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Abstract The previously introduced class of two-para-
metric phenomenological inflationary models in general rel-
ativity in which the slow-roll assumption is replaced by the
more general, constant-roll condition is generalized to the
case of f (R) gravity. A simple constant-roll condition is
defined in the original Jordan frame, and exact expressions
for a scalaron potential in the Einstein frame, for a function
f (R) (in the parametric form) and for inflationary dynamics
are obtained. The region of the model parameters permitted
by the latest observational constraints on the scalar spectral
index and the tensor-to-scalar ratio of primordial metric per-
turbations generated during inflation is determined.

1 Introduction

The constant-roll inflation is a two-parametric class of
phenomenological inflationary model which satisfies the
assumption of constant rate of the inflaton [1–3]. The assump-
tion is a generalization of the standard slow-roll inflation
with an approximately flat inflaton potential, and so-called
ultra-slow-roll inflation [4–6], in which the potential is con-
stant for an extended period, and the curvature perturbation
grows on superhorizon scales. The attempt of such a gen-
eralization first proposed in [1], and the inflaton potential
was constructed so that it satisfies the constant-roll condition
approximately. Later, it was clarified in [2] that there exists
a potential that satisfies the constant-roll condition exactly.
In addition, the model possesses the exact solution that is
an attractor for inflationary dynamics. It is also elucidated
that the curvature perturbation is conserved on superhorizon
scales. Not only does the constant-roll inflation serve theo-
retically interesting framework, it is also viable with the most
recent observational data. In [3], we showed that the model
can satisfy the latest observational constraint on the spectral
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index of the curvature power spectrum and the tensor-to-
scalar ratio.

This constant-roll construction refers to inflationary mod-
els in General Relativity (GR) where gravity is not modified
but a new scalar field has to be introduced. On the other
hand, in the opposite limit one can construct inflationary
models without new scalar fields, by changing the gravity
sector only, as typified by the R + R2 model [7] and its
f (R) gravity modifications [8–12]. This purely geometrical
approach is equivalent to introducing a scalar degree of free-
dom (dubbed a scalaron in [7]), which can be explicitly seen
by performing a conformal transformation from the Jordan
frame to the Einstein frame. Viable inflationary models in
f (R) gravity are slow-rolling, too. Since the present level
of accuracy of astronomical observations make it interesting
to go beyond the slow-roll approximation, in this paper we
construct a new constant-roll inflationary model in the frame-
work of f (R) gravity. In contrast to previous works [1–3]
where the constant-roll condition was effectively imposed in
the Einstein frame, since inflation in GR was considered, we
impose a new constant-roll condition in the original Jordan
frame where the form of equations is simpler in fact; see e.g.
Eq. (11) below.

The rest of the paper is organized as follows. In Sect. 2,
we review f (R) gravity focusing on its Jordan and Einstein
frame description. In Sect. 3, we introduce a novel constant-
roll condition in the Jordan frame and derive exact solutions
for the potential and the Hubble parameter in the Einstein
frame. In Sect. 4, we derive a parametric expression of f (R),
and explore the inflationary dynamics in the Jordan frame.
In Sect. 5, we consider the spectral parameters for the infla-
tionary power spectra. We use them in Sect. 6 to show the
model possesses an available parameter region. We conclude
in Sect. 7. In the appendix, two alternative derivations of the
parametric expression for the constant-roll f (R) function
are presented, with the latter of them using the Jordan frame
only.
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2 f (R) gravity

Let us briefly review f (R) gravity and the relation between
the Einstein and Jordan frames (see e.g. [13] for a more exten-
sive review and the list of references). We consider the action

S =
∫

d4x
√−gJ

f (RJ)

2
, (1)

whose gravitational field equations for the Friedmann–
Lemaître–Robertson–Walker (FLRW) background with zero
spatial curvature

ds2 = −dt2
J + a2

J (tJ)(dx
2 + dy2 + dz2) (2)

and in the absence of other matter are given by

3FH2
J = 1

2
(RJF − f ) − 3HJ Ḟ,

2F ḢJ = −F̈ + HJ Ḟ,

(3)

where F ≡ d f/dR, the subscript J denotes the Jordan frame,
a dot denotes a derivative with respect to the Jordan frame
time tJ, and we work in the unit where MPl = (8πG)−1/2 =
1. By using the conformal transformation gE

μν = FgJ
μν , we

can transform the gravitational kinetic term into the Einstein–
Hilbert form. Further, we can normalize the scalar kinetic
term as

