
eyeDentify: Multimedia Cyber Foraging from a Smartphone

Roelof Kemp, Nicholas Palmer, Thilo Kielmann, Frank Seinstra, Niels Drost, Jason Maassen and Henri Bal
Computer Science
Vrije Universiteit

Amsterdam, The Netherlands
{rkemp, palmer, kielmann, fjseins, niels, jason, bal}@cs.vu.nl

Abstract—The recent introduction of smartphones has re-
sulted in an explosion of innovative mobile applications. The
computational requirements of many of these applications,
however, can not be met by the smartphone itself.

The compute power of the smartphone can be enhanced
by distributing the application over other compute resources.
Existing solutions comprise of a light weight client running on
the smartphone and a heavy weight compute server running
on, for example, a cloud. This places the user in a dependent
position, however, because the user only controls the client
application.

In this paper, we follow a different model, called cyber forag-
ing, that gives users full control over all parts of the application.
We have implemented the model using the Ibis middleware.
We evaluate the model using an innovative application in the
domain of multimedia computing, and show that cyber foraging
increases the application’s responsiveness and accuracy whilst
decreasing its energy usage.

Keywords-content analysis; object recognition; mobile; mid-
dleware; cyber foraging

I. INTRODUCTION

In the past 12 months both Google [1] and Microsoft
[2] as well as Research In Motion [3], Sony Ericsson [4]
and Nokia [5] have opened or announced application stores
targeted at smartphone applications. These stores are much
like and pushed by the success of the Apple App Store
for iPhone applications [6], which already has exceeded
1 billion downloads. The various application stores have
rapidly filled with applications that range from the very
simple to highly sophisticated ones that make effective use
of the available sensors on the smartphone [7], [8].

Although the smartphone is a suitable device to interact
with users [9], it is significantly less suitable for heavy
weight computation, due to the hardware limitations (pro-
cessor, memory and, perhaps the most challenging, energy
capacity). Smartphone applications that require extensive
computation typically offload their computation to a service
in a cloud and communicate with this service using a
client/server model [10]. Users of such distributed appli-
cations can obtain the client application by purchasing it
from the market. Although users pay for the client side
of the application, they do not control the server side and
therefore have no guarantee that this server will be available
and will offer the expected quality of service, or any service

at all. In other words, the user depends on the goodwill
of the service provider, who can, for instance, change or
upgrade the communication protocol anytime and charge for
a new compatible client application. Furthermore, the service
provider has to deal with keeping a server up and running
and the developer of the server has to address non trivial
scalability, if the application becomes popular very quickly
as occurred with services such as Twitter.

In contrast, the cyber foraging model [11] offers users
of mobile devices control over both the client and the
server part of a distributed application. In this model users
can exploit various compute resources called surrogates,
which can be used to run the server part of the distributed
applications. Using this model, the smartphone can offload
tasks to a user’s private compute resources such as laptops,
desktops and home servers, or to public resources including
clouds [12] and compute clusters.

As we argued in [13], middleware from the existing high
performance distributed computing domain has much in
common with mobile distributed computing. In this paper
we explore the applicability of Ibis, a Java based high
performance distributed middleware [14], for cyber foraging
on smartphones. We use the Ibis Distributed Deployment
System to deploy the heavy weight computations onto sur-
rogates and the Ibis High-Performance Programming System
to efficiently communicate with them.

To evaluate the applicability of Ibis as a cyber forag-
ing middleware, we have made a smartphone application,
named eyeDentify, on top of the Ibis middleware that can
perform object recognition, using the camera sensor of the
smartphone. Object recognition is a heavy weight com-
putation task and representative for a much broader class
of multimedia applications that one would wish to use on
smartphones. We compare computation offloading with com-
puting on the smartphone itself in terms of responsiveness,
accuracy and energy usage.

The contributions of this paper are:
• We build a practical system that offers the means

to deploy heavy weight computing from light weight
devices to suitable compute resources.

