Published in final edited form as:
IEEE/ACM Trans Comput Biol Bioinform. 2011 ; 8(1): 45-58. doi:10.1109/TCBB.2009.57.

F2Dock: Fast Fourier Protein-Protein Docking

Chandrajit Bajaj ${ }^{1}$ [Member, IEEE], Rezaul Chowdhury ${ }^{1}$ [Student Member, IEEE], and Vinay Siddavanahalli ${ }^{2}$ [Student Member, IEEE]
Chandrajit Bajaj: bajaj@cs.utexas.edu; Rezaul Chowdhury: shaikat@cs.utexas.edu
${ }^{1}$ Computational Visualization Center, Department of Computer Sciences and The Institute of Computational Engineering and Sciences, The University of Texas at Austin, 1 University Station C0500, Austin, Texas 78712, USA
${ }^{2}$ Google Inc., Mountain View, California

Abstract

The functions of proteins is often realized through their mutual interactions. Determining a relative transformation for a pair of proteins and their conformations which form a stable complex, reproducible in nature, is known as docking. It is an important step in drug design, structure determination and understanding function and structure relationships. In this paper we extend our non-uniform fast Fourier transform docking algorithm to include an adaptive search phase (both translational and rotational) and thereby speed up its execution. We have also implemented a multithreaded version of the adaptive docking algorithm for even faster execution on multicore machines. We call this protein-protein docking code F^{2} Dock ($F^{2}=\underline{\text { Fast Fourier }) \text {. We have }}$ calibrated F^{2} Dock based on an extensive experimental study on a list of benchmark complexes and conclude that F^{2} Dock works very well in practice. Though all docking results reported in this paper use shape complementarity and Coulombic potential based scores only, F^{2} Dock is structured to incorporate Lennard-Jones potential and re-ranking docking solutions based on desolvation energy.

Index Terms

Computational Structural Biology; Protein-Protein Interactions; Fast Fourier Methods; Algorithms; Docking; Redocking

1 Introduction

Proteins are stable, folded chains of amino acid polymers, and together with lipids (fats and oils), carbohydrates (e.g., sugars) and nucleic acids (DNA and RNA) form the structural and functional building blocks in our cells. Functions of these building blocks, and particularly those of proteins are expressed through their mutual structural interactions. For example, inhibitors bind to enzymes to limit their rate of reaction. Another example is the attachment of immunoglobins to antigens like viruses, in order to signal that these antigens are foreign objects in our cells. Hence the study of protein-protein interactions plays an important role in uderstanding the processes of life [1]. In particular, as the two preceding examples suggest, protein-protein interaction is at the core of structure-based drug design. Though advancements in X-ray crystallography and other imaging techniques have lead to the extraction of near atomic resolution information for numerous individual proteins, the creation, crystallization and imaging of macromolecular complexes, as extensively required for drug design, still remains a difficult task. Flexibility of proteins makes the search for the required conformation through experimentation even more difficult. Hence, the need for fast and robust computational approaches to predicting the structures of protein-protein
interactions is growing[2]. An important step towards understanding protein-protein interactions is protein-protein docking which can be defined as computationally finding the best relative transformation and conformation of two proteins that results in a stable complex, reproducible in nature (if one exists). If only large, fairly inflexible proteins are involved, rigid protein-protein docking can be performed as an initial step. Rigid docking based on structure alone has shown to be adequate for a range of proteins[3].

There are two main aspects of a docking algorithm:

1. scoring or measuring the quality of any given docked complex, and
2. searching for the highest scoring or a pool of high quality docking conformations

Shape complementarity along the docked interface is seen to one of the primary measure of docking quality. Other factors which contribute to the formation of stable complexes include electrostatics, hydrophobicity, hydrogen bonds, solvation energy etc. [2], [4]. These, together with shape complementarity are known as affinity functions. The docking problem can be viewed as the search for stable minimum energy complexes. The energy function has several major terms.
i.

The Lennard-Jones 12-6 dispersion-repulsion potential is given by $\sum_{i, j}\left(\frac{a_{i j}}{r_{i j}{ }^{2}}-\frac{b_{i j}}{r_{i j}}\right)$, where $r_{i j}$ is the distance between two given atoms, and $a_{i j}$ and $b_{i j}$ are constants based on atom types.
ii.

The electrostatic potential is given by $\sum_{i, j} \frac{q_{i} q_{j}}{\sigma_{i j} r_{i j}}$, where q_{i} and q_{j} are Coulombic charges, and $\varepsilon\left(r_{i j}\right)$ is a distance dependant dielectric constant. Electrostatics plays a role in long range interaction due to partially charged protein and solvent atoms.
iii. Desolvation energy is defined as the change in energy due to the displacement of solvent molecules from the interface. The desolvation free energy for moving an atom of charge q and radius r from a region of dielectric ε_{1} to a region of dielectric ε_{2}, is given by $\frac{q^{2}}{r}\left(\frac{1}{\varepsilon_{1}}-\frac{1}{\varepsilon_{2}}\right)$. The total desolvation energy is the sum of desolvation energies of individual atoms involved.
iv. Docking energy computations also involve change in energy due to hydrophobicity, hydrogen bond formation and conformational changes. Given the affinity functions, and a scoring method, a search is performed over all of transformation and conformation spaces to find where the two given proteins fit best.

Shape based complementarity, coupled with electrostatic compatibility is typically used as an initial step to obtain possible docking sites. These sites are further ranked using other energy terms. The few remaining potential docking sites are then tested using energy minimization routines.

In [5] we described a Non-equispaced Fast Fourier (NFFT) based algorithm for efficiently performing the initial docking search (based on shape and electrostatics complementarity). We presented a sum of Gaussians based model for proteins, and described a new specification of the rigid protein-protein docking problem. Given two proteins A and B with M_{A} and M_{B} atoms, respectively, our algorithm spends $O\left(\max \left(M_{A}, M_{B}\right)+n^{3} \log n+\rho n^{3}\right)$ time to find the top ρ peaks in the docking profile, and n is a parameter chosen to satisfy a user required accuracy in the docking profile. We showed that for a summation of Gaussians model for the molecule where atoms are represented as Gaussian kernels, n^{3} varies as $O\left(\max \left(M_{A}, M_{B}\right)\right)$. Compared to traditional grid based Fourier docking algorithms, the algorithm was shown to have lower computational complexity and memory requirement.

In this paper we extend our non-uniform fast Fourier transform(NFFT) based docking algorithm to include an adaptive search phase (both translational and rotational) and thus speed up its execution. We have also implemented a multithreaded version of the adaptive docking algorithm for even faster execution on multicore machines. We call this proteinprotein docking code F^{2} Dock ($F^{2}=\underline{\text { Fast }} \underline{\text { Fourier }}$). We have calibrated F^{2} Dock based on an extensive experimental study on a list of benchmark complexes and conclude that F^{2} Dock works very well in practice. Though all docking results reported in this paper use shape complementarity and Coulombic potential based scores only, F^{2} Dock is structured to incorporate Lennard-Jones potential and re-ranking docking solutions based on desolvation energy. In our consider three scenarios of pairwise rigid protein-protein docking. The first is known as redocking, where a given complex of two proteins, are first separated, randomly rotated and translated, and then redocked. In this case the top docking solutions are compared with the original complex, and the RMSD (root mean square deviation) error measure computed. The second scenario is known as bound-unbound docking, where one of the two proteins is in the same conformation as in a complex, while the conformation of the second protein is independent and unknown from the one in the complex. Again the RMSD of the solution dockings are computed with respect to the original complex. The third and final docking scenario is the unbound-unbound case, where both proteins are in unknown conformations with respect to those in the complex. All three docking scenarios have the same computational complexity.

The rest of the paper is organized as follows. In Section 2 we include a review of prior work on rigid protein-protein docking. In Section 3 we describe our new algorithm with adaptive translational and rotational search. We include our experimental results with F^{2} Dock on ZDock Benchmark Suite 2.0 [6] in Section 4. Finally, in Section 5 we include some concluding remarks and plans for future research.

2 Related Work

There have been a wide range of work on both flexible and rigid-body docking. In this Section we discuss some relevant prior work on rigid-body docking. Please see the technical report on our flexible docking algorithm F^{3} Dock [7] for a review of known techniques for docking flexible molecules.

Graph theory based docking methods [8], [9], [10] reduce the shape complementarity based molecular fitting problems into combinatorial search that have well developed algorithms. However, some good potential matches may be ignored during search due to the use of pruning for reducing the cost of combinatorial search. Geometry-based docking methods use a first level assumption that molecules will 'dock' if the receptor and the ligand exhibit very high shape (surface and volume) complementarity. Point-wise spherical approximations, surface normals, etc. have also been considered in characterizing shape complementarity. In [11], [12] spheres are used to represent grooves in one protein and the density of the other. It was later used in a geometric hashing scheme [13], [14], [15], [16], [17], [18] where a search strategy based on matching pairs of consistent spheres, one from each protein was used, instead of a full combinatorial search. In [19] the combinatorial search was reduced to a clique finding problem by considering pairwise distances among atoms. A knob and hole detection and matching algorithm was used in [20], [21] where an optimization is performed using a grid-based double skin layer approach in 2D. We shall further discuss this double skin layer approach later as we use a variation of it in our algorithm. A full 6D grid based search was used in [22] which also provides a method to uniformly sample 3D rotational space. Using geometric features such as pockets, holes, and surface normals, these methods attempt to constrain the search areas to relatively small portions of the receptor's surface. Geometric signatures/feature points were also used in earlier geometry-based docking
methods [13], [23]. However, geometric signature based approaches often have difficulties in dealing with molecular surfaces without notable features such as flat regions. These methods are also quite sensitive to small geometric feature changes, and a large amount of hashing of storage space is needed for complicated ligand/receptor geometries. Some relatively recent surface and 3-D shape matching methods could be customized to improve the efficiency of geometric surface-surface docking. For example, including molecular properties into the scoring function would necessarily move the geometry matching problem to higher than three dimensions. Belongie et al. [24] calculate shape matches by using shape contexts to describe the relation of the shape to a certain point on the shape. Since corresponding points on two similar shapes will have similar shape contexts, the matching problem is reduced to an optimal point pair assignment problem between two shapes. This technique has reduced sensitivity to small variations in the two shapes.

Using some representation of molecular surface boundary (skin), and a correlation/scoring function based on cumulative overlap of characteristic (electron density) functions of molecular shape, rigid docking can be performed by conducting a combinatorial search in a six dimensional parameter space of all possible translations and orientations of a rigid protein relative to another rigid protein. In [25] coarse grids and rotational angles are used to reduce the combinatorics of the search. The combinatorics of possible relative conformations can be reduced by using a priori knowledge of suitable binding site locations on the proteins [3]. Fast Fourier Transforms can be used to speed up the cumulative scoring function computations [25], [3], [26]. The grid based double skin layer approach became the base of many variations and software, e.g., DOT [27], ZDOCK [28], [29], [30] and RDOCK [31]. Hydrogen bonds were used in [32] to reduce the rotational sampling space and improve the scoring function. Spherical harmonics based approached were studied in [33], [34], [26], [35], [36], [37], [38]. We have compared our algorithm to previous grid based Fourier transform and Spherical harmonics approaches in [5].

There have also been other approaches including building webs over the surfaces and matching them using least squares fit [39], a slice based matching scheme [40], mapping surfaces to 2D matrices and detection of matching sub matrices [41] and fixing anchors and searching over other degrees of freedom (TreeDock [42]). A simulated annealing method, by choosing angles in discrete 45 degree steps and translations of $2 \AA$ is used in [43] to perform a random walk and dock proteins. In [44], a coarse approximation of the protein is obtained by approximating each residue by a single spheres, and furthermore the 6D docking search space is parameterized by 5 rotations and 1 translation. The 5D rotational space is further sampled using simulated annealing techniques.

3 Algorithm Details

Consider two proteins A and B, with M_{A} and M_{B} atoms respectively. We represent the molecules using Gaussian kernels, construct double skin layers used for complementary space docking and derive a new model for docking.

3.1 Affinity Functions

The affinity functions are modeled as Radial Basis Functions (RBFs) to facilitate using Fourier transforms to efficiently solve the docking problem.

We use the sum of Gaussian's representation to model our proteins. An atom centered at \mathbf{x}_{c}, with a van der Waal's radius of r, is modeled as an isotropic Gaussian kernel:
$\left.g\left(\mathbf{x}-\mathbf{x}_{c}\right)=e^{-\beta\left(\frac{\left(\mathrm{x}-\mathbf{x}_{c}\right)^{2}}{r^{2}}\right.}-1\right)$. The decay rate of the kernel is controlled by the blobbiness parameter β. A value of 2.3 is used in the literature [45] to approximate the solvent excluded surface at
an isovalue of 1 . By lowering this parameter, we can model molecules at lower resolutions [46].
3.1.1 Shape Complementarity—For shape based docking we maximize the overlap of the surface of protein B with the complementary space of A. The double skin layer approach is used here. It was introduced in [21] for 2D, [22] for 3D, sped up using Fast Fourier Transforms in [47], and extended to complex space in [29]. We define two skin regions:

1. The complementary region of A, defined by a grown skin region, by introducing a 1-layer of pseudo-atoms on the surface of A. Typically each pseudo-atoms has the same radius which is chosen to make its size comparable to that of a solvent molecule.
2. The surface skin of B, which is the density function of the set of surface atoms of B.