S =
∫

d4x
√−gE

[
RE − 1

2
(∂μφ)2 − V (φ)

]
, (4)

where the subscript E denotes the Einstein frame, and

F = e

√
2
3 φ

,

V (φ) = RJF − f

2F2 . (5)

Once a functional form of f (R) is specified in the Jordan
frame, the scalaron φ and the potential V (φ) in the Einstein
frame are given by the above definition. Conversely, once the
potential is specified in the Einstein frame, the Ricci scalar
and the function f (R) in the Jordan frame are given by

RJ = e

√
2
3 φ

(√
6Vφ + 4V

)
,

f (RJ) = e2
√

2
3 φ

(√
6Vφ + 2V

)
,

(6)

where Vφ ≡ ∂V/∂φ.
The time coordinate and the scale factor in the Jordan and

Einstein frame are related through

dtJ = e
− φ√

6 dtE,

aJ = e
− φ√

6 aE,

(7)

from which we obtain the relation between Jordan frame
quantities and the Einstein-frame quantities:

HJ = e
φ√
6

(
HE − 1√

6

dφ

dtE

)
,

φ̇ = e
φ√
6

dφ

dtE
,

φ̈ = e

√
2
3 φ

[
d2φ

dt2
E

+ 1√
6

(
dφ

dtE

)2
]

.

(8)

The Einstein equation and the Klein–Gordon equation in the
Einstein frame for the FLRW background in the absence of
the spatial curvature and other matter take the standard form:

H2
E = 1

3

[
1

2

(
dφ

dtE

)2

+ V

]
,

dHE

dtE
= −1

2

(
dφ

dtE

)2

,

d2φ

dt2
E

+ 3HE
dφ

dtE
+ ∂V

∂φ
= 0,

(9)

where HE ≡ 1
aE

daE
dtE

.
It is well known that these equations can be reduced to one

non-linear first-order differential equation for HE(φ) of the
Hamilton–Jacobi type [14,15]. However, for f (R) gravity
the master first-order equation for HJ in the original Jordan
frame considered as a function of the Ricci scalar RJ has
even a simpler form, which can be obtained as follows. We
represent Ḟ as

Ḟ = dF(RJ)

dRJ

dRJ

dHJ
ḢJ = dF(RJ)

dRJ

dRJ

dHJ

RJ − 12H2
J

6
, (10)

and plug it to the last term of the first equation of (3) to obtain

dHJ

dRJ
= HJ(RJ − 12H2

J )

(RJ − 6H2
J )F(RJ) − f (RJ)

dF(RJ)

dRJ
. (11)

Note that the right-hand side can be explicitly written down
once a functional form of f (RJ) is specified, and hence (11)
is the master first-order equation for HJ as a function of RJ.

3 f (R) constant-roll potential

In previous works [1–3], we considered the Einstein–Hilbert
action with a canonical scalar field, and imposed the constant-
roll condition φ̈ = βH φ̇. Now we consider a natural gener-
alization of the constant-roll condition in f (R) gravity:

F̈ = βHJ Ḟ . (12)

As we shall confirm below, the slow-roll regime amounts to
β → 0, whereas a constant potential corresponds to β →
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−3. Note that this condition is not conformally dual to the
former one used in GR. Of course, such generalization can be
produced in many ways. We have chosen just the form (12)
for the constant-roll condition in f (R) gravity from reasons
of simplicity and aesthetic elegance.1 In particular, in the
case of the R + R2 inflationary model, it reduces to

R̈J = βHJ ṘJ. (13)

Note that, as we shall see below, while R+R2 model does not
have constant-roll solution, there exist constant-roll solutions
for Rp models. Also, for a generic f (R) function, substitut-
ing the constant-roll condition (12) to (3) and integrating it,
we obtain a very simple and elegant relation which has to be
satisfied for all models in this class at all times:

F(RJ) ∝ H2/(1−β)
J . (14)

After obtaining an analytic solution for Hubble parameter
we can determine a proportionality constant. We shall come
back to this point soon.

Let us now find the corresponding effective potential for
the dual representation of this model in the Einstein frame.
In terms of the Einstein-frame variables, the condition (12)
reads

d2φ

dt2
E

+ 3 + β√
6

(
dφ

dtE

)2

− βHE
dφ

dtE
= 0. (15)

Plugging this condition to the Klein–Gordon equation (9),
we obtain

(3 + β)

[
HE

dφ

dtE
− 1√

6

(
dφ

dtE

)2
]

+ ∂V

∂φ
= 0, (16)

where the quadratic velocity term shows up as we impose
the constant-roll in the Jordan frame F̈ = βHJ Ḟ , rather
than d2φ/dt2

E = βHEdφ/dtE in the Einstein frame. Clearly,
the limit β → −3 amounts to the constant potential. On the
other hand, for the limit β → 0, we have a slow-roll equation
which is approximately equivalent to the standard form as the
quadratic velocity term is negligible for slow roll.