• We show that multimedia applications with heavy
weight computing components benefit from our system
with respect to responsiveness and energy usage.

2009 11th IEEE International Symposium on Multimedia

978-0-7695-3890-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ISM.2009.21

392

• We build a multimedia application that can perform
object recognition on a smartphone.

In section II we discuss the Ibis middleware and how
it can be used for cyber foraging. Section III describes
the object recognition application built on top of the Ibis
Middleware. In section IV we present the measurements we
performed with this application. Section V puts our work
into the context of the related work and in section VI, we
conclude.

II. CYBER FORAGING WITH IBIS

In this section we describe the Ibis high-performance
distributed computing middleware and how it is used for
cyber foraging on smartphones. Since Ibis is a Java-based
middleware and because the open source Android operating
system offers the most complete virtual machine that can
run Java code on smartphones, we focus on using Ibis on
Android.

The Ibis middleware is originally designed for the domain
of High-Performance Distributed Computing and Grid Com-
puting, but also has potential for Mobile Computing [13].
It allows programmers to build powerful distributed appli-
cations using a very simple interface, one of the challenges
for general smartphone middleware described by [15]. Other
challenges are for smartphone middleware to be resource and
energy aware. As such, it should use lightweight communi-
cation protocols, be aware of local processing pitfalls, and
deal with periods of no connectivity and no sensor access.
Furthermore it should not rely on adhoc networking and
significantly simplify the software development process.

While the Android operating system itself offers contin-
uous access to the sensors and comes with a good devel-
opment environment, the Ibis middleware on smartphones
fulfills a number of the middleware challenges through its
two orthogonal components: the Ibis Distributed Deploy-
ment System and the Ibis High-Performance Programming
System (see Figure 1).

A. Ibis Distributed Deployment System

The Ibis Distributed Deployment System offers the means
to deploy a remote application, an essential feature needed to
turn available resources into surrogates. Its main component
is the Java Grid Application Toolkit (JavaGAT) [16], a
toolkit that offers an API for remote File Management,
remote Job Submission, Monitoring and Steering. Due to
its flexible design it can bind to any middleware using
an adaptor that maps the JavaGAT API calls to the calls
for a particular middleware. JavaGAT contains adaptors for
grid middleware among which Globus, gLite and SGE, and
common middleware such as SSH and SFTP, while adaptors
for cloud platforms are in progress (Amazon EC2). We have
ported the JavaGAT to Android together with two adaptors,
one to access the local resources and one to access resources
using SSH. Using the JavaGAT version on Android we are

Ibis Middleware

Grid / Mobile Application

low

high

ab
st

ra
ct

io
n

le
ve

l

JavaGAT

D
ep

lo
y

lo
ca

l

ss
h

IPL

Jo
ru

s
S

.S
oc

k.

Figure 1. Overview of the Ibis middleware. The Ibis middleware consists
of several subprojects, each implementing a part of grid middleware
requirements. The left part of the Ibis middleware is the Ibis Distributed
Deployment System, with JavaGAT as main component. The right part of
the Ibis middleware is the Ibis High-Performance Programming System. Its
main component is the Ibis Portability Layer (IPL). The boxes with texts
are subprojects used for Cyber Foraging.

able to start any remote application on any machine that can
be reached using SSH.

On top of the JavaGAT the Ibis Distributed Deployment
System offers a deployment library, called IbisDeploy, tai-
lored to start distributed applications built using the Ibis
High-Performance Programming System. On top of the
IbisDeploy library there is a graphical user interface (GUI)
which can be used to deploy Ibis applications. Both the
library and the GUI simplify the complex task of deploy-
ing a distributed application onto compute resources. The
deployment of a distributed Ibis application consists of the
following subtasks:

• Copy the application, the libraries and the input files to
the compute resources

• Start an Ibis Server (registry) process
• Form an overlay network
• Construct middleware-specific job descriptions
• Submit the jobs to the compute resources
• Keep track of the job statuses
• When the jobs are done, retrieve the output files
• Clean up the remote filesystems

The IbisDeploy library and application use the concept
of workspaces, in which applications, compute resources
and job descriptions can be defined. Workspaces can be
stored in files. A job description describes which application
should be started on which compute resource. An application
description describes the application itself, for instance its
main class, the virtual machine options it needs and the
arguments it gets. Finally, the compute resource description
contains the details about how it should be accessed.

