F.F.T. Hashing is not Collision-free

T. BARITAUD * , H. GILBERT * , M. GIRAULT **

(*) CNET PAA/TSA/SRC
38 - 40, avenue du Général Leclerc
92131 ISSY LES MOULINEAUX (France)

(**) SEPT PEM 42, ruc des Coutures BP 6243 14066 CAEN (France)

Abstract

The FFT Hashing Function proposed by C.P. Schnorr [1] hashes messages of arbitrary length into a 128bit hash value. In this paper, we show that this function is not collision free, and we give an example of two distinct 256-bit messages with the same hash value. Finding a collision (in fact a large family of, colliding messages) requires approximately 2²³ partial computations of the hash function, and takes a few hours on a SUN3- workstation, and less than an hour on a SPARC-workstation.

A similar result discovered independently has been announced at the Asiacrypt'91 rump session by Daemen-Bosselaers-Govaerts-Vandewalle [2].

1 The FFT Hashing Function

1.1 The Hash algorithm

Let the message be given as a bit string $m_1 m_2 \dots m_l$ of t bit.

The message is first padded so that its length (in bits) becomes a multiple of 128. Let the padded message $M_1M_2 \dots M_n$ consist of n blocks M_1, \dots, M_n , each of the M_i (i=1, ..., n) being 128-bit long.

The algorithm uses a constant initial value Ho given in hexadecimal as

 $H_0 = 0123\ 4567\ 89ab\ cdef\ fede\ ba98\ 7654\ 3210\ in\ \{0,1\}^{128}$.

R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT '92, LNCS 658, pp. 35-44, 1993. © Springer-Verlag Berlin Heidelberg 1993 Let p be the prime $65537 = 2^{16} + 1$.

We will use the Fourier transform $FT_8 : \{0, ..., p-1\}^8 \dots > \{0, ..., p-1\}^8$

$$(a_0, \dots, a_7) \longrightarrow (b_0, \dots, b_7)$$

with
$$b_i = \sum_{j=0}^{7} 2^{4ij} a_j \mod p$$
, for $i = 0, ..., 7$.

Algorithm for the hash function h :

INPUT : $M_1 M_2 \dots M_n$ in $\{0,1\}^{n,128}$ (a padded message)

DO : $H_i = g(H_{i-1}, M_i)$ for i = 1, ..., n

OUTPUT: $h(M) := H_n$

Algorithm for $g: Z_p^{16} ----> (0,1)^{8.16}$

INPUT

$$(c_0, \dots, c_{15})$$
 in $\{0,1\}^{16.1}$

1.
$$(c_0, c_2, \dots, c_{14}) := FT_8(c_0, c_2, \dots, c_{14})$$

2. FOR i = 0, ... ,15 DO

$$e_i := e_i + e_{i-1}e_{i-2} + e_{e_{i-3}} + 2^1 \pmod{p}$$

(The lower indices i, i-1, i-2, i-3, c_{i-3} are taken modulo 16)

6

3. REPEAT steps 1 and 2

OUTPUT
$$\overline{e}_i := e_i \mod 2^{16}$$
, for $i = 8, ..., 15$ (an element of $(0,1)^{8,16}$)

1.2 Notations

For a better clarity of our explanation, we will denote by c_i^0 (i=0, ..., 15) the initial c_i values, and we will denote by step 3 (resp. step 4) the second pass of step 1 (resp. step2) in the algorithm for g.

When it will be necessary to avoid any kind of slip, we will denote by c_i^k (i=0, ..., 15; k=0, ..., 4) the c_i intermediate value, after step k.

In order to simplify the expressions, we are using the following notations :

- The additions (x+y), multiplications (x,y) and exponentiations (x^y) are implicitly made modulo

p, except when the operands are lower indices.

- The = symbol denotes that the right and the left terms are congruent modulo p.

- For lower indices the additions (i+j) and substractions (i-j) are implicitly made modulo 16, and

the \equiv symbol denotes that the right and the left terms are congruent modulo 16.

1.3 Preliminary remarks

The difficulty of finding collisions is related to the diffusion properties of the hashing function, i.e. the influence of a modification of an intermediate variable on the subsequent variables of the calculation.

Remark 1 (limitation on the diffusion at steps 1 and 3)

At step 1 and 3, the input values e_1, e_2, \dots, e_{15} are kept unchanged.