Below we shall show that one can construct an inflationary
model that satisfies the constant-roll condition (15), and has
an exact solution for inflationary evolution. Further, we shall
clarify that the model has a parameter region that satisfies
the latest observational constraint on spectral parameters of
inflationary power spectra.

Following [2], we employ the Hamiltonian–Jacobi formal-
ism and regard HE = HE(φ), assuming that tE = tE(φ) is a
single-valued function, or dφ/dtE �= 0. When dφ/dtE = 0,
the Hamiltonian–Jacobi formalism breaks down, and the

1 When this paper was prepared for submission, a paper on the same
topic [16] has appeared in the archive. However, two different slow-roll
conditions in f (R) gravity proposed in that paper differ from the our
one (12) and lead to more complicated forms of V (φ) and f (R).

stochastic effect becomes dominant. It should be avoided
that the inflaton passes such a point during inflation. If the
breakdown is located before inflation, there is no problem
to rely on the Hamiltonian–Jacobi formalism. We will check
this point later on.

From the Einstein equation (9), we obtain

dφ

dtE
= −2

dHE

dφ
,

d2φ

dt2
E

= −2
d2HE

dφ2

dφ

dtE
,

(17)

with which the condition (15) is rewritten as

dHE

dφ

[
d2HE

dφ2 + 3 + β√
6

dHE

dφ
+ β

2
HE

]
= 0. (18)

The equation allows two branches of solutions. The first
branch dHE/dφ = 0 gives HE = const. and V = const.
in the Einstein frame, which corresponds to f (RJ) = RJ −
const. In the second branch, the general solution is given by

HE(φ) = M(γ e−
√

3
2 φ + e

− βφ√
6 ), (19)

and the potential is given by

V (φ) = 3H2
E − 2

(
dHE

dφ

)2

= 3 − β

3
M2

[
6γ e

− (3+β)φ√
6 + (3 + β)e−

√
2
3 βφ

]
, (20)

where we introduced two integration constants M (mass
dimension 1) and γ (dimensionless). Using redefinition of
M and φ, we can always normalize γ . Therefore, without
loss of generality, we consider only γ = 0,±1 for the fol-
lowing. On the other hand the amplitude of M is determined
by the CMB normalization. Below we work in the unit where
M = 1.

Below we shall clarify that viable parameter set is β � 0
and γ = −1. Unlike the constant-roll potential found in
[2] using the condition φ̈ = βH φ̇, the potential (20) is not
periodic function. Its form is depicted in Fig. 1 for a specific
parameter set β = −0.02 with γ = −1.

Depending on values of the parameters β and γ , the poten-
tial can pass V = 0. We can solve V (φ) = 0 and the solution
is given by φ = φc, where we define the critical field value
as

φc ≡
√

6

β − 3
log

∣∣∣∣3 + β

6γ

∣∣∣∣ . (21)

For instance, φc ≈ 0.57 for β = −0.02, γ = −1. A neg-
ative value of the potential is undesirable since it may lead
to recollapse soon after the end of inflation. For this reason,
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Fig. 1 The potential (20) in the Einstein frame, the phase diagram for
the scalaron, the e-folds (35) and the Ricci curvature (26) in the Jordan
frame for β = −0.02, γ = −1, where we set MPl = M = 1

we cut the potential at some point φ = φ0 > φc to realize a
graceful exit from inflation.

For γ = 0, the potential is given by a single exponential
function. On the other hand, for β ≈ 0 or −3 the potential
is mainly described by a single exponential function with a
constant, which is of our target. However, we do not consider
the case β < −3 and γ = −1 as the potential is always
negative.

4 f (R) constant-roll dynamics

As mentioned above, from the form of the potential we focus
on β ≈ 0 or −3. In this section we shall check inflationary
dynamics. The evolution of the inflaton is governed by

dφ

dtE
= −2

dHE

dφ
= 2√

6
e
− βφ√

6 (3γ E + β), (22)

where E(φ) ≡ e(β−3)φ/
√

6. By solving this equation, we
obtain

tE = e

√
3
2 φ

3γ
2F1

(
1,

3

3 − β
,

6 − β

3 − β
;−β

γ
e

(3−β)φ√
6

)
, (23)

where 2F1 is Gauss’ hypergeometric function. Thus, φ(tE)

is obtained in terms of the inverse function of the hyperge-
ometric function. However, without its specific form of the
solution, we can draw interesting conclusion as follows.