393

We have ported both the library and the graphical user
interface tool to Android. IbisDeploy on Android offers a
easy-to-use library together with an application to deploy
remote Ibis applications. IbisDeploy is based on the phi-
losophy that distributed application developers develop their
application on a local machine and, when finished writing,
deploy the application from the local machine. Therefore,
IbisDeploy does not require any software to be available on
the remote machines other than its default middleware where
JavaGAT binds to and a Java Virtual Machine, used to run
the application.

B. Ibis High-Performance Programming System

Having described how Ibis-based applications are de-
ployed onto surrogates we now turn our attention to how Ibis
applications are programmed. The Ibis High-Performance
Programming System offers a programming environment to
build distributed applications. The main component of this
system is the Ibis Portability Layer (IPL), a communication
library, that offers lightweight but powerful and efficient
communication primitives. The IPL supports unidirectional
communication streams, that can be connected between
multiple endpoints (ports). The IPL ports support one-
to-one, one-to-many and many-to-many connections. For
each communication port, the programmer can specify the
requirements for that port, thereby allowing the IPL to
choose the most efficient communication implementation
that satisfies the requirements. The IPL can do very efficient
object serialization [17] and it also offers the means to
implement fault-tolerance and malleability (the possibility
to add and remove compute resources).

The IPL can communicate over normal TCP streams
based on sockets, but there is also an implementation that
communicates over SmartSockets streams. The SmartSock-
ets library [18] is also part of the Ibis High-Performance
Programming System and provides connections in difficult
situations where normal TCP connections cannot be estab-
lished. It can make connections through firewalls, it can
effectively deal with Network Address Translation (NAT)
issues and also solves the problem of connecting with
machines with multiple network addresses. Since firewalls
and NAT-boxes are common, we use the IPL implementation
over SmartSockets for cyber foraging.

On top of the IPL several programming models are im-
plemented like Remote Method Invocation, Group Method
Invocation, Satin (a divide and conquer programming model)
and Jorus (a Java implementation of Parallel-Horus [19]), a
high performance multimedia programming model. We use
the Jorus programming model to build the object recognition
application. Through the IPL and the programming models,
the Ibis High-Performance Programming System supports
asynchronous as well as synchronous programming.

Figure 2. Two screenshots of the eyeDentify application. The upper one
shows the eye looking at an object in recognition mode. The lower screen-
shot shows the result after the user has triggered the object recognition.
The object is recognized correctly.

III. EYEDENTIFY

The system described above can be used for any dis-
tributed application that contains heavy weight comput-
ing. To illustrate this, we have implemented eyeDentify,
a smartphone application that performs color based object
recognition on images taken with the built-in camera sensor
(see Figure 2). It is an interactive application in which
the user can teach the application names of objects and
subsequently let the application identify these objects. This
application is a typical example from the general domain of
Multimedia Content Analysis (MMCA) that aims to extract
new knowledge from multimedia archives and data streams.

In learning mode the user takes a picture of an object and
enters its name. The application stores the learning result
into its internal database.

In recognition mode, the user takes a picture of an object,
possibly under different viewpoint and lighting conditions,
and eyeDentify will present the best match from the local
database of learned objects.

