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Abstract This paper is devoted to explore modified f (R)

theories of gravity using Noether symmetry approach. For
this purpose, Friedmann–Robertson–Walker spacetime is
chosen to investigate the cosmic evolution. The study is
mainly divided into two parts: Firstly Noether symmetries
of metric f (R) gravity are revisited and some new class of
solutions with the help of conserved quantities are reported.
It is shown that different scenarios of cosmic evolution can
be discussed using Noether symmetries and one of the case
indicates the chances for the existence of Big Rip singu-
larity. Secondly, f (R) theory coupled with scalar field has
been discussed in detail. The Noether equations of modified
gravity are reported with three subcases for flat Friedmann–
Robertson–Walker universe. It is concluded that conserved
quantities are quite helpful to find some important exact solu-
tions in the cosmological contexts. Moreover, the scalar field
involved in the modified gravity plays a vital role in the cos-
mic evolution and an accelerated expansion phase can be
observed for some suitable choices of f (R, ϕ, χ) gravity
models.

1 Introduction

The accelerated expansion of universe and modified theories
of gravity have been two heavily debated topic of discus-
sions in the last two decades. It has been argued that the
mysteries like dark energy and dark matter, initial singular-
ity problem and flatness issues can be well addressed in the
context of modified or alternative theories of gravity. Based
upon original theory of general relativity (GR), a number of
modifications have been proposed by constructing intricate
Lagrangians. The most discussed and viable theories include
f (R) theory of gravity. Nojiri and Odintsov [1] are among
the pioneers who discussed the possible coupling of matter
with curvature. Some review papers can be really helpful to
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understand the viable features of f (R) gravity [2–4]. Further
modifications like f (R, T ) gravity [5] and a recently pro-
posed f (R, ϕ, χ) theory of gravity [6] are also among suc-
cessful theories of gravity. It is expected that these modified
theories of gravity may well address the issues of late-time
cosmic acceleration using some specific choices of cosmo-
logical models.

Noether symmetry approach is the most elegant and sys-
tematic way to compute conserved quantities [7]. These sym-
metries smartly minimize the complexities involved in a
system of non-linear partial differential equations (PDEs)
and many new solutions can be constructed using conserved
quantities. In fact, the conservation laws play an important
role in studying different physical phenomenon. The integra-
bility of PDEs depends on the number of conservation laws.
According to Noether’s theorem, any differentiable symme-
try of the action for a physical system corresponds to some
conservation law. This theorem is very important as it pro-
vides the information about the conservation laws in phys-
ical theories including GR. According to Noether theorem
[8], the translational and rotational symmetries of any object
are the consequence of the conservation laws of linear and
angular momentum. Many authors have used this theorem
in recent years to discuss some important issues in different
cosmological contexts.

Sharif and Waheed [9] computed the energy contents of
stringy charged black hole solutions with the help of approx-
imate symmetries. Kucukakca [10] used Noether symme-
tries to investigate the exact solutions of Bianchi type-I
spacetime. The exact solutions in f (R) gravity have been
explored using Noether symmetries methods for Friedmann–
Robertson–Walker (FRW) spacetime [11]. Fazlollahi [12]
used Noether gauge symmetries to obtain an effective equa-
tion of state parameter for corresponding cosmology and it
was concluded that the model provided viable cosmic scale
factor with respect to observational data. In a recent paper,
Bahamonde et al. [13] provided a class of new exact spheri-
cally symmetric solutions in the context of f (R, ϕ, χ) theory
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using Noether’s symmetry approach. In another paper [14],
teleparallel gravity models have been studied by adopting
the Noether symmetry approach and some exact solutions
are derived in the context of flat FRW cosmology. Shamir
and Ahmad [15,16] used Noether symmetries to investigate
the exact solutions of the field equations in f (G, T ) the-
ory of gravity and discussed some cosmologically important
f (G, T ) gravity models with both isotropic and anisotropic
backgrounds. It was reported that specific models of modified
Gauss-Bonnet gravity may be used to reconstruct �CDM
cosmology without involving any cosmological constant.
Thus it seems interesting to use Noether symmetries to
further explore the universe with a hope of some fruitful
results.

In this paper, we are focused to investigate f (R, ϕ, χ)

gravity using Noether symmetry approach. We choose the
flat FRW spacetime for this purpose. The paper is organized
in the following way: Some basics of f (R, ϕ, χ) gravity
are given in Sect. 2. Section 3 provides a detailed discus-
sion about symmetry reduced Lagrangian and Noether equa-
tions for FRW universe model in f (R, ϕ, χ) gravity. Cos-
mological solutions based upon conserved quantities are pre-
sented in Sect. 4. Last section gives a brief summary of the
results.

