actions by the user, and s is the standard deviation. While the 
mean pupil size m encapsulates all information that affects the 
user’s pupil size (i.e., lighting conditions and eye size), it is not 
specific to any single moment during the experiment and thus 
does not require the assumption that we identify the point at 
which all users are in the same state, as is required for the 
baseline method.   

 
Table 11: Sample fragment of pupil size data 

User 
# 

Self-Expl.? Mean pupil 
size 

after action 

User 
baseline 

Normalized 
value 

7 Y 1321 1391 -70 

7 Y 1359 1391 -32 

8 N 550 606 -56 

8 Y 584 606 -22 

… … … … … 

 
As before, we determined whether there was a significant 

difference in the pupil size of users who were self-explaining 
and those who were not. Users had a mean normalized pupil 
size of 0.928 when they self-explained and 0.812 when they did 
not. However, due to the large standard deviations  (0.37 and 
0.29, respectively) this difference also fails to achieve statistical 
significance. The ROC curve  for  pupil size as a predictor of 
self-explanation for different Z-score normalized pupil size 
thresholds has an underlying area of   0.49, about the same as 
that given by random chance. This confirms that, even with Z-
score normalization, pupil size is not an acceptable predictor of 
self-explanation. 

We then hypothesized that the negative results may  be due 
to incorrectly assuming that the effect of self-explanation on 
cognitive load would span the whole interval between the self-
explained action and the following one. One possibility is that 
positive self-explanation caused the greatest increase in 
cognitive load – and thus pupil size – immediately after the 
outcome of the corresponding exploratory action. In this case, 
examining the weighted mean pupil size over the whole time 
interval between actions would fail to capture this behavior, as 
the pupil size increase would be dissipated by the smaller pupil 
size values at the end of the time interval. Figure 11(a) shows a 
plot of the hypothetical  pupil size in this case. Another 
possibility is  that the greatest increase in cognitive load 
occurred at the end of the time interval, after the user had 
noticed the action outcome and had time to consider its 
meaning. These two cases appear together in Figure 11 (b). In 
either case, taking the mean pupil size over only the middle 
portion of the interval, as shown in the figure, would best 
capture the pupil size increase. 

 

 
Figure 11: Hypothetical pupil size plotted over the time 
interval when it is largest at (a) the beginning and (b)  at the 
beginning or the end (b). In (b), dotted lines indicate the 
middle 60% of the time interval 

 
To test this theory, we calculated normalized weighted pupil 

sizes (using Z-score normalization) over only the middle 60% of 
each time interval. With this new measure, users had a mean 
normalized pupil size of 0.861 when self-explaining and a mean 
pupil size of 0.794 otherwise.  The difference of these means 
still failed to reach statistical significance. The area under the 
ROC curve for this data  was found to be 0.41, again less than 
that which would have resulted from random chance. 
 



Discussion 
The results discussed in the above section provide an initial 

indication that pupil dilation may not be a good predictor of 
self-explanation. This could be due to two reasons. The first is 
the inadequacy of pupil dilation as a detector of  the differences 
in cognitive loads generated by presence or absence of self-
explanation. The second is that such differences are not 
substantial enough to be detectable. Our data does not provide 
conclusive evidence to discriminate between the two 
explanations, nor are we aware of any cognitive science 
research on the relationship between self-explanation and 
cognitive load that may provide insights into this issue.  
However,  the large standard deviations we found in all of the 
different cognitive load measures we tried speak in favor of the 
second hypothesis. That is, there seem to be cases when users 
were  not self-explaining but their cognitive load was relatively 
high, perhaps because of  the very fact that they were interacting 
with a complex system  or thinking about mathematical 
functions. The rather intrusive eye-tracker may have also 
interfered with some of the subjects’ thinking, thus working as 
an external cause of increased cognitive load. It is  also possible 
that for some of the study participants, the spontaneous self-
explainers in particular, self-explanation comes quite naturally 
and thus does not involve an increase in cognitive load 
significant enough to be reflected in their pupil size.     

Note that support for the first hypothesis, i.e., that pupil size 
is not always a good predictor of cognitive load, may come from 
the findings in [27]. This work described a study that failed to 
show a correlation between  pupil size and the difficulty of text 
subjects were asked to read. One could conclude from  these 
results  that pupil size  is not a good predictor of cognitive load 
during reading tasks if the  reading tasks in the study did indeed 
cause detectable cognitive load differences. This was not 
necessarily the case, however. The different texts used were 
classified as easy or difficult overall but, being quite long, may 
have had passages of varying difficulty. Thus, subjects’ 
cognitive load may have significantly fluctuated within each 
reading task,  making it impossible to detect any significant 
differences when the load was measured over the complete task. 

