F.F.T. Hashing is not Collision-free

T. BARITAUD * ,
H. GILBERT * ,
M. GIRAULT **
(*) CNET PAA/TSA/SRC
38 - 40, avenuc du Gćnéral Lecicrc
92131 ISSY LES MOULINEAUX (France)
(*) SEPT PEM
42, ruc des Coutures
BP 6243
14066 CAEN (Francc)

Absiract
The FFT Hashing Function proposed by C.P. Schnorr [1] hashes messages of arbitrary length into a 128bit hash value. In this paper, we show that this function is not collision frce, and we give an example of two distinct 256-bit messages with the same hash value. Finding a collision (in fact a large family of colliding messages) requires approximately 2^{23} partial compuations of the hash function, and takes a few hours on a SUN3-workstation, and less than an hour on a SPARC-workstation.

A similar result discovered independently has been announced at the Asiacrypt'gl rump session by Daemen-Bosselaers-Govaerts-Vandewalle [2].

1 The FFT Hashing Function

1.1 The Hash algorithm

Let the message be given as a bit string $m_{1} m_{2} \ldots m_{l}$ of t bit.
The message is first padded so that its length (in bits) becomes a multiple of 128 . Let the padded message $M_{1} M_{2} \ldots M_{n}$ consist of n blocks M_{1}, \ldots, M_{n}, each of the $M_{i}(i=1, \ldots, n)$ being 128 -bit long.

The algorithm uses a constant initial value H_{0} given in hexadecimal as

$$
\mathrm{H}_{0}=0123456789 \mathrm{ab} \text { cdef fcdc ba98 } 76543210 \text { in }\{0,1\}^{128}
$$

Let p be the prime $65537=2^{16}+1$.
We will use the Fourier transform $\mathrm{FT}_{8}:\{0, \ldots, \mathrm{p}-1\}^{8} \ldots-\ldots>(0, \ldots, \mathrm{p}-1\}^{8}$

$$
\left(\mathbf{a}_{0}, \ldots, a_{7}\right) \quad \cdots \cdots>\left(b_{0}, \ldots, b_{7}\right)
$$

with $b_{i}=\sum_{j=0}^{7} 2^{4 i j} a_{j} \bmod p, \operatorname{cor} i=0, \ldots, 7$.
Algorithm for the hash function h :

$$
\begin{aligned}
& \text { INPUT : } \quad M_{1} M_{2} \ldots M_{n} \text { in }\{0,1\}^{n .128} \quad \text { (a padded mcssagc) } \\
& \text { DO } \quad: \quad H_{i}=g\left(H_{i-1}, M_{i}\right) \quad \text { for } i=1, \ldots, n \\
& \text { OUTPUT: } \quad h(M):=H_{n}
\end{aligned}
$$

Algorithm for $g: z_{p}^{16} \cdots \cdots>(0,1]^{8.16}$

$$
\begin{array}{ll}
\text { INPUT } & \left(c_{0}, \ldots, c_{15}\right) \text { in }\{0,1\} \\
\text { 1. } & \left(c_{0}, c_{2}, \ldots, c_{14}\right):=F_{8}\left(c_{0}, c_{2}, \ldots, c_{14}\right) \\
\text { 2. } & \text { FOR } i=0, \ldots, 15 D 0 \\
& e_{i}:=c_{i}+c_{i-1} e_{i-2}+c_{c_{i-3}}+2^{i}(\bmod p) \\
& \text { (The lower indices } i, i-1, i-2, i-3, c_{i-3} \text { arc Laken modula 16) } \\
\text { 3. } & \text { REPEAT steps } i \text { and } 2 \\
\text { OUTPUT } & \left.\bar{c}_{i}:=c_{i} \bmod 2^{16}, \text { for } i=8, \ldots, 15 \text { (an clement of }[0,1]^{8.16}\right)
\end{array}
$$

1.2 Notations

For a beller clarity of our explanation, we will denote by $c_{i}^{0}(i=0, \ldots, 15)$ the initial c_{i} valucs, and we will denote by step 3 (resp. step 4) the second pass of step 1 (resp. step2) in the algorithm for g.