2 Some basics of f (R, ϕ, χ) gravity

The general action for f (R, ϕ, χ) gravity is given by [6],

S =
∫

d4x
√−g

[ 1

2κ2 f (R, ϕ, χ) + Lm
]
, (1)

where Lm stands for usual matter Lagrangian, κ2 = 8πG
and

• R is the Ricci Scalar and ϕ is the scalar field,
• χ = − ε

2∂uϕ∂uϕ, ε being a parameter such that when
equal to 1 represents canonical scalar field and when
equal to −1 represents a phantom scalar field.

• Since f (R, ϕ, χ) is a multivariate analytic function and
its partial derivatives will be involved in many equa-
tions in this paper, so for simplicity we use the notations
f (R, ϕ, χ) ≡ f , fR ≡ ∂ f

∂R , fϕ ≡ ∂ f
∂ϕ

and fχ ≡ ∂ f
∂χ

.

It is evident from the action that f (R, ϕ, χ) gravity con-
tains two additional scalar degrees of freedom. Thus the
chances of admitted solutions increase due to more degrees
of freedom as compared to usual GR. This makes the the-
ory more interesting as it falls into a rather different class
than those modified gravity theories typically considered
in the literature. Modified field equations are obtained by
varying the action S in Eq. (1) with respect to the metric
tensor

fRRμν − 1

2
f gμν − ∇μ∇ν fR + gμν∇α∇α fR

−ε

2
fχ (∇μϕ)(∇νϕ) = κ2Tm

μν, (2)

where � ≡ ∇μ∇μ and Tm
μν is the standard energy-

momentum tensor. It is interesting to notice that these field
equations are the fourth order PDEs due to the involvement
of covariant derivatives and reduce to ordinary f (R) gravity
equations if we consider f (R, ϕ, χ) = f (R) and GR equa-
tions when f (R, ϕ, χ) = R. Moreover, variation of action
(1) with respect to the scalar field ϕ yields

∇μ( fχ∇μϕ) + ε fϕ = 0, (3)

which is basically the Klein–Gordon equation. It is worth
mentioning that the field equations (2) can be rearranged in
a form which seems familiar with usual GR field equations

Gμν = Rμν − 1

2
gμνR = T c

μν + T̃ m
μν, (4)

where T̃ m
μν = Tm

μν/ fR and energy-momentum tensor for
gravitational fluid is given by

T c
μν = 1

fR

[
1

2
gμν

(
f − R fR

) + ∇μ∇ν fR

−gμν∇α∇α fR + ε

2
fχ

(∇μϕ
)(∇νϕ

)]
. (5)

It can be seen from Eq. (4) that energy-momentum tensor for
gravitational fluid T c

μν provides matter contents from geo-
metric origin. Thus, it seems interesting as this approach may
provide all the matter components which may be essential to
unveil the dark mysteries of universe. Moreover, contracting
the field equations Eq. (2), it follows that

R fR + χ fχ − 2 f + 3� fR = κ2Tm . (6)

It is obvious from Eq. (6) that Tm = 0 no longer implies
R = 0 as in the case of GR. Thus this theory may admit
more exact or numerical solutions of the modified field equa-
tions. Keeping in view all above mentioned interesting facts
of f (R, ϕ, χ) theory of gravity, it is hoped to obtain some
fruitful results to explore the dark energy issues and phe-
nomenon of cosmic expansion.

For the present analysis, we choose the FRW space-time

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2]. (7)

The dynamical quantities R and χ for this spacetime turn
out to be

R = 6

(
ȧ2 + aä

a2

)
, χ = ε

2
ϕ̇2. (8)

The corresponding field equations and the Klein–Gordon
equation for vacuum case take the form

3
ä

a
fR + 1

2
f − 3

ȧ

a
˙fR + 1

2
fχ (ϕ̇)2 = 0,
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[
ä

a
+ 2

(
ȧ

a

)2
]

fR + 1

2
f − 2

ȧ

a
˙fR − ¨fR = 0, (9)

ḟχ ϕ̇ + fχ [ϕ̈ + 3
ȧ

a
ϕ̇] + fϕ = 0, (10)

where overdot is to denote the time derivative. The advan-
tages of exact solutions in modified theories of gravity have
gained much importance and popularity over the recent two
decades, especially to explore the phenomenon of cosmic
expansion and phase transitions. The analysis of Eqs. (9)–
(10) is quite difficult task as these equations are highly non-
linear and complicated in nature due the involvement of mul-
tivariate function f (R, ϕ, χ) and its derivatives. So, there are
two choices: One is to solve these equations by using some
appropriate numerical or analytical techniques and impos-
ing some physical assumptions. The second possibility is to
investigate the theory by using Noether symmetry approach.
In fact, using Noether symmetries some viable cosmologi-
cal models can be investigated and conserved quantities can
be utilized to reconstruct some physically important exact or
numerical solutions. Hence the latter approach seems much
more interesting and we follow the same in this paper.