If β and γ have the opposite sign, there exists a solution
for dφ/dtE ∝ 3γ E + β = 0, which we denote φb,

φb ≡
√

6

β − 3
log

∣∣∣∣ β

3γ

∣∣∣∣ . (24)

We can show that if φb exists, the inflaton will always
approach φb spending infinite Einstein-frame time as fol-
lows. If 3γ E+β > 0, φ(tE) is increasing and 3γ E(tE)+β is
decreasing. It continues decreasing so long as 3γ E +β > 0,
and thus the inflaton approaches φ = φb. Likewise, for the
opposite case with 3γ E+β < 0, the inflaton also approaches
φ = φb. In both cases, the inflaton velocity |dφ/dtE| is
always decreasing, therefore it approaches φ = φb spend-
ing infinite Einstein-frame time.

Actually, this process develops small-scale inhomogene-
ity of the Universe. From the conformal invariance of the
curvature perturbation,

ζJ ∼ HE

dφ/dtE
δφ ∼ H2

E

dφ/dtE
, (25)

where the right-hand side is evaluated at the horizon exit.
As we showed above, |dφ/dtE| is always decreasing in the
course of inflation. In such a case, |ζJ| is amplified on small
scales, and the Universe becomes inhomogeneous. This also
means that the isotropic background solution involved is not
an attractor. Therefore, we exclude the parameter set with
βγ < 0 (see Table 1).

Plugging the potential (20) to (6), we obtain a parametric
expression of f (R):

RJ = 2

3
(β − 3)e2(1−β)φ/

√
6 [

3γ (β − 1)E + (β − 2)(β + 3)
]

= (β − 3)

[
2γ (β − 1)F−(1+β)/2+ 2

3
(β − 2)(β + 3)F1−β

]
,

f (RJ) = 2

3
(β−3)e2(2−β)φ/

√
6 [

3γ (β+1)E + (β − 1)(β + 3)
]

= (β − 3)

[
2γ (β + 1)F (1−β)/2 + 2

3
(β − 1)(β + 3)F2−β

]
.

(26)

Here F(φ) = e

√
2
3 φ serves as an auxiliary variable. However,

it is easily seen that d f/dR = F , as it should. For γ = 0 or
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Table 1 Reasons why
parameter regions except
β � 0, γ = −1 are excluded

γ = +1 γ = −1 γ = 0

β � −3 Inhomogeneity Always R, V < 0 r = 8(1 − ns)

β � −3 Inhomogeneity r ≥ 21.3 for RJ ≥ 0 r = 8(1 − ns)

β � 0 Inhomogeneity Viable, Fig. 3 r = 8(1 − ns)

β � 0 r ≥ 9.48 for dRJ
dtE

≤ 0 Inhomogeneity r = 8(1 − ns)

β = −3, we can write down f (RJ) ∝ Rp
J , with p = 2−β

1−β
or

p = β−1
β+1 , respectively. For general case with β � 0, φ > 1,

the RJ, f (RJ) in (26) are dominated by the second terms.
Neglecting the first terms, we obtain

f (RJ) ≈ 2

3
(β − 3)(β + 3)(β − 1)

×
(

3RJ

2(β − 3)(β + 3)(β − 2)

) 2−β
1−β

. (27)

The high curvature behavior is thus close to the R + Rp

model. Since it is shown in [12] that the R + Rp model pos-
sesses a parameter region to satisfy the latest observational
constraint, we expect that the present case would also be
observationally viable. Indeed, we shall see in Sect. 6 that
there exists a parameter region γ = −1,−0.1 � β ≤ 0, 4 ≤
φ ≤ 4.8, which satisfies the latest observational constraint
on inflationary power spectra. For this parameter region, we
confirm that the relative error between the exact paramet-
ric form (26) and the approximated form (27) remains less
than 1.6%. The exact and approximated forms of f (R) are
depicted in Fig. 2 for the case β = −0.02, γ = −1, for which
4 ≤ φ ≤ 4.8 amounts to 3.4 ≤ RJ/102 ≤ 6.6. The relative
error increases as φ or RJ decreases, and reaches 5, 10% at
RJ/10−2 = 1.4, 0.88, respectively.