When it will be necessary to avoid any kind of slip, we will denote by $c_{i}^{k}(i=0, \ldots, 15 ; k=0, \ldots, 4)$ the c_{i} intermediate value, after step k .

In order to simplify the expressions, we are using the following notations :

- The additions ($x+y$), multiplications ($x . y$) and exponentiations (x^{y}) are implicitly made modulo p, except when the operands are lower indices.
- The $=$ symbol denotes that the right and the left terms are congruent modulo p.
- For lower indices the additions ($i+j$) and substractions ($i-j$) are implicilly made modulo 16 , and the \equiv symbol denotes that the right and the left terms are congruent modulo 16.

1.3 Preliminary remarks

The difficulty of finding collisions is related to the diffusion properties of the hashing function, i.c. the influcnec of a modification of an intermediate variable on the subsequent variables of the calculation.

Remark 1 (limitation on the diffusion at steps 1 and 3)
At step 1 and 3 , the input valucs $c_{1}, c_{2}, \ldots, c_{15}$ are kept unchanged.

Remark 2 (limitation on the diffusion at steps 2 and 4)
The diffusion introduced by the $\mathrm{c}_{\mathrm{i}-1} \mathrm{c}_{\mathrm{i}-2}$ terms in the recurrence for steps 2 and 4 can sometimes be cancelled (if one of valucs e_{i-1} and c_{i-2} is 0). More preciscly, let $\left(c_{0}^{1}, c_{1}^{l}, \ldots, e_{15}^{l}\right)$ be the input to step 2 :

Proposition 1 : If for a given value i in $(1, \ldots, 14)$ we have $c_{i-1}^{2}=c_{i+1}^{2}=0$ and ir $c_{13}^{1} \neq i ; c_{14}^{1} \neq i$; $c_{15}^{1} \not \equiv i ; c_{j}^{2} \not \equiv i$ for j in $[0, \ldots, 12]$, then the impact of replacing the input valuc c_{i}^{1} by a new value $e_{i}^{l}+\Delta e_{i}^{l}$ such that $c_{i}^{1}+\Delta c_{i}^{1} \equiv c_{i}^{1}$, is linited to the output value c_{i}^{2} (that means c_{j}^{2} are not modificd for $j \neq i$).

Proposition 2 : If $e_{14}^{1}=e_{0}^{2}=0$ and if $e_{j}^{2} \neq 15$ for j in $(1, \ldots, 11)$ then the impact of replacing the input value e_{15}^{1} by a new value $e_{15}^{1}+\Delta c_{15}^{1}$ such that $e_{15}^{1}+\Delta e_{15}^{1} \equiv e_{15}^{1}$, is limited to the output valuc c_{15}^{2}.

Similarly, let $\left(c_{1}^{3}, c_{2}^{3}, \ldots, c_{15}^{3}\right)$ be the input to step 4 :

Proposition 1': If for a given value i in $\{1, \ldots, 14\}$ we have $e_{i-1}^{4}=e_{i+1}^{4}=0$ and if $e_{13}^{3} \neq i$; $c_{14}^{3} \neq i: c_{15}^{3} \neq i ; c_{j}^{4} \neq i$ for j in $\{0, \ldots, 12\}$, then the impact of replacing the input value c_{i}^{3} by a new value $e_{i}^{3}+\Delta c_{i}^{3}$ such that $c_{i}^{3}+\Delta c_{i}^{3} \equiv e_{i}^{3}$, is limited to the output valuc c_{i}^{4}.

Proposition 2' : If $c_{14}^{3}=e_{0}^{4}=0$ and if $c_{j}^{4} \neq 15$ for j in $\{1, \ldots, 11\}$ then the impact of replacing the input value e_{15}^{3} by a new value $e_{15}^{3}+\Delta e_{15}^{3}$ such that $e_{15}^{3}+\Delta c_{15}^{3} \equiv c_{15}^{3}$ is limited to the output value e_{15}^{4}.

