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^-REGULARITY, TEST ELEMENTS, AND SMOOTH BASE CHANGE

MELVIN HOCHSTER AND CRAIG HUNEKE

Abstract. This paper deals with tight closure theory in positive characteristic.
After a good deal of preliminary work in the first five sections, including a
treatment of F-rationality and a treatment of F-regularity for Gorenstein rings,
a very widely applicable theory of test elements for tight closure is developed in
§6 and is then applied in §7 to prove that both tight closure and F-regularity
commute with smooth base change under many circumstances (where "smooth"
is used to mean flat with geometrically regular fibers). For example, it is shown
in §6 that for a reduced ring R essentially of finite type over an excellent local
ring of characteristic p , if c is not in any minimal prime of R and Rc is
regular, then c has a power that is a test element. It is shown in §7 that if S
is a flat /{-algebra with regular fibers and R is F-regular then S is F-regular.
The general problem of showing that tight closure commutes with smooth base
change remains open, but is reduced here to showing that tight closure commutes
with localization.

1. Introduction

Throughout this paper, unless otherwise specified, all rings are commutative,
associative, with identity, and Noetherian, and all modules are unital and finitely
generated. In [HH4] the authors introduced the notion of the tight closure for an
ideal or submodule, both for Noetherian rings of positive prime characteristic p
and for finitely generated algebras over a field of characteristic 0. Expository (or
partially expository) accounts of the theory are given in [HH1-3], [Hul], and
[Ho9]. [HH8] contains a detailed study of the notion of phantom homology
(roughly speaking, homology is phantom when the cycles are in the tight closure
of the boundaries). The theory of tight closure and related matters are studied
further in [HH6], [HH9-11], and in [AHH], [Abl-3], [FeW], [Gla], [Sml-3],
[Swl,2], [Veil,2], [W2], and [Will,2].

The notion of tight closure has sparked the study of rings in which every
ideal is tightly closed, which are called weakly F-regular rings. A ring is called
F-regular if it and all of its localizations are weakly F-regular.

The theory of tight closure has had a tremendous number of applications,
many of them unexpected. It yields new proofs that rings of invariants of lin-
early reductive groups acting on regular rings are Cohen-Macaulay (cf. [HR1-2],
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2 MELVIN HOCHSTER AND CRAIG HUNEKE

[Ke], [B], [HoE], and [HH4]) and a new perspective on that fact and its gener-
alizations. (Briefly, regular rings are F-regular, direct summands of F-regular
rings are F-regular, and F-regular rings are Cohen-Macaulay.) It also furnishes
a new proof (see [HH4], §5) of the Briancon-Skoda theorem on integral closures
of ideals in regular rings in a greatly strengthened form in the equicharacteristic
case (cf. [BrS], [LS], [LT], and [Sk] for background). This theory also allows
one to prove various local homological theorems (known in the equicharacter-
istic case and conjectured in mixed characteristic: cf. [PS 1-2], [Rol-5], [Hol-
3], [Ho5-7], [EvGl-3], and [Du] for further information) in greatly improved
forms: see [HH4], §10 and [HH8], §§4-6, where this program is carried out.
It is one of the tools utilized in [Hu3] to prove unexpectedly strong uniform
Artin-Rees theorems. Moreover, the study of tight closure led to the discovery
of the Cohen-Macaulay property for absolute integral closures R+ of excellent
local domains R in characteristic p (see [HH7] and the final paragraph of this
introduction), and continues to have very interesting interactions with the study
of R+.

Finally, we mention that the theory of tight closure provides a very useful
handle on the problem of controlling what happens when one performs opera-
tions, such as colon, intersection, product and sum, even repeatedly, on ideals
generated by monomials in a system of parameters: in many situations the
resulting ideal is contained in the tight closure of the "formal" or "expected"
answer which one would get if the parameters were actually an .R-sequence (or
indeterminates). See §7 of [HH4] for a detailed treatment.

The greatest part of this paper is devoted to improving the theory of test
elements (§6) and then applying this improved theory to the study of smooth
base change (§7). To explain our motivation, we first recall the definition of
tight closure for ideals in a Noetherian ring R of positive prime characteristic
p . (See §3 for the more general definition for submodules of a module and for
more detail.) Let /cj? be an ideal and let x e R. Then we say that x is in
the tight closure I* of / if there exists an element c e R, not in any minimal
prime, such that for all sufficiently large integers q of the form pe , where e is
a nonnegative integer, ex9 e I[q], the ideal of R generated by the qth powers
of the elements of /. Notice that c is allowed to depend both on x and /.
In the case where R is reduced (which is the main case for our purposes), one
can actually choose c so that cxq e 7[9] for all q = pe, e > 0. In many
applications one would like to be able to choose an element c, independent of
x or /, so that c works in all tight closure tests (i.e., x e I* if and only if
cxq G /['I for all q — pe). For simplicity, we are not discussing tight closure of
modules in detail at this point, but one also wants the same element c to work
in all tight closure tests for modules. Such an element, if it exists, is called a
test element. Furthermore, one wants c to retain this property if one passes
to a local ring of R or even to the completion of that local ring. If c has
this stronger property it is called a completely stable test element. One of the
main results of §6 asserts that if R is reduced and essentially of finite type over
an excellent local ring of characteristic p, then any element c e R not in a
minimal prime such that Rc is regular has a power which is a completely stable
test element.

In particular, this provides an abundance of test elements for reduced ex-
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



F-REGULARITY, TEST ELEMENTS, AND SMOOTH BASE CHANGE 3

cellent local rings. We are able to conclude, for example, that if R is locally
excellent and weakly F-regular then R is Cohen-Macaulay. See Theorem 6.27.

We do not know whether every excellent reduced ring of characteristic p has
a test element, even if we assume finite Krull dimension. Some results in low
dimension are given in [Ab2].

One consequence of the theory of test elements obtained here is that if h :
i?-»5 is an arbitrary homomorphism of Noetherian rings of characteristic p,
then if S has a completely stable test element or if R is essentially of finite
type over an excellent local ring, then tight closure is preserved by this base
change (for example, if x e R is in the tight closure of / C R, then h{x) is
in the tight closure of IS). Previously, in results of this type we had to make
unpleasant technical assumptions to prevent elements used in tight closure tests
in R from mapping into a minimal prime of S. For example, the results of §4
and §6 of [HH8] are greatly improved by this result.

The very natural seeming results on smooth base change obtained in §7 are
highly dependent on the results of §6. The point is that when one has a homo-
morphism R —> S it is difficult to compare tight closures over R with those
over 5 unless one has a test element in R that is also a test element in 5.
The key point is that when R —► S is smooth and c e R is such that Rc is
regular, then Sc is also regular. This enables us (see Theorem 6.22) to prove
the existence of elements of R that are test elements for both rings.

The theory of test elements has found a surprising application apart from
tight closure in [Hu3], where a very strong uniform Artin-Rees theorem is
proved.

A reasonably satisfactory theory concerning the behavior of tight closure un-
der smooth base change has been obtained in §7. The reader should note that
the term "smooth" here is used for flat homomorphisms R —► S of Noethe-
rian rings such that all fibers are geometrically regular: the term "regular" is
often used in the literature instead. This is equivalent to the usual notion of
smoothness when the S is finitely presented over R. The main results of §7 are
summarized at its beginning, in Theorems 7.1, 7.2, 7.3, and 7.4, and the reader
may wish to consult them at this point. The problem of comparing the behavior
of tight closure over R and S when one makes a smooth base change turns out
to be extraordinarily difficult, even once one knows that there are "joint" test
elements. This difficulty may already be seen in the fact that we do not even
know whether tight closure commutes with localization in the general case. In
§7 we show that, in a strong sense, the difficulty with localization is the only
difficulty: see Theorems 7.1 and 7.18.

Corresponding results on base change for F-rational rings of characteristic
p (rings in which every ideal generated by parameters is tightly closed) are
obtained in [Veil,2]. It is also worth noting that in [Sml,2], [Veil,2], and in
[HH11] a notion of "test element for parameter ideals" is considered.

When R has a test element, the ideal t(R) generated by the test elements
has turned out to be a very interesting invariant of R (all the elements of t(R)
not in a minimal prime are test elements). We are able to prove some results
about the behavior of r(R) under certain kinds of base change for complete
local rings: see, for example, Theorems 7.2 and 7.36. (The ideal t(R) is denned
whether R has a test element or not: see Definition 3.7 and Proposition 3.8
further details.)License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4 MELVIN HOCHSTER AND CRAIG HUNEK.E

One of the main results of [HH9] asserts that if R is a locally excellent
Gorenstein ring of positive prime characteristic, then R is F-regular if and
only if R is a direct summand of every module-finite extension ring. (The
latter condition is studied in [Ma] and in [Hoi].) We want to point out that
this result is highly dependent on Corollary 7.34 established here, whose proof,
in turn, requires most of what comes prior to it in §6 and §7 of this paper.

One of the most persistently frustrating aspects of the theory of tight closure
has been the problem of proving results on when tight closure commutes with
localization, i.e., given N C M and a multiplicative system W, when does
rV~l(N*) = (W~lN)*. In [AHH] we use the results of this paper to prove
partial results in this direction under various hypotheses: one is when M = R
and N is an ideal generated by a part of a system of parameters or by monomials
in parameters. Another is for the case of ideals (or modules) expanded from a
regular ring to a module-finite extension ring. A third is for pairs of modules
N C M such that M/N has a finite phantom projective resolution in the sense
of [Abl]. The reader is referred to [AHH] for further information. In each
instance certain additional hypotheses are needed that we shall not discuss in
detail here.

What we do want to emphasize at this point is that in all these cases the ar-
guments depend heavily on assuming that the base ring possesses a test element
of some sort. Moreover, once a localization result is established, Theorem 7.18
immediately implies that there is a corresponding result for arbitrary smooth
base change.

The paper is organized as follows: §2 contains certain conventions for nota-
tion and terminology, and §3 reviews briefly some definitions and facts that we
need from [HH4]. In §4 we discuss issues connected with tight closure and F-
regularity in the case of Gorenstein rings, as well as the notion of F-rationality
(which means that parameter ideals, which are defined in the third paragraph
of §2, are tightly closed; see also [FeW]). It is an open question whether, for
finitely generated algebras over a field of characteristic zero, F-rationality is
equivalent to having rational singularities. In the Gorenstein case, F-rational,
weakly F-regular, and F-regular are all equivalent.

In §5 we review, in a strengthened form, some results about strong F-
regularity and test elements that were obtained in [HH3] in the case where
the Frobenius endomorphism is a finite morphism, and that are needed for our
new study of test elements in §6.

As already mentioned, §7 contains the main results on smooth base change.
In §8 we give a proof that if AT is a field of characteristic p of infinite

transcendence degree over its prime field and R is a finitely generated K-
algebra that is weakly F-regular, then R is F-regular. We are indebted to M. P.
Murthy, who showed us how to prove this in the case where K is uncountable,
and suggested that it ought to be true under the weaker assumption given above.
We also want to thank Murthy for pointing out an error in an earlier version of
this paper.

This paper deals exclusively with tight closure theory in characteristic p . The
characteristic 0 theory will be pursued in [HH10].

We conclude this introduction by mentioning one more result which gives
a different perspective on tight closure. The authors have recently shown (see
[HH7]; [HH5] and [Hu2] give expository accounts) that if R is an excellent localLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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domain of characteristic p , then the integral closure R+ of R in an algebraic
closure of the fraction field of R (which is called the absolute integral closure of
R) is a big Cohen-Macaulay algebra for R. The results of [HH9] imply that if
/ is an ideal of R then IR+nR C /*. So far as the authors know, it is possible
that /* = IR+C\R in very great generality. In fact, for locally excellent domains
R, it is true that if for every prime ideal P containing / the ideal IRp in Rp
is generated by part of a system of parameters, then /* = IR+C\R. The general
case is proved in [Sml,2]. (The special case where the number of generators is at
most three is done in [HH11].) One can, in any case, define a closure operation
(call it, for the moment, R+-closure) using contracted expansions from R+.
Each of the two kinds of closure suggests properties that the other kind ought
to have, and this has been very useful to us in developing the theory. If the two
kinds of closure do turn out to be different, then there ought to be a body of
results for i?+-closure that parallels what is done here for tight closure.

2. Notation and conventions
In any commutative ring R, R° denotes the complement of the union of

the set of minimal primes. Thus, if R is a domain, R° = R- {0} .
By a local ring (R, m, K) we mean a Noetherian ring R with a unique

maximal ideal m such that K = R/m is the residue field.
A parameter in a Noetherian ring R is an element of R° . A sequence of

elements x\,..., xn is called a sequence of parameters if their images form
part of a system of parameters in every local ring RP of R at a prime ideal P
containing the ideal I = (x\.x„)R. In this case we refer to / as an ideal
generated by parameters or as a parameter ideal.

Throughout, p always denotes a positive prime integer. We make the fol-
lowing conventions for discussing rings of positive prime characteristic p. We
shall use e to denote a variable element of the set N of nonnegative integers
and q for a variable element of the set {/:eeN}. Thus, "for all e " is
synonymous with "for all e e N " while "for some q " is synonymous with "for
some q of the form pe with eeN".

We denote by F or Fr the Frobenius endomorphism of a ring R of char-
acteristic p, and we denote by Fe the eth iteration of F , so that Fe(r) = r9
where q = pe. If R is a reduced ring of characteristic p we write Rxlq for
the ring obtained by adjoining q\\\ roots of all elements of R. The inclusion
map RC Rl/q is isomorphic with Fe : R-+ R. We write R°° for \JqRl/q.
The ring R°° is a chronic exception to the rule that given rings are assumed to
be Noetherian.

If I c R and q = pe, then /t«l denotes the ideal (/« : i e I)R, which is
also the expansion F(I)R of / under the Frobenius map F : R -+ R. Note
that if T denotes a set of generators for R, then {tq : t e T} generates /'9l.

We shall make considerable use of the Peskine-Szpiro functors F| = Fe,
where R has characteristic p and e e N. For any R-algebra S, S<S>r- gives
a functor from R-modules to S-modules which takes finitely generated R-
modules to finitely generated S-modules. When S is R itself viewed as an
R-algebra via Fe , the eth iteration of the Frobenius endomorphism, we refer
to this functor as the Peskine-Szpiro or Frobenius functor: see [PS1]. Thus, Fe
is a covariant functor from .R-modules to .R-modules that preserves finite gen-License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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eration. Note that Fe(R) Si R, that Fe(R") Si R" (not canonically), and that if
we apply Fe to a map R" -> Rm with matrix (a,;) we obtain a map R" -» J?w
with matrix (a?.), where q = pe . The R-module structure on Fe(M) is such
that r'(r ® m) = (r'r) <g> am . On the other hand, r' rg> (rw) = (r'rq) ® w . Observe
also that Fe{R/I) Si R/lM f where q = pe .

There is a canonical map M —► Fe{M) that sends w to 1 ® w . If q = pe
and w e Af, we write wq for the image of w in Fe(M). With this notation,
(*+}>)' =x?+>'? and (rx)q = rqxq . Moreover, Fe(R") may be identified with
Rn in such a way that if w = {a\, ... , a„) then w9 = (a9, ... , a9,). Thus,
this notation for modules is consistent with our notation for the Frobenius
endomorphism of R.

If N c M, we write N™ (or more precisely, N$ ) for lm(Fe( N) -► Fe(Af))
(= Ker(Fe(Af) —► Fe(M/N)) by the right exactness of ®). We may also char-
acterize iVM as the i?-span in M of the elements wq forweN. Of course,
yVtel depends heavily on what M is (or, more precisely, on what N —» A/ is).
Note that A/j^1 = Fe(M), and we sometimes write M^ for Fe(M). The
context should make clear what is meant.

Note that if M = R and N — I c R, then 1^ in this notation is the same
as what was earlier described as Ilq^.

3. Tight closure and test elements

In this section we give some basic definitions and results from [HH4] that are
needed throughout. All rings are assumed to be Noetherian, of characteristic
p, and the conventions of §2 apply.
(3.1) Definition. Let JVCMbe finitely generated R-modules. We say that
w G M is in the tight closure N* (or, more precisely, N^) of N in M if there
exists an element c e R° (see §2) such that for all sufficiently large q = pe,
cwq e N[j^]. In particular, when N = I <z R, w e I* means that cwq e I[g]
for all sufficiently large q .

It is easy to check that the image of N^/N in M/N is the same as the
tight closure of the submodule 0 in M/N. This enables one to reduce many
problems to studying the tight closure of the zero submodule. On the other hand,
one can move in the opposite direction by mapping a finitely generated free
module G onto M, letting H be the inverse image of N in G, and studying
H* in G: H*/H Si N*/N under the obvious identification G/H Si M/N.
(3.2) Definition. A ring R is called weakly F-regular if every ideal is tightly
closed. R is called F-regular if W~lR is weakly F-regular for every multi-
plicative system W in R (equivalently, if Rp is weakly F-regular for every
prime ideal P of R). See Remark (8.4) of [HH4].

We do not know whether tight closure commutes with localization, nor even
whether weakly F-regular implies F-regular. Theorems 3.3 and 3.4 contain
partial information about what we do know that will be needed repeatedly in
the body of the paper.
(3.3) Theorem. Let R be a Noetherian ring of characteristic p and let N c M
be R-modules.

(a)   N*  is a submodule of M containing N and (N*)* = N*.  If N{ c
N2CM, then Nf c N*.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(b) (Irrelevance of nilpotents.) If J is the nilradical of R, then JM C N*.
Moreover, if N' denotes the inverse image (N + JM)/JM of N in
M/JM, then N* is the inverse image in M of the tight closure N'* of
N' in M/JM, where N'* may be computed over either R or Ried .

(c) If R is reduced or if AnnR(M/N) has positive height, then x € M is
in N* if and only if there exists c e R° such that cxq e N$ for all
q=pe.

Proof See [HH4], Proposition 8.5, parts (a), (b), (c), (e), and (j).   □

(3.4) Theorem. Let R be a Noetherian ring of characteristic p.
(a) If R is weakly F-regular, then every submodule of every finitely gener-

ated R-module is tightly closed.
(b) R is weakly F-regular if and only if its localization at every maximal

ideal is weakly F-regular.
(c) If R is weakly F-regular then R is normal. If R is weakly F-regular

and is a homomorphic image of a Cohen-Macaulay ring, then R is
Cohen-Macaulay.

(d) A regular ring is F-regular.