The atoms of A and the inner atoms of B form core regions. These regions are shown in Figure 1. We use an adaptive grid based algorithm to construct these regions [5].

To maximize skin overlaps and to minimize overlaps of the cores, we assign positive imaginary weights to the core atoms and positive real weights to the skin atoms/pseudoatoms (see Figure 2). An integral of the superposition of the molecules has two real contributions: the core overlaps contribute negatively and the skin overlaps contribute positively. The magnitude of the imaginary part of the integral due to skin-core clashes (caused by psuedo-atom vs atom overlaps) are also non-desirable and assigned a 'smaller' negative weight in the accumulated score.

The weighted sum of Gaussians function definition of a molecule $P \in\{A, B\}$ with M_{P} atoms be expressed as follows:

$$
\begin{gathered}
f_{P}^{S C}(\mathbf{x})=\sum_{k \in s k i n(P)} c^{R e} g_{k}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\sum_{k \in \operatorname{core}(P)} c^{I m} g_{k}\left(\mathbf{x}-\mathbf{x}_{k}\right) \\
=\sum_{k=1}^{M_{P}} c_{k} g_{k}\left(\mathbf{x}-\mathbf{x}_{k}\right),
\end{gathered}
$$

where, g is the Gaussian function located at each atom (or pseudo atom) and (SC) stands for shape complementarity. The weights $\left\{c_{k} \in\left\{c^{I m}, c^{R e}\right\}, k=1, \ldots, M_{P}\right\}$ are either positive imaginary or positive real. See also [30] for an extension of shape complementarity to pairwise shape complementarity.
3.1.2 Electrostatics Interactions-Similar to the procedure used for shape complementarity, Gabb et. al. [3] have shown how to introduce the electrostatics term. The first protein's electric potential is computed and matched against the charges in the other. This can also be sped up using a Fourier based algorithm. Charge assignments are made using PDB2PQR [48]). We define two new affinity functions f_{A}^{E} and f_{B}^{E} for molecule A and B, respectively.

$$
\begin{aligned}
& f_{A}^{E}(\mathbf{x})=\sum_{k=1}^{M_{A}} q_{k} \frac{1}{E\left(\mathbf{x}-\mathbf{x}_{k}\right)\left(\mathbf{x}-\mathbf{x}_{k}\right)} \\
& \text { and } f_{B}^{E}(\mathbf{x})=\sum_{k=1}^{M_{B}} q_{k} \delta\left(\mathbf{x}-\mathbf{x}_{k}\right),
\end{aligned}
$$

where, q_{k} is the Coulombic charge on atom $k, \delta(\mathbf{x})$ is the Kronecker delta function with value 1 at $\|\mathbf{x}\|=0$, and 0 everywhere else, and $E(\mathbf{x})$ is the distance dependent dielectric constant [3] as given below.

$$
E(\mathbf{x})= \begin{cases}4 & \text { if }\|\mathbf{x}\| \leq 6 \AA, \\ 80 & \text { if }\|\mathbf{x}\|>8 \AA, \\ 38 \cdot\|\mathbf{x}\|-224 & \text { otherwise } .\end{cases}
$$

3.2 Rigid Docking Model Specification

Let T and Δ denote the translational and the rotational operators, respectively. If the user considers a potential docking site as one where the overlap potential (plus electrostatics potential if electrostatics interactions are used) is over a threshold τ, then the rigid proteinprotein docking solution, using our affinity functions definition, is expressed as the set of triplets:

$$
\left\{(\mathbf{t}, \mathbf{r}, s):\binom{s=\operatorname{Re}\left(F_{A, B}^{S C}(\mathbf{t}, \mathbf{r})-w_{E} \cdot F_{A, B}^{E}(\mathbf{t}, \mathbf{r})\right)}{-\frac{w_{s}}{\sqrt{w_{s s s} w_{c c}}} \cdot \operatorname{Im}\left(F_{A, B}^{S C}(\mathbf{t}, \mathbf{r})\right)} \geq \tau\right\}
$$

where,

$$
\begin{gathered}
F_{A, B}^{S C}(\mathbf{t}, \mathbf{r})=\int_{\mathbf{x}} f_{A}^{S C}(\mathbf{x}) T_{\mathbf{t}}\left(\Delta_{\mathbf{r}}\left(f_{B}^{S C}(\mathbf{x})\right)\right) d \mathbf{x}, \\
F_{A, B}^{E}(\mathbf{t}, \mathbf{r})=\int_{\mathbf{x}} f_{A}^{E}(\mathbf{x}) T_{\mathbf{t}}\left(\Delta_{\mathbf{r}}\left(f_{B}^{E}(\mathbf{x})\right)\right) d \mathbf{x},
\end{gathered}
$$

$w_{s s}=$ reward for (unit) skin-skin overlap,
$w_{c c}=$ penalty for (unit) core-core overlap,
$w_{s c}=$ penalty for (unit) skin-core overlap, and
$w_{E}=$ reward for (unit) charge-complementarity.
This model assumes that each skin atom is assigned a positive real weight of $c^{R e}=\sqrt{w_{s s}}$, and each core atom is assigned a positive imaginary weight of $c^{I m}=\sqrt{w_{c c}}$ (see Figure 2).

3.3 Search

We solve Equation 1 using Fourier series expansions. Shape complementarity scores and electrostatics scores are computed separately, and then combined. For simplicity of exposition, we describe below our search algorithm for the following simpler case where both $w_{s c}$ and w_{E} are set to 0 . Generalization to Equation 1 is straight-forward.

$$
\left\{(\mathbf{t}, \mathbf{r}, s):\left(s=\operatorname{Re}\left(F_{A, B}^{S C}(\mathbf{t}, \mathbf{r})\right)\right) \geq \tau\right\}
$$

We express the integral as a sum of compactly supported radial basis functions and provide an adaptive algorithm to search for regions where the scoring function exceeds the threshold provided by the user.
3.3.1 Fourier Series Expansions-Any periodic integrable function can be expanded as a Fourier series. For example, a periodic function in $[-1 / 2,1 / 2]$ can be expressed as:
$q(x)=\sum_{j=-\infty}^{\infty} \omega_{j} e^{2 \pi i j x}$, where the coefficients $\omega_{j}=\int_{-1 / 2}^{1 / 2} q(x) e^{-2 \pi i j x} d x$. Let I_{n} denote a 3D grid of integer indices: $\left\{k:[-n / 2 . n / 2)^{3}, k \in \mathscr{L}^{3}\right\}$. Let us expand the kernel function in its Fourier
series form: ${ }^{g\left(\mathbf{x}-\mathbf{x}_{k}\right)=\sum_{\omega \in I_{\infty}} G_{\omega} e^{2 \pi i\left(\mathbf{x}-\mathbf{x}_{k}\right) \cdot \omega} \text {. Hence, the affinity function } f_{P}^{S C}(\mathbf{x})=\sum_{k=1}^{M_{p}} c_{k} g\left(\mathbf{x}-\mathbf{x}_{k}\right) .}$
can be expressed as $f_{P}^{S C}(\mathbf{x})=\sum_{k=1}^{M_{P}} c_{k}\left(\sum_{\omega \in I_{\infty}} G_{\omega} e^{2 \pi i\left(\mathbf{x}-\mathbf{x}_{k}\right) \cdot \omega}\right)$. Rearranging terms, we obtain:
$f_{P}^{S C}(\mathbf{x})=\sum_{\omega \in I_{\omega}} G_{\omega} e^{2 \pi \mathbf{i} \cdot \omega} \sum_{k=1}^{M_{P}} c_{k} e^{-2 \pi i \mathbf{x}_{k} \cdot \omega}$. Let us denote the second terms by $C_{\boldsymbol{\omega}}$. Hence,
$f_{P}^{S C}(\mathbf{x})=\sum_{\omega \in \mathbf{I}_{\infty}} \mathbf{G}_{\omega} \mathbf{C}_{\omega} \mathbf{e}^{2 \pi \mathbf{i} \cdot \omega}$. Similarly: $f_{P}^{S C}(\mathbf{x}-\mathbf{y})=\sum_{\omega \in \mathbf{I}_{\infty}} \mathbf{G}_{\omega} \mathbf{C}_{\omega} \mathbf{e}^{2 \pi(\mathbf{x}-\mathbf{y}) \cdot \omega}$.
Expanding $f_{A}^{S C}$ and $f_{B}^{S C}$ using the above series, for a given rotation \mathbf{r}, with the molecules scaled to lie in $\pi^{3}=(-0.5 . .0 .5]^{3}$ for simpler mathematical notation, the scoring integral in Equation 2 reduces to

$$
\begin{gathered}
\forall \mathbf{x}: \int_{\mathbf{y} \in \pi^{3}} f_{A}^{S C}(\mathbf{y})\left(\Delta_{\mathbf{r}}\left(f_{B}^{S C}\right)\right)(\mathbf{x}-\mathbf{y}) d \mathbf{y} \\
=\int_{\mathbf{y} \in \pi^{3} \omega_{A} \in I_{\infty}} G_{\omega_{A}} C_{\omega_{A}} e^{2 \pi i \mathbf{y} \cdot \omega_{A}} \sum_{\omega_{B} \in I_{\infty}} G_{\omega_{B}} C_{\omega_{B}}^{\prime} e^{2 \pi i(\mathbf{x}-\mathbf{y}) \cdot \omega_{B}} d \mathbf{y} \\
\text { Since }-1 / 2 \\
\int^{1 / 2} e^{2 \pi i y(a-b)}=1 \\
\text { if } a=b \text { and } 0 \text { otherwise, the integral reduces to } \sum_{\omega \in I_{\infty}} G_{\omega}^{2} C_{\omega} C_{\omega}^{\prime} e^{2 \pi i \mathbf{x} \cdot \omega} .
\end{gathered}
$$

3.3.2 Approximations-We make three approximations in computing the above coefficients. Since the truncated Gaussian is a decaying kernel, we choose to compute only the first ($-n / 2 . . n / 2]^{3}$ Fourier coefficients. The parameter n is chosen to satisfy a user required accuracy in the docking profile. If we include electrostatics, the decay should be even slower, and hence, the same bounds derived for shape complementarity should be sufficient. The current analysis, though, is based on shape complementarity. The Fourier coefficients of the atoms centers, $C_{\boldsymbol{\omega}}, C_{\omega}^{\prime}$ are approximated as $\hat{C}_{\boldsymbol{\omega}}, \widehat{C}_{\omega}$, computed using a Nonequispaced Fast Fourier Transform (NFFT) algorithm given in [49] (Very briefly, the NFFT algorithm computes an approximation to Fourier coefficients when input data is not uniformly sampled). The truncated Gaussian is a tensor product kernel. The Fourier coefficients of the truncated Gaussians are now approximated as the tensor product $\hat{G}_{\boldsymbol{\omega}}$. Hence, we approximate the scoring integral as $\sum_{\omega \in I_{n}} \widehat{G}_{\omega}^{2} \widehat{C}_{\omega} \widehat{C}_{\omega} e^{2 \pi i \mathbf{x} \cdot \omega}=\sum_{\omega \in I_{n}} \widehat{F}_{\omega} e^{2 \pi i \mathbf{i x} \cdot \omega}$.
3.3.3 Inverse Peak Search—Given the function $\widehat{f}(\mathbf{x})=\sum_{\omega \in I_{n}} \widehat{F}_{\omega} e^{2 \pi i x \cdot \omega}$, we are required to compute $\{(\mathbf{x}, s): s=\operatorname{Re}(\hat{f}(\mathbf{x})) \geq \tau\}$. A 3D IFFT (Inverse nonequispaced fast Fourier transform) of \hat{F}_{ω} yields the docking profile $\hat{f}(\mathbf{x})$ at a uniform sampling. If we have prior knowledge on the smoothness of the profile, we can zero pad \hat{F}_{ω} (if necessary) and obtain the profile at a sufficient sampling. This would generally lead to higher computational and memory requirements. Instead, we perform an adaptive computation of $\hat{F}_{\boldsymbol{\omega}}$, progressively zooming in on regions where the threshold τ is satisfied. Using the NFFT algorithm in [49], we make the
 $\left.=\left\{\mathbf{l} \in I_{\hat{n}}: \hat{n} \omega_{\mathbf{j}}-m \leq \mathbf{l} \leq \hat{n} \omega_{\mathbf{j}}+m\right\}\right)$. This is schematically represented in 1D in Figure 4. Obtaining regions which are above a certain threshold is now reduced to finding roots of the polynomial $\operatorname{Re}(\hat{g}(\mathbf{x}))=\tau$ If we use a cubic Bspline function for φ with a support width of 5, it requires the root of a $7 \times 7 \times 7$ system of degree 5 equations. We instead adaptively compute regions which satisfy our docking threshold using an adaptive search algorithm. We initially start with the \hat{n}^{3} grid of φ as a set of intervals. We determine using a simple procedure if any interval can potentially contain a value greater than the docking threshold and, if so, subdivide and recursively search the sub intervals. Consider any interval I. There are multiple φ functions whose summation determine the function in I. If we change these φ, such that positive ones centered outside I come closer by one interval width, negative ones shift away from I by one interval width and positive ones centered inside I are given its maximum value, the sum of the new function (called ψ) at the interval endpoints defines an upper bound for the original function φ and $\hat{g}(\mathbf{x})$ inside I. This upper bound function yields an approximate profile to our score $\hat{f}(\mathbf{x})$ and provides us with a test function for determining where to further subdivide and refine an interval as we locate the positive peaks of the scoring function.