 
DISCUSSION AND FUTURE WORK 

In this paper, we have presented research on using real-time 
eye-tracking data for the on-line modeling of user self-
explanation and effective exploration, two meta-cognitive 
behaviors relevant for student learning during interaction  with 
ACE, an exploratory learning environment for mathematical 
functions. The goal is to enable the environment to provide 
adaptive support to improve these meta-cognitive behaviors and 
consequent student learning.  

The main contribution of the paper is a formal evaluation 
showing that the model including eye-tracking information on 
user gaze shifts provides a more accurate assessment of student 
self-explanation  than a model using only time as a lower-level 
predictor.  Our evaluation also shows that modeling self-
explanation improves the  assessment  of  student exploratory 
behavior, as opposed to relying only on student interface 
actions. This result supports the argument that modeling high-
level user traits can improve the adaptive capability of an 
Intelligent User Interface, providing an initial justification for 
the effort involved in this type of sophisticated user modeling.  

One of the  avenues of future work in this research is to 
further explore gaze-tracking as a predictor of self-explanation 
and effective exploration by considering additional gaze 
patterns in addition to the gaze shifts discussed in this paper. We 
have started to  investigate the distinction between direct and 
indirect gaze shifts by using unsupervised machine learning 
(clustering)  on  these two gaze patterns in conjunction with all 
ACE interface actions (not only plot and equation changes 
considered in this paper). This enabled us  to identify clusters of 
students with similar interaction behaviors and learning 
outcomes [2].  While intuition suggests that indirect gaze shifts 
may indicate student distraction, our preliminary results show 
that they are a better predictor of effective  exploration than 
direct gaze shifts. Although our finding that direct gaze shifts 
seem to be less  informative than  indirect ones may be an 
artifact of the available data points, the fact that indirect gaze 
shifts do correlate with effective exploration shows that they 
generally do not indicate distraction, consistent with what we 
had assumed in the research presented here. However, these 
findings are based on the data set collected in the constrained 
laboratory setting described in this paper. It will be interesting 
to investigate if and how they transfer  to a more natural, noisy 
environment where it is easier for a student to be distracted.  

Another question that we are planning to address in future 
research is whether gaze patterns other than gaze shifts can 
predict effective exploration. For instance, what if the student 
does not shift between the graph and plot  regions, but  
looks at one of them for a while? Can this indicate  self-
explanation? Since the space of potentially meaningful patterns 
can be rather large and some of them may be unintuitive,  we 
are planning to use unsupervised clustering to mine gaze data 
for these patterns. 

In this paper we have also presented results on the 
performance of pupil dilation as a predictor of self-explanation. 
The rationale behind investigating this predictor relies on the 
link that has been found between pupil size and cognitive load, 
and on the assumption that self-explanation may generate 
detectably higher cognitive load than lack of it.  Our findings, 
however, suggest that  pupil size is not a reliable predictor of 
self-explanation, at least during interaction with ACE.  

The final proof of the utility of rich user models must come 
from empirical evidence that adaptive intelligent interfaces  
based on these models improve user performance. The next step 
in our research is to provide this empirical evidence for  ACE. 
We have designed a variety of interface tools that allow ACE to 
provide different levels of prompting for both exploration and 
self-explanation by relying on the assessment of the student 
model described here. We are in the process of designing a user 
study to test the effectiveness of these adaptive tools.  One of 
the goals of the study will be to gain better insight on the 
distinction between explicit and implicit self-explanation, in 
particular on their relative frequency and on how much is gained 
by being able to detect implicit over explicit self-explanation, 
which is significantly easier to detect. 

A longer-term research avenue is to investigate how the 
results presented in this paper generalize to other tasks and 
domains. For instance, Conati and Vanlehn [10] proposed a 
system that tracks user self-explanation of examples during 
problem solving of  physics problems by making  each 
individual example line visible only if the student moves the 
mouse over it. This allowed the system to gather  data on the 



latency of student attention for each uncovered line, which was 
then used as a prediction of self-explanation in the system’s user 
model. We are planning to substitute the mouse-based tracking 
mechanism with an eye-tracker to ascertain how much more 
information it  can provide on useful user gaze patterns, as well 
as to compare the two interfaces in terms of user disruption. 
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