Proof. All references in this paragraph are to [HH4]. Part (a) follows from
Proposition 8.7 and (b) is Corollary 4.15. Part (c) now follows from Theorem
7.15 (a) applied to a local ring S of R at a maximal ideal: S will be equidimen-
sional (since it is normal), parameters are then automatically permutable (since
the local ring is catenary and equidimensional), and so if X\,... , xn is a system
of parameters for S we have that (x\, ... , Xi)S :$ Xj+iS C ((xi, ... , Xj)S)*
(by Theorem 7.15(a)) = (x\, ... , Xi)S (since is weakly F-regular). Finally,
(d) is Theorem 4.6 (it is easily deduced from the flatness of the Frobenius en-
domorphism of a characteristic p regular ring [Kul]).   □

We also recall the notions of test element and weak test element.

(3.5) Definition. Let R be a Noetherian ring of characteristic p and let q' =
pe' for some integer c'eN. We say that c e R° is a q'-weak test element if
for every finitely generated R-module M and every submodule N c M, an
element x e M is in N^ if and only if cxq e N$ for all q > q'.

We say that c is a locally (respectively, completely) stable #'-weak test ele-
ment if its image in (respectively, in the completion of) every local ring of R
is a o'-weak test element.

If c is a o'-weak test element for q' = 1 then c is called a test element.
Corresponding terminology is used in the locally stable and completely stable
cases.

(3.6) Proposition. Let R be a local ring of characteristic p.
(a) If c e R is a q'-weak test element for R, then c is a q'-weak test

element for R.
(b) If R is weakly F-regular and has a completely stable weak test element

c, then R is weakly F-regular.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof. Part (a) follows from Proposition 8.13, part (c) of [HH4]. For (b), note
that by Proposition 4.16 of [HH4] it suffices to check that ideals primary to the
maximal ideal are tightly closed in R, and this is immediate from Proposition
(6.1)(c).   n

Notice that part (a) implies that a completely stable test element is locally
stable.

We next define an invariant ideal x(R) which, when R has a test element,
turns out to be the ideal generated by the test elements.
(3.7) Definition. Let R be a Noetherian ring of characteristic p. Define
t(R) = (\M A.nnR(Q*M), where M runs through all finitely generated R-modules.

(3.8) Proposition. Let R be a Noetherian ring of characteristic p.
(a) If c e R, then c e x(R) if and only if whenever N c M are finitely

generated R-modules and x e N^ then cxq e N[$ for all q.
(b) R has a test element if and only if x(R) is not contained in any minimal

prime of R. In this case, x(R) is the ideal generated by the test elements,
and x(R) n R° is the set of test elements.

Proof. This is Proposition (8.23), parts (a) and (b), of [HH4].   □

4. Gorenstein rings and F-rational rings

(4.1) Definition. A Noetherian ring of characteristic p is called F-rational if
every ideal generated by parameters (see the third paragraph of §2) is tightly
closed.

This terminology is introduced in [FeW]: the motivation is that if one makes
the same definition for algebras of finite type over a field of characteristic 0,
there are no known examples which distinguish between F-rational rings and
rings with rational singularities. It is shown in [Sml ,3] that, under mild hypothe-
ses, an F-rational ring of characteristic p has pseudo-rational singularities in
the sense of Lipman and Teissier [LT] and that for affine algebras over a field
of characteristic zero, those of F-rational type have rational singularities. (The
algebra S has F-rational type if there is a finitely generated algebra R over a
finitely generated domain of characteristic zero A over the integers such that
the closed fibers of A —> R are F-rational and S = K ®A R for some field K
containing A .) See also [Ab3], [Veil,2].

A number of results in this section may also be found, in a slightly different
form, in [FeW].
(4.2) Theorem. For Noetherian rings of characteristic p the following hold.

(a) A weakly F-regular ring is F-rational.
(b) An F-rational ring is normal.
(c) An F-rational ring which is a homomorphic image of a Cohen-Macaulay

ring is Cohen-Macaulay.
(d) A local ring (R, m) which is a homomorphic image of a Cohen-Macaulay

ring is F-rational if and only if it is equidimensional and the ideal gen-
erated by one system of parameters is tightly closed.

(e) A homomorphic image of a Cohen-Macaulay ring is F-rational if and
only if its localization at every maximal ideal is F-rational.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(f) A localization of an F-rational ring which is a homomorphic image of
a Cohen-Macaulay ring is F-rational. In particular, a localization of
a weakly F-regular ring which is a homomorphic image of a Cohen-
Macaulay ring is Cohen-Macaulay.

(g) A Gorenstein ring is weakly F-regular if and only if it is F-rational.
(h) If (R, m) is a local ring which is a homomorphic image of a Cohen-

Macaulay ring and x e m is a nonzerodivisor such that R/xR is F-
rational, then R is F-rational.

Before proving this, we establish Theorem 4.3 below. (At this point we want
to note a correction to Lemma (7.10) of [HH4]. In the statement of (7.10) it
should have been assumed that all minimal primes of Q have the same height.
This is the case in the situation where (7.10) is used (the middle of the second
paragraph on p. 65 of [HH4]). We mention this here since Theorem (7.9) of
[HH4] is used in proving part (d) of Theorem 4.3 below.) Cf. Proposition
(6.28) for a global version of (4.3d) below.
(4.3) Theorem. Let (R, m) be an equidimensional local Noetherian ring of
characteristic p which is a homomorphic image of a Cohen-Macaulay ring and
let Xi, ... , xd e m be part of system of parameters.

(a) If the ideal (x\, ... , xd)R is tightly closed then so is (xi, ... , X()R for
0<i<d.

(b) If either the ideal (x\, ... , xd)R or the ideal {x\, ... , xd_\)R is tightly
closed then X\, ... , xd is a regular sequence in R.

(c) If d = dim R and either of the ideals (x\, ... ,xd)R or (x\, ... ,xd-\)R
is tightly closed, then R is Cohen-Macaulay.

(d) If J = {x\, ... , xd_i)R then J* :R xdR = J*.
Moreover, if d — n — dimR and if (x\,..., x„)R is tightly closed, then so

is every ideal generated by part of a system of parameters: i.e., R is F-rational.
Proof. We first prove (d). Let u e J* :R xdR. Then xdu e J* and so there
exists c0 e R° such that c0{xdu)q e J[q] for all large q. Thus, for all large
q, we have that c0uq e Jlq] :R xqdR = (xQ, ... , xqd_x)R :R xqdR. Let c e R°
and q' (a power of p) be as in the last statement of Theorem (7.9) of [HH4].
Then we have that for all large q , c(c0uq)q> e (/[«!)[«'], i.e.; (Ccq')uqq' e J[qq'],
and this shows that u e J*. The other inclusion is obvious, and so (d) is
established.

The proof of (a) reduces, by reverse induction on i, to the case where
d > 1 and i = d — 1. Let u be any element in the tight closure of J =
(xi, ... , xd_i)R . Then u e {J + xdR)* = J + xdR by hypothesis, say u =
j + xdr. It follows that u - j e J* + J = J* and so r e 7* :R xdR = J* by
part (d), which we proved just above. Thus, J* = J + xdJ*, and the fact that
J* — J now follows from Nakayama's lemma.

To see (b), note that the ideal J,■■ = {x{, ... , x,)R is tightly closed for 0 <
i < d - 1 in either case. But, again by part (d), this implies that jc,+i is not a
zerodivisor modulo 7, for 0 < / < d - 1, since /, :R xi+\ = J* :R xi+\ = J*
(by part (d)) = /,. Part (c) is immediate from (b).

Let xi, ... , x„ e R and y\, ... , yn e R be two systems of parameters for R
and suppose that (xx, ... , xn)R is tightly closed. To show that (y{, ... , yt)R
is tightly closed, it will suffice to show that (y\, ... , y„)R is tightly closed.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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But H^{R) Si lim,R/(x{, ... , xln) Si limtR/(y\ , ... , y'n) where the map from
the term indexed by t to that indexed by / + 1 is induced by multiplication
by xi ■ ■ ■ x„ (respectively, by yx ■ ■ ■ y„ ) and is injective. Thus, R/{y\, ... , y„)
injects into R/{x[, ... , x'„) for any sufficiently large t. To show that
(yi, ■ ■ ■ , yn)R is tightly closed in R, it suffices to show that 0 is tightly
closed in R/{y\, ... , yn)R, and, hence, to show that 0 is tightly closed in
R/(x{,... , x'n)R. Thus, we have reduced to the case where y, = x\.

We can complete the argument by showing that if (xi, ... , x„)R is tightly
closed then so is (x[, ... , x'„)R for every t. But if the latter were not tightly
closed then some element representing a socle element from R/(x{, ... , x'n)R
must be in its tight closure, and this element will have the form (xi • • -x„)'_1m ,
where u represents an element of the socle in R/(x\, ... , x„). But then
c ((xi ■ ■■x„)'~lu)g e ((x{, ... , x'n)R)[9] implies that

cuq e (xf,..., xql)R :R (x, • • • xn)q'-q = (jcf, ... , xq)R
(since the x,- are a regular sequence), and so, if this holds for all q » 0, then
u is in the tight closure of (x\, ... , x„)R, a contradiction.   D

(4.4) Remark. More generally, the argument shows that if R is Noetherian
of characteristic p and X\, ... , xd is a sequence of elements such that / =
(x\, ... , xd_\)R or (x\, ... , xd)R is tightly closed, then the sequence is an
.R-sequence provided we know that:

(i)   ((xi,... , Xi)R)* :R x,+iR c ((xi, ... , x,)R)* for relevant values of /',
and

(ii) Nakayama's lemma can be applied.
There are many variant situations in which (i) holds. See, for example, Propo-

sition 6.28.
Proof of (4.2). (a) is immediate from the definitions, (b) follows by the same
argument used to prove that weakly F-regular rings are normal: see (5.10) and
(5.11) of [HH4]. Similarly, (c) follows from the same argument used to prove
that weakly F-regular rings are Cohen-Macaulay: note that (b) implies that the
ring is normal and so locally equidimensional. (Any ideal of height n contains a
sequence of elements x\, ... , x„ such that for 1 < i < n, X\, ... , x, consists
of parameters. Then (xi, ... , x,_i)R :R XjR c ((xi, ... , x,_i)/?)* by Theo-
rem 7.15 of [HH4] and this ideal is equal to (xi, ... , x,_i)J? by the definition
of F-rationality.)

The second condition in (d) is obviously necessary, and it is sufficient by
Theorem 4.3.

To prove (e) first suppose that Rm is F-rational for every maximal ideal
m. Suppose that (xi, ... , x„)R has height n in R and that y is in its tight
closure but not in the ideal. Then all this can be preserved while localizing at a
suitable maximal ideal, giving a contradiction. Thus, R is F-rational.

Now suppose that R is F-rational, and let P be any prime ideal of R.
Choose x\, ... , x„ e P to be an R-sequence, where n is the height of
P (which is the same as the depth of R on P). The images Xi/1, ... , x„/l
in Rp will be a system of parameters. If we can show that the ideal
(xi/1, ... , xn/\)RP is tightly closed in RP , it will follow from (4.3) that RP
is F-rational. This follows from Theorem 4.5 below.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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It now follows that R is F-rational iff all its localizations at primes are, and
this implies that every localization of R is F-rational.

We next consider (g). If R is Gorenstein, both its F-rationality and weak
F-regularity can be checked locally at maximal ideals. We need only show
that if (R, m) is local Gorenstein and every system of parameters generates a
tightly closed ideal, then every ideal is tightly closed. It suffices to prove this
for m-primary ideals. But if / is m-primary R/I can be embedded in a finite
direct sum of copies of the injective hull of K = R/m, and each of these
can be replaced by a copy of R/(x{, ... , x'„) for sufficiently large t (where
X\, ... , xn is any fixed system of parameters). Since 0 is tightly closed in
each R/(x{,... , x'„), this is also true in the direct sum and hence in every
submodule of the direct sum.

Finally, we consider (h). Since R/xR is a homomorphic image of a Cohen-
Macaulay ring and is F-rational, it is C-M. Hence, R is C-M and so equidi-
mensional. Extend x to a system of parameters x, x\, ... , xd for R. It
will suffice to show that these elements generate a tightly closed ideal. Sup-
pose c e R° and cuq e (x«, xf, ... , xd)R for all q » 0. Write c = dx'
where d is not in xR. Note that xR is a prime ideal and that d represents
a nonzero element of the domain R/xR. If cuq € (xq, xf, ... , xd)R and
q > t we have duq 6 (xq~', xf, ... , xd)R for q > 0 and reducing mod-
ulo Rx we obtain that the image of u is in the tight closure in R/xR of
{xi,... , xd)(R/xR). It follows that the image of u is in this ideal and so u
is in the ideal (x, Xi,..., xd)R.   □

As mentioned in the Introduction, the next result is generalized to param-
eter ideals (and in other directions) in [AHH]. However, these generalizations
require some assumptions on the ring (such as the existence of test elements)
that are not needed in case the elements from a regular sequence.

(4.5) Theorem. Let R be a Noetherian ring of characteristic p and let Xi, ... ,
x„ be an R-sequence. Let S be a multiplicative system and let

I = {x\,..., x„)R.
Then I*S~lR = (IS~lR)*. In particular, if I is tightly closed, then IS~lR is
tightly closed.

Before giving the proof, we prove the following:

(4.6) Lemma. Let I be an ideal of an arbitrary Noetherian ring R and let
S c R be a multiplicative system.

(a) There is an element s e S such that \Jw€S Im :R w = Im :R sm for all
m G N.

(b) Suppose that R has characteristic p and I is generated by a regular
sequence Xi, ... , x„. Then with s as in part (a), {JweS 1^ '• w —
/[<?]: j(n+D« for aii q = pe

Proof, (a) is well known but we sketch a brief argument. Choose 5 such that, if
T = gr7JR, then Annr 5 = Annr ws for all w € S. Suppose w kills u modulo
Im, and u e V but u & Ir+l, r < m. Then su is in Ir+l. Repeating this
argument m times shows that smu is in Im .License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We now consider (b). Fix q and an element u e I[q] : w for some w e S.
We shall prove by induction on h e N that dh = sq+hu e I[q] + Iq+h . This will
suffice, for when h = qn this yields s^+^u € 7[«! + /<?("+') C /M when / has
n generators.

If h = 0 we are simply asserting that i«i/e 7[?] + Iq = Iq , and this follows
from the property of s in part (a).

Now suppose that we have established that df, e fiq]+i<i+h for a given h>0.
Say c?/, = X], rjjcf + £„ 'V*" where z/ runs through n-tuples of nonnegative
integers (v\, ... , u„) such that every i/, < q and the sum of the vt is q + h .
Some w £ S multiplies this element into 1^ , giving an equation:

E r<'x? = E wr'ix? + E ™^xiy  or  E a'xf + E ""•"*" = °>
i i v i v

where #, = wr't - r". Since the x, form a regular sequence and none of
the monomials occurring is formally in the ideal generated by the others, each
wrv must be in /. But then sru is in / for each v, and so dh+x = sdh =
Y,j sr^xf+Y,,, srvxv : the first term is in /M , while the second is in Iq+(h+i).   o

We note that in part (b) it is not necessary to assume characteristic p nor
to assume that q is a prime power, if one agrees that 7[?1 simply denotes
(x9, ... , x%)R. However, /[<?] then depends on the choice of generators for /,
not just on what / itself is.

Proof of (4.5). We note that I*S~lR C (IS'^R)* for any ideal /. The hard
part is to show that (IS~[R)* c I*S~lR. If not, we can choose an element
u/\ in (IS~lR)* but not in FS~lR.

Now the statement that u/\ e (IS~lR)* means that for some c e R° and
for all q » 0 we can choose s(q) e S such that s(q)cuq e I[q]. (A priori, we
only know that c is not in any minimal prime of R disjoint from S1. However,
we can modify c by adding to it an element in all the minimal primes of R
which meet S and precisely those minimal primes not meeting S to which
c does not belong, and then raising the sum to a power. The element we are
adding is nilpotent when mapped to S~lR.)

With j as in (4.6a) we then have that s{n+l)qcuq = c(sn+xu)q e Ilq], and then
sn+lu e I*, so that u/\ e I*S~lR. This completes the proof for (4.5) and, at
last, for (4.2).   D

We obtain some important corollaries by specializing to the case where the
ring is Gorenstein.

(4.7) Corollary. Let R be a Noetherian ring of characteristic p and suppose
that R is Gorenstein.

(a) R is F-rational if and only if R is weakly F-regular if and only if R
is F-regular.

(b) If    (R,m) is local, then R is F-regular if and only if the ideal gener-
ated by a single system of parameters is tightly closed.

(c) If(R, m) is local, x is a nonzerodivisor in R, and R/xR is F-regular,
then R is F-regular.

Proof, (a) follows because the property of being Gorenstein and F-rational is
preserved by localization, (b) and (c) are immediate from (a) and (4.2).   DLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(4.8) Remark. F-regular Gorenstein rings have a number of good properties
that distinguish them from other F-regular rings—at least in terms of what we
can prove about them. In the next section we shall see that if R is a reduced
Noetherian ring of characteristic p such that Rxlp is module-finite over R,
and R is a weakly F-regular Gorenstein ring, then R is strongly F-regular
in the sense defined in that section. In [HH9] we show that a characteristic p
Gorenstein ring is F-regular if and only if it is a direct summand, as a module
over itself, of every module-finite extension ring.

Finally, we note:

(4.9) Proposition. Let R be a weakly F-regular ring that is a homomorphic
image of Cohen-Macaulay ring. Suppose that RR is Gorenstein for every prime
P which is not maximal. Then R is F-regular.
Proof. The localization of R at every maximal ideal is weakly F-regular. It
suffices to show that the localization at every nonmaximal prime P is weakly
F-regular. But Rp is Gorenstein and F-rational, and so F-regular.   □

(4.10) Remark. By results of Watanabe there exist two-dimensional normal
(hence, Cohen-Macaulay) domains R finitely generated over a field such that
(1) R is F-rational but not F-regular (nor even F-pure) (see [Wl]) and such
that (2) R is F-rational and F-pure but not weakly F-regular (see [W2]). The
example in (2) is not Gorenstein (F-rational Gorenstein rings are F-regular).
These examples are also discussed in some detail in §7 of [HH9].

5. Strongly F-regular rings and test elements
In this section we survey the characteristics of a property of rings of char-

acteristic p that is, on the face of it, stronger than F-regularity but that may
be equivalent to it, or even to weak F-regularity (there is evidence of this in
low dimension in [Will,2]). This property, strong F-regularity, is only defined
for reduced rings R such that Rxlp is module-finite over R: since the latter
condition is satisfied by finitely generated algebras over a perfect field K and
by complete local rings R with perfect residue class field K (in fact, in both
cases, one only needs that Kxlp be finite over K), it is not unduly restrictive.