The docking score profile is usually large in a thin closed region (as skin-skin overlaps occur in a relatively small subset of 3D space) with zeros on the outside and large negatives on the inside. Hence, in the very first step of the algorithm, a large number of regions are removed from further consideration. We are able to reduce the full 3D inverse FFT of \hat{F}_{ω} which yields the docking profile $\hat{f}(\mathbf{x})$ in the first step of our adaptive search into an inverse FFT of size \hat{n}^{3}. This is an efficient way of speeding up the overall inverse peak search algorithm 1 . We provide an analysis in 1D, which can be easily extended to 3D. Consider an interval [i,i +1], with B-spline functions φ_{k}, where $i-m \leq k \leq i+1+m$, capturing both positive and negative peaks of $\hat{F}_{\boldsymbol{\omega}}$. Let the extent of the φ_{k} be m on each side of k. We construct a new upper bound function ψ_{k} (to construct an approximate scoring profile, by raising the value of φ_{k} to $\max \left(\varphi_{k}, \varphi_{k+1}, \varphi_{k-1}\right)$ on the \hat{n}^{3} grid. This gives us the following simple observation:

Lemma 3.1: The summation of ψ values at a point k in the low resolution grid of the Gaussian centers is always greater than the summation of φ values at any point in any interval which includes k .

The approximate docking profile, $\quad \widehat{f}(\mathbf{x}) \approx \widehat{g}(\mathbf{x})=\sum_{\mathbf{k} \in I_{\bar{n}, m}\left(\omega_{\mathbf{j}}\right)} g_{k} \psi\left(\omega_{\mathbf{j}}-\mathbf{k} / n\right)$ is a summation of smooth functions, and is now computed over a uniform interval of \hat{n}^{3} points. This summation of smooth functions is equivalent to a convolution of a discretely sampled kernel function ψ with discrete values of g, namely g_{k}. The convolution of ψ and g is, as is well known, equivalent to the inverse Fourier transform, of the product of the Fourier transforms of ψ and g respectively and hence computable using 3D FFT in $O\left(n^{3} \log n\right)$ as the first step of our algorithm. This initial uniform coarse approximation of the docking profile eliminates most regions outside the overlap of skin and core clashes. Hence, our adaptive search is then
limited to a narrower region where the skin-skin overlaps occur, which yield the maximum positive values to the docking profile.

Figure 3 gives an overview of the adaptive translation search phase of F^{2} Dock.
3.3.4 Rotational Sampling-For the orientational degrees of freedom we use the optimized and uniform sampling described in [27]. The sampling is based on Euler angles, and the rotations are applied on molecule B. Each rotational step is followed by a 3D translational search as described in preceding sections. For 20° of mean rotational spacing the number of samples obtained is 1,800 , while for 6° there are 54,000 sample rotations. Rotational search can also be made adaptive as follows. We first perform a low resolution rotational search, say, of mean rotational spacing of R_{1}, and retain only those rotations for which translational search yield solutions above a user-specified threshold. Then for each of these retained coarse rotations we perform a finer rotational search, say, of mean rotational spacing of $R_{2}<R_{1} / 4$, within a cone of angular radius $R_{1} / 2$ around the coarse rotational sample under consideration. As before we retain only rotations that produce solutions above the given threshold during translational search. Such adaptive refinement steps can be repeated with finer and finer rotational samplings until some given level of accuracy is reached.

4 Experimental Results

We have computed docking predictions for a set of 84 complexes obtained from the ZDock Benchmark Suite 2.0 [6]. For soft docking we first use shape complementarity (i.e. van der Waal's interactions) as the affinity function in scoring. Then we investigate the effects of introducing electrostatics interactions.

We performed three types of docking experiments:
Bound-bound (Redocking). Both molecules A and B are taken from the bound complex involving A and B, and they are then computationally redocked.

Bound-unbound. One molecule, say A, is taken from the bound complex involving A and B, and the other one, i.e., B, is taken from another known independent structure of B.

Unbound-unbound. Neither A nor B is taken from the bound complex involving A and B, that is, each of them comes from an independent structure that does not include the other molecule.

In all experiments, we measured the quality of our docking solution based on its RMSD distance from the known bound structure of the two molecules involved. RMSD was calculated using the C_{α} atoms within $5 \AA$ of the interface of the bound structure. We used Kabsch's optimal vector alignment algorithm [50], [51] for aligning the two sets of interface atoms during RMSD computation. We had F^{2} Dock output the top 50,000 solutions ranked based on the score it assigns to each solution. We claimed a 'hit' if there was a solution with RMSD less than $5 \AA$ among the top 2,000 solutions returned by F^{2} Dock. A rotational sampling of 6 degrees was used, and unless specified otherwise, the number of frequencies extracted by FFT is 32^{3}. Adaptive search was not used for obtaining the results reported in this section.

4.1 Unbound-unbound Docking

Tables 1 and 2 shows the results of running F^{2} Dock on the 84 complexes of ZDock Benchmark Suite 2.0 [6] for unbound-unbound docking using shape complementarity only. We used four different sets of weight values given to the skin-skin $\left(w_{s s}\right)$, core-core $\left(w_{c c}\right)$ and
skin-core $\left(w_{s c}\right)$ overlap costs. In the tables 'Rank' is the best rank among all predicted positions whose RMSD from the known bound structure was less than $5 \AA$. 'Good Peaks' is the number of peaks in the predicted set which were less than $5 \AA$ RMSD from the known position. In the 'RMSD' column in the tables we report the lowest RMSD among all peaks that were retained. We also list the ZDock results in the last column. ZDock used 6° rotational sampling like F^{2} Dock, but retained 54,000 peaks. The RMSD computation procedure is also based on C_{α} atoms within $5 \AA$ of the interface.

We observe from Tables 1 and 2 that the number of hits slightly increased as $w_{c c}$ is increased from 5 to 10 (with $w_{s s}$ and $w_{s c}$ held constant at 1.0 and 0.5 , respectively), and increased even further if $w_{s c}$ is increased from 0.5 to 1.0. However, increasing $w_{c c}$ further to 20 did not seem to increase the number of hits anymore. Moreover, increasing $w_{c c}$ from 5 to 10 generally improved the lowest RMSD value of the predictions, but increasing $w_{c c}$ even further or increasing $w_{s c}$ from 0.5 to 1.0 generally worsened the lowest RMSD. We also observe that ZDock performed better than F^{2} Dock in most cases under these parameter settings.

In Figure 5 we show the best docking positions we obtained during unbound-unbound docking of the following four complexes: (a) Ribonuclease A complexed with Rnase inhibitor, (b) Epstein-Barr virus receptor CR2 complexed with Complement C3, (c) Cyt C peroxidase complexed with Cytochrome C, and (d) Colicin E7 nuclease complexed with Im7 immunity protein.

In Table 3 we report the results of incorporating the approximate electrostatics interactions score computed by our method into the docking score. We used $1.0,10.0$ and 1.0 as skinskin $\left(w_{s s}\right)$, core-core $\left(w_{c c}\right)$ and skin-core ($w_{s c}$) weights, respectively. Electrostatics based affinity function is defined using a model by Gabb [3]. The dielectric value is set to 4 for distances less than $6 \AA$ from the center of atoms, 80 for greater than $8 \AA$ and a linear interpolation in between. The electrostatics weight $\left(w_{E}\right)$ was set to an empirically determined value of 350 which seems to improve the 'Rank' for the largest number of complexes when $w_{s s}, w_{c c}$ and $w_{s c}$ are set to $1.0,10.0$ and 1.0, respectively. We observe that adding the electrostatics score improved the 'Rank' of 45 out of 84 complexes ($\approx 53 \%$), while for 24 complexes ($\approx 29 \%$) solutions actually degraded. Among the complexes with improved 'Rank' values, 42 had their 'Rank' improved by at least 10,30 by at least 100 , and 15 by at least 1,000 . There are 2 complexes ((1) 1K5D: Ran GTPase complexed with Ran GAP, and (2) 1ML0: Viral chemokine binding p.M3 complexed with Chemokine Mcp1) for which we did not have a single solution with RMSD less than $5 \AA$ in the top 50,000 without electrostatics, but with w_{E} set to 350 we had several such solutions for each. For one of the complexes (2PCC: Cyt C peroxidase complexed with Cytochrome C) while we did not have a hit (i.e., at least one solution with RMSD less than $5 \AA$ in the top 2,000) when electrostatics was not used, it was a hit when w_{E} was set to 350 . On the other hand, for 1FC2 (i.e., Staphylococcus protein A complexed with Human Fc fragment) we had a solution with RMSD less than $5 \AA$ in the top 50,000 when w_{E} was set to 0 , but lost it when w_{E} was set to 350. Electrostatics scores did not seem to have as much impact on the minimum RMSD value as they had on 'Rank'. For only 16 complexes the minimum RMSD improved by at least $0.05 \AA$, while for 9 it degraded by at least $0.05 \AA$. For 52 complexes the minimum RMSD did not change. Overall, electrostatics was most effective on inhibitors or enzymesubstrate and antigen-bound antibody complexes (improving results in more than 60% of the 35 cases), and least effective on antibody-antigens (marginally improving results for only 3 out of 10 complexes). For the remaining 39 complexes, however, electrostatics was effective in more than 70% of the cases.

4.2 Bound-unbound Docking

Table 4 shows the results of increasing the number of frquencies extracted by FFT from 32^{3} to 64^{3} when performing bound-unbound docking on the complexes of the ZDock benchmark suite. The weight values are the same as in Table 3, and electrostatics interactions were not considered. We observe that increasing the number of frequencies generally improved the lowest RMSD considerably. For 45 complexes the lowest RMSD improved by at least 0.05 A.

In Figure 6(b) we show our docking of chains A \& B (nuclear transport factor 2) obtained from 1OUN.pdb on chain C (Ran GTPase) of 1A2K.pdb (i.e., docking the unbound nuclear transport factor 2 from 1OUN.pdb instead of the same protein already docked on Ran GTPase of 1A2K.pdb). In Figure 6(d) we show the docking of PSTI obtained from 1HPT.pdb on chain E (Bovine chymotrypsinogen) of 1CGI.pdb replacing the PSTI (chain I) already docked there.

4.3 Bound-bound Docking or Redocking

In Table 5 we report our bound-bound docking results on ZDock benchmark 2.0 [6]. We use the same weight values as in Table 4, and show results both with and without electrostatics. We did not move molecule B (the moving molecule) to a random location at the beginning of the experiment since F^{2} Dock initially centers both molecules at the origin anyway. We also did not rotate molecule B by a random amount initially since we are using rotations sampled uniformly at random and the identity matrix (i.e., 0° rotation) was not included as a rotation matrix separately. For 27 complexes the lowest RMSD was less than $1 \AA$, and for 47 it was less than $1.5 \AA$. The impact of including electrostatics was almost similar to the unbound-unbound case. For example, electrostatics improved the 'Rank' value for around 54% of the complexes, while for around 34% of the complexes 'Rank' degraded.

Figure 6(a) shows our redocking of chains A \& B (nuclear transport factor 2) of 1A2K.pdb on its chain C (Ran GTPase), while Figure 6(c) shows our redocking of chain I (PSTI) of 1CGI.pdb on its chain E (Bovine chymotrypsinogen).