Algorithms developed for object recognition try to mimic
to some extent the way humans recognize objects. An

394

β, γβ, γ

β, γβ, γ

in
fo

rm
a
ti

o
n

p
re

se
rv

a
ti

o
n

lower

higher

feature extraction process

(a) (b) (c) (d)

Figure 3. Schematic overview of feature extraction process of the image recognition algorithm used by eyeDentify. The process starts with a source
image (a), with an overlay of rings with receptive fields (b). The bigger the source image, the more information of the original source is preserved. More
receptive fields also increase the information preservation. Then, for each receptive field various color models (c) can be used to compute color histograms.
Increase in the number of color models, increases the information about the image. The number of bins (d) in the histograms of the color models can be
varied. The shape of the histograms can be approached by a weibull fit with two parameters, beta and gamma.

important difference between algorithms and humans is that
algorithms operate on image input only, whereas humans
use additional contextual information to identify an object.
Therefore algorithms focus on getting as much useful infor-
mation as possible out of the source image through a series
of steps where the raw image information is converted into
useful information, called features.

EyeDentify uses an object recognition algorithm taken
from the Jorus high performance computing multimedia li-
brary. This compute intensive algorithm can run sequentially
on a single compute resource as well as distributed on
multiple compute devices, making it a good candidate to
evaluate the use of cyber foraging, with multiple surrogates
working together.

We implemented two versions of eyeDentify, one being a
computation producer version that performs the computation
on the smartphone itself, and another one being a compu-
tation consumer that deploys the entire computation server
including the needed libraries to the surrogates using Ibis
cyber foraging. Because Ibis offers a programming model for
distributed multimedia computing and libraries for starting
remote applications it was easy to implement the cyber
foraging version of eyeDentify.

We evaluated the impact of remote execution on two
important quality indicators of an application on the smart-
phone, the responsiveness and the energy usage, while we
varied the input image size and the accuracy settings of
the algorithm. The dimensions of the input image together
with the accuracy settings determine the amount of compute
power, memory and energy needed for the computation.

The larger the dimensions of the input image are, the
more resources the image recognition algorithm needs. The
accuracy settings contain values for the parameters for each
step in the feature extraction process. We will first describe
the feature extraction process and then discuss the impact
of its parameters on the resource usage.

A. The object recognition algorithm

For a given image the object recognition algorithm first
designates a number of circular areas, called receptive fields,
around the image center. Then, for each receptive field a
number of color histograms is built, each for a different color
model. Each color model has been selected for its invariance
to specific imaging conditions, such as shadows, shading,
and differences in the color of the light source. Subsequently,
the shape of each color histogram is approached by a weibull
fit. The resulting parameters for all histograms are combined
in a single feature vector, thus forming a condensed descrip-
tion of the image scene. As each feature vector represents
a point in a high-dimensional space, object recognition is
achieved by finding the closest neighboring point in this
space.

The accuracy parameters that can be changed without
breaking the algorithm are the dimensions of the input image
(Figure 3a), the number of receptive fields (Figure 3b), the
number of color models (Figure 3c) and the number of the
bins in the color histograms (Figure 3d). However, changes
in these parameters will have an effect on the accuracy and
performance of the algorithm. A higher number of receptive
fields, color models or bins in the color histograms, will

395

Table I
ACCURACY PROFILES

receptive fields color models bins
low (?) 7 1 100

medium (??) 19 2 500
high (? ? ?) 37 3 1000

result in more accurate image recognition but also in higher
resource usage. We made three accuracy profiles (Table I),
one with high accuracy and strong performance require-
ments, another one with low accuracy and low performance
requirements and one in between to evaluate the impact of
the accuracy parameters on the resource usage.

IV. MEASUREMENTS

Ideally a smartphone application will be responsive and
energy efficient. We show that by using cyber foraging,
both the responsiveness and the energy usage of eyeDen-
tify improve. We have performed measurements with two
versions of the eyeDentify application. One that does all the
computation on the phone itself (standalone version) and
one that uses cyber foraging to offload the computation to
surrogates (foraging version). In this section we will first
briefly outline the environment in which we performed our
measurements by describing the hardware resources we used
and then proceed with a discription and a discussion of the
measurements.