2 Construction of two colliding messages

2.1 Construction of a partial collision

We first find two 128 -bit blocks M_{1} and M_{1}^{\prime} which hash values $H_{1}=\left(\bar{c} 8_{8}, \ldots, \bar{e}{ }_{15}^{4}\right)$ and $H_{1}^{\prime}=\left(\begin{array}{cccc}\mathrm{e}^{\prime} & 4 \\ 8 & \ldots, & \overline{\mathrm{c}}^{\prime} & 4 \\ 15\end{array}\right)$ differ only by their right components $\overline{\mathrm{c}}{ }_{15}^{4}$ and $\overline{\mathrm{c}^{\prime}} \frac{4}{15}$. We will later refer to this property in saying that M_{1} and M_{1} realize a partialcollision.

Our technique for finding M_{1} and M_{1} is the following: we search M_{1} values such that $c_{14}^{1}=0$; $c_{0}^{2}=0 ; e_{14}^{3}=0 ; c_{0}^{4}=0$. The propositions 2 and 2 suggest that for such a message $M_{1}=\left(c_{8}^{0}, \ldots, e_{14}^{0}, e_{15}^{0}\right)$, M_{1} and the message $M_{1}=\left(e_{8}^{0}, \ldots, e_{14}^{0}, c_{15}^{0}+16\right)$ realize a partial collision with a significant probability (approximatcly 1/8).

There are two main steps for finding M_{1}.

Slepl: Sclection of $\mathrm{e}_{8}^{0}, \mathrm{e}_{10}^{0}, \mathrm{e}_{12}^{0}$ and e_{14}^{0}

Arbitrary (e.g. random) values are taken for e_{12}^{0} and c_{14}^{0}. The values of e_{8}^{0} and c_{10}^{0} are then deduced from these values by solving the following linear system :
$\left\{\begin{array}{l}e_{14}^{1}=0 \\ e_{0}=-1\end{array}\right.$

Proposition. 3 :
If $e_{13}^{0}=14$ then $c_{14}^{1}=0$ and $c_{0}^{2}=0$ independently of the values of $e_{9}^{0}, e_{11}^{0}, e_{13}^{0}, e_{15}^{0}$.
Rroof: This is a direct consequence of the definition of the g function.

SLCD 2 : Sclection of $c_{9}^{0}, c_{11}^{0}, c_{13}^{0}, c_{15}^{0}$
The values of $e_{8}^{0}, c_{10}^{0}, e_{12}^{0}, e_{14}^{0}$ are taken from Step 1.
We fix the values of $c_{11}^{0}=0$ and $e_{15}^{0}=0$. An arbirary (c.g random) value is taken for e_{9}^{0}. We first calculate the c_{12}^{2} and c_{14}^{3} values corresponding to the chosen value of $\mathrm{c}_{9}^{0}, \mathrm{c}_{11}^{0}$ and c_{15}^{0} and to the temporary value $c_{13}^{0}=14$. Based on these preliminary calculations, we "correct" the temporary value $c_{13}^{0}=14$ by a quantity Δc_{13}^{0}, i.c. we replace the value $c_{13}^{0}=14$ by the value $c_{13}^{0}=14+\Delta c_{13}^{0}$, and we leave the other input values unchanged. We denote by $\Delta c_{j}^{i}(0 \leq i \leq 4 ; 0 \leq j \leq 15)$ the corresponding variations of the intermediate variabics in the H_{1} calculation. We sclect Δc_{13}^{0} in such a way that the quantity $\mathrm{e}_{14}^{3}+\Delta \mathrm{c}_{14}^{3}$ (i.e the new valuc of c_{14}^{3}) is cqual to zero with a good probability.

Proposition 4 : If $c_{12}^{2} \neq 0$ and $\frac{-\mathrm{e}_{14}^{3}}{2^{4.7 .7} e_{12}^{2}} \equiv 0$ and $\mathrm{c}_{\mathrm{j}}^{2} \neq 13$ for $1 \leq j \leq 11$ then the above values of $, c_{15}^{1}, c_{0}^{2}$ and the value $\Delta c_{13}^{0}=\frac{-c_{14}^{3}}{2^{4.7 .7} c_{12}^{2}}$ lead to the threc relations

$$
\left\{\begin{array}{l}
\mathrm{c}_{14}^{1}+\Delta \mathrm{c}_{14}^{1}=0 \tag{a}\\
\mathrm{c}_{0}^{2}+\Delta \mathrm{c}_{0}^{2}=0 \\
\mathrm{c}_{14}^{3}+\Delta \mathrm{c}_{14}^{3}=0
\end{array}\right.
$$