Figure 7 shows the distribution of electrostatics potential on the molecular surfaces of Ran GTPase and Ran GAP, and also how the distribution changes when they form a complex (1K5D.pdb). In Figure 8 we show the electrostatics complementarity at the interface when Ran GTPase and Ran GAP dock at three different locations and orientations. The electrostatics potential for all of these examples, were computed using our CVC in-house software called PBEM3D (Molecular Poisson Boltzmann Boundary Element Electrostatics Potential calculation in 3D [52]). Figures (visualization) were created using CVC software TexMol.

5 CONCLUSION

We have presented a fast, and practical adaptive algorithm for rigid protein-protein docking. Our algorithm is based on representing affinity functions in a multi-resolution radial basis function format. The smoothed particle protein representation, together with nonequispaced Fast Fourier transforms allows us several advantages of efficiency and accuracy tradeoffs visavis traditional FFT based docking approaches. Our contributions are also in scoring of docked conformations as a convolution of complex affinity functions, and providing approximation algorithms to detect peaks in the docking scoring profiles. Both shape complementarity and electrostatics are used for scoring and to obtain the top docking conformations. Our implementation of F^{2} Dock speeds up computation even further by executing multiple concurrent threads on multicore machines. The rotation matrices are evenly distributed among the threads. When electrostatics is not used we use on the average,
around 15 mins for computing docking positions (with 6° rotational sampling and 32^{3} frequencies) per typical protein complex on a quad-core linux desktop (3.0 GHz) with 4 GB RAM. The running time approximately doubles when electrostatics is used. We used the FFTW package [53] for computing FFT and the inverse FFT. We are also working on an MPI [54] based distributed implementation of F^{2} Dock capable of running on Linux clusters. This implementation will be available as a web-based docking server. Jobs can also be launched on the server from our in-house molecular modeling and visualization client software tool, called TexMol [55]. The TexMol client tool is in the public domain and can be freely downloaded from our center's software website (http://www.ices.utexas.edu/CVC/software/).

We are also in the process of extending F^{2} Dock to F^{3} Dock which is capable of handling flexible molecules. Some preliminary results on F^{3} Dock are available as a technical report [7].

Acknowledgments

This work was supported in part by NSF grants IIS-0325550, CNS-0540033 and grants from the NIH R01 GM074258, R01-GM073087, R01-EB004873. Particular thanks to Albert Chen, Maysam Moussalem, Wenqi Zhao for all their immense help in the development, and use of our CVC software, namely, the fast linear Poisson Boltzmann solver (PBEM3D) the molecular modeling and visualization tool (TexMol), and of course F^{2} Dock, used in producing the figures and the ZDock benchmark comparisons captured in the various tables. We are also grateful to Dr. Art Olson and Dr. Michel Sanner of The Scripps Research Institute (TSRI), for many helpful suggestions related to protein-protein docking.

References

1. Fruton, JS. Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology. Yale University Press; 1999.
2. Leach, AR. Molecular Modelling: Principles and Applications. 2. Pearson Education EMA; 2001.
3. Gabb HA, Jackson RM, Sternberg MJE. Modelling protein docking using shape complementarity, electrostatics and biochemical information. Journal of Molecular Biology. September; 1997 272(1): 106-120. [PubMed: 9299341]
4. Klotz, IM. Ligand-receptor energetics: A guide for the perplexed. John Wiley and Sons, Inc; 1997.
5. Castrillon-Candas, J.; Siddavanahalli, V.; Bajaj, C. Nonequispaced fourier transforms for proteinprotein docking. The University of Texas at Austin; Austin TX USA: October. 2005 ICES Report 05-44
6. Mintseris, J.; Wiehe, K.; Pierce, B.; Anderson, R.; Chen, R.; Janin, J.; Weng, Z. Protein-protein docking benchmark 2.0: An update; Proteins: Structure, Function, and Bioinformatics. 2005. p. 214-216.[Online]. Available: http://zlab.bu.edu/zdock/benchmark.shtml
7. Bajaj, C.; Chowdhury, RA.; Siddavanahalli, V. F3Dock: A fast, flexible and Fourier based approach to protein-protein docking. The University of Texas; Austin: January. 2008 ICES Report 08-01
8. Ewing, T. PhD Thesis. University of California; 1997. Automated molecular docking: Development and evaluation of new search methods.
9. Miller MD, Kearsley SK, Underwood DJ, Sheridan RP. FLOG: A system to select 'quasi-flexible' ligands complementary to a receptor of known three-dimensional structure. Journal of ComputerAided Molecular Design. 1994; 8(2):153-174. [PubMed: 8064332]
10. Shoichet BK, Bodian DL, Kuntz ID. Molecular docking using shape descriptors. Journal of Computational Chemistry. 1992; 13(3):380-397.
11. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology. October; 1982 161(2):269-288. [PubMed: 7154081]
12. Shoichet BK, Kuntz ID. Protein docking and complementarity. Journal of Molecular Biology. September; 1991 221(1):327-346. [PubMed: 1920412]
13. Fischer, D.; Norel, R.; Nussinov, R.; Wolfson, HJ. CPM '93: Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching. London, UK: Springer-Verlag; 1993. 3-d docking of protein molecules; p. 20-34.
14. Norel R, Fischer D, Wolfson HJ, Nussinov R. Molecular surface recognition by a computer visionbased technique. Protein engineering. January; 1994 7(1):39-46. [PubMed: 8140093]
15. Norel R, Lin SL, Wolfson HJ, Nussinov R. Molecular surface complementarity at protein-protein interfaces: The critical role played by surface normals at well placed, sparse, points in docking. Journal of Molecular Biology. September; 1995 252(no. 2):263-273. [PubMed: 7674306]
16. Fischer D, Lin SL, Wolfson HL, Nussinov R. A geometry-based suite of moleculardocking processes. Journal of Molecular Biology. 1995; 248(2):459-477. [PubMed: 7739053]
17. Duhovny, D.; Nussinov, R.; Wolfson, HJ. In: Guigo, R.; Gusfield, D., editors. Efficient unbound docking of rigid molecules; Proceedings of the Fourth International Workshop on Algorithms in Bioinformatics; Italy: Springer-Verlag GmbH Rome; September. 2002 p. 185-200.
18. Lenhof, H-P. RECOMB '97: Proceedings of the first annual international conference on Computational molecular biology. New York, NY, USA: ACM Press; 1997. New contact measures for the protein docking problem; p. 182-191.
19. Kuhl FS, Crippen GM, Friesen DK. A combinatorial algorithm for calculating ligand binding. Journal of Computational Chemistry. 1984; 5(1):24-34.
20. Connolly ML. Shape complementarity at the hemoglobin $\alpha_{1} \beta_{1}$ subunit interface. Biopolymers. February; 1986 25(7):1229-1247. [PubMed: 3741993]
21. Wang H. Grid-search molecular accessible surface algorithm for solving the protein docking problem. Journal of Computational Chemistry. 1991; 12(6):746-750.
22. Jianga F, Kim SH. "soft docking": Matching of molecular surface cubes. Journal of Molecular Biology. May; 1991 219(1):79-102. [PubMed: 2023263]
23. Strynadka NCJ, Eisenstein M, Katchalski-Katzir E, Shoichet BK, Kuntz ID, Abagyan R, Totrov M, Janin J, Cherfils J, Zimmerman F, Olson A, Duncan B, Rao MM, Jackson R, Sternberg M, James MNG. Molecular docking programs successfully predict the binding of a β-lactamase inhibitory protein to tem-1 β-lactamase. Nature Struct Biol. 1996; 3:233-239. [PubMed: 8605624]
24. Belongie S, Malik J, Puzicha J. Matching shapes. Computer Vision, IEEE International Conference on. 2001; 1:454.
25. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proceedings of the National Academy of Sciences of the United States of America. 1992; 89(6):2195-2199. [PubMed: 1549581]
26. Ritchie DW, Kemp GJ. Protein docking using spherical polar fourier correlations. Proteins: Structure, Function, and Genetics. March; 2000 39(2):178-194.
27. Mandell1 JG, Roberts VA, Pique ME, Kotlovyi V, Mitchell JC, Nelson E, Tsigelny I, Eyck LFT. Protein docking using continuum electrostatics and geometric fit. Protein Engineering. February; 2001 14(2):105-113. [PubMed: 11297668]
28. Chen R, Weng Z. Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins: Structure, Function, and Genetics. March; 2002 47(3):281-294.
29. Chen R, Li L, Weng Z. Zdock: An initial-stage protein-docking algorithm. Proteins: Structure, Function, and Genetics, Special Issue: CAPRI - Critical Assessment of PRedicted Interactions Issue Edited by Joël Janin. May; 2003 52(1):80-87.
30. Chen R, Weng Z. A novel shape complementarity scoring function for protein-protein docking. Proteins: Structure, Function, and Genetics. March; 2003 51(3):397-408.
31. Li L, Chen R, Weng Z. Rdock: Refinement of rigid-body protein docking predictions. Proteins: Structure, Function, and Genetics. September; 2003 53(3):693-707.
32. Meyer M, Wilson P, Schomburg D. Hydrogen bonding and molecular surface shape complementarity as a basis for protein docking. Journal of Molecular Biology. November; 1996 264(1):199-210. [PubMed: 8950278]
33. Ritchie, DW. PhD Thesis. Departments of Computer Science \& Molecular and Cell Biology, University of Aberdeen, King's College; Aberdeen, UK: September. 1998 Parametric protein shape recognition.
34. Ritchie DW, Kemp GJL. Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces. Journal of Computational Chemistry. February; 1999 20(4):383395.
35. Duncan BS, Olson AJ. Approximation and characterization of molecular surfaces. Biopolymers. 1993; 33:219-229. [PubMed: 8485296]
36. Max NL, Getzoff ED. Spherical harmonic molecular surfaces. IEEE Computer Graphics \& Applications. 1988; 8:42-50.
37. Kovacs JA, Wriggers W. Fast rotational matching. Acta Crystallographica, Biological Crystallography. August; 2002 D58(8):1282-1286.
38. Kovacs JA, Chacón P, Cong Y, Metwally E, Wriggers W. Fast rotational matching of rigid bodies by fast fourier transform acceleration of five degrees of freedom. Acta Crystallographica, Biological Crystallography. August; 2003 D59(8):1371-1376.
39. Bacon DJ, Moult J. Docking by least-squares fitting of molecular surface patterns. Journal of Molecular Biology. June; 1992 225(3):849-858. [PubMed: 1602486]
40. Walls PH, Sternberg MJE. New algorithm to model protein-protein recognition based on surface complementarity. applications to antibody-antigen docking. Journal of Molecular Biology. November; 1992 228(1):277-297. [PubMed: 1280302]
41. Helmer-Citterich M, Tramontano A. Puzzle: A new method for automated protein docking based on surface shape complementarity. Journal of Molecular Biology. January; 1994 235(3):10211031. [PubMed: 7507171]
42. Fahmy A, Wagner G. Treedock: A tool for protein docking based on minimizing van der waals energies. Journal of the American Chemical Society. February; 2002 124(7):1241-1250. [PubMed: 11841293]
43. Yue SY. Distance-constrained molecular docking by simulated annealing. Protein engineering. December; 1990 4(2):177-184. [PubMed: 2075193]
44. Cherfils J, Duquerroy S, Janin J. Protein-protein recognition analyzed by docking simulation. Proteins: Structure, Function, and Genetics. 1991; 11(4):271-280.
45. Gabdoulline R, Wade R. Analytically defined surfaces to analyze molecular interaction properties. J of Molecular Graphics. December; 1996 14(6):341-353.
46. Bajaj C, Xu G, Zhang Q. A fast variational method for the construction of resolution adaptive c^{2} smooth molecular surfaces. Computer Methods in Applied Mechanics and Engineering. 2009; 198:1684-1690. [PubMed: 19802355]
47. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proceedings of the National Academy of Sciences of the United States of America. March; 1992 89(6):2195-2199. [PubMed: 1549581]
48. PDB2PQR: An automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. http://pdb2pqr.sourceforge.net/
49. Potts D, Steidl G, Tasche M. Fast fourier transform for nonequispaced data: A tutorial, in Modern Sampling Theory: Mathematics and Applications. 1998; ch 12:249-274.
50. Kabsch W. A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A. 1976; 32:922-923.
51. Kabsch W. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A. September; 1978 34(5):827-828.
52. Bajaj, C.; Chen, S-C. Efficient and accurate higher-order fast multipole boundary element method for poisson boltzmann electrostatics. The University of Texas; Austin: April. 2009 ICES Report 09-xx
53. Frigo M, Johnson SG. The design and implementation of FFTW3. Proceedings of the IEEE Invited paper, Special Issue on Program Generation, Optimization, and Platform Adaptation. february; 2005 93(2):216-231.
54. The Message Passing Interface (MPI) Standard. http://www-unix.mcs.anl.gov/mpi/
55. Bajaj, C.; Djeu, P.; Siddavanahalli, V.; Thane, A. TexMol:Interactive visual exploration of large flexible multi-component molecular complexes. Proc. of the Annual IEEE Visualization Conference; Austin, Texas. 2004. p. 243-250.