Throughout the rest of this section, unless otherwise specified, R denotes
a reduced Noetherian ring of positive prime characteristic p such that Rxlp
is module-finite over R (although we often repeat this hypothesis in stating
theorems). Of course, Rxlq is then module-finite over R for all q = pe . For
the most part, we are summarizing the results of §3 of [HH3], and so most
proofs are omitted. We should note two points: first, in many instances, the
rings in [HH3] were assumed to be domains, when, in fact, it is only necessary to
assume that the ring be reduced. Second, the result on test elements in Theorem
5.10, which is quite critical in obtaining the results of §6, is strengthened from
what is asserted in [HH3], Theorem 3.4, in three ways:

(i) One shows that the elements c discussed are test elements for modules,
not just for ideals.

(ii) One can conclude that c is in x(R) whether or not c is in R° : thus,
there is no need to assume the c e R° .

(iii)   R need only be reduced, not necessarily a domain.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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However, the proof is omitted, except for some brief remarks, since it is the
same as that given for Theorem 3.4 of [HH3].

(5.1) Definition. We say that a reduced Noetherian ring R such that Rxlp is
module-finite over R is strongly F-regular if for every c e R° there exists q
such that the R-linear map R —> Rxlq that sends 1 to cxlq splits as a map of
R-modules, i.e., iff Rcxlq C Rxlq splits over R.

(5.2) Discussion. In rings that are not reduced we impose the condition that
pR —► R be module-finite instead (an equivalent condition is that R be module-

finite over its subring F(R) = Rp = {rp : r e R}). (Rings satisfying this
condition are sometimes called " F-finite.") However, the splitting condition
we are studying implies that R is reduced. So long as we are focusing on this
condition, we might as well work with the isomorphic inclusion map i? —► Rxlp .

(5.3) Remark. Suppose that R is reduced and that we do not know that Rxlp
is module-finite over R. Parts of the theory developed below generalize if we
change the definition of "strong F-regularity" to the statement that for every
c e R° there exists q such that the .R-linear map R-*Rxlq which sends 1 to
cxlq is pure as a map of .R-modules (a map is pure if it is injective and remains
so after tensoring with any third R-module). But we have chosen not to pursue
this idea in detail at present.

A different generalization, "strong F-rationality" is studied in [Veil,2].

(5.4) Remarks, (a) The issue of whether a homomorphism of finitely generated
modules over a Noetherian ring splits is local and is unaffected by a faithfully
flat extension of the base ring (since the question can be translated into whether
a certain map of Horn's is onto: see [Hoi]).

(b) If R C S and /: .R —> M is split by g, where M is an S-module, then
RQS splits: send s to g(sf(l)).

(c) In the definition above, if a splitting exists for one choice of c £ R° and
q then R C Rxlq' splits for every q'. (It suffices to split R C Rxlp and hence
R C Rxlq : now use (b).)

(d) Note also that if R —> R}lq sending 1 to cx/q splits for one choice of
q, the map R —► R}lq' sending 1 to cxlq' splits for every q' > q: the map
R —► Rxlq described is isomorphic to the map Rqlq' —* Rxlq' sending 1 to
cxlq' and so that map splits over Rqlq', and this splitting may be composed
with .R-splitting R C Rqlq' whose existence we showed in (c).

The following result exhibits a number of the good properties of strong F-
regularity.

(5.5) Theorem. Let R be a reduced Noetherian ring of characteristic p such
that Rxlp is module-finite over R.

(a) R is strongly F-regular iff RP is strongly F-regular for every prime
(respectively, for every maximal) ideal P of R. Hence, if R is strongly
F-regular, so is W~XR for every multiplicative system W.

(b) If S is faithfully flat over R and strongly F-regular then so is R.
(c) If R is regular, then R is strongly F-regular.
(d) If R is strongly F-regular, then R is F-regular. In particular, R is

normal, and is a finite product of domains, each of which is stronglyLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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F-regular.   Conversely, a finite product of strongly F-regular rings is
strongly F-regular.

(e) If R' is strongly F-regular and R is a direct summand of R' as an R-
module, then R is strongly F-regular. In particular, a direct summand
(as a module over itself) of a regular ring is strongly F-regular.

(f) If R is weakly F-regular and Gorenstein, then R is strongly F-regular.

Proof. The argument is essentially the same as the proof of Proposition 3.1 of
[HH3], and is omitted.   □

In [Will,2] it is shown that a reduced weakly F-regular ring R of dimension
at most three such that Rxlp is module-finite over R is strongly F-regular.

(5.6) Remark. The argument for part (f) in [HH3] actually shows again that
a Gorenstein local ring is strongly F-regular provided the ideal generated by a
single system of parameters is tightly closed. We have already seen (§4) that
a Gorenstein local ring is F-regular (not just weakly F-regular) if the ideal
generated by one system of parameters is tightly closed: it is not necessary that
Rxlp be module-finite over R.
(5.7) Remark. When Rxlp is module-finite over the reduced ring R we can
always choose c e R° such that (Rx/p)c = (Rc)l/p is free over Rc: for such a
c, Rc is regular and, hence, strongly F-regular.

(5.8) Remark. Suppose that Rxlp is module-finite over the reduced ring R
and that c € R° is such that Rc is strongly F-regular. Then for every d e R°
there is an integer q = pe, an integer t > 0 and an R-linear map Rxlq -* R
that sends dxlq to c'. To see this, choose q sufficiently large that there is an
Rc-linear map g : (Rx/q)c -» Rc such that g(dl'q) = 1. Since Rxlq is module-
finite over R, c'g(Rx/q) C R for sufficiently large t, and then c'g, restricted
to Rllq , has the required property. Notice that we may replace t by any larger
integer: in particular, we may assume that it is a power of p .

(5.9) Theorem. Let R be a reduced Noetherian ring of characteristic p such
that Rl/p is module-finite over R.

(a) Let c be any element of R° such that Rc is strongly F-regular (such
elements always exist). Then R is strongly F-regular if and only if there
exists q = pe such that the R-module inclusion Rcxlq C R}lq splits over
R.

(b) The set {P e SpecR : Rp is strongly F-regular} is Zariski open in
SpecR.

Proof. The argument is the same as for Theorem 3.3 of [HH3].   □

The constructions of test elements given in [HH4] provide only a very limited
class. One of the pleasant consequences of the theory of strong F-regularity is
that one can use it to show that every R such that Rxlp is module-finite over
R has a test element and, in fact, an abundance of test elements: every element
in the ideal which defines the locus of primes P where Rp is not strongly
F-regular has a power which is a test element. In particular, in the case of an
isolated local singularity, there is a power of the maximal ideal all of whose
elements that are in R° are test elements. This follows from:License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(5.10) Theorem. Let R be a reduced Noetherian ring of characteristic p such
that Rxlp is module-finite over R. Then every element c' such that i?c< is
strongly F-regular has a power c which is in x(R) (which in this case is the
ideal generated by the test elements). One can always choose such an element c'
such that c' e R° and Rc> is regular.

More precisely, d has a power c such that there is an R-linear map h of
Rx/P to R which sends 1 to c, and for c e R° with this property such that Rc
is strongly F-regular, c3 is in x(R).

What is more, if c has the properties that Rc is regular and that there is an
R-linear map h of Rx/P to R that sends 1 to c, then this situation is preserved
when one takes the image of c in either a local ring S of R or in the completion
of S. It follows that every element c' e R° such that RC' is regular has a power
c such that c is a completely stable test element for R.
Proof. The proof of the first assertion in the second paragraph is the same as for
the corresponding statement in the proof of Theorem 3.4 in [HH3]. In order
to check that c3 is a test element it suffices to consider the case of pairs of
modules N c G = R'. With this remark, the second assertion in the second
paragraph then follows exactly the lines of the argument given in the proof of
Theorem 3.4 in [HH3].

The last statement in the first paragraph follows from (5.7). This shows that
there is a test element for R, and this implies that x(R) is the ideal generated
by the test elements (which then agrees with x(R) n R° ). The assertions in the
second paragraph then imply all the assertions in the first paragraph.

The statements in the last paragraph are then clear: note that since Rxlp is
module-finite over R, we have from [Ku2] that R is excellent, and so the fibers
of the map S —» S are regular. This enables us to show that (S)c> is regular
whenever Rc* is regular.   □

6. Test elements in finitely generated algebras
over excellent local rings

The main results of this section are Theorem 6.1 and Theorem 6.2 imme-
diately below, Theorem 6.21 and Theorem 6.22 (which yield common test el-
ements), and Theorem 6.24, which shows that, under mild conditions on R
or S, tight closure is preserved by arbitrary base change, R —> S, without
hypotheses concerning whether R° or test elements of R map into S° . The
conditions require that at least one of the rings R, S have "sufficiently many
sufficiently good" test elements. For example, it suffices if 5 has a completely
stable (weak) test element, or if R is essentially of finite type over an excellent
local ring.
(6.1)   Theorem. Let R be a ring of characteristic p.

(a) Suppose that (R,m, K) is local ring such that R-> R has regular fibers
and let c e R° be any element such that (RTed)c is regular. Then c has
a power which is a completely stable q'-weak test element for R. If R
is reduced, then c has a power which is a completely stable test element
for R.

In particular, if R is an excellent local ring, then R has a completely
stable q'-weak test element; if, moreover, R is reduced, then R has a
completely stable test element.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(b) Let R be an algebra of finite type over a local ring (B, m, K) such that
B -> B has smooth fibers (e.g., such that B is excellent). Let c be an
element of R° such that (Rred)c is regular. Then c has a power which
is a completely stable weak test element for R. If R is reduced, then c
has a power which is a completely stable test element for R.

Theorem 6.1 will be deduced from:

(6.2) Theorem. Let R be an algebra of finite type over a complete local ring
(B,m, K) of characteristic p. Let c e R° be such that (RTed)c is Gorenstein
and F-regular. Then c has a power which is a completely stable q'-weak test
element for R. If R is reduced, then c has a power which is a completely stable
test element for R.

This result is contained in Theorem 6.20 below. The proof of Theorem 6.1
immediately follows the proof of Theorem 6.20.

In §7 we shall obtain an improvement of Theorem 6.1, Theorem 7.32 (see
also Theorem 7.33) in which the hypothesis on c is weakened to the condition
that (-Rred)c De F-regular and Gorenstein (instead of regular).

The technique of the proof of Theorem 6.2 is to pass to a flat purely insepara-
ble extension ring S of R in such a way that Sxlp is module-finite over S (so
that the theory of §5 applies to S) while controlling the ramification of primes
sufficiently to guarantee that Sc is F-regular (and Gorenstein: hence, strongly
F-regular). This will entail a considerable digression concerning the behavior
of complete local rings under various operations that enlarge their residue class
fields.

We shall also need to prove some results about the behavior of tight closure
under flat inseparable extension: This question is treated in (6.15) through
(6.18).

(6.3) Discussion. Let K be a fixed coefficient field for an arbitrary complete
local ring (R, m, K). Given an overfield L of K, we shall write Lk[[R]] or,
more simply, JL[[.R]], for the completion of L ®^ R at the ideal m(L <s>k R) ■
( Ljc[[^]] does depend on the choice of the coefficient field K, so that, strictly
speaking, K should be indicated in the notation.) Note that if R — K[[x]\ is a
formal power series ring, where x denotes X\, ... , x„ , then F[[i?]] = F[[x]].
(The obvious maps L®% R—> L[[x]], L[x] -* L[[R]] induce continuous maps
with the same targets but with their domains completed.)

Suppose that R is module-finite over a complete local ring B with the same
coefficient field K. We claim that £[[/?]] = R ®s £[[#]] ■ Since R is module-
finite over B, the maximal ideal of B expands to an ideal primary to the
maximal ideal m of R and so R ®# F[[5]] is complete with respect to the
expansion of m . This yields a continuous map F[[/?]] —> i? ®# £[[.#]]. The
obvious 5-algebra maps F[[R]] —> L[[R]] and R -> F[[R]] yield a continuous
map R ®b L[[5]] —► F[[i?]]. The compositions in either order yield a map
which is evidently the identity on the dense subring R®KL = R®B(B®KL).

Thus, if R = K[[x]]/I (x = x,, ... , x„), then L[[R]] Si L[[x]]/IL[[x]].
Alternatively, if we think of R as module-finite over B = A^[[x]], then £[[-R]] =
it®aL[[x]]. In any case, L[[-R]] is faithfully flat over R , and its maximal ideal
is the expansion of the maximal ideal of R.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Notice that for any intermediate field K c K' c L we have natural inclusions
R C /sT'[[R]] C L[[R]] and that !*»[[**[[*]]]] = LK[[R]] in a natural way.

Note that £#[[/?]] discussed here coincides with R®kL discussed in (7.39):
this is somewhat more general than the version of complete tensor product given
in [S], Chapitre V, A2.

(6.4) Discussion. We retain the conventions of (6.3). Let K = Ko C K\ C
K2 Q ■ ■ ■ c Ke c ■ ■ - be an infinite sequence of fields whose union is a field L.
Then we may form the union Ue^<?[[^]] • Since this ring is a direct limit of
Noetherian local rings and faithfully flat maps such that the maximal ideal of
the domain of each map expands to the maximal ideal of its target, this union
is a Noetherian local ring, faithfully flat over R, whose residue field is L, and
whose completion is L[[.R]]. (If there exists a Noetherian ring T faithfully flat
over (or even a pure extension of) all the rings in a directed union, the directed
union is Noetherian: given a strictly increasing sequence Jt of finitely generated
ideals from the union, we have that JtT stabilizes. But each of Jt, Jt+X is the
expansion of an ideal coming from one of the rings in the union, say Jt = If ,
Jt+i = If+i» where /, C It+X. But then I,T = It+X T=*It = lM => Jt = Jt+\ ■)
(6.5) Discussion. Now suppose that R is a complete local ring with a coef-
ficient field K of characteristic p. We shall say that an increasing sequence
of subfields {Ke}e of the perfect closure K°° of K is admissible for K if
first, K0 = K, second, for all e, Ke C Ke+\ C Ke (so that if q — pe we
have K C Ke C Kx/q for all e) and third, there is a finite set of elements
8[, ... , On of Kxlp such that for all e, 9\, ... , 6N spans KXJP as a vector
space over Ke+\. For a fixed sequence of this type we shall denote by A^o(R)
the ring Ue £*[[/?]] discussed in (6.4). Note that the completion of K00(R) is

(6.6) Lemma. Let Rbea complete local ring of characteristic p with coefficient
field K and let {Ke}e be an admissible sequence of extension fields for K.

(a) If S is a complete local ring module-finite over R with the same coeffi-
cient field then KooiS) ^ S ®R K^iR).

(b) If R is module-finite over (respectively, homomorphic image of) a reg-
ular ring A = K[[xx, ... , x„]], then S = Koo(R) is module-finite over
(respectively, a homomorphic image of) the regular ring K^A).

(c) R —► K00(R) is aflat, purely inseparable map with Gorenstein fibers.
Moreover, A^R) is Henselian.

(d) If S = A"oo(R), then S is a finite module over Sp C S (i.e., the Frobenius
map is a finite morphism). If S is reduced, then, equivalently, Sx/p is
module-finite over S. In particular, S is excellent.

Proof, (a) follows from the fact that for every e, Ke[[S]] ^S<S>R Ke[[R]], and
(b) is immediate from (a). We next prove (c). £«,(/?) is Henselian because
it is a direct limit of Henselian rings and local homomorphisms. It is purely
inseparable over R because (A^[[R]])9 C R for every q — pe . Flatness follows
from (a) and the case where R = K[[x\, ... , x„]\, where it is obvious.

It remains to check that the fibers of the map R -» S = Koo(R) are Goren-
stein. If P is a prime of R we have that S/PS = K^R/P), and so it suffices
to check that the generic fiber is Gorenstein when R is a domain.   SupposeLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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that R is module-finite over a regular subring A with coefficient field K and
that the fraction fields of A and R are ?cg. The generic fiber is therefore
S O? (A - {0})-xKoo(A). Now, T = (A- {0})-1 K^A) is a localization of
a regular ring and, therefore, regular, and so it suffices to note that if T is
an arbitrary Gorenstein ring containing a field J and S is a finite algebraic
extension field of J, then S%T is Gorenstein. (Briefly, 3 is the result of
killing an .R-sequence in a polynomial ring over J, since a maximal ideal of a
polynomial ring over a field is a complete intersection, and so 3 ®? T is the
result of killing an R-sequence in a polynomial ring over T. Cf. [WITO].)
This completes the proof of (c).

From (b) it follows that to prove (d) it suffices to consider the case where
R = A = K[[xi, ... , x„]]. We want to show that Sx/p is module-finite over
S. Let {fij} denote the finite set of monomials in the elements x; 'p in which
each exponent is an integer between 0 and p - 1. Let {6\, ... , 8n} be ele-
ments of Kxlp that span Ke'p over Ke+i as in the definition of an admissible
sequence of fields. It will suffice to show that the elements d^Hj span Sxlp over
<S. Since S is the union of the rings ^e[[xi, ... , x„]], it will suffice to note
that (Ke[[xi,..., xn]])xlp = (KxelP)[[x\lP,..., xl„/p]], which is spanned over
^e+i[[*i>• • • > xn]] c S by the elements dhUj .

It follows at once [Ku2] that S is excellent.   □

(6.7) Discussion. To make use of this result, we need a large source of admis-
sible sequences for fields K. Part (b) of (6.8) below will be our main provider.
We first recall that a p-base for a field K of characteristic p is a family A
of elements of K such that K = KP(A) and such that for every finite subset
IcA if Z has 5 elements then [KP(L) : Kp] = ps. Every set of generators
for K over Kp has a subset which is a p-base. See [N], §31. In this situation,
the fields {A"P[A] : A e A} are mutually linearly disjoint extensions of Kp in
K of degree p , and, if for every A e A we choose a power q(X) of p, then
the fields {K[Xx/qW]: A € A} are mutually linearly disjoint extensions of K in
K°° of respective degrees q(X). Thus, as a vector space basis for K°° over K
we may take the set of all monomials X\x... Xf in distinct elements X\, ... , Xs
of A such that each exponent t]j is a nonnegative fraction, less than 1, whose
denominator is a power of p .

(6.8) Lemma. Let K be a field of characteristic p.
(a) Let k be a subfield of K such that K is separable over k and trdeg^A"

= r is finite. Let Ke = {K[kxlq]} where q = pe. Then {Ke}e is an
admissible sequence of fields for K. In fact, N = [A:1^ : K[kxlp]] < pr,
andifdi,..., 6N span Kxlp over K[kxlp] then they span (K[kxlq])xlp
over K[kxlqp] for all q.

(b) Let A be a p-base for K, let Y be a cofinite subset of A (i.e., A-T
is finite), and let Kf be the subfield of K°° generated over K by the
(pe)th roots of all elements in F. Then {Kg}e is an admissible sequence
of field extensions for K.