Proof: (a) is straightforward; (b) and (c) are direct consequences of the following relations, which result from the definition of the g function:

$$
\Delta c_{j-2}^{2}=0 \text { for } 0 \leq j \leq 12 \quad ; \quad \Delta c_{13}^{2}=\Delta c_{13}^{0} ; \Delta c_{14}^{2}=c_{12}^{2} \cdot \Delta c_{13}^{2} ; \quad \Delta c_{14}^{3}=2^{4.7 .7} \cdot \Delta c_{14}^{2}
$$

We performed a large number n_{1} of trials of step 1. For each trial of step 1, we made a large number n_{2} of trials of step 2. The success probability of $\operatorname{step} 2$, i.e the probability that the trial of a c_{9}^{0} valuc leads to a message such that (a). (b) and (c) are realized is slighty less than $1 / 16$ (since the strongest
condition in proposition 2 is $: \frac{\mathrm{c}_{14}^{3}}{2^{4.4 .7} c_{12}^{2}} \equiv 0$). Thercfore the probability that a step 2 trial lcads to a message M_{1} such that $c_{14}^{1}=c_{0}^{2}=c_{14}^{3}=c_{0}^{4}=0$ is slighty less than $1 / 16.2^{-16}=2^{-20}$.

Morcover, the probability that such a message M_{1} leads to a partial collision is basically the probability that none of the $\mathrm{c}_{\mathrm{i}-3} \bmod 16$ indices occurring in the calculation of c_{0}^{2} to c_{15}^{2} and c_{0}^{4} Lo c_{15}^{4} takes the value 15 , which is close to $1 / 8$. So, in summary, approximatively 2^{23} partial computations of the g function were neccssary to obtain a suitable message $\mathrm{M}_{1}=\left(\mathrm{c}_{8}^{0}, \ldots, c_{14}^{0}, c_{15}^{0}\right)$, such that M_{1} and the message $M_{1}=\left(c_{8}^{0}, \ldots, c_{14}^{0}, c_{15}^{0}+16\right)$ lead to partially colliding hash valucs $H_{1}=\left(\bar{e}_{8}^{4}, \ldots, \bar{c}_{15}^{4}\right)$ and $\mathrm{H}_{1}=\left(\overline{\mathrm{c}}_{8}^{4}, \ldots, \overline{\mathrm{c}}^{4}{ }_{15}+16\right)$.

2.2 Construction of a full collision using a partial collision

We now show how to find a 128 -bit message $M_{2}=\left(c_{8}^{0}, \ldots, c_{15}^{0}\right)$ such that the previously oblained hash values H_{1} and $\mathrm{H}_{1}^{\prime}\left(\right.$ denoted in this scction by $\left(\mathrm{c}_{0}^{0} \ldots, \mathrm{e}_{7}^{0}\right)$ and $\left(\mathrm{e}_{1}^{\prime}, \ldots, \mathrm{c}_{6}^{\prime}{ }_{6}, \mathrm{c}_{7}^{\prime}{ }_{7}^{0}\right)=\left(\mathrm{c}_{1}^{0}, \ldots, \mathrm{e}_{6}^{0}, \mathrm{c}_{7}^{0}+16\right)$) respectively lead to the same hash valuc H_{2} (when combined with $\left.\mathrm{M}_{2}\right): \mathrm{g}\left(\mathrm{H}_{1}, \mathrm{M}_{2}\right)=\mathrm{g}\left(\mathrm{H}_{1}, \mathrm{M}_{2}\right)$.

Our technique for finding M_{2} is quite similar to the one used for finding M_{1} and M_{1}. Let us denote by $\mathrm{c}_{\mathrm{j}}^{\mathrm{i}}\left(\mathrm{rcsp} \mathrm{c}_{\mathrm{j}}^{\mathrm{i}}\right)(0 \leq \mathrm{S} \leq 4,0 \leq \mathrm{j} \leq 15)$ the intermediate variables of the calculations of $\mathrm{g}\left(\mathrm{H}_{1}, \mathrm{M}_{2}\right)$ (resp $\left.\mathrm{g}\left(\mathrm{H}_{1}{ }^{1}, \mathrm{M}_{2}\right)\right)$.