Biographies

Chandrajit Bajaj graduated from the Indian Institute of Technology, Delhi with a Bachelor's Degree in Electrical Engineering, in 1980 and received his M.S. and Ph.D. degrees in Computer Science from Cornell University, in 1983, and 1984 respectively. Bajaj is currently the Computational Applied Mathematics Chair in Visualization Professor of Computer Sciences at the University of Texas at Austin, as well as the director of the Center for Computational Visualization, in the Institute for Computational and Engineering Sciences (ICES). His research areas of interest include Computational Biology and Biophysics, Computational Geometry, Computer Graphics, Geometric Modeling, Image Processing, and Visualization. He has over 200 publications, has written one book and edited three other books in his areas of expertise. He is on the editorial boards for the ACM Transactions on Graphics, ACM Computing Surveys, the International Journal of Computational Geometry \& Applications, and SIAM Journal of Imaging Sciences. He is on numerous national and international committees, and has served as a scientific consultant to national labs and industry. He is also a fellow of The American Association for the Advancement of Science.

Rezaul Chowdhury received his BS degree in Computer Science \& Engineering from Bangladesh University of Engineering \& Technology, and PhD in Computer Science from the University of Texas at Austin in 2007. Currently he is a postdoctoral fellow at the Institute for Computational Engineering \& Sciences, UT Austin. His research interests include design and analysis of combinatorial algorithms \& data structures, bioinformatics \& computational biology, algorithms for massive datasets, cache-efficient algorithms, and parallel \& multicore computing.

Vinay Siddavanahalli obtained a Bachelor of Engineering degree in Computer Science from Sri Jayachamarajendra College of Engineering in Mysore, and also worked for a year on "MPEG text detection and recognition", as part of his thesis in The Indian Institute of Science, Bangalore, India. He received his MS and PhD degree in Computer Science from the University of Texas at Austin in 2006. Currently he is working as a software engineer at Google. His research interests include Computer Graphics, Computational Geometry and Computational Biology.

Fig. 1.
(a) Skin and Core regions for complementary space docking. Atoms are drawn as solid circles. The skins regions are colored green while the core regions are red. The skin volume of molecule A is obtained by rolling a solvent ball over its surface. (b) A possible docking of the molecules show a large overlap between the grown layer of molecule A and the surface atoms of molecule B.

Fig. 2.
For shape-complementarity scoring skin atoms are assigned a weight of $c^{R e}=\sqrt{w_{s s}}$, and core atoms are assigned weight $c^{I m}=i \cdot \sqrt{w_{c c}}$, where $w_{s s}$ is the reward factor for skin-skin overlaps, and $w_{c c}$ is the penalty factor for core-core overlaps.

Fig. 3.
Overview of the translational search phase of the F^{2} Dock algorithm. Here f_{A} and f_{B} are affinity functions of molecule A and B, respectively. We assume that a given rotation has already been applied on molecule B.

Fig. 4.
The docking peak search can be represented as finding the peak positions and values in a grid of overlapping splines.

Fig. 5.
Unbound-unbound docking: (a) (1DFJ: Ribonuclease A complexed with Rnase inhibitor) Docking the unmarked chain of 2BNH.pdb (Rnase inhibitor) on chain B (Ribonuclease A) of 9RSA.pdb, (b) (1GHQ: Epstein-Barr virus receptor CR2 complexed with Complement C3) Docking chain A (Complement C3) of 1LY2.pdb on the unmarked chain (Epstein-Barr virus receptor CR2) of 1C3D.pdb, (c) (2PCC: Cyt C peroxidase complexed with Cytochrome C) Docking the unmarked chain (Cytochrome C) of 1YCC.pdb on the unmarked chain (Cyt C peroxidase) of 1CCP.pdb, and (d) (7CEI: Colicin E7 nuclease complexed with Im7 immunity protein) Docking chain B (Im7 immunity protein) of 1M08.pdb on chain D (Colicin E7 nuclease) of 1UNK.pdb. In all cases the first chain is static (colored yellow), and the other chain is moved around for docking. The position of the moving molecule shown in pink corresponds to the true solution (obtained by the best superimposition of each molecule on the corresponding molecule in the bound structure) while red is our final docked position.

Fig. 6.
(a \& b) Docking 1A2K (Ran GTPase complexed with nuclear transport factor 2): (a) (Bound-Bound) Redocking chains A \& B (nuclear transport factor 2) of 1A2K.pdb on it's chain C (Ran GTPase), (b) (Bound-Unbound) Docking chains A \& B (nuclear transport factor 2) of 1OUN.pdb on chain C of 1A2K.pdb. (c \& d) Docking 1CGI (Bovine chymotrypsinogen complxed with PSTI):: (c) (Bound-Bound) Redocking chain I (PSTI) of 1CGI.pdb on it's chain E (Bovine chymotrypsinogen), (d) (Bound-Unbound) Docking the unmarked chain (PSTI) of 1HPT.pdb on chain E of 1CGI.pdb. In (a) \& (b) chain C is static (colored yellow), and in (c) \& (d) chain E is static, and in all cases the other chain(s) is (are) moved around for docking (the true position in the bound complex is pink, and our final docked position is red).

Fig. 7.
Poisson-Boltzmann electrostatics potential on the surface of (a) Ran GTPase, (b) Ran GAP, and (c) complex of Ran GTPase and Ran GAP (1K5D.pdb). The potential ranges from -3.8 $k_{b} T / e_{c}$ (red) to $+3.8 k_{b} T / e_{c}$ (blue).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 8.
Figures (a) and (b) show Poisson-Boltzmann electrostatics potential on the surface of Ran GTPase and Ran GAP, respectively. The potential ranges from $-3.8 k_{b} T / e_{c}$ (red) to +3.8 $k_{b} T / e_{c}$ (blue). Figures (c) and (d) show the bound complex of Ran GTPase and Ran GAP (1K5D.pdb). In (c) Ran GAP is drawn semi-transparent while in (d) Ran GTPase is drawn semi-transparent in order to show the electrostatics complementarity at the interface. Figures (e) and (f) show the solution with the lowest RMSD (1.66 \AA) from the bound complex among the top 2,000 solutions returned by F^{2} Dock when electrostatics weight was set to 350. Figures (g) and (h) show the solution with the lowest RMSD ($2.90 \AA$) from the bound complex among the top 2,000 solutions returned by F^{2} Dock when electrostatics weight was set to 0 .
ound-unbound docking results using shape complementarity only, where we use four different sets of skin-skin ($w_{s s}$), core-core ($w_{c c}$) and skin-core weight values for F^{2} Dock. 'Rank' is the best rank among all predicted positions whose RMSD was less than $5 \AA$. 'Good Peaks' is the number of s in the predicted set which were less than $5 \AA$ RMSD from the known position. 'RMSD' is the lowest RMSD among all peaks that were retained. F^{2} Dock and ZDock use 6° rotational sampling. F 2 Dock and ZDock retained 50,000 and 54,000 peaks, respectively. RMSD was calculated using the toms near the interface of the known bound conformation (within $5 \AA$ of the interface for F^{2} Dock).

$w_{c c}=20.0$	

TABLE 2

ound－unbound docking results using shape complementarity only（continued），where we use four different sets of skin－skin（ $w_{s s}$ ），core－core（ $w_{c c}$ ）and core $\left(w_{s c}\right)$ weight values for F^{2} Dock．＇Rank＇is the best rank among all predicted positions whose RMSD was less than $5 \AA$ ．＇Good Peaks＇is the
ber of peaks in the predicted set which were less than $5 \AA$ RMSD from the known position．＇RMSD＇is the lowest RMSD among all peaks that were ned．Both F^{2} Dock and ZDock use 6° rotational sampling．F^{2} Dock and ZDock retained 50，000 and 54，000 peaks，respectively．RMSD was calculated g the C_{α} atoms ne interface of the known bound conformation（within $5 \AA$ of the interface for F^{2} Dock）．

$\begin{aligned} & \text { Ŝ } \\ & -7 \end{aligned}$			\mathbf{F}^{2} Dock Results（ $w_{s s}=1.0$ ，frequencies $=32^{3}$ ）												
	$\begin{aligned} & \begin{array}{l} \text { ? } \\ \text { Bhata } \\ \text { Dgata } \end{array} \end{aligned}$		$\begin{aligned} & w_{c c}=5.0 \\ & w_{s c}=0.5 \end{aligned}$			$\begin{gathered} w_{c c}=\mathbf{1 0 . 0} \\ w_{s c}=0.5 \end{gathered}$			$\begin{aligned} w_{c c} & =\mathbf{1 0 . 0} \\ \boldsymbol{w}_{s c} & =\mathbf{1 . 0} \end{aligned}$			$\begin{gathered} \boldsymbol{w}_{c c}=\mathbf{2 0 . 0} \\ \boldsymbol{w}_{s c}=1.0 \end{gathered}$			ZDock Results
and Complex	Unboex̃ Mol 1	Unbound Mol 2	Good Peaks	Rank	RMSD（ ${ }_{\text {A }}$ ）	Good Peaks	Rank	RMSD（A）	Good Peaks	Rank	RMSD（A）	Good Peaks	Rank	RMSD（ \AA ）	RMSD（ ${ }_{\text {A }}$ ）
I4D＿D：AB	$1{ }^{\text {c／}} \mathrm{H} 1_{-}$	1149＿AB	42	6，391	3.58	－	－	－	96	6，940	3.41	－	－	－	1.74
R＿HL：ABC	11疑＿HL	1ALY＿ABC	13	13，814	2.31	109	4043	1.60	129	2，739	1.51	149	842	1.51	1.49
IB1＿AB：E		1KUY＿A	66	18，213	3.66	54	13，593	3.66	18	20，918	3.66	－	－	5.19	3.97
IBR＿A：B	1064＿A	1F59＿A	6	13，885	4.41	－	－	7.38	－	－	6.89	－	－	6.78	4.71
IJK＿BC：A		1AUQ＿	289	3，414	2.54	228	3，514	2.54	197	2，221	2.54	113	3，036	2.55	1.11
IQD＿AB：C	11象＿AB	1D7P＿M	－	－	8.65	9	33，186	1.34	31	8，909	1.34	53	3，551	1.34	0.75
JPS＿HL：T	1JETT＿HL	1TFH＿B	71	5，846	3.25	174	1，733	1.29	265	484	1.24	322	799	1.21	0.86
K4C＿AB：C	$1{ }^{\text {Kig }}$ C＿AB	1JVM＿ABCD	167	74	3.02	147	13	3.02	115	64	3.02	55	1，569	3.02	0.64
K5D＿AB：C	1REPP＿AB	1YRG＿B	13	1，203	4.52	6	18，833	4.34	－	－	5.06	3	27，117	4.49	1.81
KAC＿A：B	1）${ }_{\text {diob＿F }}$	1F5W＿B	301	2，005	1.42	375	941	1.42	380	747	1.67	341	431	1.67	1.34
KL＿ABC：H	1 JBt	$2 \mathrm{HPR}_{-}$	－	－	5.75	－	－	5.62	－	－	6.07	－	－	5.02	2.35
KLU＿AB：D	1HTN゙＿AB	$1 \mathrm{STE}_{-}$	47	2，582	4.09	19	3，276	4.31	8	20，914	4.36	22	6，464	3.45	0.87
KTZ＿A：B	17GK＿	1M9Z＿A	－	－	5.03	2	33，047	4.89	3	26，751	4.89	14	14，660	4.78	0.76
KXP＿A：D	1崽J＿B	1KW2＿B	223	418	1.59	178	226	2.01	138	306	2.01	82	70	2.01	1.58
KXQ＿H：A	1K－大Q＿H	$1 \mathrm{PPI}_{-}$	160	1，502	1.36	279	2，270	1.36	303	646	1.36	263	302	1.36	0.85
M10＿A：B	1AUQ＿	1MOZ＿B	146	3，412	2.99	90	3，593	2.99	42	7，365	3.36	37	6，232	3.67	4.29
MAH＿A：F	1J06＿B	$1 \mathrm{IFS}_{-}$	－	－	5.50	7	30，532	2.16	39	6，598	2.07	77	2，628	2.07	0.86
ML0＿AB：D	1MKF＿AB	1DOL＿	186	4，634	2.62	40	9，643	3.57	－	－	5.22	1	48，211	3.38	1.25
MLC＿AB：E	1MLB＿AB	3LZT	－	－	9.96	－	－	5.48	－	－	5.12	－	－	5.12	0.83
C＿ABCD：EF	3MIN＿ABCD	2NIP＿AB	9	11，739	3.70	－	－	－	2	16，076	4.82	－	－	－	3.03