Proof, (a) We first note that Kxlp is a finite algebraic extension of K[kl/p]
of degree at most pr. To see this, observe that otherwise we could choose
N{ > pr elements in K whose pth roots are linearly independent over K[kxlp].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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This situation is preserved if we replace K by the field generated by these N\
elements over k . Thus, we may assume that K is finitely generated over k:
In this case K is separably generated over k and we may write K = k(u)[z]
where u indicates the elements u\, ... , us and z is a single element which
is separable algebraic over k(u). Now, when z is separable algebraic over
a field G, Gx/p[z] already contains a pth root of z. (The field extensions
Gxlp C Gxlp[zxlp\ and G c G[z] are isomorphic, and have the same degree, m ;
but G[z] and Gxlp are linearly disjoint over G, and so [Gxlp[z]: Gxlp] = m as
well. Since Gx/p[z] C Gxlp[zxlp] and both have degree m over Gx/p , they are
equal.) It follows that (k(u)[z])x'p = (k(u))xlp[z] = kxlp(u\/p, ... , u\lP)[z],
which has degree at most ps < pr over kxlp(u\, ... , us)[z]. This establishes
that [Kx?p:K[kx/p]]<pr.

Suppose that 6X, ... , 6N span Kx>p over K[kxlp]. It is then clear that
the 0, span (K[kxlq])xlp over K[kxlpq] for all # = pe, since (A"^1/?])^ =
Kxlp[kxlpq], and the admissibility of the specified sequence Ke follows.

(b) Let o\, ... , ah be the elements of A not in Y. We take d\, ... ,6n to
be the monomials in the elements at 'p in which every exponent is a nonnegative
integer < p — 1. The result is now an easy consequence of the last statement
in Discussion 6.7.   □

We shall need the following result from [Mat], (30.E).

(6.9) Lemma. Let {Lj}jeJ be an arbitrary nonempty family of subfields of a
field L with Q,Lj = K. Let Aj = Lj[[x\, ... , xn]] c J3 = L[[xi, ... , x„]]
and let lj denote the fraction field of Aj . Then OjJj = S, the fraction field of
A = K[[xi, ... , x„]].

Similarly, the intersection of all of the fraction fields of the polynomial rings
Lj[x\, ... , x„] is the fraction field of K[x\, ... , x„].

Note that the second statement is completely elementary: by induction on
n , one may reduce to the case of a single variable, where it follows from the
fact that when one writes an element in the fraction field of L[x] in lowest
terms, with monic denominator, the result is unique, and hence independent of
the field to which one thinks of the coefficients as belonging.

We shall also need:

(6.10) Lemma. Let 3" be a field, let {3j}jeJ be a family of subfields, directed
by ~D, with intersection L, let K be a subfield of L, and let Q be a subfield of
7 that is a finite algebraic extension of K. Suppose that L and Q are linearly
disjoint in 7 over K. Then there exists an element j £ J such that 3^ (as well
as all smaller members of the family) is linearly disjoint from Q over K.
Proof. Fix a basis w\, ... , w^ for Q over K. As we decrease 9} the dimen-
sion of the vector space Vj spanned by the wt over 5) can only increase, but
can never be more than N. Therefore, we can choose 3"; so that this dimen-
sion is maximum. We want to prove that the to, are independent over Jj. If
not, after renumbering we may suppose that W\, ... ,wT is a basis for Vj with
r < n. Then wr+l is an 3^-linear combination of Wj, ... , wr in a unique
way. At least one of the coefficients occurring is not in L. Since the family is
directed, we can find a smaller field in the family that excludes this coefficient.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Over this field, w\, ... , wr, wr+i are independent, contradicting our choice
of 3j.   □

(6.11) Discussion and notation. Let AT be a field of characteristic p and let
A be a p-base for A". Let T be a cofinite subset of A. Then we may define
an admissible sequence of fields Kj = K[Xx/pe : X e T] for A" as in (6.8b).
If R is a complete local ring with A" as coefficient field then we may define
Rr = K^R) = \Je K£[[R]]. Note that the completion of Rr is Kr[[R]], where

All of the results of (6.6) apply. Thus, Rr is faithfully flat and purely in-
separable over R, with Gorenstein fibers. Rr is module-finite over (Rr)p and
Rr is an excellent Henselian ring. When S is module-finite over R with the
same coefficient field K, Sr = S <g>R Rr. In particular, if Rr is module-finite
over a regular ring A = K[[x\, ... , xn]] then i?r is module-finite over the reg-
ular ring Ar = \JeKeU-xi, ■■■ , xn]]. Moreover, if P c T then Rr' -> Rr is
faithfully flat and purely inseparable. The inseparability is obvious since Rr is
purely inseparable even over R. The faithful flatness is clear in the case where
R = K[[x\, ... , x„]] is regular and may then be obtained in general by using
the fact that R is module-finite over a regular ring and making a base change.

When S is a finitely generated algebra over a complete local ring R with a
p-base A for its coefficient field K, we shall write Sr for S ®RRr: this ring
is faithfully flat and purely inseparable over S for each T cofinite in A. Sr
is finitely generated over Rr and so has the property that ST is module-finite
over (Sr)p for every T cofinite in A.

(6.12) Lemma. Let K be a field of characteristic p and let A be a fixed p-
base for K. let KT, AT, etc., be defined as in (6.11). Let x denote the string
X\, ... , xn .

(a) f)rKr = K as T runs through all cofinite subsets of A.
(b) Let A = K[[x]]. The intersection of the fraction fields of the rings A"r[[x]]

as T runs through all cofinite subsets of A is the fraction field of A.
(b°) Let A — A"[x]. The intersection of the fraction fields of the rings A~r[x]

is the fraction field of A"[x].
(c) The intersection of the fraction fields of the rings AT as Y runs through

all cofinite subsets of A is the fraction field of A.

Proof, (a) Recall the description of the A"-basis for A"°° = A"A given in the
last sentence of (6.7). Similarly, the set !Br of monomials Xf ■■■Xf in distinct
elements X\, ... , Xs of T such that each exponent r\j is a nonnegative fraction,
less than 1, whose denominator is a power of p, form a vector space basis
for A"r over K. When an element p of A"°° not in K is written as a K-
linear combination of elements in the specified basis !BA for A"°° at least one
monomial other than one must occur. We need only choose T small enough to
exclude this monomial from "Br to make sure that p 0 A"r, since Sr c 3A.

(b) and (b ° ) are then immediate from (a) and Lemma 6.9.
(c) follows from (b), since AT C A"r[[xj, ... , x„]].   □

(6.13) Lemma. Let (B ,m, K) be a complete local ring with coefficient field
K of characteristic p, and let A be a fixed p-base for K. Let Bv be as inLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(6.11). For a finitely generated B-algebra R, let RT - Br ®B R.
(a) If R is reduced or a domain then there exists r0 cofinite in A such that

Rr is also reduced or a domain for all T c r0.
(b) If P is a prime ideal of R then there exists a cofinite set Y0 C A such

that Q = PRr is prime for all T C T0, and whenever PRr is prime the
fiber of R -* Rr over P is afield.

Proof, (a) First suppose that R is a domain. We represent B as a finite module
over a regular ring A = A"[[xi, ... , x„]] C R. Now Rr Si R ®B BT = R ®B
(B ®A AT) = R ®A Ar, so that there is no loss of generality in assuming that
B = A = A"[[x]]. Since R is finitely generated as an ^4-algebra its fraction
field Q is finitely generated as a field over the fraction field L of A. Let
Jp denote the fraction field of Ar. We want to show that we can choose T
cofinite but sufficiently small that R ®A AT is a domain, which will be the
case iff it is reduced, since AT is purely inseparable over A. This ring is
contained in Q ®z. 3y, and so it suffices to show that we can choose Y so that
Q ®l 3~r is reduced. It is clear that if one choice of Y succeeds then so do all
smaller choices. It is also clear that the problem gets harder as Q gets larger.
By replacing Q by a larger field we may assume without loss of generality
that it is obtained from L by first making a purely transcendental extension
L(y) = L(y\, ... , ys) followed by a finite purely inseparable extension followed
by a finite separable extension. The purely inseparable part will be contained in
L'(y\'9, ... , y]'9) for some finite purely inseparable extension L' of L and
some q. The separable part may be ignored. We change notation, writing y
for yllq , and we may thus assume that Q = L'(y) where L' is a finite purely
inseparable extension of L. It suffices to show that we can choose Y so that
L'(y) ®l 3"r is reduced. This ring is a localization of a polynomial ring over
L' ®£ 3V, and so it suffices to show that for a fixed finite purely inseparable
extension L' of L we can choose Y cofinite in A so that L' <s>L 3y is reduced,
and this is the case iff L' and 3r are linearly disjoint over L in L°° . Since
L' and L are linearly disjoint over L and Dr^r = L as Y runs through
the cofinite subsets of A by (6.12c), it follows from Lemma 6.10 that for all
sufficiently small choices of the cofinite sets Y, L' and 3"r are linearly disjoint
over L. This establishes (a) when R is a domain. Also note that for any prime
ideal P of R, PRr is prime for all sufficiently small cofinite sets T C A, since
Rr/PRr Si (R/P)r and we may apply part (a) to R/P.

Suppose that R is reduced. For every minimal prime F, of R and for all
sufficiently small cofinite sets Y we have that PjRr is prime, and since finite
intersection of ideals commutes with flat base change it follows that f|, Fi?r =
(H, Pi)RT = (0) in ^r, and so i?r is reduced for all sufficiently small cofinite
sets T.

To complete the proof of (b) we need only see that when Q = PRr is prime
then the fiber RTp/PRVp is a field. But since Rr is purely inseparable over R,
this ring has only one prime ideal. Since (RT/PRT)P is a domain of dimension
0, it is a field.   □

We next note:
(6.14) Lemma. Consider rings R, Rx, and S that are Noetherian of charac-
teristic p.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(a) Let {Rx}x be a direct limit system such that the limit ring R is Noethe-
rian. Suppose that all the direct limit system maps are pure and carry
parameters to parameters (both conditions are automatic if the maps are
faithfully flat). Then for every ideal J of R, if J is generated by an
ideal I C RM, then J* — \Jx>fi(IRx)*. Hence, if each Rx is weakly
F-regular (respectively, F-regular) then R is weakly F-regular (respec-
tively, F-regular).

(b) Suppose that R c S is pure and R° C S°. Suppose that c e R is a
q'-weak test element in S. Then c is a q'-weak test element in R.
In particular, if R -> S is faithfully flat and c e R is a q'-weak test
element in S, then c is a q'-weak test element in R.

(c) Suppose that R C S is faithfully flat and that c e R° is a completely
stable q'-weak test element for S. Then c is a completely stable q'-weak
test element for R.

Proof, (a) Note that, given J, since it is finitely generated, we can always
choose such a n and / c RM . It is clear that each (IRf,)* C J*. Now, given
v e J* we can choose c e R° such that cvq e I[qiR for all large q . Choose A
sufficiently large that c, v e Rx ■ Since Rx —* R is pure, we obtain cvq e I[qXRx
for large q as well. Since c e R° and R,t —► R is pure, c must be in R°k (every
minimal prime of Rx lies under a prime of R, and hence lies under a minimal
prime of R ). This establishes the first statement in (a). If all the Rx are weakly
F-regular, then J* = \Jx>M(IRx)* = \Jx>pIRi = IR = J- Finally, if every Rx
is F-regular, and W is a multiplicative system in R, let Wx — W n Rx and
note that W~XR is the direct limit of the system {W^xRx}x ■

(b) Let ioeO^. Then 1 ® w e (S ®R 0)* in (S ®R M) and so we have that
for all q>q', c(\ ®w)q = 0 in F§(S®RM). But this means that 1 ® (cwq) is
0 in 5 <s>r Fe(M). Since R -► S is pure, Fe(M) -► 5 ®R Fe(M) is injective.
Thus, cwq is 0 in Fe(M), and so c is a g'-weak test element.

(c) We must show that the image of c is a g'-weak test element in (RpJ for
every prime F of R. Choose a prime Q of S lying over P. The image of
c in (SqJ is a #'-weak test element in (SqJ, and (SqJ is faithfully flat over
(RpJ. The result now follows from part (b).   □

Before proceeding further we need to discuss certain instances in which tight
closure behaves well under flat, purely inseparable extension. This digression
is comprised of (6.15) through (6.18). The result that we particularly need at
present is part (b) of Theorem 6.17.

(6.15) Discussion. If R c S are rings of characteristic p we say that S is
purely inseparable over R if every element in S has a gth power in R for
some q = pe. In this case, there is a unique prime ideal of S, Rad PS, lying
over every prime ideal P of R, and every prime ideal Q of S arises in this
way from a unique prime ideal of R, its contraction to R (since each element
of Q has a power in the contraction). This gives a homeomorphism of SpecS
with SpecR.

Given an injective homomorphism R -* S of Noetherian rings of charac-
teristic p and finitely generated 5-modules V c W, we say that tight closureLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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tests for V c W can be performed with multipliers in R if for every element
x e V^ there exists an element c e RP CiS° such that cxq e PF[<?1 in Fe(V)
for all q > 0. If this is true for all pairs V C W (with c e R° C\S° allowed
to depend on V, W and x e V) we say that f/gfa closure tests over S can
be performed with multipliers in R. Of course, this holds whenever there is a
(<?'-weak) test element in R that is also a (g'-weak) test element in S. What
we want to point out here is that when S is purely inseparable over R, tight
closure tests over S can always be performed with test elements in R. The
point is that any element c e S used in the tight closure test will have a qth
power in R for some q = pe .

We recall from § 10 of [HH4] that if N C M are finitely generated modules
over a Noetherian ring R of characteristic p, an element w e M is said to be
in the Frobenius closure of N in M if there exists q = pe such that wq e N$ .
(6.16) Theorem. Let R —* S be a flat homomorphism of Noetherian rings. Let
N c M be finitely generated R-modules such that N^ — N.

(a) If S is purely inseparable over R and TV19'1 is tightly closed in Fe' (M)
either for all q' = pe' or for some q' sufficiently large that Sq' C R, then
the tight closure of S ®R N in S ®R M is contained in the Frobenius
closure. If, moreover, S is F-pure, then S ®r N is tightly closed in
S®RM.

(b) If S is purely inseparable over R, M/N is supported only at one maxi-
mal m of R, mS is radical (=> maximal) in S, and the socle of M/N
is one-dimensional, then S ®r N is tightly closed in S ®r M.

(c) If M/N is supported at one maximal ideal m of R, mS is a maximal
ideal of S, tight closure tests for N c M can be performed with multi-
pliers in R, and the socle of M/N is one-dimensional, then S ®RN is
tightly closed in S ®r M.

Proof. In all three parts we may assume that N = 0: we replace M by M/N.
(a) Suppose that w e S®RM is in the tight closure of 0, say w = £,._, s, ®

w,. Then we can choose q' such that s9 e R for every i and such that 0 is
tightly closed in Fe'(M). Thus, w"' in F/(S ®r M) Si S ®R Fe' (M) maybe
identified with 1 ® p. where p. = £*=1 sf ml?'] e Fe'(M). Let c e S° be such
that cwq'q = 0 for all q » 0. Replacing c by a power we may assume that
c e R. It follows that 1 ®* cpq = 0 for all q > 0, and so p. e 0* in Fe' (M).
Thus p. = 0 in Fe'(M), and so wq> = 0 in F§'(S ®R M).

(b) and (c). By virtue of Discussion 6.15, (b) is a special case of (c). Let w
denote a socle generator in M. Then 1 ® w generates the socle in S ®R M
by (7.7c) in the next section, and so it will suffice to show that 1 ® w is not in
the tight closure of 0 in S ® M. But if c G R° is such that c(\ ® w)q = 0 in
5 ®R Fe(M) for all e > 0, then, 1 ® (civ") = 0 in S ®R Fe(M) for all e » 0.
Since we can consider M, S ® M as modules over Rm, Sms respectively,
and Rm -* SmS is faithfully flat, we obtain cwq = 0 for all q » 0 and so
w e 0* = 0 in M, a contradiction.   □

(6.17) Theorem. i>? R —> S be aflat homomorphism of Noetherian rings of
characteristic p.

(a) If R is weakly F-regular, R -> S is purely inseparable, S is F-pure,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and N CM are finitely generated R-modules, then S ®RN is tightly closed in
S®RM.

(b) // R is weakly F-regular, R -> S is purely inseparable, and for every
maximal ideal m c R, mS is radical (=> maximal) in S, then S is weakly
F-regular.

(c) If R is weakly F-regular, every maximal ideal n c S is of the form
mS for a maximal ideal m of R, and tight closure tests for S-modules can be
performed with multipliers in R, then S is weakly F-regular.

Proof, (a) is immediate from (6.16a), and (b) is a special case of (c). To prove
(c) it suffices to show that for every maximal ideal n of S there is a sequence
of irreducible M-primary ideals Qj cofinal with the powers of n such that Qj
is tightly closed in S for each j, since every finite length S-module will be
embeddable in a direct sum of S/Qj. But we can choose such a sequence
of m-primary irreducible ideals in R, since Rm is normal and, hence, ap-
proximately Gorenstein (cf. [Ho4]), and each of these ideals, when expanded
to (equivalently, tensored with) S yields an M-primary irreducible ideal of S
that is tightly closed by virtue of (6.16c).   D

Note that in part (c) there is no assumption about the inseparability of S
over R, but that this raises the issue of whether one can find elements of R
that will suffice to perform all tight closure tests in S.

(6.18) Example. Let A" be a field containing an element t that is not a pth
power, let L = K[d] where 6 = tllp , let R = A"[[x, y, zx, ... , zn]]/(f) where
f = xp - typ - z\x-z*" where every hi is strictly bigger than p and not
divisible by p (e.g., we may let all the /z, be p + 1), and let S = L®K R =
L[[x, y, z\, ... , zn]]/(f). Note that (zx, ... , z„)R is a prime ideal in R and,
hence, tightly closed, but that x - By is in the tight closure of (z\, ... , zn)S.
Thus, tight closure does not commute with flat inseparable base change, even
when one is merely enlarging the residue field of a complete local ring in such
a way that the maximal ideal does not ramify. Note that R and R[9] are
hypersurfaces and become regular if we localize at any z, : in particular, both
are normal if n > 2.