3 Symmetry reduced Lagrangian and Noether
equations

Noether symmetries have become quite essential practice to
investigate the solutions of non-linear differential equations.
In this section, we develop the point-like Lagrangian for FRW
spacetime in the context of f (R, ϕ, χ) gravity and apply
Noether symmetry approach to find the corresponding deter-
mining equations. The existence of this approach implies
the uniqueness of the vector field in the associated tangent
space. Thus, the vector field acts like symmetry generator
which further provides the conserved quantities helpful in
exploring the exact solutions of modified field equations.

We can re-write the action (1) in its canonical form in such
a way that the number of degrees of freedom are reduced.
Thus we have

S =
∫

dt L(a, ȧ,R, Ṙ, ϕ, ϕ̇). (11)

Since χ depends on ϕ, so this action for FRW spacetime
takes the form

S =
∫

dt a3[ f − μ1(R − R̄) − μ2(χ − χ̄ )]. (12)

This lagrange multiplier arrangement of the action is justified
as the constraint equations R − R̄ = 0 and χ − χ̄ = 0
provide the actual form of action (1) for FRW spacetime. The
Lagrange multipliers μ1 and μ2 after varying with respect to

R and χ turn out to be

μ1 = fR, μ2 = fχ , (13)

respectively. So Eq. (12) becomes

S =
∫

dt a3
[
f − fR

(
R − 6

ȧ2

a2 − 6
ä

a

)

− fχ
(
χ − ε

2
ϕ̇2

)]
.

(14)

After integrating by parts and ignoring the boundary terms,
the point-like Lagrangian takes the following form

L(a, ȧ,R, Ṙ, χ, χ̇) = a3( f − R fR − χ fχ )

−6(aȧ2 fR + ȧṘa2 fRR) − 6a2ȧ(ϕ̇ fRϕ + χ̇ fRχ )

+ε

2
a3ϕ̇2 fχ . (15)

It is interesting to notice that when f (R, ϕ, χ) = f (R),
this Lagrangian reduces to the same as investigated for usual
f (R) gravity [17,18], The Euler-Lagrange equations are
given by

∂L
∂uμ

− d

dt

(
∂L
∂ u̇μ

)
= 0. (16)

For FRW spacetime (7) and Lagrangian (15), the Euler–
Lagrangian equations turn out to be
(
ȧ2

a2 + 2
ä

a

)
fR + 2

ȧ

a
˙fR + ¨fR

+1

2
( f − R fR − χ fχ ) + ε

4
ϕ̇2 fχ = 0, (17)

[
R − 6

(
ȧ2

a2 + ä

a

)]
fRR +

[
χ − ε

2
ϕ̇2

]
fRχ = 0,

[
R − 6

(
ȧ2

a2 + ä

a

)]
fRχ +

[
χ − ε

2
ϕ̇2

]
fχχ = 0. (18)

The Hamiltonian of the Lagrangian also known as energy
functional EL is given by

EL = u̇μ ∂L
∂ u̇μ

− L, (19)

which in our case simplifies to

EL = −6aȧ2 fR − 6a2ȧ(Ṙ fRR + χ̇ fRχ )

−a3( f − R fR − χ fχ ) − ε

2
a3ϕ̇2 fχ . (20)

The generator for which the Lagrangian density (15) admits
Noether symmetries is given by [19]

Y = ζ
∂

∂t
+ β i ∂

∂qi
, (21)

where qi are the generalized coordinates in a d-dimensional
configuration space Q = {qi , i = 1, ..., d}. Also it would
be worthwhile to mention here that components ζ and β i
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of the above Noether symmetry generator are the multi-
variable functions of t and qi . For example, in our case
ζ ≡ ζ(t, a,R, ϕ, χ) and qi ≡ qi (t, a,R, ϕ, χ), i = 1, ...4.
Also for the existence of Noether symmetry, the Lagrangian
(15) must satisfy

Y [1]L + L(Dtζ ) = Dt, (22)

where the first prolongationY [1] of the generator (21) is given
by

Y [1] ≡ Y + β̇ i ∂

∂q̇i
, (23)

where

•  ≡ (t, qi ) is known as the Noether gauge function,
• Dt is the total derivative defined as Dt ≡ ∂

∂t + q̇i ∂
∂qi

and

β̇ i ≡ Dtβ
i − q̇i Dtζ .