Since in the inflationary regime Ricci curvature in (26)
should be positive, we are interested in the field region that
satisfies

(β − 3)[3γ (β − 1)E + (β + 3)(β − 2)] > 0. (28)

However, for the case β < −3 and γ = −1, Ricci cur-
vature is always negative, which is another reason why we
do not consider this parameter set, in addition to the neg-
ative potential mentioned above. For other parameter sets,
the Ricci curvature can pass RJ = 0 and change the sign at
φ = φr , where

φr ≡
√

6

β − 3
log

∣∣∣∣ (β + 3)(β − 2)

3γ (β − 1)

∣∣∣∣ . (29)

For instance, φr ≈ −0.55 for β = −0.02, γ = −1. While
Ricci curvature is negative for φ < φr , in this case it does
not occur during inflation as we cut the potential at some
point φ = φ0 > φc ≈ 0.57 to realize a graceful exit from
inflation. For later convenience, it is worthwhile to note that

Fig. 2 The function f (RJ) for β = −0.02, γ = −1 in the exact
parametric form (26) (black, solid) and the approximated form (27)
(blue, dashed)

the tensor-to-scalar ratio r(φ) at φ = φr does not depend
on β nor γ and takes very large value which is unacceptable
from observational point of view:

r |RJ=0 = 64

3
≈ 21.3. (30)

In addition, we require that the Ricci curvature is decreasing
during inflation, namely,

dRJ

dtE
= −2

dRJ

dφ

dHE

dφ

= −2

9
e

(2−3β)φ√
6 (3 − β)(1 − β)(β + 3γ E)

× [2(−2 + β)(3 + β) + 3(1 + β)γ E], (31)

should be negative. We use these expressions in Sect. 5 to
constrain the parameter space.

On the other hand, Hubble parameter in the Jordan frame
is given by

HJ = e
φ√
6

(
HE + 2√

6

dHE

dφ

)
= 3 − β

3
e

(1−β)φ√
6 . (32)

Using the definition F = e

√
2
3 φ we obtain
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F =
(

3HJ

3 − β

)2/(1−β)

, (33)

which precisely reproduces (14). Also, using the relation

HJ = dNJ

dtJ
= dtE

dtJ

dφ

dtE

dNJ

dφ
, (34)

we obtain e-folds in the Jordan frame as

NJ = 1

β
log

∣∣∣∣1 + β

3γ
e

(3−β)φ√
6

∣∣∣∣ . (35)

5 Inflationary power spectra

Now we check the spectral parameters of inflationary power
spectra and compare them with observational constraint to
find viable parameter set (β, γ ). First, the power spectrum
of scalar (curvature) and tensor perturbations can be calcu-
lated in the Jordan frame directly, e.g. as was quantitatively
correctly done in [17] for the model [7] using the δN for-
malism. Second, the calculation in the Einstein frame leads
to the same result since the constant modes of scalar (curva-
ture) and tensor perturbations are not affected by a generic
(inhomogeneous) conformal transformation after the end of
inflation; see e.g. [18,19] for more details, and [20] for more
general invariance under disformal transformation. The sub-
tle point is that though the value of the power spectrum is
the same in both frames, it refers to slightly different inverse
scales kE and kJ. However, corrections to the power spectra of
scalar and tensor perturbations following from this difference
are proportional to |ns − 1| and |nt | correspondingly. In par-
ticular, they would be absent for the exactly scale-invariant
spectra. Thus, they can be neglected in the leading order of
the slow-roll approximation.

We evaluate the spectral parameters by exploiting the
slow-roll parameters for the inflaton potential in the Einstein
frame, which are given by

ε ≡ 1

2

(
V ′

V

)2

= (3 + β)2(β + 3γ E)2

3(3 + β + 6γ E)2 ,

η ≡ V ′′

V
= (3 + β)[2β2 + 3(3 + β)γ E]

3(3 + β + 6γ E)
,

ξ ≡ V ′V ′′′

V 2 = (3 + β)2(β + 3γ E)[4β3 + 3(3 + β)2γ E]
9(3 + β + 6γ E)2 ,

(36)

where a prime denotes derivative with respect to φ. We are
interested in regime where these slow-roll parameters are suf-
ficiently small to obtain a nearly scale-invariant spectrum. By
virtue of the conformal invariance of the curvature and tensor

perturbations, we can use the standard slow-roll expansion
of the spectral parameters

ns − 1 = −6ε + 2η

= − 2(3 + β)

3(3 + β + 6γ E)2 [β2(3 + β)

+ 3(−9 + 12β + β2)γ E + 9(3 + β)γ 2E2], (37)

r = 16ε

= 16(3 + β)2(β + 3γ E)2

3(3 + β + 6γ E)2 , (38)

dns
d ln k

= 16εη − 24ε2 − 2ξ

= 2(9−β2)2γ E(β+3γ E)[(−1+β)(3 + β) + 12γ E]
(3 + β + 6γ E)4 .