We are now ready to prove the following crucial

(6.19) Lemma. Let (B, m, K) be a complete local ring with coefficient field
K (respectively, a finitely generated algebra over a field K), let R be a finitely
generated B-algebra of characteristic p, and let c e R° be such that Rc is
weakly F-regular and Gorenstein. Let A be a fixed p-base for the coefficient
field K of B. For Y cofinite in A let Rr = BT ®B R. Then there exists a
choice of Y0 cofinite in Y such that for all Y C Y0, R^ is weakly F-regular
and Gorenstein.
Proof. Every nilpotent in R is killed by a power of c, since Rc is weakly
F-regular and, hence, reduced. The issues are unaffected by replacing R by
.Rred by [HH4], (8.13d), and we henceforth assume that R is reduced. Let
X — Spec Rc. Since each Rr is purely inseparable over R, each R^ is purely
inseparable over Rc, and we may identify each SpecR^ with X. Since the
fibers of the flat map R—>Rr are Gorenstein by (6.6c) and Rc is Gorenstein,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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we have that R^ is Gorenstein. Since R^ is a finite module over itself via
the Frobenius endomorphism and Gorenstein, the weakly F-regular locus is
the same as the strongly F-regular locus and is open, by (5.5f) and (5.9b).
Thus, the set of points in Spec R^ where the ring is not weakly (= strongly)
F-regular corresponds to a closed set Zp in X. The closed sets in X satisfy
DCC, and so we can choose a set Yq with finite complement in A such that
Zr0 is minimal. We shall complete the argument by showing that Zp must be
empty for T C To . Since Zp decreases with Y (since RT is faithfully flat over
Rr' for PcT: see the last paragraph of (6.11)), we may assume that T = To .

Assume, to the contrary, that Zr is not empty, and let Q be a prime ideal of
R not containing c corresponding to a point in Zr. It will suffice to show that
there is a choice of F such that Rq is weakly F-regular, for then Zmr will
be strictly smaller than Zp a contradiction. By (6.17b) R^ will be weakly F-
regular provided that QRq is a prime (=^ maximal) ideal, since Rq -> Rq is
flat and purely inseparable. But QRr' is prime for all sufficiently small cofinite
PC A by (6.13b).   □

We are now ready to prove one of our main results:

(6.20) Theorem. Let (B, m, K) be a complete local ring with coefficient field
K of characteristic p, let R be finitely generated as a B-algebra, and let c e RP
be such that (RKa)c is weakly F-regular and Gorenstein. Then c has a power
which is a completely stable q'-weak test element in R. If R is reduced, then c
has a power which is a completely stable test element in R.
Proof. By [HH4], (8.13d) we may pass to RTed, and so it suffices to prove the
last statement. Let A be a p-base for K and for each T c A with finite
complement let Rr = Br ®B R with Br as defined in (6.11).

We may then choose Y cofinite in A so small that Rr is reduced by (6.13a)
and such that its localization at the element c is F-regular and Gorenstein by
(6.19). By (5.10), c has a power which is a completely stable test element in
Rr since, by (6.6d) and (6.8b), (Rr)xlp is module-finite over Rr. Since Rr is
faithfully flat over R, this same power of c is a completely stable test element
in R, by (6.14c).   □

Proof of Theorem 6.1. (a) By [HH4], (8.13d) we may pass to Rred. It suffices
to show that if R is reduced and Rc is regular then c has a power which is a
completely stable test element in R, for it is then automatically a completely
stable test element in R as well, by (6.14c). But since R —> R is flat with
regular fibers, so is Rc —► (R)c, and since the base Rc is regular so is (R)c.
The result is now immediate from (6.20).

The remark about excellent rings now follows from the fact that in an excel-
lent ring the singular locus is open, and in a reduced ring the singular locus is
nonempty and its defining ideal has height at least one: thus, one may always
choose c e R° such that Rc is regular.

(b) Again, we may assume that R is reduced. Since the fibers of B —* B
are smooth, the map R -♦ R®R B is flat with regular fibers, and since Rc is
regular it follows that (R ®R B)c is regular. We can now apply (6.20).   □License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We obtain a corollary on the existence of common test elements which will
prove very useful in our study of base change in §7.

(6.21) Theorem. Let (R, m, K) —> (S, n, L) be aflat local map of local rings
such that (R°)~xSie<i is regular, the singular locus in STei is closed, and such
that the map S —> S has regular fibers. Then there is an element c e R° that
is a completely stable q'-weak test element in all of the rings R, R, S, and S.
If S is reduced then there is an element c e R° that is a completely stable test
element in all the rings R, R, S and S.
Proof. Let / be the defining ideal of the singular locus in Sred ■ Then the image
of R° in Sred must meet /, and it follows that we can choose c e R° such
that (5,red)c is regular. It now follows from (6.1) applied to S that c has a
power that is a completely stable q'-v/eak test element in S (or a test element,
if S is reduced), and since S is faithfully flat over R, S, and R, the result
follows from (6.14c).   D

We also state a global version in which we relax the flatness condition con-
siderably:

(6.22) Theorem. Let R —► S be Noetherian rings of characteristic p each of
which is finitely generated as an algebra over a local ring such that the maps
from these two local rings to their completions have smooth fibers. Suppose that
h(R°) C S° (this is automatic if h is flat), that the singular loci in RTe(i and
•SVed are closed, and that ((R°)~lS)red is regular. Then there exists c e R° such
that (Rred)c and (STed)c are both regular, and so c has a power c' such that c'
is a completely stable weak test element for R and h(c') is a completely stable
weak test element for S. If R and S are reduced, then c has a power c' which
is a completely stable test element in R such that h(c') is a completely stable
test element in S.
Proof. As usual, we may assume that both R and 5 are reduced. We can
choose c e R° such that Rc is regular and d e R0 such that Sd is regular,
and then we replace c, d by cd . The result is then immediate from part (b)
of Theorem 6.1.   D

We next prove some results concerning when tight closure is preserved under
arbitrary base change. We shall say that an excellent Noetherian ring R of
characteristic p has abundant test elements if for every domain D module-
finite over a homomorphic image domain of R every element c e D - {0}
such that Dc is regular has a power which is a test element. We first note:

(6.23) Proposition. Let R be a Noetherian ring of characteristic p. If R is a
finitely generated algebra over an excellent local ring or if the Frobenius endo-
morphism F : R—> R is a finite morphism, then R has abundant test elements.
Proof. Both of the hypotheses imply excellence and pass to module-finite do-
mains over homomorphic images of R. The result then follows from (6.1b) in
the first case and from (5.10) in the second case.   □

In fact, both classes of rings discussed in (6.23) satisfy a much stronger con-
dition: in every reduced, finitely generated algebra 5" over one of these rings,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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every element c such that Sc is regular has a power d such that d is in x(T)
for every ring T which is either a local ring of S or the completion of a local
ring of S. For these classes, the test elements are more than abundant.
(6.24) Theorem. Let R —> S be a homomorphism of Noetherian rings of char-
acteristic p. Let N C M be finitely generated R-modules and let w e M be
an element of M in N*. Assume that at least one of the following conditions
holds:

(i)   R is excellent and has abundant test elements, or
(ii)   R is locally excellent and S has a locally stable test element (or S is

local), or
(iii)   S has a completely stable test element (or S is a complete local ring).

Then 1 ® w is in the tight closure of the image of S ®RN in S ®RM.
Proof. In proving this result we may map a finitely generated free module G
onto M and replace N by its inverse image in G and w by an element of G
mapping onto it. In the remainder of this argument we assume that M is free.

We first prove (i). First note that Proposition (6.25) of [HH4] generalizes
to the case of modules. (The strengthened result asserts that w is in the tight
closure of N C M if and only if this holds modulo every minimal prime P of
R, i.e., the image of w in M/PM is in the tight closure of Im(JV~ —► M/PM)
for every minimal prime P. One can reduce to the case where M is free and
the argument given in (6.25) of [HH4] is valid without change.) Thus, if we
have a counterexample to the theorem, we obtain one in which S is a domain,
for if 1 ® w is not in the tight closure of Im(5 ®R N —> S ®R M), this will
remain true when S is replaced by S/P for a suitable minimal prime P . Thus,
we may assume that S is a domain. Let Q = Ker(R —> S).

Then we may replace S by R/Q as well. For if tight closure is preserved
when we apply (R/Q) ®/j -, it will also be preserved when we further apply
S®r/q — , for it is always preserved when one tensors with an extension domain
of a domain (since nonzero elements map to nonzero elements). Thus, there
is no loss of generality in supposing that S — R/Q for a suitable prime Q of
R . Let Q = Qh D Qh-\ 2 • ■ • 2 Qo be a saturated chain of prime ideals of R
descending from Q such that Qo is a minimal prime of R. We shall prove by
induction on / that tight closure is preserved when we pass from R to R/Q,■,
0 < i < h. For i = 0 this is clear, for tight closure is always preserved when
one kills a minimal prime. To carry through the inductive step, we may replace
R by R/Q,-. •

We therefore see that, to complete the proof of (i), it suffices to show that if
R is a domain and Q is a height one prime ideal of R, then tight closure is
preserved when we pass to S = R/Q. To see this, let R' be the integral closure
of R in its fraction field (which is module-finite over R, since R is excellent),
and let Q' be a prime ideal of R' which lies over Q, so that R/Q —> R'/Q'
is injective and module-finite. Now, tight closure is obviously preserved when
we pass from R to R' D R. Moreover, since R' is excellent normal and Q' is
height one (so that R'Q, is regular), there is an element c e R' - Q' such that
R'c is regular. After replacing c by a power we see that we may assume that c
is a test element for R' not in Q'. It follows that tight closure will be preserved
when we pass from R' to T = R'/Q'. Thus, the image of 1 ® w in T ®RM
is in the tight closure of \m(T ®R N). To complete the proof, we must showLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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that this implies that the image of 1 ® w in S ®R M is in the tight closure of
S ® N. (Here, S C T is a module-finite extension of domains.) This follows
from Lemma 6.25 given below (we have included a brief proof, although issues
of this sort are studied in greater generality in [HH9]).

To handle case (ii), suppose that one has a counterexample. The fact that S
has a locally stable test element enables one to preserve the fact that the image
of 1 ® w is not in the tight closure of lm(S ®R N) while replacing S by a
localization at a prime. Thus, one may assume that S is local. But then one
may replace R by its localization at the contraction of the maximal ideal of S
(and N, M by their localizations). Since R is then excellent local we are in
case (i), by (6.23).

Likewise, to prove (iii), we first replace S by a localization and then by the
completion of that local ring: the fact that we have a completely stable test
element enables us to keep an element out of the tight closure while completing.
Thus, we may assume that S is complete local. We may then replace R, M,
N by their localizations at the prime ideal of R lying under the maximal ideal
of 5, and then by their completions with respect to the maximal ideal of R.
Once R is complete local we are again in case (i).   □

To complete the argument we still need:

(6.25) Lemma. Let S c F be a module-finite extension of Noetherian domains
of positive characteristic p. Suppose that N C M are finitely generated S-
modules with M free such that w e M has the property that its image in
T®SM is in the tight closure of TN = Im(T®s N —► T ®s M). Then w is in
the tight closure of N in M.
Proof. We can choose an S-linear map <j>: T —> S such that <j>( 1) = d e S- {0}
and we can choose c e T - {0} such that c{\ ® w)q e (TN)[q]T ® M for all
q . We can choose a nonzero multiple of c in 5, and so we may assume that
c e5-{0}. It follows that for all q, cwq is a F-linear combination of
elements of N$ C T ®s M. Thinking of M as S' and applying the map <j>
to each coordinate, we find that dcwq e N^ for all q, which shows that w is
in the tight closure of N in M.   □

(6.26) Remarks. The conclusion of (6.24) is valid if condition (i) is weakened
to:

(i ° ) For every homomorphic image domain D of R and height one prime
Q of D, there is a module-finite extension D' of D, a prime Q' of D' lying
over Q, and an element c e D' - Q' such that c is a weak test element for
D>.

Moreover, (ii) and (iii) still yield the same conclusion under the weak hypoth-
esis that S have a locally stable weak test element (respectively, a completely
stable weak test element). The proofs are essentially unchanged.

In §4 we observed that a weakly F-regular ring is Cohen-Macaulay provided
that it is a homomorphic image of a Cohen-Macaulay ring. We conclude this
section by recording the observation that the theory of test elements developed
here makes the latter hypothesis unnecessary, provided that one assumes instead
that the ring is locally excellent.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(6.27) Proposition. Let R be a locally excellent Noetherian ring of character-
istic p.

(a) If R is equidimensional, local and the ideal generated by one system of
parameters is tightly closed, then R is Cohen-Macaulay and F-rational.

(b) If R is weakly F-regular then R is Cohen-Macaulay.

Proof. The hypothesis of weak F-regularity passes to the local rings of R at
maximal ideals. Thus, (b) follows from (a). Now suppose that R is local,
equidimensional, and that the ideal generated by one system of parameters
is tightly closed. Since R has a completely stable weak test element (R is
excellent), the system of parameters remains tightly closed when considered
in the completion of R. Since R is excellent and equidimensional, so is its
completion. Since the completion is a homomorphic image of a regular ring, it
is Cohen-Macaulay, by Theorem 4.2(c,d). Thus, R itself is Cohen-Macaulay,
and so F-rational by (4.2d).   □

The following is a global version of (4.3d) that makes use of theory of test
elements.

(6.28) Proposition. Let R be a locally excellent Noetherian ring of character-
istic p and let X\, ..., xd be elements of R such that for every minimal prime
ideal P of R, the images of x\, ..., xd are parameters in R/P (i.e., their im-
ages are part of a system of parameters in every local ring of R/P at a prime
containing their images). Suppose that R has a locally stable weak test element.
Let J = (xi, ... , x</_i)R. Then J* :r xdR — J*.
Proof. Let u e R be such that xdu e J*. It suffices to show that u e J*. Let
c be a locally stable g'-weak test element. If u is not in J* then we can choose
q > q' with cuq $ J^ . This situation will be preserved when we localize at
suitable maximal ideal of R . In the local ring S so obtained we still have that
u is not in /*, since the image of c is still a q'-weak test element. (Notice
that the minimal primes of 51 correspond to a subset of the minimal primes of
R under contraction and expansion.)

Thus, we may assume that R is an excellent local domain. The cases where
either J = R or xd is a unit are trivial. Thus, we may assume that all of the x,
are in the maximal ideal of R. Since R is excellent local, it has a completely
stable weak test element, and by Proposition (6.1c) of [HH4], it follows that
the image of u in the completion R of R is not in (JR.)*. We thus obtain a
counterexample where the ring is complete, local, and equidimensional (since
we had reduced to the case where R was an excellent local domain). The result
is now immediate from (4.3d).   D

7. Smooth morphisms and tight closure
Our objective in this section is to compare I*S and (IS)* where R —> S

is a smooth morphism of Noetherian rings (or satisfies some modified form of
smoothness) of characteristic p and I c R. Here, smooth means flat with
geometrically regular fibers: we discuss this notion briefly in (7.5) below. (Note
that many authors use the term regular for this notion, and reserve the word
smooth for the case where 5 is finitely presented over R.) More generally, weLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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want to compare the image of S ®R (N^) in S®RM with (S ®r N)^rM for
modules N C M. One hopes that these will be the same, and we can prove this
in many instances.

One of the main problems is that we do not know that tight closure com-
mutes with smooth base change even when the base change consists simply of
localization. We shall prove that, in good cases, there is a sense in which the
problem with localization is the only problem. We should note that tight closure
commutes with localization in case M/N has finite length (cf. [HH4], (8.9))
and if M = R and N = I is an ideal generated by a regular sequence: this is
the essential content of Theorem 4.5. As indicated in the Introduction, certain
other special cases are handled in [AHH]. We do not know any example where
tight closure does not commute with localization, but we have not been able to
prove that it does in general.

Perhaps the most useful of the results we obtain on base change are summa-
rized in the Theorems 7.1 through 7.4. However, we also want to call attention
to Theorem 7.29 and Theorem 7.31, which make explicit some of our general
results in important special cases (field extension and adjunction of ordinary
and analytic indeterminates), as well as to Theorem 7.42 and Theorem 7.45,
which discuss the preservation of tight closure in certain product situations
where neither factor is necessarily regular.

(7.1) Theorem. Let h : R —► S be a smooth morphism of Noetherian rings
of characteristic p, and suppose that R is locally excellent (or that every local
ring of R contains a test element for its completion). Let N c M be finitely
generated R-modules.

(a) If N is tightly closed in M and remains so under localization, then
S ®r N is tightly closed in S ®rM and remains so under localization.

(b) If S is projective as an R-module and N is tightly closed in M then
S ®r N is tightly closed in S ®rM .

Note that throughout this section, when R —> S is flat and N C M we tacitly
identify S ®R N with its image in S ®R M.

Theorem 7.1 is contained in Theorem 7.18 below.

(7.2) Theorem. If (R, m, K) -* (S, n, L) is aflat local homomorphism of
complete local rings of characteristic p such that the closed fiber S/mS is regular
and L/K is separable, then x(S) = x(R)S, where x indicates the ideal generated
by the test elements if there is at least one test element (see Definition 3.7 and
Proposition 3.8 for details).

Theorem 7.2 is contained in Theorem 7.36.
We also note:

(7.3) Theorem. Let R —> S be aflat homomorphism of Noetherian rings of
characteristic p.

(a) Suppose that (R°)~lS is regular and that S is locally excellent. If for
every maximal ideal m of S having contraction P to R, Rp is weakly
F-regular and Sm/PSm is regular, then S is weakly F-regular.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(b) Suppose that R is weakly F-regular, that S is locally excellent, and that
R —> S has regular fibers over both minimal primes of R and over closed
points. Suppose that every maximal ideal of R lies over a maximal ideal
of S. Then S is weakly F-regular.

(c) Suppose that R is F-regular, that S is excellent, and that R —> S has
regular fibers. Then S is F-regular.

(d) Suppose that R, S are finitely generately algebras over a field K. If R
is weakly F-regular and the fibers over minimal primes and over closed
points are regular, then S is weakly F-regular.

Theorem 7.3 is contained in Theorem 7.25 below.

(7.4) Theorem. Let (R, m, K) be a local ring and let N C M be finitely
generated R-modules. Suppose that N is tightly closed in M. Then for every
smooth homomorphism R —> S such that all maximal ideals of S lie over m,
S ®RN is tightly closed in S ®RM.

This is Theorem 7.21 below.
The proofs of these results will require a considerable effort.
Note that certain results of this kind in the case where the map R —» S is

flat and purely inseparable are given in §6 (see Theorems 6.16 and 6.17).

(7.5) Discussion. Various notions of when a homomorphism of Noetherian
rings is "smooth" are used in the literature. For our purpose here it will be
convenient to define a homomorphism R —> S of Noetherian rings to be smooth
if S is flat over R and for every field K of the form RP/PRP Si (R/P){0),
K®RS is geometrically regular over A", where T is geometrically regular over
a field K if for every finite algebraic extension L of K (equivalently, for every
finite purely inseparable extension L of K), L ®k T is regular. In particular,
in discussing smoothness, we shall not require that S be essentially of finite
presentation over R, as some authors do. It is easy to see that if R —> S is
smooth and R is regular then S is regular.