The most important component of Noether symmetries is the
first integral of motion or also known as the conserved quan-
tity. The conserved quantity corresponding to any Noether
symmetry generator Y is given by

I = −ζ EL + β i ∂L
∂q̇i

− . (24)

It is important to mention here that these conserved quantities
play an important role in deriving important cosmological
solutions. Now we get a set of PDEs also known as deter-
mining equation after using Eq. (22) and equating the coeffi-
cients of ȧ3, ȧ2Ṙ, ȧ2ϕ̇, ȧ2χ̇ , Ṙ2, ȧϕ̇, ȧṘ, ȧχ̇ , ȧ2, ϕ̇2, ȧ,

Ṙ, ϕ̇, χ̇ , 1. Thus in our case we get a system of 15 PDEs

ζa = 0, ζR = 0, ζϕ = 0, ζχ = 0,

fRRβ1,R = 0, (25)

6a2 fRRβ1,t +,R = 0, ε fχa
3β3,t −,ϕ = 0,

6a2 fRχβ1,t +,χ = 0, (26)

3 fχβ1 + a( fRχβ2 + fχϕβ3 + fχχβ4) + a fχζ,t = 0,

12a fRβ1,t +6a2( fRRβ2,t + fRϕβ3,t + fRχβ4,t )

+,a = 0, (27)

fRβ1 + a( fRRβ2 + fRϕβ3 + fRχβ4)

+a2( fRRβ2,a + fRϕβ3,a + fRχβ4,a )

+2a fRβ1,a −a fRζ,t = 0, (28)

2 fRϕβ1 + a( fRRϕβ2 + fRϕϕβ3 + fRϕχβ4)

+a( fRϕβ1,a + fRRβ2,ϕ + fRϕβ3,ϕ

+ fRχβ4,ϕ ) + 2 fRβ1,ϕ = 0, (29)

2 fRRβ1 + a( fRRRβ2 + fRRϕβ3

+ fRRχβ4) + a( fRRβ1,a

+ fRRβ2,R + fRϕβ3,R + fRχβ4,R )

+2 fRβ1,R −a fRRζ,t = 0, (30)

2 fRχβ1 + a( fRRχβ2 + fRϕχβ3

+ fRχχβ4) + a( fRχβ1,a

+ fRRβ2,χ + fRϕβ3,χ + fRβ2β4,χ ) + 2 fRβ1,χ = 0,

(31)

(3a2β1 + a3ζ,t )( f − R fR − χ fχ )

+a3[(−R fRR − χ fχR)β2 + ( fϕ − R fRϕ − χ fχϕ)β3

+(−R fRχ − χ fχχ )β4] − ,t = 0. (32)

In the next section, we provide a comprehensive analysis by
solving this system of PDEs for different cases.

4 Conserved quantities

In this section, we solve the system of PDEs (25)–(32) to
get the Noether symmetries Y = ζ∂t + β i∂i . Since the
above system depends on the function f (R, ϕ, χ) along with
some other unknowns, so it is difficult to find a simultane-
ous solution without assigning some appropriate values to
f (R, ϕ, χ). However, if we see first equation of the the sys-
tem (32), we come across with at least a trivial symmetry
Y = ∂t independent of the choice of any specific f (R, ϕ, χ)

gravity model. Thus, we start our analysis by choosing dif-
ferent cosmological models.

4.1 f (R) gravity

This is an important test case which enables us to revisit usual
metric f (R) gravity. It may be noticed from the last equation
of (25) that either fRR = 0 or β1,R = 0. So if we assume
fRR = 0 and β1,R �= 0, then Eq. (30) provides fR = 0. In
this situation both ζ and  becomes functions dependent on
t only and Eq. (32) simplifies to

(3a2β1 + a3ζ,t ) f − ,t = 0. (33)

Differentiating Eq. (33) with respect to R yields β1,R = 0,
which is contrary to our supposition. Thus f (R) gravity is
constrained with the condition that fRR �= 0 [17]. So for
the sake of simplicity, we consider f (R, ϕ, χ) = f0R 3

2 . It is
worthwhile to mention here that this f (R) model has already
been used in literature [17,20]. Manipulating Eqs. (25–32),
we get

ζ = c1t + c2, β1 = 2c1a2 + 3c3t + 3c4

3a
,

β2 = −2Rc1a2 + c3t + c4

a2 , (34)

 = −9c3a
√
R + c5, β3 = β4 = 0. (35)

The Noether symmetry generators turn out to be

Y1 = t
∂

∂t
+ 2

3
a

∂

∂a
− 2R ∂

∂R , Y2 = ∂

∂t
,
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Y3 = ta−1 ∂

∂a
− 2Rta−2 ∂

∂R , Y4 = a−1 ∂

∂a
− 2Ra−2 ∂

∂R .