(39)

For γ = 0, they read

ns − 1 → −2

3
β2, r → 16

3
β2,

dns
d ln k

→ 0. (40)

We thus obtain a consistency relation r = 8(1−ns), for which
it is impossible to satisfy the observational constraint. For
instance, r = 0.32, 0.24 for ns = 0.96, 0.97, respectively.
Therefore, below we focus on γ = ±1.

Finally, let us focus on the tensor-to-scalar ratio r along
with the evolution of RJ. As we mentioned in Sect. 4, we
require RJ > 0 and dRJ/dtE < 0 during inflation. For the
parameter set β � −3 with γ = −1, RJ ≥ 0 for φ ≥
φr where φr is defined by (29). Then it can be shown by
checking dr/dφ and d2r/dφ2 that for the region φ ≥ φr

the minimum value of r is given at φ = φr , which is given
by (30). Therefore, so long as we consider the region where
RJ ≥ 0, we have r ≥ 21.3, which is much larger than the
observationally allowed value. Likewise, for the parameter
set β � 0 with γ > 0, by using (31) we can also show that

dRJ/dtE ≤ 0 holds for φ ≤
√

6
β−3 log

[
2(2−β)(3+β)

3γ (1+β)

]
, and for

this field position, r ≥ 16
27 (4 + β)2 ≥ 9.48, which is also not

acceptable.
We thus find that only allowed possibility is β � 0 with

γ = −1. Indeed, parameter set −0.02 � β < 0, γ = −1
satisfies the observational constraint on (ns, r). Other param-
eter regions are not feasible for various reasons, which are
summarized in Table 1.

6 Observational constraints

As shown in Table 1, in the previous sections we checked
that the parameter regions other than β � 0, γ = −1 are
excluded by various reasons. Now we show that the case
β � 0, γ = −1 can indeed satisfy the latest observational
constraint.
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Fig. 3 Observational constraint from CMB by Planck and
BICEP2/Keck Array [21] on parameter space (β, φi/MPl) for the
case β � 0, γ = −1. The 68% and 95% confidence regions (blue), the
Jordan frame e-folds NJ counted back from φc (green, dashed), and
r = 10−3 (purple, dotted)

We already see the typical behavior for this parameter set
in Fig. 1. The potential is approximated byV ∼ −e−φ+const
so long as |βφ| � 1. The inflaton rolls on the plateau of
the potential at positive φ region towards negative direction
with dφ/dtE < 0. Before the inflaton reaches to φ = φc

where V = 0, we need to cut the potential at some point
φ = φ0 > φc to realize a graceful exit from inflation.

Indeed, this form of the potential with a long plateau is
favored by the observational data. During the inflation on
the plateau, V and RJ remain positive, and the plateau is
sufficiently long to produce a large number of e-folds NJ ∼
50 (see Fig. 1).

Furthermore, we compare our model with the latest obser-
vational constraint on (ns, r) by Planck and BICEP2/Keck
Array (see Fig. 7 in [21]). Figure 3 depicts the allowed param-
eter region. We find that the parameter set −0.02 � β <

0, γ = −1 satisfies the observational constraint and pro-
vides a sufficient number of e-folds in the Jordan frame. On
the other hand, if the tensor-to-scalar ratio is close to the
upper bound r ∼ 0.1, this model has small number of e-
folds NJ ∼ 25.