If R —► S is smooth then for every F-algebra ft essentially of finite type
over R, Q®RS is again smooth over ft. For every field ft finitely generated
over A" = Rp/PRp, and, more generally, for every map R —> ft such that ft
is essentially of finite type over R and regular, the ring ft ®R S is regular. In
fact, whether ft is regular or not, ft ®R S is smooth over ft, which forces it
to be regular when ft is regular. When R = K is a field, S is smooth over K
iff S is geometrically regular over A".

Smoothness is preserved by composition and is local both on the maximal
ideals of S and on the prime ideals of R lying under maximal ideals of S.

(7.6) Remark. It is tempting to believe that there should be results correspond-
ing to (7.1), (7.3), and (7.4), for example, when the flat map R -> S is assumed
merely to have geometrically F-regular fibers (i.e., that L®RS is F-regular
for every L which is a finite algebraic extension field of a field A" of the form
Rp/PRp ) instead of smooth fibers. We have not been able to prove this. Like-
wise, (7.2) may well be true when i?->S is a smooth local map of complete
local rings, without the hypothesis of separability on the induced map of residue
fields. See (7.34).

We begin with a slightly technical but extremely useful result:License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(7.7) Lemma. Let (R,m,K), (R, m', K'), (S,n,L), and (S', ri, L') be
arbitrary local Noetherian rings, and suppose that we have a commutative dia-
gram of local homomorphisms

S --► S'

I       I
R -► R'

such that R' —> S' is flat, n = mS, and the images of L and K' in L' are
linearly disjoint over the image of K, i.e., such that L%^'-t L' is injective.
Suppose that M is an R'-module, that V is an R-module killed by m, and
that 6 : V -> M is R-linear. Let 6': S ®RV -> S' ®R> M be the map induced
by 0. Then Ker0' Si S®R (Ker0). Note that, since m kills V and Ker0, we
may identify S®RV with L®kV and S®R(Kerd) with L®K (Ker0).

If R — K and S = L are fields, the result holds even if the condition that the
map R' —> S' be flat is weakened to the condition that it be pure.
Proof. It will suffice to show that if 6 is injective then 6' is injective, for
we may then apply this fact to the induced map V/ Ker 6 —► M.  Evidently,
V maps into Mq — AnnmM. Because S' is flat over R' we may replace
M by Mq , for 6' may be viewed as the composition of the induced map
L ®k y -* S' ®R* A/0 with the injection S' <8>r> M0 -> S' ®R> M. Thus, there
is no loss of generality in assuming that mM = 0, and we may consequently
replace R' -> S' by R'/mR' -> S'/mS' (if we start in the case where R = A"
and S = L we do not need the flatness of S' over R' to reduce to this case).
We may then replace R -> S by K —► L as well. Thus, in the remainder of
the proof we shall assume that R = K and S = L are fields. Moreover, having
reduced to this case we now weaken the assumption that R' —> S' be flat, and,
henceforth, we only assume that R' —» 5" is pure. Note that, by the purity of
R' —► S" , M embeds into S' ®R' M. This implies that the restriction of 6' to
V is simply the composition of 6 with the injection M —» S' ®r> M.

We use induction on N to prove that if ^i,...,% 6 M are linearly in-
dependent over K then the elements w,■ = 1 ® vt e S' ®r> M are linearly
independent over L. The cases N = 0, 1 are trivial and we assume that
N > 2. We may choose a subset of the Wj which is a minimal set of genera-
tors, over R', for the F'-module £/=i R'Wj c S' ®R> M: by renumbering we
may assume that these minimal generators are W\, ... ,wh, and, clearly, we
may assume that h > 1. Then for N > j > h (this set may be empty: in that
case, summations extended over the values of j > h should be interpreted as
having value 0) we have

(*) Wj = ^ r'jjWi, where the r'jt e R'.
i<h

Now suppose that we have a nontrivial relation Y^=i^jwj = 0> wrtn the
Xj e L. We shall obtain a contradiction. By substituting the formulas given
by (*) for the Wj with j > h we obtain E,</,(A, + Hj>hr'ji^j)w' = 0. If
the coefficient of W] is not in n' then we may invert it, and we discover that
W\ G 2Ji=2 S'wj • By the purity hypothesis on R' —► S' we see that w\ e
Y!l=2 R'wj = H (otherwise, the map M/H -> S' ®R* (M/H) will have wx+HLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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in its kernel). But this contradicts the minimality of the generators W\, ... ,wh
for J2j R'wj as an i?'-module.

This shows that X\ + J2j>h r'j\^i € «', so that if a'j denotes the image of
r'jx in K' we have that X\ + ]£,->A a'jXj = 0 in L'. Since L and A"' are
linearly disjoint over A" in L', there is also an equation X\ + ^2j>h oljXj -
0 with aj € A".   But then the equation 52"=1A,w;, = 0 can be rewritten as
Y!l=2hwi + Hi>h h(wi ~aiwi) = 0 > which contradicts the induction hypothesis
on N applied to the N - 1 vectors

v2, ... ,vh, vh+i - ah+lvi, ... ,vN- aNvx,

since these are linearly independent over K .   □

(7.8) Corollary. Suppose that (R, m, K) -> (S, n, L) is aflat local homomor-
phism of local rings of characteristic p such that mS = n and L is separable
over K. Let V be an R-module killed by m and M an R-module. Let
9 : V -» M bean Fe-linear map. Then Ker(F| ®R 6) Si S ® Ker0.
Proof. Apply Lemma 7.7, letting R' = R and S' = S, letting both vertical
maps be the given flat local homomorphism R —► S, while taking the maps
R —> R' and -S —► 5" to be F^ and F|. The linear disjointness condition
needed is equivalent to the separability of L over K: if we identify L' with
L, K' is identified with K, L with L« and K with A"<?.   □

(7.9) Proposition. Let R be a Noetherian ring of characteristic p, let m be a
maximal ideal, let M be a finitely generated R-module and N a submod-
ule such that M/N is supported only at m. Let V denote Ann^/jv m =
(N :M m)/N. Suppose that c' e R and let Wq denote the kernel of the map
V -> Fe(M)/N[q] = Fe(M/N) sending the element represented by w £ N :M m
to c'wq + Nl«l.

(a) Let N' = {w eM: c'w^ e Tv™ for all q > q'}, so that N' = N* if c'
is a q'-weak test element. Then N = N' if and only if there exist finitely
many integers q(\), ... , q(r) > q' such that Wq(\) n • • • n Wq{r) = 0.
More precisely, (N' n (N :M m))/N may be identified with f)q>q, Wq .

(b) Suppose, moreover, that (R, m, K) is local and that (S, n, L) is aflat
local R-algebra such that n = mS and L/K is separable. Suppose that
there exists an element w € S®RM-S®RN such that c'coq e (S®RN)[q]
for all q > q'. Then there exists an element w of M - N such that
c'wq e V[?l for all q > q', i.e., such that w 6 N'. Moreover, w may
be chosen so that its image in M/N is in V.

(c) Suppose that R has a q"-weak test element c" and that c' e R°. If
N is tightly closed in M then Wq = 0 for all sufficiently large q. In
fact, if we define Tq D Wq to be the set of all elements in V represented
by w e N :M m such that c'wq e (N^)* in Fe(M) then the sequence
{Tq} is decreasing and Tq = 0 for all q » 0.

Proof, (a) There is no loss of generality in replacing M, N by M/N and 0,
respectively. Thus, we may assume that M has finite length and that N = 0.
If 0' is strictly larger than 0 it must contain an element which is killed by m ,
since M has finite length.  Thus, 0 = 0' iff 0 = 0' n V.  Now, an elementLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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v e V is in 0' iff v e Wq for all q > q', by the definition of 0'. Thus,
0' p| V = nq>ql Wq. It follows that 0 = 0' iff V\q>q, Wq = 0. Since V is a
finite-dimensional vector space, this intersection is 0 iff some finite subfamily
of the {Wq : q > q'} has intersection 0.

(b) If we assume that there is no such element in N' then we can choose
powers of p, say #(1), ... , q(r), all greater than or equal to q', such that
f]j Wq(j) = 0, which implies that f|_/ S ®R ̂ q(j) = ® m S ®RV. Since V and
the Wq(j) are killed by m and mS = n , we may write L ®k Wq^ and L ®k V
instead. Now, we may identify L ®K V with the socle in S ®R M/S ®R N =
S ®R (M/N) (again using that mS = n and that 5 is R-flat), and (7.8) allows
us to identify L ®K Wq with the kernel W'q of the map from L ®K V to
Fg(S®RM)/(S®RN)^ which sends the class of co to the class of c'co9 . Since
nW^'(;) = 0, the desired conclusion follows from part (a) applied over S.

(c) As in part (a) we may assume that N = 0 and that M is supported only at
m. It is clear that Tq D Wq . To see that Tpq c Tq suppose that c'vpq e 0* in
Fe+X(M). Then c"(c'vpq)p" = c"c'p"vqph+x = 0 in Fe+x+h(M) for all ph > q",
and this implies that c"(c'vq)pM = 0 in Fe+(~h+x)(M) for all ph > q", since
the exponent on c' in the latter expression has increased. Thus, c'vq e 0* in
Fe(M), as we wanted. Since the Tq are decreasing, to complete the argument
it will suffice to show that if v e C\q Tq then v e 0*. But if v e f]q Tq then for
all q , c'vq £ 0* in Fe(M), and so c"(c'vq)q" = (c"c'9")vqq" = 0 in Fe+e"(M)
for all q = pe . Thus, v e 0* in M.   a

Theorem 7.12 below contains a central part of the argument for proving that
tight closure behaves well under smooth base change in the sense indicated in
Theorem 7.1. Before giving this result, we need a lemma recalling some basic
facts, and a discussion of the existence of common test elements.

(7.10) Lemma. Let (R, m, K) —» (S, n, L) be an arbitrary flat local homo-
morphism.

(a) If z e n is not a zerodivisor on S/mS, then z is not a zerodivisor on
S and R —* S/zS is again a (faithfully) flat local homomorphism.

(b) More generally, if zy, ... , zd e n form a regular sequence on S/mS,
then they form a regular sequence in S and R —► S/(z\, ... , zd)S is
again a faithfully flat local homomorphism. The elements z{, ... , zd
also form an S-sequence on S®RM for every nonzero finitely generated
R-module M.

(c) Suppose that M has finite length over R with V = AnnMm, and that
S/mS is zero-dimensional with socle Q. Then we have an injection
Q®K V — S/mS®KV^S®RV ^S®rM, under which Q®KV is
sent onto the socle in S ®RM.

(d) If S/mS is Gorenstein, z{, ... , zd e n are elements whose images
in S/mS are a system of parameters, It = (z\,..., zd)S, and ER(K),
ES(L) denote injective hulls for K = R/m over R and L — S/n over S,
respectively, then ES(L) a (lim,S/I,) ®R ER(K) where the map S/It ->
S/It+\ is induced by multiplication by zx...zd. In other words, if I =
(zi, ... , zd)S then ES(L) = Hf(S) ®R ER(K). Moreover, for every
module W of finite length over S which is an essential extension of L,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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there exists a module M of finite length over R which is an essential
extension of K and an integer t such that W can be embedded in
S/I,®RM.

Proof, (a) is a special case of Corollary (20.F) on p. 151 of [Mat] and the first
statement in (b) is immediate from (a) by a straightforward induction. The
second statement reduces to the case where M = R/I is a cyclic module, since
M has a filtration by cyclic modules: but S/IS is flat over R/I, and we may
then apply the first statement of (b).

For the last sentence of (c), note that the first of the three maps is injective
since A" is a field, and the third is injective because S is F-flat. The elements
of the socle of S ®rM are killed by m , and so lie in Annm (S ®r M), which,
since S is flat, may be identified with S®RAnnm M = S®RV = (S/mS) ®k V,
and it is then clear that Homs(L, (S/mS)®K V) Si Homs/mS(L, S/mS)®K V Si
Q®KV.

It remains to establish (d). Since EK(R) = [jhERimh(K) when ER/mh(K)
is identified with AnnER^fc) m>1 and, similarly, E$(L) = \Jh F5^m*s(L), we can
reduce to the case where R is an Artin local ring. Suppose we write E = Er(K) .
It will suffice to show that for every t, E®RS/It is the injective hull of L over
S/I,: S/I, is still flat over R. Thus, we may assume that S is zero-dimensional
and flat over R, with a Gorenstein closed fiber. Since E and R both have
nitrations by e(R) copies of K, the length of both E®RS and R ®R S = S
is £(R)£(S/mS). By part (c), E ® S has a one-dimensional socle, and since it
has the same length as S, it must be an injective hull for L over -S.

The final statement is then immediate from the fact that both Er(K) and
Es(L) are the directed union of the finite length essential extensions of K over
R and L over S, respectively.   D

(7.11) Discussion. In the results that follow we frequently need to know for
an extension R —► S that there is an element of R that serves as a test element
in both rings. We recall from Theorem 6.21 that if R —> S is a flat map of local
rings such that (R°)~xSTed is regular, the singular locus in STed is closed, and
S —► S is regular, then there is an element c e R° that is a completely stable
q'-weak test element in all of the rings R, R, S, and S. If S is reduced, c
can be chosen to be a completely stable test element in all four rings.

We note that in the special case where (R, m, K) —►(S, n, L) is a flat local
homomorphism of complete local rings such that the closed fiber, S/mS, is
regular and L/K is separable, there is a much simpler way to see that there
is an element c e R which is a q'-weak test element for both R and S.
By [HH4], (8.13d) we may pass to the case where R is reduced (the ideal of
nilpotents in R expands to the ideal of nilpotents in S).

Choose a copy of K C R to serve as coefficient field and represent R as
module-finite over A = K[[xx,... ,x„]]. Since L is separable over K, we
may extend A to a coefficient field L C S. Let y\, ... ,yd be elements of n
whose images in S/mS form a regular system of parameters. Then A c B =
L[[xi, ... ,x„,yi,... , yd]] C S and let T = B ®AR, which has an obvious
map T -» S. Since T, S are complete and flat over their common subring
R, which is fixed by the map, and since the induced map of closed fibers is an
isomorphism, T = S. (The map is onto, since it is surjective on the residueLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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fields, it is clear that the maximal ideal of T maps onto that of S, and the
rings are complete. To get injectivity, note that it suffices to prove this modulo
powers of the maximal ideal of R. Thus, we may assume that R is Artin, and,
by Noetherian induction, that the kernel is contained in the ideal generated by
the socle of R in T. But the kernel is R-flat and killed by the maximal ideal
of R. It follows that the kernel is 0 or else R = K, and we are done in
either case.) But the result is then immediate from [HH4], (6.17): the weak test
element for R constructed there retains that property when we tensor with a
locally excellent regular ^4-algebra.   □

Theorem 7.12 is a central tool in our theory of how tight closure is affected
by regular base change. The first four parts, which are listed with lowercase
Roman numerals, describe behavior without the assumption that the induced
extension of residue fields L/K is separable. The last three parts, listed as (a),
(b), and (c), give stronger results which hold when L/K is separable.

Before giving the statement we recall from §10 of [HH4] the notion of tight
closure with respect to a family of ideals e directed by 2. Given a Noetherian
ring R of characteristic p and a submodule N of a finitely generated R-
module M, we say that u is in the tight closure of N with respect to £ if
there exists an ideal C e 6 such that Cxq € N™ in Fe(M) for all q » 0.
The usual notion corresponds to tight closure with respect to the family of
ideals generated by an element of R° . The notion is used for the case where 6
consists of a single principle ideal in part (iii) of Theorem (7.12).
(7.12) Theorem. Let (R, m, K) -* (S, n, L) be aflat local homomorphism
such that S/mS is regular. Let N C M be finitely generated R-modules such
that M/N has finite length. Suppose also that there is an element c e R° that
is a q'-weak test element for both R and S, which, by (7.8) above, is always
the case if, for example, R and S are complete and L/K is separable. Let
z\,... , zd e n be elements whose images in S/mS are a regular system of
parameters. Then:

(i) If S ®R N + (z\, ... , zd)(S ®R M) is tightly closed inS ®R M, then
S®rN+I(S®rM) is tightly closed in S®RM for every ideal I generated
by monomials in the elements z\, ... , zd . In particular, S ®R N is
tightly closed in S ®RM.

(ii) // S ®R N + (z i, ... , zd) (S ®R M) is not tightly closed in S®rM , then
there is an element of the tight closure whose image in S®r (M/N) may
be identified with an element of L®KV, where V is the socle in M/N.

(iii) Let S = S/(z{, ... , zd). If S ®r N is tightly closed with respect to
{cS} in S®RM then S®RN + I(S ®R M) is tightly closed in S®RM
for all ideals I generated by monomials in the elements z\, ... , zd.

(iv) If N is tightly closed in M and the socle of M/N is one-dimensional,
then S ®rN + I(S ®R M) is tightly closed in S ®rM for every ideal I
generated by monomials in z\, ... , zd .

Moreover, if L/K is separable then:
(a) S®r(N*m) = (S®rN)*s^rM.
(b) // N is tightly closed in M then S ®R N + I(S ®R M) is tightly closed

in S ®R M for every ideal I generated by monomials in zx, ... , zd.
(c) If N is tightly closed in M then S ®R N is tightly closed in S®rM .License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof. We may replace M, N by M/N and 0 without affecting any relevant
issues. Henceforth we assume that N = 0 and that M has finite length. Let
V denote the socle in M = M/N.

We first establish (i) and (ii). Let /, denote the ideal I + (z[, ... , z'd). If we
know that It(S ®R M) is tightly closed for all t then the result for / follows,
since that will place the tight closure of I(S ®r M) in the n-adic closure of
I(S ®r M). Thus, there is no loss of generality in assuming that / contains a
power of each z,. It is easy to see that such an / is the intersection of two larger
such / 's, unless it has the form / = (zf , ... , zdd) for nonnegative integers aj
(cf. [HoE]). But if / = /' n /" , then I(S ®R M) = I'(S ®R M) n I"(S ®R M):
this follows from the fact that, by (7.10b), the z's form a regular sequence
on S ®R M. Thus, if I'(S ®R M) and I"(S ®R M) are tightly closed, so
is I(S ®r M). We have therefore reduced to studying the case where / =
(z"', ... , zad). There is nothing to prove if any a, is 0. We henceforth
assume that the a, are positive integers.