A. Hardware Environment

We have run our measurements on the T-Mobile G-1
smartphone. The G-1 has a 528 MHz Qualcomm ARM
based processer and 192 MB RAM. It can communicate
using GSM, 3G, Bluetooth and Wifi (802.11b/g), of which
we use the Wifi for our experiments. Furthermore, it contains
a number of sensors: a 3.2 MegaPixel camera, GPS, a
compass and an accelerometer. The G-1 runs the Android
Operating System.

We used 8 nodes of the VU cluster of the DAS-31 as
surrogates for the cyber foraging version of eyeDentify. Each
of the cluster nodes has a dual-CPU / dual-core 2.4 GHz
AMD Opteron processor and 4 GB of RAM. The nodes run
the Scientific Linux Operating System.

B. Responsiveness

We define responsiveness as the time used by an applica-
tion to respond upon a user-triggered request. Whether a user
is satisfied with the responsiveness offered by an application
highly depends on personal preferences, but in general the
lower the response time is, the higher the user’s satisfaction.

In eyeDentify the user can trigger three actions which
cause a considerable amount of computation and therefore
are may not meet the responsiveness requirements of the
user. These actions are: the initialization of the application

1Distributed ASCI Supercomputer, http://www.cs.vu.nl /das3

Table II
INITIALIZATION (IN SEC.) VS. ACCURACY

version . standalone foraging
accuracy . ? ?? ? ? ? ? ? ?

image size
32 x 24 0.55 0.95 1.92 0.12
64 x 48 4.54 9.28 17.33 0.12

128 x 96 28.52 79.76 - 0.13
256 x 192 - - - 0.67
512 x 384 - - - 4.25

1024 x 768 - - - 42.1
2048 x 1536 - - - 451

and the learn and recognize actions. We will briefly describe
the initialization measurements and then focus on the mea-
surements of the learn and recognize actions.

During the initialization eyeDentify initializes the object
recognition algorithm. For each receptive field a number of
Gaussian filters is computed. The size of a receptive field
depends on the dimensions of the images that are going
to be used. The more and the bigger the receptive fields
the longer the initialization process takes. Table II shows
the algorithmic initialization times for different accuracy
settings for both versions. Although the foraging version
benefits from parallel algorithmic initialization on the sur-
rogates, it needs additional foraging initialization time to
start up the processes. The foraging initialization time in
our experiments was about 34.8 seconds and in general will
depend on factors like file transfer and queueing time on the
surrogates.

Once the algorithm is initialized, the learn and recognize
actions will be repeatedly invoked. They both trigger the
same heavy weight computing task, the computation of a
feature vector out of a captured image. The database lookup
time for the recognize action is neglectable, and therefore
is not included in the measurements. We measured the
responsiveness of eyeDentify while varying the accuracy
settings (i.e. the accuracy profile together with the image
size) and the results are shown in Table III. The last column
of the table shows the total response time of the foraging
version and the portion of it caused by computation.

Due to the limited memory (16 MB) available to an appli-
cation on the G-1 running Android, the standalone version
can perform object recognition on images with sizes up to
128 x 96 pixels, but only with medium accuracy settings.
For images larger than 128 x 96 pixels, the initialization
process requires more memory. The memory size is also
a limiting factor for the 128 x 96 image with the highest
accuracy profile, although not during the initialization of the
algorithm, but during the execution of the algorithm itself.