Remark 2 (limitation on the diffusion at steps 2 and 4)

The diffusion introduced by the $e_{i-1}e_{i-2}$ terms in the recurrence for steps 2 and 4 can sometimes be

cancelled (if one of values e_{i-1} and e_{i-2} is 0). More precisely, let $(e_0^1, e_1^1, \dots, e_{15}^1)$ be the input to step 2:

Proposition 1: If for a given value i in $\{1, ..., 14\}$ we have $e_{i-1}^2 = e_{i+1}^2 = 0$ and if $e_{13}^1 \neq i$; $e_{14}^1 \neq i$; $e_{15}^1 \neq i$; $e_j^2 \neq i$ for j in $\{0, ..., 12\}$, then the impact of replacing the input value e_i^1 by a new value $e_i^1 + \Delta e_i^1$ such that $e_i^1 + \Delta e_i^1 \equiv e_i^1$, is limited to the output value e_i^2 (that means e_j^2 are not modified for $j \neq i$).

<u>Proposition 2</u>: If $e_{14}^1 = e_0^2 = 0$ and if $e_j^2 \neq 15$ for j in $\{1, ..., 11\}$ then the impact of replacing the

input value e_{15}^1 by a new value $e_{15}^1 + \Delta e_{15}^1$ such that $e_{15}^1 + \Delta e_{15}^1 \equiv e_{15}^1$, is limited to the output value e_{15}^2 .

Similarly, let $(c_1^3, c_2^3, ..., c_{15}^3)$ be the input to step 4 :

Proposition 1': If for a given value i in $\{1, ..., 14\}$ we have $e_{i-1}^4 = e_{i+1}^4 = 0$ and if $e_{13}^3 \neq i$; $e_{14}^3 \neq i$; $e_{15}^3 \neq i$; $e_j^4 \neq i$ for j in $\{0, ..., 12\}$, then the impact of replacing the input value e_i^3 by a new value $e_i^3 + \Delta e_i^3$ such that $e_i^3 + \Delta e_i^3 \equiv e_i^3$, is limited to the output value e_i^4 . Proposition 2': If $e_{14}^3 = e_0^4 = 0$ and if $e_j^4 \neq 15$ for j in $\{1, ..., 11\}$ then the impact of replacing the input value e_{15}^3 by a new value $e_{15}^3 + \Delta e_{15}^3$ such that $e_{15}^3 + \Delta e_{15}^3 \equiv e_{15}^3$ is limited to the output value e_{15}^4 .

2 Construction of two colliding messages

2.1 Construction of a partial collision

We first find two 128-bit blocks M_1 and M'_1 which hash values $H_1 = (\overline{c} \ \frac{4}{8}, \dots, \overline{c} \ \frac{4}{15})$ and $H'_1 = (\overline{c'} \ \frac{4}{8}, \dots, \overline{c'} \ \frac{4}{15})$ differ only by their right components $\overline{c} \ \frac{4}{15}$ and $\overline{c'} \ \frac{4}{15}$. We will later refer to this property in saying that M_1 and M'_1 realize a <u>partial collision</u>.

Our technique for finding M_1 and M'_1 is the following : we search M_1 values such that $c_{14}^1 = 0$; $c_0^2 = 0$; $c_{14}^3 = 0$; $c_0^4 = 0$. The propositions 2 and 2' suggest that for such a message $M_1 = (c_8^0, \dots, c_{14}^0, c_{15}^0)$, M_1 and the message $M'_1 = (c_8^0, \dots, c_{14}^0, c_{15}^0 + 16)$ realize a partial collision with a significant probability (approximately 1/8).

There are two main steps for finding M1.

Step1 : Selection of
$$e_8^0$$
, e_{10}^0 , e_{12}^0 and e_{14}^0

Arbitrary (e.g. random) values are taken for e_{12}^0 and e_{14}^0 . The values of e_8^0 and e_{10}^0 are then deduced from these values by solving the following linear system :

$$\begin{cases} e_{14}^{1} = 0 \quad (1) \\ e_{0}^{1} = -1 \quad (2) \end{cases}$$

Proposition 3: If $e_{13}^0 \equiv 14$ then $e_{14}^1 = 0$ and $e_0^2 = 0$ independently of the values of e_9^0 , e_{11}^0 , e_{13}^0 , e_{15}^0 .