(36)

It is important to mention here that these are exactly the same
as obtained in [20]. Moreover, using Eq. (24) first integrals
also known as conserved quantities turn out to be

I1 = 9aȧ2 f0R
1
2 − 1

2
a3 f0R

3
2 + 9

2
a2ȧṘ f0R

−1
2 ,

I2 = 9atȧ2 f0R
1
2 − 1

2
a3t f0R

3
2 + 9

2
a2t ȧṘ f0R

−1
2

−3a2ȧ f0R
1
2 − 3a3Ṙ f0R

−1
2 ,

I3 = 9a f0R
1
2 − 9t ȧ f0R

1
2 − 9

2
taṘ f0R

−1
2 ,

I4 = −9ȧ f0R
1
2 − 9

2
aṘ f0R

−1
2 . (37)

It is mentioned here that these conserved quantities play an
important role in deriving important cosmological solutions
though after some tedious calculations. As an example, we
present here one important solution. Last integral of Eq. (37)
can be rearranged as

ȧ + 1

2
a
Ṙ
R + I4

9 f0R 1
2

= 0. (38)

This is an interesting differential equation and one can try
to find both numerical and analytical solutions if possible to
investigate the evolution of universe. After using the initial
condition a(0) = 0 and considering the value of parameters
in such a way that I4

f0
= 2, a numerical solution is obtained.

It is evident from Fig. 1 that the behavior scale factor is
physical due to increasing trend. As far as analytic approach
is concerned, Eq. (38) provides a solution of the form

a = R− 1
2

[
a0 − I4t

9 f0

]
. (39)

This differential equation after using the value of Ricci scalar
from Eq. (8) yields an interesting exact solution for the cos-
mic scale factor

a(t) = (c4t
4 + c3t

3 + c2t
2 + c1t + c0)

1
2 , (40)

such that

c4 = I42

2916 f02 , c3 = − a0 I4
81 f0

, c2 = a0
2

6
,

c1 = a1 − a0 f0
I4

, c0 = a2 + 9a0
4 f02

4I42 , (41)

where ai ′s are integration constants. It is worthy to mention
here that similar solutions have already been reported in the
context of f (R) gravity [18,21]. The values of constants ci ′s
give the information about the cosmological evolution. For

instance, c4 �= 0 provides a power law inflation while, a radi-
ation dominated stage is obtained if the regime is dominated
by the linear term in c1 [18].

Now manipulating first two conserved quantities of
Eq. (37), we get

ȧa2 + a3 Ṙ
R − I1t − I2

3 f0R 1
2

= 0, (42)

whose solution for scale factor a is obtained as

a = R−1
[
a3 + 1

f0R3

∫
(I1t − I2)R

5
2 dt

] 1
3

. (43)

The integral involved in this equation can be solved once we
assume any suitable functional form forR. A simplest choice
can be

R = R0t
r , r �= 0, 1, R0 �= 0, r,R0 ∈ R. (44)

In this case, the differential Eq. (43) provides a cosmological
solution

a(t) = 1

R0tr

[
a3+ 2

1
3

f0R0
1
2 t

r−2
2

(
I1t

5r + 4
− I2

5r + 2

)] 1
3

,

r �= −2

5
, − 4

5
. (45)

To our best of knowledge, this is an important new solution in
the context of f (R) gravity. It is interesting to notice that one
can obtain many cosmic solutions in modified f (R) gravity
which is due to the consequence of Eq. (6). Moreover, dif-
ferent scenarios of cosmic evolution can be discussed using
Eq. (45). For example, when r = 2

5 , the scale factor diverges
as t → 0 indicating the existence of Big Rip singularity
[22,23].

4.2 f (R, ϕ, χ) gravity

In this section, we investigate the conserved quantities for a
broader class. For this purpose, we consider the following
cases:

Case(i): f (R, ϕ, χ) = ϕRn, n �= 0, 1.