			$\stackrel{\stackrel{0}{0}}{0}$	to	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\underset{\sim}{2}}$	$\stackrel{\cong}{\square}$	\exists	$\underset{\sim}{\circ}$	$\stackrel{\sim}{4}$		$\stackrel{\text { g }}{\text {－}}$	$\stackrel{i}{6}$	$\stackrel{n}{n}$	$\stackrel{\infty}{\infty} \underset{\substack{\infty \\ \hline}}{ }$	$\left\|\begin{array}{l} \infty \\ \underset{i}{n} \end{array}\right\|$	$\underset{O}{\mathrm{~N}}$	$\stackrel{\mathrm{t}}{\mathrm{O}}$	$\stackrel{+}{4}$	$\stackrel{\text {＋}}{+}$	\％	$\stackrel{\sim}{6}$	$\stackrel{+}{+}$	$\stackrel{\circ}{\circ}$
		令	$\stackrel{\infty}{\infty}$	$\underset{i}{\underset{i}{\mathrm{a}}}$	$\stackrel{\cong}{3}$	$\underset{\substack{\mathrm{i}}}{\substack{2}}$	$\stackrel{\text { ¢ }}{\sim}$	$\begin{gathered} \infty \\ \underset{i}{\infty} \end{gathered}$	$\underset{\sim}{\underset{子}{*}}$	$\stackrel{\rightharpoonup}{3}$	$\stackrel{\text { ® }}{\square}$	$\stackrel{n}{\circ}$	$\stackrel{\text { H }}{\text { ¢ }}$	$\underset{i}{ }$	\|ֻ	$\stackrel{n}{子}$		$\stackrel{\infty}{n}$	$\stackrel{\circ}{6}$	$\stackrel{\infty}{\rightrightarrows}$	$\stackrel{\text { ® }}{\substack{2}}$	$\stackrel{\text { ç }}{\text { ¢ }}$	，	$\stackrel{ \pm}{9}$
		$\begin{array}{\|l\|l} \stackrel{\rightharpoonup}{E} \\ \end{array}$	$\begin{array}{\|l\|l} \stackrel{\rightharpoonup}{c} \\ \underset{\sim}{2} \end{array}$	$\underset{\sim}{\stackrel{n}{\sim}}$	$\stackrel{\sim}{\square}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\mathbf{B}_{0}}$	¢	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\circ}{2} \end{aligned}$	$\underset{\sim}{\underset{\sim}{i}}$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{6} \\ - \\ \hline \end{array}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\underset{\sim}{\infty}}$	\％	$\begin{array}{\|l\|l} \infty \\ \substack{0 \\ 寸 \\ f} \end{array}$	ir	$\begin{aligned} & \hat{2} \\ & \stackrel{\lambda}{i} \end{aligned}$	\％		$\underset{\sim}{~}$	$\underset{\infty}{\underset{\infty}{\infty}}$	$\stackrel{\sim}{8}$	$\stackrel{\sim}{\wedge}$	$\underset{=}{\underset{\sim}{c}}$	，	$\stackrel{\circ}{n}$
			in	ल	$\stackrel{\rightharpoonup}{8}$	ช	$\%$	\ldots	∞	$\stackrel{\sim}{n}$	ㅍ	へ	－	\％	∞	\bigcirc	，	$\stackrel{\square}{6}$	\therefore	त	$\stackrel{m}{2}$	$\stackrel{\circ}{-}$	，	$\stackrel{\infty}{\sim}$
		令	$\stackrel{n}{n}$	$\underset{\text { in }}{\underset{\sim}{a}}$	$\stackrel{\cong}{3}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\mathrm{m}}$	$\stackrel{\underset{\infty}{\infty}}{\substack{2}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\substack{\circ \\ \hdashline}}{ }$	$\stackrel{\infty}{\leftrightarrows}$	$\stackrel{n}{\circ}$	志	$\stackrel{\text { n}}{-}$	$\overline{\mathrm{i}}$	$\stackrel{n}{f}$	＇	$\stackrel{\infty}{n}$	\cong	$\stackrel{\infty}{\rightrightarrows}$	$\stackrel{\sim}{9}$	$\stackrel{\sim}{-}$	势	
				$\begin{array}{\|l} \hline 0 \\ \infty \\ \end{array}$	in	$\stackrel{\grave{N}}{\mathbf{\alpha}}$	$\underset{\sim}{\underset{\sim}{N}}$		$\begin{array}{\|c} \stackrel{\rightharpoonup}{\mathrm{c}} \\ \text { Sb } \end{array}$	年	$\left\|\begin{array}{c} \infty \\ \underset{\sim}{c} \\ \dot{n} \end{array}\right\|$	앙	，	\％	$\begin{array}{\|l} \hline \stackrel{n}{\circ} \\ \stackrel{y}{c} \end{array}$	¢		$\stackrel{\infty}{\stackrel{\infty}{\sim}}$		－	N	¢	，	$\stackrel{\infty}{\infty}$
			－	ค	$\underset{\substack{\text { to } \\ \hline}}{ }$	\cdots	m	$\stackrel{\sim}{2}$	\bigcirc	$\underset{\sim}{\infty} \mid$	$\stackrel{\cong}{\rightrightarrows}$	～	，	م	－	\bigcirc	＇	$\stackrel{ \pm}{\infty}$	\cdots	－	춧	in	，	$\stackrel{\infty}{\sim}$
			$\stackrel{n}{n}$	$\stackrel{m}{i}$	$\stackrel{\cong}{\leftrightarrows}$	$\underset{\sim}{\infty}$	$\stackrel{\underset{\sim}{7}}{\substack{2}}$	$\stackrel{\rightharpoonup}{\mathrm{T}}$	$\stackrel{\otimes}{\infty}$	$\stackrel{\substack{6 \\ \hdashline}}{ }$	$\stackrel{B}{9}$	$\stackrel{n}{\circ}$	$\stackrel{\cong}{\gtrless}$	$\stackrel{\sim}{\Omega}$	$\overline{\mathrm{i}}$	$\underset{\sim}{\infty}$	，	$\underset{\sim}{n}$	to	$\stackrel{\infty}{\rightrightarrows}$	$\underset{\sim}{2}$	$\stackrel{\ominus}{\square}$	，	ֵ
			$\stackrel{8}{8}$		$\stackrel{\ominus}{\mathrm{N}}$	$\begin{array}{\|l\|l} \hline \infty \\ \vdots \\ \end{array}$	$\underset{\sim}{\stackrel{\rightharpoonup}{n}}$	$\begin{aligned} & \stackrel{\sim}{0} \\ & \underset{\sim}{2} \end{aligned}$	$$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	¢	，	N	$\begin{array}{\|l} \hline \stackrel{\cong}{\circ} \\ \stackrel{y}{\circ} \end{array}$	$\begin{gathered} \stackrel{\circ}{8} \\ \stackrel{+}{+} \end{gathered}$		$\underset{\substack{\circ \\ \underset{\sim}{2} \\ \hline}}{ }$	$\left\lvert\, \begin{gathered} \underset{\sim}{0} \\ \underset{\sim}{2} \end{gathered}\right.$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\circ} \end{aligned}$	\％	－	，	そ
			\％	8	$\left\|\begin{array}{c} t \\ n \\ i \\ i \end{array}\right\|$	$=$	へ̀	m	－	$\stackrel{\sim}{e}$	$\stackrel{\sim}{\sim}$	\cdots	，	¢ ${ }_{\infty}$	\cdots	\sim	，	㞧	∞	$\stackrel{\sim}{2}$	®̀	誛	－	へ্ণী
		－	$\stackrel{i}{n}$	$\stackrel{\rightharpoonup}{\mathrm{i}}$	$\stackrel{\cong}{\leftrightarrows}$	$\left\lvert\, \begin{aligned} & \mathfrak{q} \\ & 子 \end{aligned}\right.$		$\underset{\sim}{\infty}$	$\begin{array}{\|c} \mathfrak{F} \\ \underset{\sim}{n} \end{array}$	$\underset{-}{0}$	$1 \begin{aligned} & \circ \\ & \hline \end{aligned}$	$\begin{array}{\|c} \infty \\ \end{array}$	$\overline{\mathrm{a}}$	$\stackrel{\infty}{n}$	$\underset{i}{\circ}$	$\underset{\sim}{\infty}$	$\underset{\substack{\mathrm{O} \\ \hline \\ \hline}}{ }$	$\stackrel{\substack{n\\}}{ }$	$\stackrel{n}{n}$	$\stackrel{\sim}{\mathrm{N}}$	$\underset{\sim}{n}$	$\stackrel{O}{\odot}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \infty \end{aligned}$	त
			$\left\|\begin{array}{c} \infty \\ n \\ \stackrel{n}{6} \\ \hdashline \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \hat{m} \\ & \hat{N} \\ & \text { in } \end{aligned}\right.$	$\stackrel{\infty}{=}$	$\left\|\begin{array}{l} n \\ 0 \\ n \\ m \end{array}\right\|$	$\begin{aligned} & \bar{\infty} \\ & \vec{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\bar{n}}{n}$	，	a	$\begin{aligned} & \hat{y} \\ & \underset{i}{\hat{r}} \\ & i \end{aligned}$	$\underset{\sim}{\underset{\sim}{n}}$	，	－	$\left\lvert\, \begin{gathered} \stackrel{n}{n} \\ \stackrel{n}{7} \end{gathered}\right.$	$\left\|\begin{array}{l} \stackrel{0}{0} \\ \underset{\circ}{\infty} \end{array}\right\|$		$\underset{\infty}{\infty}$		$$	$\underset{\underset{-}{\infty}}{\underset{\sim}{2}}$	亏̇	，	$\stackrel{\sim}{\infty}$
			\sim	ते	$\left\|\begin{array}{c} \stackrel{\sim}{g} \\ \underset{\sim}{2} \end{array}\right\|$	＋	\simeq	え	，	管	N	in	，	$\underset{-}{2}$	－	－		$\stackrel{\infty}{\infty}$	誌	\cong	N	－	，	ล
	$\stackrel{็}{\approx}$			$\left\lvert\, \begin{gathered} u^{\prime} \\ \underline{\underline{2}} \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \mathbb{C}_{1} \\ & S_{1} \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \varangle \\ & N_{1} \\ & U \end{aligned}\right.$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\tilde{n}} \end{aligned}$	$\begin{aligned} & \text { 关 } \\ & \underline{\underline{I}} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 䍖 } \end{array}$	$\left\|\begin{array}{l} \mathbb{U}_{1} \\ \underset{\underset{\sim}{9}}{ } \end{array}\right\|$	$\left\lvert\,\right.$	$\underset{\sim}{N_{j}^{\prime}}$	$\begin{array}{\|l\|} U^{\prime} \\ \text { צ } \end{array}$	$\begin{aligned} & x^{\prime} \\ & \stackrel{y}{3} \\ & \hline \end{aligned}$			$\begin{aligned} & 1 \\ & \\ & \end{aligned}$	$\left\|\begin{array}{c} c_{1} \\ v_{1} \\ \underset{\sim}{c} \end{array}\right\|$	\mid	$\begin{aligned} & \text { 采 } \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{array}{\|l\|} \hline \\ \hline \end{array}$	$\begin{aligned} & \text { a } \\ & \text { 르́ } \end{aligned}$		\cdots
							$\left\lvert\, \begin{aligned} & \Sigma_{1} \\ & \Sigma_{1} \\ & C \end{aligned}\right.$		$\begin{gathered} u_{1}^{\prime} \\ \text { rasici } \end{gathered}$	$a^{\prime \prime}$	x_{1}^{\prime}								$\underbrace{\prime}_{i}$		$\frac{2}{201}$			
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{i}{z} \\ & \underset{\sim}{\prime} \\ & \underset{U}{U} \end{aligned}\right.$	$\left\|\begin{array}{c} \underset{i}{i} \\ \underset{y}{1} \\ z_{z} \end{array}\right\|$							$\left\lvert\, \begin{aligned} & \text { 豆 } \\ & \underset{1}{S} \\ & \underline{S} \end{aligned}\right.$			$\left\|\begin{array}{l} \ddot{\dddot{x}}_{1} \\ \underset{\partial}{3} \end{array}\right\|$										只

TABLE 3

hape-complementarity-based unbound-unbound docking with F^{2} Dock. 'Rank' is the best rank among all predicted
2 MSD among all peaks that were retained. In both cases we used 6° rotational sampling, and retained 50,000. RMSD was ar the interface of the known bound conformation (within $5 \AA$ of the interface).