By (7.10c), the socle in (S/I)®RM Si (S®RM)/I(S®RM) is (Lz)®RVSi
(L ®k V)z where z = Y[j zaf~ and V is the socle in M. If 0 is not tightly
closed in (S/I) ®R M then some element of the socle must be in the tight
closure of 0. Write this element as coz where co e L ®k V. Then for all
q > q' we have that ccoqzq is 0 in F§((S/I) ®R M) Si (S/PqX) ®R Fe(M) Si
H/flqXH, where H = S ®R Fe(M) = F*(S ®R M). By (7.10b), the zj form a
regular sequence on H, and it follows that (flqX-H) :# zqS — (z\, ... , zd)H.
Thus, ccoq 6 (z9, ... , zd)Fg(S®r M) for all q > q', and hence the element
co G L ®k V C S ®R M is in the tight closure of (z\, ... , zd)(S ®r M). This
establishes both part (i) and part (ii).

To prove (iv) it suffices to show that (z\, ... , zd)(S ®r M) is tightly closed
in S®rM, and, by part (ii), if not there is an element of L®kV in the tight
closure. Since V is one-dimensional this element has a nonzero multiple v
in V, and so we find that cvq = 0 in (S/(z\, ... , zq)S) ®R Fe(M) for every
q > q'. Since v G M and S/(zq , ... , zq)S is faithfully flat over R by (7.10a),
we have that cvq = 0 in Fe(M) for every q > q', contradicting the fact that
0 is tightly closed in M.

To prove (iii) note that if co G L ®k V C S ®r M is in the tight closure of
the submodule (z\, ... , zd)(S®RM) then for all q > q' we have that ccoq G
(z\, ... , z9)Fg(S®RM). Note that R -+ S is faithfully flat local. Let ~ denote
images after tensoring with S over R. Then ceo9 = 0 in S ®R Fe(S ®R M),
which is the same as Fe(S ®R M) calculated over S. This shows that To is in
the tight closure of 0 in S ®R M with respect to cS, and so must be 0. But
the map S ®R M —► S ®R M is jnjective when restricted to S ®R V Si L ®K V,
since, by (7.10c), the socle in S ®R M may also be identified with L ®K V.
This completes the proof of part (iii).

In the remainder of the argument we assume that L/K is separable. We
must establish (a), (b), and (c). First note that (b) => (c), since we may take /
to be (0). Moreover, (c) =^ (a) is clear.

Thus, it suffices to check that (b) holds, and by part (iii) of the theorem it
suffices to show that a nonzero element of L®R F^annot be in the tight closure
of 0 in S ®R M with respect to cS. But R -+ S is faithfully flat local, mS
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is the maximal ideal in S, and the extension of residue fields is separable. If
there were such an element we could apply (7.9b) to conclude that there exists
a nonzero element v G V such that cvq = 0 for all q > q', which contradicts
the fact that 0 is tightly closed in M.   a

(7.13) Remark. Note that (R, m, A") -» (S, n, L) may be smooth even when
L is not separable over K: this happens even when R = A" is a field. For
example, let k be a field of characteristic p, let B = k[t, x] be the polynomial
ring in two variables over k and let A = k[tp + x]. Note that B — A[t] is a
polynomial ring in one variable over A, and that A -► B is therefore smooth.
Let S be the localization of B at xB and let R = K be the fraction field of A ,
which is a subring of S, since xB n A — (0). Then K = k(tp + x) C k[t, x\X)
is smooth, but the map of K -> L = k(t) sends the field generator tp + x to tp
and, hence, is not separable.

Theorem 7.15 gives a sharp version of (7.12b) when R is complete: we no
longer need to assume that M/N has finite length. We first need:

(7.14) Lemma. Let (R, m, K) be a local ring of characteristic p and let N C
M be finitely generated R-modules.

(a) If R has a weak test element then N* — f]t(N + m'M)* in M.
(b) Let R be complete, let R —> S be flat local, let I c S be an ideal,

and suppose that for every finite length R-module H such that 0^ = 0,
I(S®RH) is tightly closed in (S®RH). Then for every finitely generated
R-module M and submodule N which is tightly closed in M, we have
that S ®RN + I(S ®R M) is tightly closed in S ®RM.

Proof, (a) Let Nt denote the tight closure of N + m'M in M. We know
from [HH4], (8.13b) that N* is an intersection of m-coprimary tightly closed
submodules Nx of M. If x G M - N and we choose such an Nx with
x £ Nx then NXD N + m'M for some t and so Nx I) Nt for some t. Thus,
N* = (\Nt.

(b) We apply part (a) to N = N* and so obtain that N = f]tNt. Since M
is complete, by Chevalley's theorem for every h we may choose t(h) such that
Nt(h) Q N + mhM. Since M/Nt{h) has finite length, S ®R Nt(h) + I(S ®R M) is
tightly closed in S ®RM, and so the tight closure of S ®RN + I(S ®R M) in
S®RM is contained in S®RNt{h)+I(S®RM) CS®R(N+mhM) + I(S®RM) =
S®RN+I(S®RM) + mh(S®RM) for all h . Since every submodule of S®RM
is tt-adically closed and m c n , we see that S ®r N + I(S ®r M) is tightly
closed.   □

(7.15) Theorem. Let (R, m, K) —► (S, n, L) be aflat local homomorphism
such that R is complete, the closed fiber S/mS is regular and L/K is separable.
Let NCM be arbitrary finitely generated R-modules. Then:

(a) S®R(N*M) = (S®RN)*S^M.
(b) If N is tightly closed in M and z\, ... , zd are elements of S that

generate the maximal ideal of the fiber S/mS, then S®RN+I(S®RM)
is tightly closed in S ®r M for every ideal I generated by monomials
in zi, ... , zd.

(c) If N is tightly closed in M then S ®RN is tightly closed in S ®RM.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof, (b) => (c) by taking / = (0) and (c) =>• (a) is clear. We need only prove
(b). But (b) is immediate from (7.12b) and (7.14b).   □

We next extend (7.12abc) in a different direction.

(7.16) Theorem. Let (R, w, A") -> (S, n, L) be aflat local homomorphism
such that the closed fiber S/mS is regular and L/K is separable. Let N c M
be finitely generated R-modules such that M/N has finite length. Suppose also
that there is a c G R° which is a q'-weak test element for both R and R (which
is always the case if R is excellent). Then:

(a) S®R(N*M) = (S®RN)*mRM.
(b) If N is tightly closed in M and z\, ... , zd are elements of S that

generate the maximal ideal of the fiber S/mS, then S®rN+I(S®rM)
is tightly closed in S ®r M for every ideal I generated by monomials
in zi, ... , zd.

(c) If N is tightly closed in M then S ®rN is tightly closed in S ®rM .
Proof, (b) => (c) =$■ (a), and so it suffices to prove (b). As usual, we may
assume that N = 0. It will certainly suffice to show that S®rN + I(S®rM) is
tightly closed in S®rM , working over S, so that there is no loss of generality
in assuming that 5 is complete. Because R, R have a common weak test
element, we know from (7.12c) that R®r M = M still has the property that
0 is tightly closed. Thus, we may pass to R and M. But then R, S have
a common weak test element and we may apply (7.12b) to obtain the desired
conclusion.   □

To escape from the assumption that M/N has finite length when R is not
complete, as well as to escape from the assumption that R is local, we shall
need either to impose the hypothesis that N remain tightly closed in M after
arbitrary localization (this is proved in a number of special cases in [AHH]) or
else to impose the hypothesis that S be projective (or n-flat, defined below)
over R. We first prove

(7.17) Theorem. Let (R, m, K) -» (S, n, L) be aflat local homomorphism
of Noetherian rings of characteristic p such that the closed fiber K —> S/mS
is geometrically regular and suppose that there is an element c G R° that is
a q'-weak test element for both R and R. Let N c M be finitely generated
R-modules such that M/N has finite length. Then (S ®R N)* = S ®R N^ in
S®RM. In particular, if N is tightly closed in M then S®RN is tightly closed
in S®rM .
Proof. The next to last statement follows from the last. We may assume that
M has finite length, that 0 is tightly closed in M, and we need only show that
0 is tightly closed in S®rM . But since Ass* M = {m}, S is flat over R, and
mS is prime, it follows that Asss{5'®/{Af} is {mS} . If 0 is not tightly closed
in S ®r M, there is an element of the tight closure whose annihilator is mS.
It follows that we may obtain a new counterexample by localizing S at mS.
But now n = mS and the extension of residue fields is separable. Since R and
R have a common weak test element, the result now follows from (7.16c).   □
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We shall say that an .R-module S (in our context, S will usually be an R-
algebra) is intersection-flat or n-flat if S is flat and for every family of submod-
ules {Mx}XeA of every finitely generated R-module M we have S®R(f]xMx) =
f]x $ ®j« Mx (quite generally, there is an obvious map from the first module to
the second). The n-flat modules include R and are closed under arbitrary di-
rect sum and passing to direct summands. Thus, they include the projective
F-modules. On the other hand, if R is complete local and R —► S is flat local
then S is easily seen to be n-flat, using Chevalley's theorem. Moreover, F[[x]],
where R is Noetherian and x denotes a finite string of variables, is n-flat over
R, since for each N C M finitely generated we can identify R[[x]] ®R M and
F[[x]] ®r N with M[[x]] and V[[x]] respectively.

We are now ready to prove one of our main results:

(7.18) Theorem. Let h : R -» S be a smooth homomorphism of Noetherian
rings of characteristic p such that R is locally excellent (or such that every local
ring of R contains a weak test element for its completion). Let N C M be
finitely generated R-modules.

(a) Suppose that NP is tightly closed in MP for every prime ideal P of R.
Then (S ®r N)q is tightly closed in (S ®r M)q for every prime ideal
Q of S. In particular, S ®rN is tightly closed in S ®rM .

(b) Suppose that R has a weak test element, that S is a projective (or n-
flat) R-module, and that N is tightly closed in M. Then S ®r N is
tightly closed in S ®rM .

Proof, (a) If not, choose Q e SpecS minimal such that the tight closure of
(S®r N)q is strictly larger than (S®r N)q : assuming that there is at least one
such Q, we can do this. It then follows that (S®rN)q/(S®rN)q is killed by a
power of Q. We can replace S by Sq , R by Rp , where F is the contraction
of Q to R, and M, N by MP, NP, respectively. Changing notation, we now
have that (R, m, K) —► (S, n, L) is smooth local, that N is tightly closed in
M, but that (S ®r N)*s^ m/(S ®r N) is a nonzero module of finite length. As
usual, we may assume in addition that N = 0.

The tight closure W of 0 in 5 ®r M has finite length, and so is killed
by a power of m . Let W0 be W n Ann^s®RM) m = W n (S ®r V), where
V = AnnM m, since S is F-flat. If W ^ 0, then W0 ̂  0. On the other
hand, since R has a weak test element, f], N, = 0, where N, = (m'M)*M.
It follows that f\t(Nt n V) = 0, and since this is a decreasing sequence of
finite-dimensional vector spaces, we can choose t such that JV,nF = 0. Then
(5 ®R Nt) n (S ®R V) = 0, and so S ®R N, does not meet W0 . The image of
W0 in (S ®R M)/(S®RNt)SiS ®R (M/Nt) will still be in the tight closure of 0
and will be nonzero. This means that M/Nt gives a new counterexample: one
in which the module is of finite length. Since R contains a weak test element
for R, we have now contradicted (7.17). This completes the proof of part (a).

(b) Since R has a weak test element, N is an intersection of submodules N'
of M such that M/N' is of finite length and supported at a unique maximal
ideal of F. Since S is n-flat, it will suffice to show that each S ®R N' is
tightly closed in S ®R M. But now part (a) applies, since each N' remains
tightly closed after localization.    □
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(7.19) Remark. Even when R is an excellent local ring or a local ring at a
maximal ideal of an algebra finitely generated over an algebraically closed field,
we do not know that if / is tightly closed in R then IR is tightly closed. It
is still possible that elements of JR lie in (IR)*, where J Z} I consists of
elements of R contained in (IRp)* for some prime F of R lying under a
prime Q in the support of (IR)*/IR.
(7.20) Corollary. If R is an excellent local ring of characteristic p and N c M
are finitely generated R-modules, then for every R-module N' with N c N' c
M that remains tightly closed under arbitrary localization, N*^ C (N'J. In
particular, if N is tightly closed in M and remains so under localization, then
N is tightly closed.
Proof. The first statement follows from the second, while the second statement
is immediate from Theorem 7.16, since R will contain a weak test element for
R and R —> F is smooth.   □

We also have
(7.21) Corollary. Let (R, m, K) be a local ring and let N c M be finitely
generated R-modules. Suppose that N is tightly closed in M. Then for every
smooth homomorphism R -> S1 such that all maximal ideals of S lie over m,
S ®rN is tightly closed in S ®rM .
Proof. A counterexample will remain a counterexample after we localize 5 at
a maximal ideal in the support of (S ®r N)*/(S ®r N). Thus, we may assume
that (R, m, A") —► (S, n, L) is local. As usual, we may assume that N = 0.
Since 0 is tightly closed in M, it is the intersection of a decreasing sequence
of submodules Nt C M such that each Nt is tightly closed, and M/Nt is of
finite length. But then N, is the completion of a submodule Nt C M such that
M/Nt = M/N,. Since Nt C mhM for all t > 0 and for any h , we have that
Nt c mhM for all t > 0 and for any h . It then suffices to prove that S ®r N,
is tightly closed in S ®rM for all t, for this forces the tight closure of 0 in
S®RM into Da mh(S ®r Af) = 0.

But M/Nt has finite length, and remains tightly closed over R. Exactly as
in the last paragraph of the proof of (7.17) we may localize S at mS and get
a new counterexample. But then we may pass to R and S : we shall have that
the maximal ideal of R expands to that of £ and that the extension of residue
fields is separable, and this contradicts (7.16c).   □

We next observe:
(7.22) Corollary. Let (R, m, K) -+ (S, n, L) be aflat local homomorphism
of Noetherian rings of characteristic p such that the closed fiber S/mS is regular
and L/K is separable. Suppose that R is excellent. Let N C M be finitely
generated R-modules. If N is tightly closed and remains so under localization
and z}, ... , zd are elements of S that generate the maximal ideal of the fiber
S/mS, then S®RN + I(S ®R M) is tightly closed in S®RM for every ideal I
generated by monomials in z\, ... , zd.
Proof. We replace S by S, which only makes the problem harder. By (7.19),
N is tightly closed in M, and the result follows from (7.15b).   □
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(7.23) Remark. We believe, but do not know, that if (R, m, K) —> (S, n, L)
is smooth and K —► (S/mSJ is separable then the induced map of completions
is smooth as well. There is no problem if L/K is separable or if S is essentially
of finite type as an F-algebra. However, in general, we do not know that a flat
local homomorphism (R, m, K) —» (S, n, L) of complete local rings is smooth
if K —► S/mS is geometrically regular. The problem is that we do not know
that, when R is a domain, one can deduce the smoothness of the generic fiber
from the smoothness of the closed fiber (although it is possible to carry out the
argument either if L is separable over a finite purely inseparable extension of K
or if R has a desingularization). Cf. [EGA], IV (Seconde Partie), Remarques
(7.5.4)(i) and Proposition (7.9.8).

We next prove a basic result concerning when F-regularity is preserved by a
regular moronism.

(7.24) Theorem. Let (R, m, K) —> (S, n, L) be a flat homomorphism of Noe-
therian local rings of characteristic p. Suppose that S —> S is regular and that
the singular locus in S is closed.

If R is weakly F-regular and the generic and closed fibers of the map R —► S
are regular, then S is weakly F-regular.

In particular, if R -» S is a flat local homomorphism of local rings such
thatR is weakly F-regular and S is excellent and the generic and closed fibers
are regular, then S is weakly F-regular.
Proof. By Theorem 7.21, there is a test element c in R for both R and S.
Since R is weakly F-regular it is normal, and, hence, approximately Gorenstein
(cf. [HH4] (8.5) and [Ho4]): that is, there is a decreasing sequence {/(}( in R
of w-primary irreducible ideals cofinal with the powers of m . Choose elements
z{, ... , zd e S whose images in S/mS are a regular system of parameters. By
(7.10c) the ideals /( = ItS + (z[, ... , z'd)S form a sequence of irreducible
ideals of S cofinal with the powers of n . To prove that S is weakly F-regular
it will suffice to show that Jt is tightly closed for every / (every ideal of S is an
intersection of rc-primary irreducible ideals /, and each S/J is embeddable
in some S/Jt). But this is immediate from part (iv) of Theorem 7.12, since
the socle in R/It is one-dimensional.    D

We next globalize this result:
(7.25) Theorem. Let R —► S be aflat homomorphism of Noetherian rings of
characteristic p.

(a) Suppose that (R°)~XS is regular and that S is locally excellent (or that
for each maximal ideal m of S the singular locus in Spec5m is closed
and the map from Sm to (Sm J is regular). If for every maximal ideal m
of S having contraction P to R, Rp is weakly F-regular and Sm/PSm
is regular, then S is weakly F-regular.

(b) Suppose that R is weakly F-regular, that S is locally excellent, and that
R -> S has regular fibers over both minimal primes of R and over closed
points. Suppose that every maximal ideal of R lies over a maximal ideal
of S, which is the case if R is a Hilbert ring and S is finitely generated
as an R-algebra. Then S is weakly F-regular.

(c) Suppose that R is F-regular, that S is locally excellent, and that R-> S
has regular fibers. Then S is F-regular.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(d) Suppose that R and S are finitely generately algebras over a field K.
If R is weakly F-regular and the fibers over minimal primes and over
closed points are regular, then S is weakly F-regular.

Proof, (a) is immediate from (7.24), since the issue of whether S is weakly
F-regular is local on the maximal ideals of S by Corollary (4.15) of [HH4],
and the hypotheses on S pass to its localizations at maximal ideals, (b) then
follows at once, (c) follows from (7.24): we need to show that Sq is weakly
F-regular for every prime ideal Q of S, and if Q lies over F in R we know
that Rp is weakly F-regular and that all fibers of Rp -» Sq are regular.

The conclusion in (d) follows from (b), since algebras finitely generated over
a field are Hilbert rings and are excellent.   □

(7.26) Remark. We cannot hope to prove that if R is weakly F-regular then
R[x] is weakly F-regular for an indeterminate x, unless we can prove that
weakly F-regular implies F-regular. To see this, note that if (R, m) is local
and F is a prime ideal of R such that dim R/P = 1, then there are maximal
ideals n of R[x] lying over P, e.g., PR[x] + (rx - l)F[x] where r is any
element of m - P. If we knew that F[x] is weakly F-regular, then since
R[x]„ is faithfully flat over RP it would follow that Rp is weakly F-regular.
Induction on dim R/P would then give this for all primes F C m .