We scarch M_{2} values such that $c_{6}^{2}=c_{g}^{2}=c_{6}^{4}=c_{8}^{4}=0$. The propositions 1 and 1^{\prime} suggest that the probability that the 16 -uples $\left(c_{0}^{4}, \ldots, e_{15}^{4}\right)$ and $\left(c_{0}^{\prime}, \ldots, e_{15}^{4}\right)$ differ only by their components c_{7}^{4} and e_{7}^{4} which implies that the probability to have $\mathrm{g}\left(\mathrm{H}_{1}, \mathrm{M}_{2}\right)=\mathrm{g}\left(\mathrm{H}_{1}, \mathrm{M}_{2}\right)$ is quite substantial, approximatively $1 / 8$.

There are two main steps for the scarch of M_{2} :

Sicp 1: Sclection of $c_{8}^{0}, c_{10}^{0}, e_{12}^{0}, c_{14}^{0}, c_{9}^{0}$.
An arbitrary (c.g random) value is taken for c_{14}^{0}. The valucs of $c_{8}^{0}, c_{10}^{0}, c_{12}^{0}$ are deduced from c_{14}^{0} by solving the following lincar system :

$$
\left\{\begin{array}{l}
c_{14}^{1}=0 \tag{3}\\
c_{0}^{1}=-1 \\
c_{8}^{1}=-2^{8}
\end{array}\right.
$$

A preliminary calculation, where c_{9}^{0}, c_{11}^{0} and e_{15}^{0} are sct to the temporary value 0 and c_{13}^{0} is sct to the temporary value 14 , is made. The obtained value of c_{6}^{2}, denoted by δ, is kcpt .

Proposition S : If $c_{8}^{0}, \mathrm{e}_{10}^{0}, \mathrm{c}_{12}^{0}, \mathrm{c}_{14}^{0}$ are solutions of (3), (4), (5) and if in addition the values $\mathrm{e}_{9}^{0}=p-\delta, \mathrm{c}_{11}^{0}=0, \mathrm{c}_{13}^{0}=14, \mathrm{e}_{15}^{0}=0$ lead to intermediate values such that $: \mathrm{c}_{1}^{2} \bmod 16$ is not in $\{9,11,13,15] ; c_{2}^{2} \bmod 16$ is not in $\{9,11,13,15\} ; \quad c_{3}^{2} \equiv 9 \bmod 16 ; \quad c_{4}^{2} \bmod 16$ is not in $\{9,11,13,15\}$; $c_{5}^{2} \bmod 16$ is in $\{0,6,14\}$, then if we fix the value $c_{9}^{0}=p-\delta$, for any value of $c_{13}^{0} \equiv 14$ and for any value of c_{15}^{0} such that $\mathrm{c}_{15}^{0} \equiv 0$ we have :

$$
e_{14}^{1}=0 ; \quad e_{0}^{2}=0 ; \quad c_{6}^{2}=0 ; \quad c_{8}^{2}=0
$$

Proof : The proof of this proposition is casy. Finding the $c_{8}^{0}, c_{10}^{0}, c_{12}^{0}, c_{14}^{0}$ and c_{9}^{0} values satisfying the conditions of the above proposition is quite casy, and requires the trial of a few hundreds c_{14}^{0} valucs.

Step 2 : Sclection of $c_{11}^{0}, c_{13}^{0}, \varepsilon_{15}^{0}$
The values of $c_{8}^{0}, c_{10}^{0}, c_{12}^{0}, e_{14}^{0}, c_{9}^{0}$ are taken from Step 1 ; these values are assumed to realize the conditions of the above proposition.
An arbitrary (c.g random) value is taken for c_{11}^{0}. A preliminary calculation is made, using the sclected c_{11}^{0} value and the temporary values $c_{13}^{0}=14 ; c_{15}^{0}=0$. The corresponding values of c_{12}^{2} and c_{8}^{3} are kept.