	F^{2} Dock Results											F^{2} Doc	Results		
	Weights：$w s s=1.0, w_{c c}=10.0, w_{s c}=1.0$									Weights：$w_{s s}=1.0, w_{c c}=10.0, w_{s c}=1.0$					
	Frequencies $=32^{3}$									Frequencies $=32^{3}$					
	Without Electrostatics $w_{E}=0$			With Electrostatics $w_{E}=350$			Data			Without Electrostatics $w_{E}=0$			With Electrostatics $w_{E}=350$		
Unbound Mol 2	Gooatd Peaks	Rank	RMSD（ ${ }_{\text {A }}$ ）	Good Peaks	Rank	RMSD（ ${ }_{\text {A }}$ ）	Bound	Unbound	Unbound	Good Peaks	Rank	RMSD（Å）	Good Peaks	Rank	RMSD（ ${ }^{\text {（ }}$ ）
1 A 43	${ }^{\text {P }}$	－	7.03	－	－	7.00	1NCA＿HL：N	1NCA＿HL	7NN9＿	37	7，406	1.50	29	8，944	1.65
1HH8＿A	375	300	1.79	218	193	1.79	1NSN＿HL：S	1NSN＿HL	1 KDC －	69	7，846	2.09	68	8，340	2.09
9PTI＿	容 913	517	1.70	1，265	454	1.52	1PPE＿E：I	18TP ${ }_{-}$	1LU0＿A	1，634	355	1.12	1，450	392	1.12
1ERN＿AB	§12	4	2.80	142	1	2.84	1QA9＿A：B	$1 \mathrm{HNF}_{-}$	1CCZ＿A	23	9，957	3.37	24	9，730	3.37
1CZP＿A	\＄ 567	4	1.21	2，308	4	1.17	1QFW＿IM：AB	1QFW＿IM	1HRP＿AB	35	1，372	1.34	45	1，212	1.34
1ECZ＿AB	${ }_{0}$	826	3.40	42	763	3.40	1RLB＿ABCD：E	2 PAB ＿ABCD	$1 \mathrm{HBP}_{-}$	26	6，480	3.82	28	4，843	3.77
1F32＿A	\％${ }^{\text {\％}}$	98	1.34	625	60	1.34	1SBB＿A：B	$1 \mathrm{BEC}_{-}$	1SE4＿	19	6，270	4.06	19	6，146	4.06
1SRR＿C	O－	－	－	－	－	－	1TMQ＿A：B	1 JAE －	1B1U＿A	233	247	1.63	238	241	1.63
1TFH＿B	\geq^{-}	－	8.43	－	－	8.43	1UDI＿E：I	$1 \mathrm{UDH}_{-}$	2UGI＿B	113	5，438	1.98	217	3，043	1.74
1FC1＿AB	¢	45，800	4.98	－	－	5.12	1VFB＿AB：C	1VFA＿AB	8LYZ＿	243	310	0.75	269	213	0.75
1B39＿A	求 42	970	4.01	－	－	－	1WEJ＿HL：F	1QBL＿HK	1HRC－	－	－	6.44	－	－	6.44
1FQI＿A	旖288	27	2.12	326	30	2.10	1WQ1＿R：G	6Q21＿D	1WER＿	503	96	1.95	608	62	1.95
$1 \mathrm{BV1} 1_{-}$	$\stackrel{7}{7}$	14，829	2.19	37	14，873	2.19	2BTF＿A：P	1IJJ＿B	$1 \mathrm{PNE}_{-}$	7	17，075	2.31	8	13，957	2.31
1GCP＿B	遒－	－	14.19	－	－	14.19	2HMI＿CD：AB	2HMI＿CD	1S6P＿AB	10	884	4.15	10	836	4.15
1LY2＿A	$\stackrel{\square}{2} 24$	101	2.85	190	431	2.85	2JEL＿HL：P	2JEL＿HL	$1 \mathrm{POH}_{-}$	－	－	－	57	11，932	2.58
1TBG＿DH	－	－	7.05	－	－	6.97	2MTA＿HL：A	2BBK＿JM	2RAC＿A	384	1，378	1.58	811	1，124	1.58
1RGP＿	${ }_{6} 49$	1，264	2.23	504	674	2.23	2PCC＿A：B	$1 \mathrm{CCP}_{-}$	1YCC－	73	19，509	1.10	1，574	843	0.66
1D0N＿B	－	－	13.47	－	－	13.47	2QFW＿HL：AB	1QFW＿HL	1HRP＿AB	239	525	1.18	307	427	1.18
1HE9＿A	¢ ${ }_{\text {¢ }}^{\text {c，}}$	1	1.12	1，253	1	1.12	2SIC＿E：I	$1 \mathrm{SUP}_{-}$	3 SSI	226	1，072	1.79	180	1，429	2.35
1E8Z＿A	す－	－	5.14	－	－	5.14	2SNI＿E：I	1UBN＿A	$2 \mathrm{Cl2} 2$ I	257	362	1.92	246	377	1.92
$1 \mathrm{BXB}_{-}$	488	453	3.10	718	220	2.98	2VIS＿AB：C	1GIG＿LH	2VIU＿ACE	－	－	7.74	－	－	7.74
1A12＿A	137	1，352	3.06	349	381	2.86	7CEI＿A：B	1UNK＿D	1M08＿B	318	1，188	1.04	958	598	0.85

TABLE 4

of changing the number of frequencies extracted by FFT during Bound-unbound docking with F^{2} Dock. 'Rank' is the best rank among all predicted
ons whose RMSD was less than $5 \AA$. 'Good Peaks' is the number of peaks in the predicted set which were less than $5 \AA$ RMSD from the known
on. 'RMSD' is the lowest RMSD among all peaks that were retained. F^{2} Dock used 6° rotational sampling, and retained 50,000 peaks. RMSD was
ated using the C_{α} atoms near the interface of the known bound conformation (within $5 \AA$ of the interface).

		F^{2} Dock Results								\mathbf{F}^{2} Dock Results					
		Weights								Weights					
		$w_{s s}=1.0, w_{c c}=10.0, w_{s c}=1.0$								$w_{s s}=1.0, w_{c c}=10.0, w_{s c}=1.0$					
Data		Frequencies $=32^{3}$			Frequencies $=64^{3}$			Data		Frequencies $=32^{3}$			Frequencies $=64{ }^{3}$		
d Complex	Unboural Mol 2	Good Peaks	Rank	RMSD (${ }_{\text {A }}$)	Good Peaks	Rank	RMSD (${ }_{\text {(}}$)	Bound Complex	Unbound Mol 2	Good Peaks	Rank	RMSD (${ }_{\text {A }}$)	Good Peaks	Rank	RMSD (${ }_{\text {A }}$)
K_C:AB	IOUR2 ${ }^{\text {a }}$	40	5,240	3.01	26	2,329	3.17	114D_D:AB	1149_AB	35	4,657	4.08	227	353	2.68
CB_E:I		581	130	1.90	594	50	1.93	119R_HL:ABC	1ALY_ABC	108	3,983	0.85	123	1,782	0.84
W_AB:C	1 TFEE	42	5,742	1.24	94	1,001	1.27	1IB1_AB: E	1KUY_A	75	589	1.79	107	3,166	1.35
K4_A:D	1EGP	58	785	4.09	82	3,480	3.97	1IBR_A:B	1F59_A	1	49,336	4.98	3	31,965	3.43
J_AB:DE	1 CD 为 AB	427	320	1.26	532	286	1.26	1IJK_BC:A	1AUQ-	56	2,647	1.72	18	7,958	1.77
TN_A:D	3D ${ }_{\text {en }}$	3	17,662	4.61	1	25,273	1.57	11QD_AB:C	1D7P_M	31	8,909	1.34	9	25,042	1.74
VX_A $:$ B	1BA ${ }_{\text {g }}$ B	588	262	1.70	781	176	1.40	1JPS_HL:T	1TFH_B	178	1,689	0.93	142	1,195	0.75
Y7_A:B	1A ${ }_{\text {cos }}$	121	2,607	1.48	109	45	1.41	1K4C_AB:C	1JVM_ABCD	115	64	3.02	357	31	2.84
6C_A:B	1IA	92	2,059	2.08	66	7,647	1.56	1K5D_AB:C	1YRG_B	7	34,601	1.80	3	7,478	4.73
X_HL:T		-	-	5.21	12	2,049	3.51	1KAC_A:B	1F5W_B	465	340	1.53	319	804	1.73
_HL:VW	2VP脣GH	2	43,036	4.69	-	-	6.02	1KKL_ABC:H	2 HPR	24	30,156	2.09	94	7,376	2.27
UH_A:B	1DKS_A	6,041	8	0.46	5,723	9	0.22	1KLU_AB:D	1STE_	31	7,312	4.04	9	11,638	4.30
K_DE:F	3LT7-	97	3,687	1.58	61	842	1.72	1KTZ_A:B	1M9Z_A	-	-	5.15	-	-	5.05
VN_P:T		719	36	1.27	1,255	14	1.03	1KXP_A:D	1KW2_B	221	102	1.35	345	126	1.16
GI_E:I		3,289	5	0.75	4,752	14	1.20	1KXQ_H:A	$1 \mathrm{PPI}_{-}$	249	1,020	1.69	295	1,758	0.65
6R_A $:$ I	1K9B_A	2,508	170	1.11	2,469	200	1.10	1M10_A:B	1MOZ_B	91	5,622	3.09	26	5,628	3.65
4_AB:CF	1CX8_AB	206	1,296	1.61	113	878	2.09	1MAH_A:F	$1 \mathrm{FSC}_{-}$	25	16,095	3.39	73	3,508	1.58
PJ_E:I	$2 \mathrm{BNH}_{-}$	512	65	0.86	637	732	0.64	1ML0_AB:D	$1 \mathrm{DOL}_{-}$	-	-	5.34	34	621	1.86
VJ_AB:C	3LZT_	8	3,5060	3.15	16	18,100	2.24	1MLC_AB:E	3LZT_	-	-	5.43	-	-	5.11
6E_A:B	1CJE_D	212	4,586	2.27	319	175	1.29	1N2C_ABCD:EF	2NIP_AB	13	797	4.44	10	2,936	4.41

		F ${ }^{2}$ Dock Results								\mathbf{F}^{2} Dock Results					
		Weights								Weights					
		$w_{s s}=1.0, w_{c c}=10.0, w_{s c}=1.0$								$w_{s s}=1.0, w_{c c}=10.0, w_{s c}=1.0$					
Data		Frequencies $=32^{3}$			Frequencies $=64^{3}$			Data		Frequencies $=32^{3}$			Frequencies $=64^{3}$		
d Complex	Unbound Mol 2	Good Peaks	Rank	RMSD（ ${ }^{\text {（ }}$ ）	Good Peaks	Rank	RMSD（ ${ }_{\text {（ }}$ ）	Bound Complex	Unbound Mol 2	Good Peaks	Rank	RMSD（ ${ }^{\text {（ }}$ ）	Good Peaks	Rank	RMSD（ ${ }^{\text {（ }}$ ）
6J＿HL：P	1A笭－	－	－	6.99	23	23，314	1.93	1NCA＿HL：N	7NN9＿	37	7，406	1.50	67	3，133	0.91
96	1HH空A	252	514	1.62	150	2，084	1.74	1NSN＿HL：S	$1 \mathrm{KDC} C_{-}$	69	7，846	2.09	106	1，996	2.09
AW＿A：B	9P愿	837	203	2.21	1，460	149	1.54	1PPE＿E：I	1LU0＿A	2，994	205	1.68	3，171	18	1.27
R＿A：BC	1ERICAB	112	29	2.86	534	47	1.79	1QA9＿A：B	1CCZ＿A	26	15，078	2.59	40	4，334	1.57
WY＿A：C	1 C 水－A	2，253	129	1.14	2，160	1	1.04	1QFW＿IM：AB	1HRP＿AB	35	1，371	1.34	11	4，852	1.57
U＿C：AB	1EC	61	24	3.23	113	51	3.36	1RLB＿ABCD：E	$1 \mathrm{HBP}_{-}$	30	10，452	2.20	10	16，389	2.16
34＿A：B	1F3\％	528	65	1.28	875	15	1.13	1SBB＿A：B	1SE4＿	9	30，808	4.24	4	18，560	4.07
1＿AB：E	1SR趀 ${ }^{\text {c }}$	168	2，553	3.05	351	499	1.63	1TMQ＿A：B	1B1U＿A	309	9	1.60	504	12	1.33
AK＿HL：T	1TFH ${ }^{\text {H }}$	39	1，391	2.41	58	2，184	2.72	1UDI＿E：I	2UGI＿B	398	1，071	1.51	509	192	1.06
C2＿C：D		－	－	5.61	－	－	6.04	1VFB＿AB：C	8LYZ＿	129	8，387	2.53	96	2，511	1.84
Q1＿A：B	1B3总A	15	4，591	4.23	1	28，985	4.87	1WEJ＿HL：F	1HRC＿	－	－	6.57	4	27，001	3.62
QJ＿A：B	1FQ	325	21	1.75	277	124	1.99	1WQ1＿R：G	$1 \mathrm{WER}_{-}$	868	379	1.40	1，080	93	1.44
K＿BC：A	1B＇⿹丁口： 1	39	14，829	2.19	27	8，442	1.75	2BTF＿A：P	$1 \mathrm{PNE}_{-}$	126	7，748	1.57	89	3，769	0.87
CQ＿B：C	1G¢ $\stackrel{\text { ¢ }}{\text { ¢ }}$	1，280	20	1.18	1，263	2	1.30	2HMI＿CD：AB	1S6P＿AB	－	－	5.73	－	－	5.97
HQ＿A：B		239	11	2.90	368	190	2.77	2JEL＿HL：P	$1 \mathrm{POH}_{-}$	46	14，110	2.76	6	25，303	3.29
P2＿A：BG	1TBG咋DH	42	1，990	1.35	14	10，191	1.61	2MTA＿HL：A	2RAC＿A	171	6，357	3.36	333	1，273	1.09
RN＿A：B	1RG9	171	3，286	1.59	239	708	1.23	2PCC＿A：B	1YCC－	200	9，587	0.62	85	5，616	1.56
1V＿A：G	1D0 ${ }_{\text {－}}$	－	－	13.33	－	－	13.49	2QFW＿HL：AB	1HRP＿AB	239	525	1.18	209	3，715	1.06
IE1＿C：A	1HE察A	1，134	27	0.88	1，400	40	0.91	2SIC＿E：I	3SSI＿	328	550	1.59	207	838	2.39
IE8＿B：A	1 E 砍A	9	28，558	3.50	62	4，239	2.14	2SNI＿E：I	2CI2＿I	234	855	2.53	262	2，688	1.87
IA＿AB：I	$1 \mathrm{BXB}_{-}$	454	90	2.61	641	1	2.20	2VIS＿AB：C	2VIU＿ACE	－	－	7.02	－	－	7.01
2M＿A：B	1A12＿A	532	48	0.84	576	27	0.87	7CEI＿A：B	1M08＿B	582	67	1.25	725	19	1.56