Proof : This is a direct consequence of the definition of the g function.

<u>Step 2</u>: Selection of $e_9^0, e_{11}^0, e_{13}^0, e_{15}^0$

The values of $c_{8}^0, c_{10}^0, c_{12}^0, c_{14}^0$ are taken from Step 1 .

We fix the values of $c_{11}^0 = 0$ and $e_{15}^0 = 0$. An arbitrary (e.g random) value is taken for e_9^0 . We first calculate the e_{12}^2 and e_{14}^3 values corresponding to the chosen value of e_9^0 , e_{11}^0 and e_{15}^0 and to the temporary value $e_{13}^0 = 14$. Based on these preliminary calculations, we "correct" the temporary value $e_{13}^0 = 14$ by a quantity Δe_{13}^0 , i.e. we replace the value $e_{13}^0 = 14$ by the value $e_{13}^0 = 14 + \Delta e_{13}^0$, and we leave the other input values unchanged. We denote by Δe_j^i ($0 \le i \le 4$; $0 \le j \le 15$) the corresponding variations of the intermediate variables in the H₁ calculation. We select Δe_{13}^0 in such a way that the quantity $e_{14}^3 + \Delta e_{14}^3$ (i.e. the new value of e_{14}^3) is equal to zero with a good probability.

<u>Proposition 4</u>: If $e_{12}^2 \neq 0$ and $\frac{-e_{14}^3}{2^{4.7.7}e_{12}^2} \equiv 0$ and $e_j^2 \neq 13$ for $1 \le j \le 11$ then the above values of

, e_{15}^1 , e_0^2 and the value $\Delta e_{13}^0 = \frac{-e_{14}^3}{2^{4.7.7}e_{12}^2}$ lead to the three relations

$\int c_{14}^{1} + \Delta c_{14}^{1} = 0$	(a)
$\begin{cases} \mathbf{e}_0^2 + \Delta \mathbf{e}_0^2 = 0 \end{cases}$	(b)
$\left[c_{14}^3 + \Delta c_{14}^3 = 0\right]$	(c)

<u>Proof</u>: (a) is straightforward; (b) and (c) are direct consequences of the following relations, which result from the definition of the g function :

$$\Delta c_{j-2}^2 = 0 \text{ for } 0 \le j \le 12 \quad ; \quad \Delta c_{13}^2 = \Delta c_{13}^0 \quad ; \quad \Delta c_{14}^2 = c_{12}^2 \cdot \Delta c_{13}^2 \quad ; \quad \Delta c_{14}^3 = 2^{4.7.7} \cdot \Delta c_{14}^2$$

We performed a large number n_1 of trials of step 1. For each trial of step 1, we made a large number n_2 of trials of step 2. The success probability of step 2, i.e the probability that the trial of a c_9^0 value leads to a message such that (a), (b) and (c) are realized is slightly less than 1/16 (since the strongest

condition in proposition 2 is: $\frac{-c_{14}^3}{2^{4.4.7}c_{12}^2} \equiv 0$). Therefore the probability that a step 2 trial leads to a message

 M_1 such that $c_{14}^1 = c_0^2 = c_{14}^3 = c_0^4 = 0$ is slightly less than $1/16 \cdot 2^{-16} = 2^{-20}$.

Moreover, the probability that such a message M_1 leads to a partial collision is basically the probability that none of the c_{i-3} mod 16 indices occurring in the calculation of c_0^2 to c_{15}^2 and c_0^4 to c_{15}^4 takes the value 15, which is close to 1/8. So, in summary, approximatively 2^{23} partial computations of the g function were necessary to obtain a suitable message $M_1 = (c_8^0, \dots, c_{14}^0, c_{15}^0)$, such that M_1 and the message $M_1 = (c_8^0, \dots, c_{14}^0, c_{15}^0)$, such that M_1 and the $M_1 = (c_8^0, \dots, c_{14}^0, c_{15}^0 + 16)$ lead to partially colliding hash values $H_1 = (c_8^0, \dots, c_{15}^0)$ and $H_1' = (c_8^0, \dots, c_{15}^0 + 16)$.