In this case, manipulation of Eqs. (25–32) yields,

ζ = c1t + c2, β1 = c1a ln ϕ + c3a
−1 + c4a,

β2 = −2Rc1 − 2Ra−2c3 − R2−na−1

nϕ
c5, (46)

β3 = ϕ(2n − 1 − 3 ln ϕ)c1 + ϕ(2n − 3)a−2c3

−3ϕc4 + R1−na−1c5,  = β4 = 0. (47)

Here the Noether symmetry generators take the form

Y1 = t
∂

∂t
+ a ln ϕ

∂

∂a
− 2R ∂

∂R + ϕ(2n − 1 − 3 ln ϕ)
∂

∂ϕ
,

Y2 = ∂

∂t
, Y3 =a−1 ∂

∂a
− 2Ra−2 ∂

∂R+ϕ(2n − 3)a−2 ∂

∂ϕ
,
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Fig. 1 Evolution of scale factor versus cosmic time and behaviour of redshift function for the case f (R, ϕ, χ) = f0R
3
2

Y4 = a
∂

∂a
− 3ϕ

∂

∂ϕ
,

Y5 = −R2−na−1

nϕ

∂

∂R + R1−na−1 ∂

∂ϕ
. (48)

First integrals become

I1 = t[6aȧ2 f0nϕRn−16a2ȧṘ f0nϕ(n − 1)Rn−2

−a3(n − 1) f0ϕRn] − 6 f0na
2 ln ϕRn−2[2ȧR

+aṘ(n − 1)] + 12 f0n(n − 1)ϕRn−1a2ȧ,

I2 = 6aȧ2 f0nϕRn−16a2ȧṘ f0nϕ(n − 1)Rn−2

−a3(n − 1) f0ϕRn, I3 = 12ȧ f0n(n − 2)ϕRn−1

−6a f0n(n − 1)ϕRn−2Ṙ.

I4 = −12 f0na
2ȧϕRn−1

−6 f0n(n − 1)a3ϕRn−2Ṙ,

I5 = 6 f0(n − 1)aȧ. (49)

Here we can also construct many important cosmological
solutions. Last integral of Eq. (55) is much easier to deal
with and give a straight away solution of the scale factor
a = [ 2I5

6 f0(n−1)
t + a4]1/2. Moreover, third conserved quantity

can be used to construct the solution for scale factor in the
form

a = R n−1
2(n−2)

⎡
⎣a5 + I3

12 f0n(n − 2)

∫ R (1−n)(2n−3)
2(n−2)

ϕ
dt

⎤
⎦ .

(50)

It is interesting to notice that when ϕ = 1, this differen-
tial equation yields the same solution (40) in f (R) theory
of gravity when n = 3

2 and the case reduces to ordinary
GR when n = 1. However, some interesting solutions can
be developed by choosing appropriate values for the scalar
field ϕ. Similarly, manipulating fourth conserved quantity of
Eq. (49), we get

a = R 1−n
2

[
a6 − I4

4 f0n

∫ R n−1
2

ϕ
dt

] 1
3

. (51)

Fig. 2 Evolution of scale factor factor for f (R, ϕ, χ) = ϕmR 19
14 ;

m = 2.5 (solid),m = 2 (dashed),m = 1.5 (small dashed),m = −0.125
(dotted), m = 0.5 (dot dashed)

The integral involved in both the Eqs. (50,51) can be easily
solved once we assume some suitable functional form for R
and ϕ.

Case(ii): f (R, ϕ, χ) = ϕmR 19
14 , m �= 0, 1.

In this case, a simultaneous solution of Eqs. (25–32) gives,

ζ = c1t + c2, β1 = c1ma ln ϕ + c3a + c4a
−1,

β2 = −2Rc1 − 2Ra−2c4 − 14

19
R 9

14 c5a
−1mϕ−m, (52)

β3 = −3ϕ

(
ln ϕ − 4

7m

)
c1 − 3ϕ

m
c3 − 6ϕ

21m
a−2c4

+ϕ1−mR− 5
14 a−1c5,  = β14 = 0. (53)

Here the Noether symmetry generators take the form

Y1 = t
∂

∂t
+ma ln ϕ

∂

∂a
−2R ∂

∂R+3ϕ

(
4

7m
− ln ϕ

)
∂

∂ϕ
,

Y2 = ∂

∂t
, Y3 = a

∂

∂a
− 3ϕ

m

∂

∂ϕ
,

Y4 = a−1 ∂

∂a
− 2Ra−2 ∂

∂R − 6ϕ

21m
a−2 ∂

∂ϕ
,

123



Eur. Phys. J. C (2020) 80 :115 Page 7 of 9 115

Y5 = −14

19
R 9

14 a−1mϕ−m ∂

∂R + +ϕ1−mR− 5
14 a−1 ∂

∂ϕ
.