Based on these preliminary calculations, we "correct" the temporary value of c_{13}^{0} by a quantity $\Delta \varepsilon_{13}^{0}$ and we also consider new values $c_{15}^{0}+\Delta c_{15}^{0}$ for c_{15}^{0}. The variation Δc_{13}^{0} is sclected in such a way that for any Δe_{15}^{0} valuc satisfying $\Delta e_{15}^{0} \equiv 0$, the new value $\mathrm{e}_{8}^{3}+\Delta \mathrm{c}_{8}^{3}$ of e_{8}^{3} is equal to -2^{8} with a substantial probability.

$$
-2^{8}-e_{8}^{3}
$$

Proposilion 6 : If $\mathrm{e}_{12}^{2} \neq 0$ and $\frac{}{2^{4.4 .7} \mathrm{e}_{12}^{2}} \equiv 0$ and $\mathrm{e}_{\mathrm{j}}^{2} \bmod 16$ is not in $(13,15)$ for $1 \leq j \leq 11$ then for any variation $\Delta c_{15}^{0} \equiv 0$ on ε_{15}^{0} such that $c_{15}^{2}+\Delta c_{15}^{0}<p$ and $c_{15}^{4}+\Delta c_{15}^{0}<p$. the variation $\Delta e_{13}^{0}=\frac{-2^{8}-e_{8}^{3}}{2^{4.4 .7} e_{12}^{2}}$ on the e_{13}^{0} value leads to the foilowing new valucs : $c_{14}^{1}+\Delta c_{14}^{1}=0 ; \quad e_{0}^{2}+\Delta c_{0}^{2}=0 ; \quad c_{6}^{2}+\Delta c_{6}^{2}=0 ; \quad c_{8}^{2}+\Delta c_{8}^{2}=0 ; \quad c_{8}^{3}+\Delta c_{8}^{3}=-2^{8}$.

We performed a number n_{1} of trials of step 1 . For each sucecssful trial of step 1 , we made a large number n_{2} of trials of c_{11}^{0} values at step 2. For those e_{11}^{0} values satisfying the conditions of the above proposition, we made a large number n_{3} of trials of new ε_{15}^{0} values such that $\Delta c_{15}^{0} \equiv 0$. The probability that the trial of a new Δc_{15}^{0} valuc leads to intermediate variables satisfying the four equations $\mathrm{c}_{6}^{2}=0 ; \mathrm{c}_{8}^{2}=0$; $c_{6}^{4}=0 ; e_{8}^{4}=0$ is basically the probability that randomily tried c_{6}^{4} and c_{5}^{4} valucs satisfy $c_{6}^{4}=0$ and $c_{5}^{4} \equiv 6$; the order of magnitude of this probability is therefore 2^{-20}.
Moreover, the probability that a message M_{2} satisfying the four cquations $c_{6}^{2}=0 ; c_{8}^{2}=0 ; c_{6}^{4}=0 ; c_{8}^{4}=0$ leads to a full collision $\mathrm{g}\left(\mathrm{H}_{1}, \mathrm{M}_{2}\right)=\mathrm{g}\left(\mathrm{H}_{1}^{\prime}, \mathrm{M}_{2}\right)$ is basically the probability that none of the $\mathrm{c}_{\mathrm{i}-3}$ mod 16 indices occurring in the calculation of e_{0}^{2} to e_{15}^{2} and of e_{0}^{4} to e_{15}^{4} takes the value 15 , which is close to $1 / 8$. So in summary approximatively 2^{23} partial computations of the g function are necessary to obtain a message M_{2} giving a full collision.

2.3 Implementation details

The above attack method was implemented using a non-optimized Pascal program. The scarch for a collision took a few hours on a SUN3 workstation and less than an hour on a SPARC workstation. We provide in annex the detail of the intermediate calculations for two colliding messages $M_{1} M_{2}$ and $M_{1} M_{2}$, of two 128-bit blocks cach.
Note that for many other values $\mathrm{M}^{\prime \prime}$, of the form $\left(e_{0}^{0} \ldots e_{15}^{0}+k .16\right)(\mathrm{k}:$ an integer) of the first 128-bit block, the message $\mathrm{M}^{\prime \prime}{ }_{1} \mathrm{M}_{2}$ leads to the same hash value as $\mathrm{M}_{1} \mathrm{M}_{2}$: the observed phenomenon is in fact a multiple collision.