2.2 Construction of a full collision using a partial collision

We now show how to find a 128-bit message $M_2 = (c_8^0, ..., c_{15}^0)$ such that the previously obtained hash values H_1 and H_1' (denoted in this section by $(c_0^0, ..., c_7^0)$ and $(c_1^0, ..., c_6^0, c_7^0) = (c_1^0, ..., c_6^0, c_7^0 + 16)$) respectively lead to the same hash value H_2 (when combined with M_2): $g(H_1, M_2) = g(H_1, M_2)$.

Our technique for finding M_2 is quite similar to the one used for finding M_1 and M'_1 . Let us denote by c_j^i (resp c'_j^i) ($0 \le i \le 4$, $0 \le j \le 15$) the intermediate variables of the calculations of $g(H_1, M_2)$ (resp $g(H'_1, M_2)$).

We search M_2 values such that $c_6^2 = c_8^2 = c_6^4 = c_8^4 = 0$. The propositions 1 and 1' suggest that the probability that the 16-uples (e_0^4, \dots, e_{15}^4) and (c_0^4, \dots, e_{15}^4) differ only by their components c_7^4 and e_7^4 which implies that the probability to have $g(H_1, M_2) = g(H_1, M_2)$ is quite substantial, approximatively 1/8.

There are two main steps for the search of M2:

<u>Step 1</u> : Selection of $e_8^0, e_{10}^0, e_{12}^0, e_{14}^0, e_9^0$.

An arbitrary (e.g random) value is taken for c_{14}^0 . The values of c_8^0 , c_{10}^0 , c_{12}^0 are deduced from c_{14}^0 by solving the following linear system :

$$\begin{cases} c_{14}^{1} = 0 \qquad (3) \\ c_{0}^{1} = -1 \qquad (4) \\ c_{8}^{1} = -2^{8} \qquad (5) \end{cases}$$

A preliminary calculation, where e_{9}^{0} , e_{11}^{0} and e_{15}^{0} are set to the temporary value 0 and e_{13}^{0} is set to the temporary value 14, is made. The obtained value of e_{6}^{2} , denoted by δ , is kept.

<u>Proof</u>: The proof of this proposition is easy. Finding the e_8^0 , e_{10}^0 , e_{12}^0 , e_{14}^0 and e_9^0 values satisfying the conditions of the above proposition is quite easy, and requires the trial of a few hundreds e_{14}^0 values.

<u>Step 2</u> : Selection of $e_{11}^0, e_{13}^0, e_{15}^0$

The values of c_{8}^{0} , c_{10}^{0} , c_{12}^{0} , e_{14}^{0} , c_{9}^{0} are taken from Step 1; these values are assumed to realize the conditions of the above proposition. An arbitrary (e.g random) value is taken for c_{11}^{0} . A preliminary calculation is made, using the selected c_{11}^{0} value and the temporary values $c_{13}^{0} = 14$; $c_{15}^{0} = 0$. The corresponding values of c_{12}^{2} and c_{8}^{3} are kept. Based on these preliminary calculations, we "correct" the temporary value of e_{13}^0 by a quantity Δe_{13}^0 and we also consider new values $e_{15}^0 + \Delta e_{15}^0$ for e_{15}^0 . The variation Δe_{13}^0 is selected in such a way that for any Δe_{15}^0 value satisfying $\Delta e_{15}^0 \equiv 0$, the new value $e_8^3 + \Delta e_8^3$ of e_8^3 is equal to -2^8 with a substantial probability.

Proposition 6: If
$$e_{12}^2 \neq 0$$
 and $\frac{2^{4.4.7}e_{12}^2}{2^{4.4.7}e_{12}^2} \equiv 0$ and $e_j^2 \mod 16$ is not in (13,15) for $1 \le j \le 11$ then for

any variation $\Delta c_{15}^0 \equiv 0$ on c_{15}^0 such that $c_{15}^2 + \Delta c_{15}^0 < p$ and $c_{15}^4 + \Delta c_{15}^0 < p$, the variation

$$\Delta e_{13}^0 = \frac{-2^8 - e_8^3}{2^{4.4.7} e_{12}^2}$$
 on the e_{13}^0 value leads to the following new values :

$$e_{14}^1 + \Delta e_{14}^1 = 0$$
; $e_0^2 + \Delta e_0^2 = 0$; $e_6^2 + \Delta e_6^2 = 0$; $e_8^2 + \Delta e_8^2 = 0$; $e_8^3 + \Delta e_8^3 = -2^8$.