TABLE 5

Shape-complementarity-based bound-bound docking results with and without electrostatics using F^{2} Dock. 'Rank' is the best rank among all predicted positions whose RMSD was less than $5 \AA$. 'Good Peaks' is the number of peaks in the predicted set which were less than $5 \AA$ RMSD from the known position. 'RMSD' is the lowest RMSD among all peaks that were shortlisted. F^{2} Dock used use 6° rotational sampling, and retained 50,000 peaks. RMSD was calculated using the C_{α} atoms near the interface of the known bound conformation (within $5 \AA$ of the interface).

					$\stackrel{i n}{n}$				$\frac{\stackrel{\partial}{\infty}}{\stackrel{\circ}{\dot{O}}}$	$\begin{array}{\|l\|} \substack{\underset{\sim}{\underset{~}{2}} \\ \stackrel{\rightharpoonup}{\mathrm{~N}} \\ \hline} \end{array}$	$\begin{array}{\|l} \stackrel{\text { I }}{-} \\ \frac{\circ}{\sigma} \end{array}$		$$	$\begin{aligned} & \stackrel{0}{2} \\ & \frac{2}{2} \end{aligned}$	$\begin{array}{\|l} \stackrel{\sim}{2} \\ \hline \stackrel{\infty}{\stackrel{\infty}{i}} \\ \hline \end{array}$					$\begin{array}{\|l} \hline \underset{子}{\text { J. }} \\ \hline \stackrel{n}{e} \end{array}$	$\begin{array}{\|l} \stackrel{8}{0} \\ \hline \underline{0} \end{array}$		$\begin{array}{\|l} \hline \stackrel{\text { to }}{0} \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{\circ}_{\stackrel{\rightharpoonup}{\infty}}$		$\stackrel{+}{\sim}$ $\stackrel{\sim}{0}$ \sim
					$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \infty \\ & \hline \end{aligned}$																					
					ล	\bigcirc	\％	采	N	\bigcirc	$\stackrel{\sim}{\ominus}$	in	승	त	$\stackrel{\sim}{\infty}$	$\underset{y}{\widehat{y}}$	∞	，	2	＋		$\stackrel{\text { m }}{\text { ¢ }}$	$\stackrel{\sim}{\sim}$	¢े	∞	－
					in	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}\right.$	$\underset{o}{\mathrm{E}}$		$\stackrel{\substack{\infty \\ 0 \\ \hline}}{ }$	$\stackrel{\text { 寺 }}{\text {－}}$	$\underset{\sim}{\mathcal{I}}$	$\stackrel{\circ}{\circ}$	$\stackrel{n}{\square}$	$\stackrel{\rightharpoonup}{0}$	$\underset{\sim}{2}$	ģ	G	$\stackrel{\rightharpoonup}{\mathrm{r}}$	$\stackrel{\circ}{8}$	$\stackrel{\infty}{\sim}$	$\underset{\sim}{\circ}$	$\bar{\circ}$	تِ	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{i}$	$\stackrel{\text { ç }}{\text { c }}$
					$\underset{\substack{\stackrel{\rightharpoonup}{n} \\ \underset{\sim}{2} \\ \hline}}{ }$		－	ミ	¢	$\underset{\sim}{\stackrel{\rightharpoonup}{n}}$		－	先	尔	$\begin{array}{\|l\|l} \circ \\ \underset{\sim}{\circ} \\ \hline \end{array}$	\bigcirc		，	dì	－	$\stackrel{\sim}{6}$	$\stackrel{\ominus}{\cong}$	－	－	$\begin{aligned} & \text { ते } \\ & \text { In } \end{aligned}$	ভ－
					¢	テ	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\underset{\sim}{2}}$	$\stackrel{\rightharpoonup}{\gtrless}$	ત̇	̇	d	in	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\square}$	¢	年	̇		寸	$\underset{\sim}{\infty}$	$\stackrel{\circ}{\mathrm{N}}$	\gtrless	in	$\stackrel{\otimes}{\infty}$	∞	$\stackrel{\infty}{n}$
						$\left\lvert\, \begin{aligned} & \stackrel{n}{\dot{1}} \\ & \stackrel{1}{1} \\ & z_{n} \\ & \underset{Z}{z} \end{aligned}\right.$					$\begin{aligned} & \mathscr{c} \\ & \underset{c}{c} \\ & \infty \\ & \mathscr{M} \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { 鬲 } \\ & \stackrel{\rightharpoonup}{\mathrm{S}} \end{aligned}\right.$										$\begin{aligned} & \text { 总 } \\ & \text { U } \\ & \text { Un } \end{aligned}$			$\xrightarrow{\sim}$
					$\stackrel{n}{7}$	$\stackrel{0}{9}$	\pm	$\stackrel{n}{n}$	$\underset{\substack{\mathrm{O} \\ \hline \\ \hline}}{ }$	$\underset{-}{\mathrm{O}}$	$\stackrel{\sim}{\sim}$	\bar{n}	$\stackrel{\underset{-}{\infty}}{\square}$	$\stackrel{\infty}{\leftrightharpoons}$		$\underset{i}{\circ}$	$\underset{\underset{\sim}{\infty}}{\infty}$	$\underset{O}{\circ}$	$\stackrel{\infty}{\infty}$	$\stackrel{\text { I }}{-}$	$\stackrel{+}{-}$	$\stackrel{\infty}{\stackrel{\infty}{c}}$	$\underset{0}{i}$	$\stackrel{F}{i n}$	$\stackrel{i}{0}$	$\stackrel{\circ}{\circ}$
					$\begin{aligned} & \infty \\ & \infty \\ & + \\ & \hline \end{aligned}$	$\stackrel{n}{0}$	\bigcirc	in	夺	の	－	$\stackrel{\otimes}{\sim}$	$\frac{\infty}{\infty}$	$\underset{\sim}{\underset{\sim}{c}}$		$\begin{aligned} & \stackrel{\circ}{\mathrm{m}} \\ & \underset{\sim}{2} \end{aligned}$	去	$\stackrel{\sim}{\infty}$	$\underset{\text { ín }}{\text { İ }}$	$\underset{\underset{\sim}{\mathrm{N}}}{ }$	¢	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \text { へِ } \end{aligned}$	－	，	－	\sim
					$\stackrel{\sim}{\sim}$	寺	$\begin{aligned} & \bar{N}_{\infty}^{\infty} \\ & -1 \end{aligned}$	in	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	き	－	\cong	$\stackrel{\sim}{\sim}$	은		저	$\underset{\sim}{\sim}$	\bar{m}	m	\simeq	E	$=$	$\stackrel{\infty}{\underset{G}{\circ}}$	，	$\underset{\sim}{\underset{\sim}{n}}$	$\underset{\sim}{\text { ¢ }}$
					$\underset{\substack{m \\ 子 \\ \hline}}{ }$	$\underset{\substack{\circ \\ \hline}}{ }$	$\underset{=}{ \pm}$	$\stackrel{0}{9}$	$\underset{0}{\aleph}$	$\underset{-}{\mathrm{O}}$	$\stackrel{\sim}{\sim}$	चָ	$\underset{\sim}{\infty}$	夺	$\underset{\sim}{\aleph}$	$\underset{\sim}{N}$	$\stackrel{\infty}{\infty}$	$\underset{8}{9}$	$\underset{\substack{ \pm i}}{\substack{2}}$	$\stackrel{\infty}{\infty}$	포	$\stackrel{\infty}{\stackrel{\infty}{c}}$	$\underset{0}{2}$	$\stackrel{F}{i n}$	$\stackrel{i}{n}$	®ेढ
				$\begin{aligned} & \text { 关 } \\ & \text { ल̈n } \end{aligned}$		\%	in	$\left\lvert\, \begin{gathered} \underset{\lambda}{\lambda} \\ i \end{gathered}\right.$	$\stackrel{\text { ® }}{ }$	¢	－	\％	去	$\begin{gathered} 0 \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}$	$\stackrel{\oplus}{\infty}$	$\begin{aligned} & \text { ત̃ } \\ & \text { ה̃ } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underset{-1}{2} \end{aligned}$	＝	\bigcirc	$\begin{gathered} \text { ה } \\ \text { N } \end{gathered}$	－	do	n	＇	－	$\stackrel{\widetilde{\sim}}{\sim}$
					a	जे	$\stackrel{\rightharpoonup}{\text { 令 }}$	ते	勺	$\stackrel{\infty}{\square}$	令	¢	ते	－	¢	달	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\text { g }}{\ddagger}$	ミ	\bigcirc	G	$\underset{\sim}{\sim}$	$\stackrel{\infty}{0}$	，	$\stackrel{\infty}{\infty}$	근
			－							$\begin{array}{\|l\|} \underset{\sim}{\sim} \\ \underset{U}{U} \\ \mathcal{N}_{1} \end{array}$				$\begin{aligned} & \text { O} \\ & \underset{U}{\prime} \\ & U_{1} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{c}} \\ & \underset{\sim}{\ddot{u}} \end{aligned}$	$\begin{aligned} & \stackrel{\varphi}{\check{c}} \\ & \underset{\sim}{\underset{\sim}{2}} \end{aligned}$		$\left\lvert\, \begin{aligned} & 0 \\ & \ddot{0} \\ & \underset{0}{0} \\ & \underline{0} \end{aligned}\right.$				$\begin{aligned} & \text { ソ } \\ & \dot{C} \\ & \underset{I}{Z} \end{aligned}$				

Algorithm 1

Inverse adaptive peak search

```
Inputs:
    \(-\hat{n}^{3}\) : number of frequencies
    \(-h\) : accuracy of peak position
    \(-\varphi\) : Compactly supported smooth decaying function
    [] at each \(k \in I_{\hat{n}}\)
    \(-\tau\) : threshold for docking score
    \(-\{(\) val, pos \()\}\) : Current output peak regions and
    [] scores
    Preprocessing: [Interval set: \(I=\) intervals \((k)\) ]
    while \(I \neq \varnothing\) do
        interval \(\leftarrow I\).next ()
        if interval.isLowRes() then
        \(t \leftarrow 0,\{\varphi\} \leftarrow\) interval.overlapping \(\varphi()\)
        for \(\varphi \in\{\varphi\}\) do
            if \(\varphi>0\) then
                if interval.isOutside \((\varphi)\) then
                \(t \leftarrow t+\varphi(\) interval.fIdx( \(\varphi\).center \()\) )
                else
                \(t \leftarrow t+\varphi_{\max }\)
                    end if
            else
                \(t \leftarrow t-\varphi\) (interval.fIdx( \(\varphi\). center))
            end if
        end for
        if \((\mathrm{t}>\tau)\) then
            \(I \leftarrow I \mathrm{U}\) interval.subIntervals()
            [] [midpoint subdivision based on \(h\) ]
        end if
    else
        update(\{(val, pos)\},interval)
    end if
end while
Output: [\{(val, pos) \}]
```