(54)

First integrals turn out to be

I1 = t

[
57

7
aȧ2 f0ϕ

mR 5
14 + 285

98
a2ȧṘ f0ϕ

mR− 9
14

− 5

14
a3 f0ϕ

mR 9
14

]
− 6 f0ma2ϕm ln ϕ

[
19

7
ȧR 5

14

+ 95

196
aṘR− 9

14

]
+ 285

49
f0ϕ

mR 5
14 a2ȧ,

I2 = 57

7
aȧ2 f0ϕ

mR 5
14 + 285

98
a2ȧṘ f0ϕ

mR− 9
14

− 5

14
a3 f0ϕ

mR 9
14 , I3 = −6 f0a

2ϕm
[

19

7
ȧR 5

14

+ 95

196
aṘR− 9

14

]
,

I4 = −6 f0ϕ
m

[
19

7
ȧR 5

14 + 95

196
aṘR− 9

14

]

+285

49
f0ϕ

mR 5
14 ȧ, I5 = 15

7
f0maȧ. (55)

Here we also get five conserved quantities as in the previous
case. It is due to the fact that both cases are similar in nature,
the only difference is that in first case Ricci power law model
is used while in this case scalar field power law form is used
for a better comparative analysis. Here we can also recon-
struct many important cosmological solutions using these
conserved quantities. As in the last case, fifth integral of
Eq. (55) provides a solution a = [ 14I5

15 f0m
t+a7]1/2. The fourth

conserved quantity can be used to construct the solution for
scale factor in the form

a = R− 5
18

[
a8 − 49I4

513 f0

∫ R− 5
63

ϕm
dt

]
. (56)

It would be worthwhile to mention here that the scalar field
parameter m can play an important role in the evolution of
universe. For example, when we assume scalar field as a

quadratic function of cosmic time and R = R0t−
63m

5 , the
evolution of scale factor becomes interesting. It can be seen
from Fig. 2 that for m > 1, the scale factor remains positive
and shows an increasing behavior. In fact, an accelerated
expansion phase is observed asm increases. Also, whenm <

1, the scale factor shows a negative and decreasing behavior.
Thus with the considered parametric values involved in the
analysis, the scalar field becomes very important when m >

1.
Similarly, manipulating third conserved quantity of

Eq. (55), we get

a = R− 5
28

[
a9 − 7I3

38 f0

∫ R 5
28

ϕm
dt

] 1
3

. (57)

A similar numerical analysis can also be done here by solving
the integral involved in Eq. (57) if we consider some suitable
forms for R and ϕ.

Case(iii): f (R, ϕ, χ) = ϕR + h(χ)

Here we discuss the case with more general form of
f (R, ϕ, χ) model. For, this purpose we consider f (R, ϕ, χ)

= ϕR + h(χ), where h(χ) is an arbitrary analytic function
of χ . Solving Eqs. (25–32) simultaneously, it follows

ζ = c1, β3 = c2a
−1,  = c3, β1 = β2 = β4 = 0.

(58)

Here the Noether symmetry generators become

Y1 = ∂

∂t
, Y2 = a−1 ∂

∂ϕ
. (59)

Many cosmic solutions can be constructed for different
choices of the function h(χ). However for the present anal-
ysis, we consider the simplest case h(χ) = k1χ + k2, where
k1 �= 0 and k2 are arbitrary real coefficients. Corresponding
conserved quantities in this case turn out to be

I1 = 6aȧ2ϕ + a3(k2 + 1

2
k1εϕ̇

2), I2 = εa2ϕ̇. (60)

The second conserved quantity suggests that the growth of
scale factor depends on the scalar field and varies with inverse
proportion. Moreover, the simultaneous solution of both first
integrals in Eq. (60) provide

6ϕ

[
I2
εϕ̇

] 1
2
[
d

dt

(
I2
εϕ̇

)1/2
]2

+
[
I2
εϕ̇

] 3
2
[
k2 + 1

2
k1εϕ̇

2
]

− I1 = 0.

(61)

One can try for the possible solution for the scalar field ϕ with
suitable initial conditions. As an example, a numerical solu-
tion is obtained for canonical scalar field ε = 1. Two solution
curves in Fig. 3 are due to the square root term involved. The
evolution of scale factor with blue colored curve seems more
physical due to increasing behavior.