We performed a number n_1 of trials of step 1. For each successful trial of step 1, we made a large number n_2 of trials of c_{11}^0 values at step 2. For those c_{11}^0 values satisfying the conditions of the above proposition, we made a large number n_3 of trials of new c_{15}^0 values such that $\Delta c_{15}^0 \equiv 0$. The probability that the trial of a new Δc_{15}^0 value leads to intermediate variables satisfying the four equations $c_6^2=0$; $c_8^2=0$; $c_6^4=0$; $e_8^4=0$ is basically the probability that randomly tried c_6^4 and c_5^4 values satisfy $c_6^4=0$ and $c_5^2\equiv 6$; the order of magnitude of this probability is therefore 2^{-20} . Moreover, the probability that a message M_2 satisfying the four equations $c_6^2=0$; $c_8^2=0$; $c_6^4=0$; $c_8^4=0$ leads to a full collision $g(H_1,M_2) = g(H_1,M_2)$ is basically the probability that none of the c_{1-3} mod 16 indices occurring in the calculation of c_0^2 to c_{15}^2 and of c_0^4 to c_{15}^4 takes the value 15, which is close to 1/8. So in summary approximatively 2^{23} partial computations of the g function are necessary to obtain a message M_2 giving a full collision.

2.3 Implementation details

The above attack method was implemented using a non-optimized Pascal program. The search for a collision took a few hours on a SUN3 workstation and less than an hour on a SPARC workstation. We provide in annex the detail of the intermediate calculations for two colliding messages M_1M_2 and M'_1M_2 ,

of two 128-bit blocks each.

Note that for many other values M'_1 of the form $(e_0^0, \dots, e_{15}^0 + k.16)$ (k : an integer) of the first 128-bit

block, the message $M_1^{u}M_2^{u}$ leads to the same hash value as $M_1^{u}M_2^{u}$: the observed phenomenon is in fact a multiple collision.

3 Conclusions

The attack described in this paper takes advantage of the two following weaknesses of the FFT-Hashing algorithm :

- the influence of the term
$$e_{c_{i-3}}$$
 in the recurrence $e_i := e_i + e_{i-1}e_{i-2} + e_{c_{i-3}} + 2^i \pmod{p}$ on the

security of the algorithm is rather negative (see for example the method to obtain $e_6^2 = 0$ (or $e_8^2 = 0$) at

step 1 of Section 2.2).

- as mentioned in Section 1.3, the diffusion introduced by the four steps of the algorithm is quite limited. In particular, the FT₈ Fourier transform acts only on half of the intermediate values (e_0, \dots, e_{15}),

namely the 8 values e0, c2, ... , c14.

This suggests that quite simple modifications might result in a substantial improvement of the security of the FFT-Hashing algorithm.

4 Acknowledgements

The autors are greateful to Jacques BURGER (SEPT PEM, 42 rue des Coutures, BP 6243, 14066 CAEN, France) for the Sparc implementation as well as useful discussions.

5 References

- [1] : C.P. SCHNORR; FFT-Hashing : An Efficient Cryptographic Hash Function; July 15, 1991 (This paper was presented at the rump session of the CRYPTO'91 Conference, Santa Barbara, August, 11-15, 1991)
- [2] : DAEMEN BOSSELAERS GOVAERTS VANDEWALLE : Announcement made at the rump session of the ASIACRYPT '91 Conference, Fujiyoshida, Japan, November 11-14, 1991)