While the standalone version can only operate on fairly
small images, the foraging version can use the maximum
resolution of the camera (3.2 MegaPixels) with the highest
accuracy profile. Even when operating on an image with
1024 times more pixels (64 x 48 vs. 2048 x 1536), the

396

Table III
RESPONSE TIME (IN SEC.) VS. ACCURACY

version . standalone foraging
accuracy . ? ?? ? ? ? ? ? ?

image size total comp.
32 x 24 0.66 5.99 25.61 0.46 (0.12)
64 x 48 1.38 8.57 32.21 0.54 (0.12)

128 x 96 4.09 17.49 - 0.55 (0.13)
256 x 192 - - - 0.60 (0.19)
512 x 384 - - - 0.81 (0.41)

1024 x 768 - - - 2.06 (1.29)
2048 x 1536 - - - 6.51 (4.87)

cyber foraging version is still about 5 times faster than the
standalone version. For small images, a major part of the
response time of the cyber foraging version gets spent on
communication, however, it is still about 56 times faster
with the smallest image size and about 60 times faster
with the 64 x 48 images. The computation itself is about
250 times faster on the surrogates than on the smartphone,
which means that if the phone would have enough memory,
the computation for a 2048 x 1536 image would take about
20 minutes.

We consider response times of up to 20 seconds still
acceptable for the learn and recognize actions, which means
that we consider running the standalone version with the
high accuracy profile as not acceptable. The response times
of the cyber foraging version, however, are all well below the
20 seconds. We conclude that cyber foraging proves to be a
good technique that can drastically improve the responsive-
ness of smartphone applications that are compute intensive
and that need only a limited amount of communication to
offload the computation.

C. Energy Usage

Although offloading computation using cyber foraging
increases the responsiveness of the application, it also in-
troduces communication, which is known to be much more
energy consuming than computation [20]. To evaluate the
impact of cyber foraging on the smartphone’s energy usage
we performed experiments in which we measured the energy
consumption on the smartphone of both the standalone and
the foraging version of eyeDentify.

In each experiment we fully charged the phone and
then let it repeatedly execute a feature vector computation
until the battery was only 20 percent charged. We counted
the number of executions for both the standalone and the
foraging version, while varying the accuracy profile and the
image size for each experiment.

The results of the experiments are shown in Figure IV
and show that increasing the computation complexity for the
standalone version by either increasing the image size or the
accuracy settings results in a lower number of executions.
For the foraging version, a larger image size and thus an
increase in communication, results also in less executions.

Table IV
EXECUTIONS VS. ACCURACY

version . standalone foraging
accuracy . ? ?? ? ? ? ? ? ?

image size
32 x 24 15,764 1,652 405 15,283
64 x 48 7,928 1,351 333 15,047

128 x 96 2,930 590 - 14,375
256 x 192 - - - 12,119
512 x 384 - - - 8,481

1024 x 768 - - - 3,746
2048 x 1536 - - - 1,712

Even for the smallest images (32 x 24 pixels) with low
accuracy recognition where the computation for the stan-
dalone version is relatively small, the foraging version per-
forms about the same number of executions, but then with
high quality accuracy settings.

When both versions use the high quality accuracy settings
the foraging version can do about 40 times more executions
than the standalone version. The foraging version operating
on the full 3.2 MegaPixel image can still do about 5 times
more executions than the standalone version operating on
64 x 48 pixel images.

Battery lifetime is a very important aspect of todays smart-
phones and smartphone applications therefore should focus
on consuming as little as possible energy. The additional
costs for communicating in the foraging version are less
than the costs that are saved by not doing heavy weight
computation on the phone itself, making cyber foraging an
attractive alternative to the local computing with respect to
energy usage.

V. RELATED WORK

In [11] cyber foraging is described as an effective way
to deal with light weight mobile devices that need heavy
weight computation. Important aspects of cyber foraging are
the discovery of surrogates, the trust relation between the
client and the surrogates, load balancing on the surrogates,
scalability and seamlessness. The Ibis middleware provides
several of these aspects through its various components.

The IbisDeploy library, built on top of the JavaGAT,
specifies a format of resources that could be discovered.
Currently, the discovery of resources is done manually by
acquiring a file with the resource description or by a user
configurated resource description. IbisDeploy deals with
the trust relation, load balancing and scalability implicitly,
because it makes use of existing middleware’s trust models,
load balancing and scalability through the JavaGAT adap-
tors.