3 Conclusions

The attack described in this paper takes advantage of the two following weaknesscs of the FFTHashing algorithm :

- the innuence of the term $c_{c_{i-3}}$ in the recurrence $c_{i}:=c_{i}+c_{i-1} e_{i-2}+c_{c_{i-3}}+2^{i}(\bmod p)$ on the security of the algorithm is rather negative (sec for example the method to obtain $c_{6}^{2}=0$ (or $c_{8}^{2}=0$) at step 1 of Scction 2.2).
- as mentioned in Section 1.3, the diffusion introduced by the four steps of the algorithm is quite limited. In particular, the FT_{8} Fourier transform acts only on half of the intermediate values ($\mathrm{e}_{0}, \ldots, e_{15}$), namely the 8 values $e_{0}, c_{2}, \ldots, c_{14}$.

This suggests that quite simple modifications might result in a substantial improvement of the security of the FFT-Hashing algorithm.

4 Acknowledgements

The autors are greateful to Jacques BURGER (SEPT PEM, 42 rue des Coutures, BP 6243, 14066 CAEN, France) for the Spare implementation as well as useful discussions.

5 References

[1] : C.P. SCHNORR; FFT-Hashing : An Efficient Cryptographic Hash Function; July 15, 1991 (This paper was presented at the rump scssion of the CRYPTO'91 Conference, Santa Barbara, August, 11-15, 1991)
[2] : DAEMEN - BOSSELAERS - GOVAERTS - VANDEWALLE : Announcement made at the rump session of the ASIACRYPT '91 Confcrence, Fujiyoshida, Japan, November 11-14, 1991)

宏

3368	$3 ¢ 86$	566	1596	8022	5335	¢50\％	0 ： 3	apvss3w a3msvu
3268	$3 ¢ 86$	566	\＄556	8012	¢33s	Esav	0	－ zH
3268	3¢86	566	－5s6	$80<2$	¢33s	Esex	0	
2136	0	9866	3285	66×3	023\％	268a	1555	： 2 dozs
6vec	2331	39v6	¢JLE	Sv66	505	zors	10.33	
6 vv	2031	0LE9	359	6Y／t	6L8日	＞305	8983	： t deze
6 VEL	338 E	$39 \mathrm{v6}$	5868	SY66	9083	zots	0	
67 Vz	0	OLE9	1059	6VLT	zวรว	1300	0	：2 deas
0351	0	3656	0.33	858	\＄096	zozs	1033	
9385	Y IV	2¢て3	£tae	5398	3853	2393	0000t	： t dejs
0395	1999	3656	jras	858	－bze	2025	Lest	－zw
9385	v896	วをz	1938	5388	805：	2303	vวal	－ IH
9385	v886	$2 ¢ z 3$	1938	¢36E	Rost	2305	roal	－th
9085	veat	ことを	1938	5398	8058	2300	var_{2}	
Licr	6684	2093	8319	1316	$2 ¢ 14$	e95	0	2 dese
8088	0	vist	crs	2505	2506	$95 t$	soce	
¢10¢	loga	2613	visiz	toat	9912	695	6 k 3	：1 dose
a0ea	9z9r	vest	269 y	2500	3avs	9 st	saov	
Etal	680 T	2613	V329	raot	9Car	695	0	： 2 dezs
0		3598	L9E	0	3293	v 208	0¢83	
OTze	V860	${ }^{8678}$	2688	3300	2¢3）	L95	00001	： 1 dezs
0	0	3598	0＊	0	v9z	VCOO	vs63	－in
0128	－S92	86vg	203s	3305	eves	c9s\％	£ τ	－ OH
0351	8909	3656	vos	858	veze	2025	Lest	－ 2 H
0	0	3s9E	0．4	0	v9z	x COB_{8}	V563	－in
					$43!4$	2 min	\％-w	30vssum 25413