ANNEX

	0 10	58 75E0		3210	0 10	1 3210 0 10	19 7013 16 8818	7 7013 0 8818	19 A787	IA SBF6		A 5BF6	B 75E0	A 58F6 0 75E0	0 2A59 E 73A9	2 2A59 2 73A9	0 9E82 1F 89CF	tE 89CE
		; 6D(765		P60	1DE 462	F30	583 988	988		986	6D 6	418	38E	E7C 7EF	686	696
	365E	959E		96 V 8	365E	8A98 365E	F49C 158A	F49C 158A	F 6D2 E 2 3C	E23C		E23C	959E	E23C 959E	6370 986E	6370 986E	9886 995	995
	440	5 D1C		FEDC	440	B84C 3677	6CEA A692	2E1A 5A7	64E8 8F64	8F 64		8564	5D1C	3E13 EF0	6501 8885	£6CC 37CB	C82F 9554	9554
	•	358		CDEF	0	CDEF	1001 CD52	1001 CD52	91E1 38E5	3 8E5		3 BE5	358	3865 358	17A9 99A5	17A9 99A5	EA99 2708	27D8
with	2 6 A	3284		8 9 A B	26A	4E72 E62E	4E76 Safe	2466 3057	F18C	4508		4508	3284	C5BE 9804	C5C2 F306	8879 CD5	4E20 Sef5	SEF 5
M1 M2	801A	5202		1567	807A	4567 807A	4569 156	4569 156	456B CDE2	CDE2		CDE2	5202	CDE2 5202	CDE4 5402	CDE4 5402	E84C AB53	AB 53
۱ ۲	F95A	1537	: #	123	F95A	10000 FB30	0 ADDC	CFA9 B305	0 70CA	1DCA	н2 :	1DCA	1537	10000 FF01	00	E268 FF01	5551 0	0
SECOND MESSAGE	- IN	M2 -	calculation of	- 0H	- TW	step 1:	step 2:	step 1:	step 2:	- 1H	calculation of	- 1H	M2 =	step 1:	step 2:	step 1:	step 2:	K2 =
	0	175E0		3210	a	3210 0	7D13 B808	7013 1908	A787 5806	58E6		5866	75E0	58E6 75E0	2449 7349	2 849 7389	9E72 89CF	BJCF
	0	6068		7654	•	A96 0 0	1089 4626	F 307	F899 988A	988 A		988A	6D 6.B	418A 0	0 38ef	E7C2 7FE2	0 983F	983F
	365E	959E		BA98	365E	8498 365e	F 49C 158A	F 49C 158A	F6D2 E23C	£23C		£23C	959E	E23C 959E	6370 9 1 6E	6370 986E	9886 995	995
	0++	5 D1C		FEDC	440	B84C 3677	6CEA 8692	2F1A 5A7	64F8 8F64	8F 64		8F 6 4	SDIC	3E13 EF0	6501 8885	26CC 37CB	C82F 9554	9554
	0	80																
~		ñ		CDEF	0	CDEF	1001 CD52	1001 CD52	91E1 38E5	3865		38E S	358	38ES 358	17A9 99A5	17A9	2708	270
with	264	3294 35		89AB CDE?	26A 0	4F72 CDEF F62E 0	4F76 10D1 5AFE CD52	2466 1001 3057 CD52	FIBC 91E1 1508 38E5	1508 3BES		4508 38ES	3284 358	258E 38ES 9804 358	17A9	1879 17A9 CD5 99A5	LE20 EA99 Sefs 2708	SEF5 270
HZ with	807A 26A	5202 3294 35		4567 89AB CDEF	807A 26A 0	4567 4F72 CDEF 901A F62E 0	4569 4F76 10D1 156 5AFE CD52	1569 2466 1DD1 156 3057 CD52	156B F1BC 91E1 20E2 4508 3BE5	CDE2 4508 38E5		CDE2 4508 38ES	3284 358	CDE2 C5BE 3BE5 202 9804 358	DE4 C5C2 17A9	DE4 8879 1749	184C 4E20 EA99 1853 5EF5 2708	.853 SEF5 27D
M = Ml M2 with	F95A 807A 26A	1537 5202 3294 35		123 4567 89AB CDEF	795A 807A 26A 0	1000 4567 4F72 CDEF 1000 801A F62E 0	0 4569 4F76 1001 DDC 156 5AFE CD52	FA9 4569 2466 1001	0 456B F1BC 91E1 DCA CDE2 4508 38E5	DCA CDE2 4508 38E5		DCA CDE2 4508 38E5	537 5202 3284 358	000 CDE2 C5BE 3BE5 F01 5202 9B04 358	0 CDE4 C5C2 17A9 0 5402 F306 99A5	26B CDE4 8B79 17A9 FO1 5402 CD5 99A5	551 884C 4820 8A99 0 A853 5865 2708	0 AB53 SEF5 27D

44