5 Outlook

Noether symmetries are not simply a mechanism to deal with
the dynamical solutions, but also their possible existence may
provide some feasible conditions so that one can choose some
viable universe models according to recent observations.
Lagrangian multipliers are useful to re-shape the Lagrangian
into its canonical form which may prove to be quite useful
to reduce the dynamics of the system and eventually help
in determining the exact solutions. This paper is devoted to
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Fig. 3 Evolution of scale factor and canonical scalar field (ε = 1) for f (R, ϕ, χ) = ϕR + h(χ) with h(χ) = k1χ + k2

provide a detailed discussion about the Noether symmetries
of the flat FRW universe model with in f (R, ϕ, χ) gravity
set up. We have calculated the Lagrangian for FRW uni-
verse with in f (R, ϕ, χ) theory background. The existence
of Noether symmetries and corresponding conserved quan-
tities is considered important in the literature and plays an
important role to explore the exact solutions of field equa-
tions. A brief summary of results of this paper is as follows:

• The exact solutions of Noether equations have been
divided mainly in two parts. The first case is focussed
on revisiting usual metric f (R) gravity. It is worthwhile
to mention here that the f (R) gravity is constrained
with the condition that fRR �= 0. Thus for the sake
of simplicity, we have considered f (R, ϕ, χ) = f0R 3

2 ,
where f0 �= 0 is a real arbitrary parameter. The obtained
Noether symmetries turn out to be same as already avail-
able in literature [17,20]. However, we use conserved
quantities to investigate both numerical and analytical
solutions to study the evolution of universe. After using
some appropriate initial condition and suitable values of
parameters involved, a numerical solution is obtained.
It is evident from the behavior of scale factor as shown
in Fig. 1 that universe expanded at an early time with
deceleration phase and then later on accelerated cosmic
expansion could be observed. Analytical approach pro-
vides an exact solution that have already been suggested
to exist in the context of f (R) gravity [18,21]. We also
report a new exact solution (45) in the context of f (R)

gravity which for a special case indicates the existence
of Big Rip singularity.

• The second part deals with the more general form of
f (R, ϕ, χ) gravity model. Three subcases have been dis-
cussed under this category. The first case provides the
exact solutions of FRW universe when f (R, ϕ, χ) =
ϕRn, n �= 0, 1. Five conserved quantities have been
obtained in this case. Three of them have been used to

provide a new class of exact solutions in the context of
f (R, ϕ, χ) gravity.

• We further consider f (R, ϕ, χ) = ϕmR 19
14 for finding

the Noether symmetry generators and corresponding first
integrals. Here we also get five conserved quantities as in
the previous case. It is due to the fact that both cases are
similar in nature, the only difference is that in first case
Ricci power law model is used while in this case scalar
field power law form is used for a better comparative
analysis. Many solutions are possible using conserved
quantities in this case, however, one solution has been
reported for the discussion. It is worth mentioning that
the scalar field parameter m plays an important role in
the evolution of universe. For example, when scalar field
is assumed as a quadratic function of cosmic time and

R = R0t−
63m

5 , the evolution of scale factor becomes
interesting. It can be seen from Fig. 2 that for m > 1,
the scale factor remains positive and shows an increas-
ing behavior. In fact, an accelerated expansion phase is
observed asm increases. Also, whenm < 1, the scale fac-
tor shows a negative and decreasing behavior. Thus with
the considered parametric values involved in this analy-
sis, the scalar field becomes very important when m > 1.

• The last cases provides the Noether symmetries for
f (R, ϕ, χ) = ϕR + h(χ). Here we obtain two Noether
symmetry generators after solving the determining equa-
tions simultaneously. Many cosmic solutions can be con-
structed here for different choices of the function h(χ).
However for the present analysis, we consider the sim-
plest case h(χ) = k1χ + k2, where k1 �= 0 and k2 are
arbitrary real coefficients. A conserved quantity in this
case suggests that the growth of scale factor depends on
the scalar field and varies with inverse proportion. A non-
linear differential equation has been formed in terms of
scalar field ϕ. We can try for the possible solution for
the scalar field with some suitable initial conditions. A
numerical solution is reported for canonical scalar field
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ε = 1. The evolution of scale factor with blue colored
curve as shown in Fig. 3 seems more physical due to
increasing behavior.

In nutshell, many other cosmologically viable solutions
can be constructed for some specific choice of f (R, ϕ, χ)

gravity models. A detailed analysis including matter source
and with anisotropic background is under process.
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