7 Conclusion

We have constructed a simple and natural generalization
of the class of constant-roll inflationary models in GR to
the case of f (R) gravity. The constant-roll condition (12)
is introduced in the original Jordan frame. Using it, we
derived the exact solutions for the Einstein-frame poten-
tial in (20), the parametric expression of f (RJ) in (26), as
well as the inflationary evolution in the Einstein and Jordan
frames. The functional form of f (RJ) is expressed paramet-

rically, while for some special parameter values it is possi-
ble to write down f (RJ) explicitly as a function of RJ. We
showed that the model has an interesting parameter region
−0.1 � β < 0, γ = −1 which satisfies the latest obser-
vational constraint on (ns, r) obtained by the Planck and
BICEP2/Keck Array Collaborations.
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Appendix: Alternative derivations of f (R)

In this appendix we present two alternative derivations for
the parametric form of f (R) in (26), with the latter of them
using the Jordan frame only. First, we show an alternative
derivation based on the results obtained in the Einstein frame.
By plugging (20) to the definition (5), we obtain a differential
equation for f (R) as

f = R f ′ + 2

3
(β − 3) f ′2 [

6γ f ′− 3+β
2 + (3 + β) f ′−β

]
,

(A.1)

where a prime denotes derivative with respect to R. This
equation is known as Clairaut’s equation.

In general, Clairaut’s equation is defined as

y(x) = xy′ + g(y′), (A.2)

where a prime denotes derivative with respect to x . By taking
a derivative of the equation, we obtain

(x + g′)y′′ = 0, (A.3)

which clearly has two branches of solutions. The first branch
y′′ = 0 yields general solution

y = cx + g(c), (A.4)

where c is integration constant. The second branch x+g′ = 0
yields singular solution

x = −g′(c), y = −cg′(c) + g(c). (A.5)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


538 Page 8 of 8 Eur. Phys. J. C (2017) 77 :538

This solution defines an envelope of the general solutions and
thus does not involve any integration constant. Thus c plays
a role of parameter and we have

dy

dx
= c. (A.6)

For some special case, y can be written down explicitly as a
function of x . For instance, if g(c) = c2, the singular solution
yields x = −2c and y = −c2 = −x2/4.

In the present case, we have

g(c) = 2

3
(β − 3)

[
6γ c

1−β
2 + (3 + β)c2−β

]
,

g′(c) = 2

3
(β−3)

[
3(1−β)γ c− 1+β

2 +(3 + β)(2 − β)c1−β
]
,

(A.7)

and the singular solution

R = −g′(c), f = −cg′(c) + g(c), (A.8)

precisely reproduces (26) with c = e

√
2
3 φ = d f/dR, as

expected from (A.6).
Now let us show how to derive Eq. (26) for the constant-

roll f (R) function working in the Jordan frame only. Let us
first denote the arbitrary constant appearing in (14) as A:

F(R) = AH2/(1−β). (A.9)

Introducing (A.9) into (11), we get the following equation

f = β + 1

β − 1
RF − 6(β + 3)

β − 1

F2−β

A1−β
, (A.10)

which is a particular case of d’Alembert’s differential equa-
tion (also known as Lagrange–d’Alembert’s equation)

y(x) = xh(y′) + g(y′), (A.11)

where the prime means derivative with respect to x .
The d’Alembert’s equation is more general than the

Clairaut’s equation considered above, and it can be solved
using the same trick: considering y′ ≡ z as an independent
variable and differentiating (A.11) with respect to z leads to
the linear differential equation for x = x(z):

dx

dz
− xh′(z)

z − h(z)
= g′(z)

z − h(z)
. (A.12)

Now the prime means derivative of the functions f and g
with respect to their argument z. Its general solution is

x(z) = exp

(∫ z h′(u)

u − h(u)
du

)

×
[
B +

∫ z g′(u)

u − h(u)

× exp

(
−

∫ u h′(w)

w − h(w)
dw

)
du

]
, (A.13)

where B is an integration constant. In our case of (A.10),
(A.13) and (A.10) take the form:

R = 6(β − 2)(β + 3)

(β − 3)A1−β
F1−β + BF−(1+β)/2,

f (R) = 6(β − 1)(β + 3)

(β − 3)A1−β
F2−β + B

β + 1

β − 1
F (1−β)/2.

(A.14)

This just coincides with (26) with A1−β = 9/(β − 3)2 from
(33) (for M = 1) and B = 2γ (β − 3)(β − 1).