The PeerHood environment is a middleware for cyber
foraging. It has been used for a cyber foraging application
that performs barcode analysis [21]. Using the PeerHood
environment, mobile clients dynamically discover distributed
resources offering a service to analyze barcodes. Other

397

than Ibis, PeerHood needs prestarted running servers on
all compute resources, introducing a dependency on the
maintainers of the servers for the user of the application.
Furthermore, PeerHood is not available on Android.

The Split Smart Messages [22] smartphone middleware
allows arbitrary code to be transfered from a smartphone to
another resource, but requires the middleware to be already
running on both the smartphone as well as the compute
resource and therefore is not as powerful as Ibis, which
can deploy itself to any accessable resource that has a Java
version installed.

The design and implementation of a non Java cyber
foraging system based on virtualization on the surrogates
is describe by [23]. Using this cyber foraging system they
made a smartphone application for speech recognition. Per-
formance evaluation for this application shows increase in
responsiveness of 200 times and a reduction of energy usage
of 60 times compared to a local execution. The Ibis middle-
ware offers a similar way to deploy distributed applications,
but in addition it offers several easy to use programming
models. Furthermore, the SmartSockets component solves
connectivity issues, in case the surrogate is behind a firewall
and can for example only be reached through SSH.

The CloneCloud architecture [24] replicates the phone
state to the cloud and uses the compute power of the
cloud to perform augmented execution on a phone emulator.
CloneCloud supports five types of augmented execution.
Primary functionality outsourcing is used to offload heavy
weight computations to the clone. Background augmenta-
tion is used for heavy weight computations that do not
necessarily need to respond quickly. Execution done on
the phone itself concurrent with a slightly different ex-
ecution in the cloud (for instance, a taint check version
of the execution) is called mainline augmentation. Fourth,
there is hardware augmentation, which compensates for the
hardware shortcomings of the phone, such as the memory
size. And finally the authors describe augmentation through
multiplicity, where execution can be enhanced using parallel
computing in the cloud. In contrast with CloneCloud, the
Ibis middleware does not require synchronization with the
cloud, but still can offer augmentend execution through
primary functionality outsourcing, hardware augmentation
and augmentation through multiplicity as shown in the
eyeDentify application, presented in this paper.

VI. CONCLUSIONS

A well-known technique to make heavy weight ap-
plications run on smartphones is making the applica-
tions distributed. Current distributed applications follow the
client/server model, in which the smartphone user only
controls the client part of the distributed application and
therefore is prone to future incompatibility with the server.

We show that an alternative model, cyber foraging in
which the user gets control over both the client and the

server, can be used effectively to overcome the dependency
of the user on the service provider. In this model, the server
will be deployed directly from the phone onto compute
resources.

We implemented cyber foraging using the existing Ibis
middleware. On top of this system we have built a smart-
phone application called eyeDentify that can perform object
recognition using pictures taken with the phone’s camera.
We implemented two versions of eyeDentify, a standalone
version that runs on the phone itself and a distributed version
that uses Ibis cyber foraging to offload computation. The use
of Ibis cyber foraging greatly improves the responsiveness
with speedups around 60 times while being about 40 times
more energy efficient. Furthermore, Ibis cyber foraging en-
ables object recognition with high accuracy on full resolution
images on a smartphone, which is not possible at all with a
standalone version due to hardware limitations. Multimedia
cyber foraging with Ibis provides easy and powerful means
to create computation and memory intensive multimedia
applications for smartphones

ACKNOWLEDGEMENTS

This work was carried out in the context of the Virtual
Laboratory for e-Science project (www.vl-e.nl). This project
is supported by a BSIK grant from the Dutch Ministry of
Education, Culture and Science (OC&W) and is part of the
ICT innovation program of the Ministry of Economic Affairs
(EZ). This work has been supported by the Netherlands Or-
ganization for Scientific Research (NWO) grant 612.060.214
(Ibis: a Java-based grid programming environment).

REFERENCES

[1] “Android Market,” http://www.android.com/market/.

[2] “Windows Marketplace for Mobile,” http://www.micro
soft.com/presspass/press/2009/mar09/03-
11WMMDevelopersPR.mspx.

[3] “BlackBerry App World,” http://na.blackberry.com/
eng/services/appworld/.

[4] “PlayNow Arena,” http://www.playnow-arena.com/.

[5] “Ovi Store,” http://store.ovi.com.

[6] “iPhone App Store,” http://www.apple.com/iphone/ appstore.

[7] “Big in Japan,” http://www.biggu.com/applications.

[8] “Mobilizy website,” http://www.mobilizy.com/wikitude.php.

[9] R. Ballagas et al., “The smart phone: A ubiquitous input
device,” IEEE Pervasive Computing, vol. 5, no. 1, p. 70, 2006.

[10] “Shazam website,” http://www.shazam.com.

[11] M. Satyanarayanan, “Pervasive computing: Vision and chal-
lenges,” IEEE Personal Communications, vol. 8, pp. 10–17,
2001.

398

[12] “Amazon Elastic Compute Cloud Website,”
http://aws.amazon.com/ec2.

[13] N. Palmer et al., “Ibis for mobility: solving challenges of
mobile computing using grid techniques,” in HotMobile ’09:
Proceedings of the 10th workshop on Mobile Computing
Systems and Applications. ACM, 2009, pp. 1–6.

[14] R. V. van Nieuwpoort et al., “Ibis: a flexible and efficient java-
based grid programming environment,” Concurr. Comput. :
Pract. Exper., vol. 17, no. 7-8, pp. 1079–1107, 2005.

[15] O. Riva and J. Kangasharju, “Challenges and lessons in
developing middleware on smart phones,” IEEE Computer,
vol. 41, no. 10, pp. 23–31, 2008.

[16] R. V. van Nieuwpoort et al., “User-friendly and reliable
grid computing based on imperfect middleware,” in SC ’07:
Proceedings of the 2007 ACM/IEEE conference on Supercom-
puting. ACM, 2007, pp. 1–11.

[17] J. Maassen et al., “Efficient java rmi for parallel program-
ming,” ACM Trans. Program. Lang. Syst., vol. 23, no. 6, pp.
747–775, 2001.

[18] J. Maassen and H. E. Bal, “Smartsockets: solving the con-
nectivity problems in grid computing,” in HPDC ’07: Proc.
of the 16th int. symposium on High performance distributed
computing. ACM, 2007, pp. 1–10.

[19] F. J. Seinstra et al., “High-performance distributed video con-
tent analysis with parallel-horus,” IEEE MultiMedia, vol. 14,
no. 4, pp. 64–75, 2007.

[20] D. Estrin et al., “Connecting the physical world with perva-
sive networks,” IEEE Pervasive Computing, vol. 1, no. 1, pp.
59–69, 2002.

[21] T. Kallonen and J. Porras, “Use of distributed resources in
mobile environment,” International Conference on Software
in Telecommunications and Computer Networks, vol. 0, pp.
281–285, 2006.

[22] N. Ravi et al., “Split smart messages: Middleware for perva-
sive computing on smart phones,” Rutgers University Techni-
cal Report DCS-TR-565, 2005.

[23] S. Goyal and J. Carter, “A lightweight secure cyber foraging
infrastructure for resource-constrained devices,” in WMCSA
’04: Proceedings of the Sixth IEEE Workshop on Mobile
Computing Systems and Applications. IEEE Computer
Society, 2004, pp. 186–195.

[24] B.-G. Chun and P. Maniatis, “Augmented smart phone appli-
cations through clone cloud execution,” in Proceedings of the
12th Workshop on Hot Topics in Operating Systems (HotOS
XII), 2009.

399