References

1. J. Martin, H. Motohashi, T. Suyama, Phys. Rev. D 87(2), 023514
(2013). doi:10.1103/PhysRevD.87.023514

2. H. Motohashi, A.A. Starobinsky, J. Yokoyama, JCAP 1509(09),
018 (2015). doi:10.1088/1475-7516/2015/09/018

3. H. Motohashi, A.A. Starobinsky, Europhys. Lett. 117(3), 39001
(2017). doi:10.1209/0295-5075/117/39001

4. N. Tsamis, R.P. Woodard, Phys. Rev. D 69, 084005 (2004). doi:10.
1103/PhysRevD.69.084005

5. W.H. Kinney, Phys. Rev. D 72, 023515 (2005). doi:10.1103/
PhysRevD.72.023515

6. M.H. Namjoo, H. Firouzjahi, M. Sasaki, Europhys. Lett. 101,
39001 (2013). doi:10.1209/0295-5075/101/39001

7. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980). doi:10.1016/
0370-2693(80)90670-X

8. J.D. Barrow, S. Cotsakis, Phys. Lett. B 214, 515 (1988). doi:10.
1016/0370-2693(88)90110-4

9. S.A. Appleby, R.A. Battye, A.A. Starobinsky, JCAP 1006, 005
(2010). doi:10.1088/1475-7516/2010/06/005

10. H. Motohashi, A. Nishizawa, Phys. Rev. D 86, 083514 (2012).
doi:10.1103/PhysRevD.86.083514

11. A. Nishizawa, H. Motohashi, Phys. Rev. D 89, 063541 (2014).
doi:10.1103/PhysRevD.89.063541

12. H. Motohashi, Phys. Rev. D 91, 064016 (2015). doi:10.1103/
PhysRevD.91.064016

13. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010).
doi:10.12942/lrr-2010-3

14. A.G. Muslimov, Class. Quantum Gravity 7, 231 (1990). doi:10.
1088/0264-9381/7/2/015

15. D.S. Salopek, J.R. Bond, Phys. Rev. D 42, 3936 (1990). doi:10.
1103/PhysRevD.42.3936

16. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, arXiv:1704.05945
(2017)

17. A.A. Starobinsky, Sov. Astron. Lett. 9, 302 (1983)
18. T. Chiba, M. Yamaguchi, JCAP 0810, 021 (2008). doi:10.1088/

1475-7516/2008/10/021
19. J.O. Gong, J.C. Hwang, W.I. Park, M. Sasaki, Y.S. Song, JCAP

1109, 023 (2011). doi:10.1088/1475-7516/2011/09/023
20. H. Motohashi, J. White, JCAP 1602(02), 065 (2016). doi:10.1088/

1475-7516/2016/02/065
21. P.A.R. Ade et al., Phys. Rev. Lett. 116, 031302 (2016). doi:10.

1103/PhysRevLett.116.031302

123

http://dx.doi.org/10.1103/PhysRevD.87.023514
http://dx.doi.org/10.1088/1475-7516/2015/09/018
http://dx.doi.org/10.1209/0295-5075/117/39001
http://dx.doi.org/10.1103/PhysRevD.69.084005
http://dx.doi.org/10.1103/PhysRevD.69.084005
http://dx.doi.org/10.1103/PhysRevD.72.023515
http://dx.doi.org/10.1103/PhysRevD.72.023515
http://dx.doi.org/10.1209/0295-5075/101/39001
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1016/0370-2693(88)90110-4
http://dx.doi.org/10.1016/0370-2693(88)90110-4
http://dx.doi.org/10.1088/1475-7516/2010/06/005
http://dx.doi.org/10.1103/PhysRevD.86.083514
http://dx.doi.org/10.1103/PhysRevD.89.063541
http://dx.doi.org/10.1103/PhysRevD.91.064016
http://dx.doi.org/10.1103/PhysRevD.91.064016
http://dx.doi.org/10.12942/lrr-2010-3
http://dx.doi.org/10.1088/0264-9381/7/2/015
http://dx.doi.org/10.1088/0264-9381/7/2/015
http://dx.doi.org/10.1103/PhysRevD.42.3936
http://dx.doi.org/10.1103/PhysRevD.42.3936
http://arxiv.org/abs/1704.05945
http://dx.doi.org/10.1088/1475-7516/2008/10/021
http://dx.doi.org/10.1088/1475-7516/2008/10/021
http://dx.doi.org/10.1088/1475-7516/2011/09/023
http://dx.doi.org/10.1088/1475-7516/2016/02/065
http://dx.doi.org/10.1088/1475-7516/2016/02/065
http://dx.doi.org/10.1103/PhysRevLett. 116.031302
http://dx.doi.org/10.1103/PhysRevLett. 116.031302

	f(R) constant-roll inflation
	Abstract 
	1 Introduction
	2 f(R) gravity
	3 f(R) constant-roll potential
	4 f(R) constant-roll dynamics
	5 Inflationary power spectra
	6 Observational constraints
	7 Conclusion
	Acknowledgements
	Appendix: Alternative derivations of f(R)
	References