(7.27) Remark. We now know that when R -> S is a flat local homomorphism
from a weakly F-regular ring R to an excellent ring S such that both the
generic and closed fibers are regular, then S is weakly F-regular. Roughly
speaking, what makes this work is that a tightly closed module stays tightly
closed after base change if the quotient has finite length and a one-dimensional
socle. However, we should point out that under the given conditions, it is not
true that tight closure commutes with base change in general: cf. Example 6.18.

(7.28) Corollary. If R is a weakly F-regular (respectively, F-regular) local
ring of characteristic p and if R is excellent (or the map R —> R is regular),
then R is weakly F-regular (respectively, F-regular).

In Theorems 7.29 and 7.31 below we indicate some important special cases
of our results on base change: in fact, in some of these cases we can improve
on our earlier results. It is worth noting that there are particularly strong results
concerning passage from R to L®kR when L is a finite separable extension of
K. To this end, if R is a Noetherian ring of characteristic p , let xqi (R) (respec-
tively, Xg'(R)) denote {c G F : if x G 0* in some finitely generated F-module
M then cxq — 0 in Fe(M) for all q > q'} (respectively, the intersection of the
contractions of xq>(B) for local rings B that are completed local rings of R).
(If any element of xq>(R) or xq'(R) is in R° then xq>(R) (respectively, v(R))
is the ideal generated by the <?'-weak (respectively, completely stable <?'-weak)
test elements of R.)

(7.29) Theorem. Let R be a Noetherian ring of characteristic p containing a
field K.

(a) Let L be a finitely generated (respectively, an arbitrary) separable field
extension of K, and suppose that R is locally excellent (respectively,
essentially of finite type over K).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(i) If R is F-regular, then L ®K R is F-regular. If R is weakly
F-regular and L is algebraic over K then L®K R is weakly F-
regular.

(ii) If R has a weak test element and N C M are finitely generated R-
modules such that N is tightly closed in M, then (L®KR)®RN is
tightly closed in (L ®% R) ®r M (of course, these may be identified
with L®k N and L®k M, respectively) over L®k R-

(a °) Let L be a finite separable extension of K. Let S = L®k R.
(i) If R is weakly F-regular,  F-regular, or both F-rational and a

homomorphic image of a Cohen-Macaulay ring (= F-rational and
Cohen-Macaulay), then so is S.

(ii) If N c M are finitely generated R-modules such that N is tightly
closed in M then S ®rN is tightly closed in S ®rM . Moreover,
xq,(S) = xq,(R)S and xq>(S) = xq,(R)S.

(b) Let L be a finite (respectively, arbitrary) purely inseparable extension
field of K linearly disjoint from the total quotient ring of R (and such
that R is essentially of finite type over K) and let P be a prime ideal of
R such that P(L®kRp) is radical (i.e., such that L is linearly disjoint
over K from Rp/PRp), which implies that P(L ®k Rp) is maximal.
Then L ®k Rp is weakly F-regular.

Proof. In all parts of the theorem, when L is not restricted to be finitely gen-
erated over A" the hypothesis that R be essentially of finite type over K is
imposed simply to guarantee that L®k R be Noetherian (it will be essentially
of finite type over L). The case for arbitrary L can then be deduced from
the case where L is finitely generated over A" by a direct limit argument: see
(6.14a). Thus, we assume henceforth that L is finitely generated over K (and,
hence, finite in case (b)).

In part (a), since K —► L is separable, it is smooth, and so R —► L ®k R
is smooth. Since each local ring of L®x R is essentially of finite type over a
local ring of R, L®kR is locally excellent, (ai) now follows, in the F-regular
case, from Theorem (7.25c) or from the proof of (a0 i) given below, while (ai)
follows, in the weakly F-regular case, from Theorem (7.25b). (aii) follows from
part (b) of Theorem 7.18: since L is free over K, L®kR is free over F. We
leave part (a ° ) for last.

In part (b), we have that L®k R is reduced and so may be identified with
a subring of R°° : thus, it is a flat purely inseparable extension of R, and we
may apply (6.17b).

It remains to prove (a0 ). We first consider the final statement. Let / denote
xq>(R) (respectively, xq>(R)) and let / denote xq>(S) (respectively, xq>(S)).
First suppose that L is Galois over K. Then J is also stable under the induced
action of G = Gal(L/A") on L ®K S and so J = L ®K (J C\ R). (This is a
vector space fact: L®KS is a direct sum of simple modules L over the twisted
group ring L[G] = T,geGLS with (Xg)(X'g') = (Xg(X'))(gg'), and so every G-
stable L-subspace of L ®K S is a direct sum, as an L[G]-module, of copies
of L, and is therefore extended). Since an element of R that becomes a q'-
weak test element (or a completely stable one) in a faithfully flat extension
must already be one, / will have the form L ®k h for a certain ideal Iq of
R contained in F   To complete the proof in the Galois case, it remains toLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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show that I Q J when we make a finite separable extension. Before pursuing
this point, we observe that when L is not Galois we can consider L' D L
finite Galois over K (and L), and the corresponding ideal J' in L' ®K R.
Then J = J' f)S and J' = L' ®k I (two instances of the Galois case) so that
7 = (L' ®K I)n(L®KR) = L®KI = IS.

It remains to show that an element of / remains an element of J . The key
point is that every finitely generated S-module is a direct summand of a module
extended from R. We can embed M into L[G]®lM : as an 5-module, this is
a direct sum of copies of M. Call this module N. We next claim that for each
L[(7]-module N, we have N = L ®k Ng , where G acts on L canonically. For
this, it suffices to show that L[G], as a left module over itself, is isomorphic
with a direct sum of copies of L with the canonical structure. In fact, there is
an L[G]-module isomorphism of L®k L with L[G] (where the L[G]-module
structure on L®kL is induced by the canonical structure on the first copy of L)
sending X®p to T,geGXS{P-)g e L[G]. Cf. [SGA4±], p. 14. The fact that this
map of L-vector spaces has rank \G\ is equivalent to the fact that the elements
of G, thought of as functions from L to L, are linearly independent over L.
Since N = L[G] ®k M the action of G on N is F-linear, and so NG is an
F-module. In fact, NG a (L[G]G) ®K M = (Lfi) ®K M where 0 = Y,g&G S ■ as
an R-module this is isomorphic with R(L ®K M) = Af'Gl.

It is now quite easy to see that an element c G xq'(R) is in xq'(S) for
S = L®k R: the point is that since every S-module is a direct summand over
S of one of the form L®K M, where M is an F-module, it suffices to check
the defining condition on modules of the form L®KM, where the tight closure
of 0 is L ®K 0*M .

Finally, suppose that c G xq< (R). Suppose that Q is a prime ideal of S lying
over F in R. We know that c G xq>((RpJ). Now (Sq)' is a local ring, at one
of maximal ideals, of L ®K (RpJ. Thus, it suffices to show that if (R, m , ft)
is a complete local ring containing a field A", L is a finite separable extension
of A", and c G xq>(R), then for each maximal ideal Q of S if T — (L ®K R)q
then c g xq<(T).

Let L = K[z]/f(z)K[z]. L®K R is a product of local rings and T is one of
the factors: in fact the maximal ideals in L®kR correspond to the irreducible
factors of / over the residue field ft of R, the factorization lifts to F, and so
T will have the form R[z]/g(z)R[z] where g is a monic polynomial that is
irreducible and separable modulo m . Now m T is the maximal ideal of T and
ft' = T/mT Si ft[z]/g(z)ft[z] is a separable extension of ft. It follows from
the discussion in the final paragraph of (7.11) that T = ft'®aR and so we may
apply the result already established for ordinary test elements when one tensors
with a finite separable extension of a subfield to conclude that c e xq< (T).

Now suppose that N is tightly closed in M. It is clear that if L' ®K N is
tightly closed in L' ®K M for a larger field L' then L®K N will be tightly
closed in L®K M. Hence, we may assume, as above, that L is Galois over
K with Galois group G. If d e S° is used in a given tight closure test we
may use Y\g&G g(d) G R° instead. Thus, we may perform all tight closure tests
over S with test elements in R° . It follows easily that (L ®k N)* n M = N.
But, since (L ®k N)* is a G-stable L-vector space we have that (L ®k N)* =
L ®K ((L ®K N)*nM) = L®K N.
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Now suppose that R is weakly F-regular. We know from the argument above
that every 5-module is a direct summand of an extended F-module. Since 0
will be tightly closed in every module of the form S ®r M, it is clear that S is
weakly F-regular. If F is F-regular, we note that each local ring Sq of S is
the local ring of L®KRp , where P is the contraction of Q, at a maximal ideal.
Since Rp is weakly F-regular, so is L®K Rp, and the result follows. Finally,
if R is F-rational, C-M, and n is any maximal ideal of S lying over m in
R, we may choose xi, ... , xd G m so that they form a system of parameters
in Rm . The ideal (x\, ... , xd)Rm is tightly closed in Rm , and remains so in
L®k Rm — Sm . Since it is generated by a regular sequence it remains tightly
closed when we localize further to S„ (cf. (4.5)). Since the x; form a system
of parameters for S„ , we see that Sn is F-rational, and n was arbitrary.   □

Remark. We want to emphasize that we do not know, even for a weakly F-
regular algebra R finitely generated over a field K, that S = L®k R is again
weakly F-regular. We do not know this even when L = K(t), a pure transcen-
dental extension of transcendence degree one. The problem is that maximal
ideals of S may lie over prime ideals of F that are not maximal. In fact, if we
knew that S is weakly F-regular when we make a pure transcendental exten-
sion of transcendence degree one, it would follow that every weakly F-regular
finitely generated A"-algebra is F-regular. For, by induction, we would get this
result for arbitrary pure transcendental extension fields of finite transcendence
degree, and then by a direct limit argument it would follow, using (6.14a), for all
pure transcendental field extensions. The result of M. P. Murthy given in (8.1)
would then suffice to show that the original ring R must have been F-regular.
We are grateful to Murthy for pointing out an error in an earlier version of
this manuscript, as well for allowing us to communicate the arguments given in
(8.1).
(7.30) Discussion. The proof of Theorem 7.31 below is based on part (b) of
Theorem 7.18. However, a good deal of insight can be achieved by utilizing
instead the fact that polynomial and power series rings have many automor-
phisms, and an argument based on this idea is given following the proof of
Theorem 7.31.

Let R be a Noetherian ring containing infinitely many units aj such that if
i ^ j then a, — a; is a unit. This condition is satisfied whenever R contains
an infinite field or a local ring with an infinite residue field.

Let x denote a string x\, ... , xn of indeterminates over R. Let 5" = R[x]
or F[[x]]. Let M be a finitely generated R-module. The F-automorphisms 6
of S induce R-linear maps from S®rM to itself (we may also think of S®rM
as Af[x] or Af[[x]], as the case may be). Suppose that a submodule W of
S®RM is stable under all these maps. We want to make the observation that if
£„ uvxv g W, then each uvxv g W. (Here, v denotes a variable rc-tuple of
nonnegative integers and the sum is finite in the polynomial case and possibly
infinite in the power series case.) By induction on the number of variables, we
may reduce to the case n = 1.

Now, for every unit a e R there is a unique (continuous in the power
series case) R-automorphism 6a of S sending x to ax: if / = £,- r,x' then
8a(f) = Y,jria'x' G J . The induced map on S ®rM sends w = Yliuix' to
wa = £, a'UiX'.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Fix a positive integer N and choose a0, ... , a^ to be units of R such
that if i t£ j then a, - aj is a unit of F : this is possible because of our
hypothesis on R. If w = ][\ w,x' G W, then every ioQ = £)(- a'UfX' G W, since
wa = 0a(w). Applying this with a = a0, ... , aN we find that J2^=o <*/(«/■*') G
W/ + xAr+1(5'®ij Af) for all ;'. Since the size W+l Vandermonde matrix (aj)
is invertible, all the elements «,x' are in W + x^+^S ®.r Af) for i < N + 1.
But then every u,x' is in W7 + x^+^S ®« M) for all JV, and it follows that
every w,x' G ff.

(7.31) Theorem. Let R be a locally excellent Noetherian ring of characteristic
p. Let x denote a string of indeterminates x\, ... , x„.

(a) If R is weakly F-regular then R[[x]] is weakly R-regular. If R is
weakly F-regular and a Hilbert ring then R[x] is weakly F-regular.

(b) If R is F-regular then R[x] is F-regular.
(c) Suppose that R has a weak test element. If S = R[x] or R[[x]] and

N c M are finitely generated R-modules such that N is tightly closed
in M, then S ®r N is tightly closed in S ®rM .

Proof. Since F —> F[x] is smooth, the statements in parts (a) and (b) about the
polynomial ring case are immediate from parts (b) and (c) of Theorem 7.25.
To complete the proofs of (a) and (b), it only remains to check the statement
about R[[x]] in part (a). Every maximal ideal Q of F[[x]] can be written as
mF.[Ml + (x)R[[x]], where m is a maximal ideal of F. It suffices to show
that the completion of F[[x]]<2 is weakly F-regular for each such Q. The
completion is isomorphic to (Fm)"[[x]]. Since Rm is excellent, it has a weak
test element, and so (RmJ is weakly F-regular. The result now follows from
part (a) of Theorem 7.25.

It remains to establish (c). In the polynomial ring case this is immediate from
Theorem (7.18b). In the power series case the fact that F[[x]] is n-flat over R
together with the fact that R has a weak test element enable us to reduce to the
case where M/N is killed by a power of a maximal ideal m of R. As usual,
we may assume that M = M/N and 0 is tightly closed. This remains true
when we replace R by (Rm)~. If 0 is tightly closed in Af[[x]] over (Fm)"[[x]]
this is certainly true over R[[x]]. Thus, we may assume that F is a complete
local ring, so that R —> F[[x]] is smooth, and the result now follows from part
(b) of Theorem (7.18).   □

We now comment on an alternative partial proof for part (c) in the case
where R contains an infinite field K. It then follows from (7.30) that whenever
£)„ uvxv G 0* so does each uvxv . Thus, it suffices to show that if uxv is in
0* in M[x] or M[[x]] then u is in 0*M . If there is a counterexample we can
preserve the fact that u is not in 0^ while replacing R by the completion
of its localization at a suitable maximal ideal. The result is now clear, since
we may use a weak test element c G R°, and if cuq = 0 in Fg(S ®r M) =
S ®R Fe(M) = Fe(M)[x] or Fe(M)[[x]], then cuq = 0 in Fe(M).

Our next objective is to record improved versions of the results of §6. The-
orem 7.32 below strengthens (6.1).
(7.32) Theorem. Let R be a Noetherian ring of characteristic p.

(a) Let (R, m, K) be a local ring such that R -> R has regular fibers andLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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let c G R° be any element such that (Rred)c is F-regular and Gorenstein.
Then c has a power which is a completely stable q'-weak test element
for R. If R is reduced, then c has a power which is a completely stable
test element for R.

(b) Let R be an algebra of finite type over a local ring (B, m, K) such that
B —> B is smooth (e.g., such that B is excellent). Let c be an element of
R° such that (Fred)c is F-regular and Gorenstein. Then c has a power
which is a completely stable weak test element for R. If R is reduced
then c has a power which is a completely stable test element for R.

Proof. We can argue precisely as in the proof of Theorem 6.1: we pass to the
reduced case, and then we need to see that (R)c (respectively, for (b), that
(R ®b B)c) is F-regular and Gorenstein. Since R ^ R has regular fibers
(respectively, B —► B is smooth and, hence, R -> R®B B is regular) we have
that (R®BB)C is F-regular (since Rc is, and we may apply part (c) of Theorem
7.25) and Gorenstein (since Rc is, and so are the fibers).   □

We also obtain an improved version of Theorem 6.21 on the existence of
common test elements. (Likewise, Theorem 6.22 is valid with the weakened
hypothesis that (R°)~xSTe<i be F-regular and Gorenstein instead of regular.)
(7.33) Theorem. Let (R, m, K) —* (S, n, L) be aflat map of local rings such
that for some c G R°, (STe<i)c is F-regular and Gorenstein. (There will be such a
c if (R°)~xSTe<i is F-regular and Gorenstein and the locus which fails to satisfy
these conditions is closed in SKi.) Suppose that S -» S has regular fibers. Then
c has a power that is a completely stable q'-weak test element in all of the rings
R, R, S, and S. If S is reduced then c has a power that is a completely stable
test element in all of the rings R, R, S, and S.
Proof. The argument is the same as for (6.21): we can pass to the reduced case,
and we then observe that (S)c is F-regular and Gorenstein. The rest of the
argument is the same as for (6.21).   □

(7.34) Corollary. Let (R, m, K) be a reduced local ring such that for every
x G m, Rx is Gorenstein and F-regular. Suppose that R is excellent (or that
R^> R has regular fibers). Then R has an m-primary ideal whose intersection
with R° consists of test elements (thus, x(R) is m-primary).
Proof. This is immediate from (7.32).    □

(7.35) Discussion. If (S, n, L) is a local ring then x(S) is the intersection
of the annihilators of 0^ as M runs through all S-modules of finite length.
S has a test element, iff some element of x(S) is in S°, i.e., iff x(S) is not
contained in any minimal prime if S, in which case x(S) is the same as the
ideal generated by all the test elements. The test elements in S always coincide
with x(S) n S° . See [HH4], (8.23) and its proof, where it is also shown that
one need only let Af run through all finite length submodules of Af which are
essential extensions of a copy of K. Moreover, it suffices to let Af run through
any family of finite length essential extensions of K whose union is the injective
hull of K, since every finite length essential extension will be embeddable in
one of these.

We next observe:License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(7.36) Theorem. Let (R, m, K) -* (S, n, L) be aflat local homomorphism
of complete local rings such that L/K is separable and the closed fiber S/mS is
regular. Then x(S) = x(R)S .
Proof. Let E be an injective hull for K over R and let Af, denote Ann^ m',
which may be identified with an injective hull for K over R/m'. Let zx, ... ,
zd be elements of n whose images in S/mS are a regular system of parameters.
Let J, = (z[, ... , z'd) and W, = (S/J,) ®R Mt. Then by (7.10d), limW, is an
injective hull for L over S, and by (7.35), x(S) = C]tAnns0*y . By part (b)
of Theorem 7.12, 0*^ = (S/J,)®R (0*Mi). Let S3, = Ann^O^j. Since S/J,
is R-flat by (7.10b), the annihilator of'(S/J,) ®R (0*Mi) in S/J, is <B,(S/Jt),
and it follows that the annihilator of (S/J,) ®r (0*m ) in S is *B,S + J,. Thus,
x(s) = r\t(%s+j,) = r],,h(%s+jh) = a(a(®'«5+/*)) = a»«s. now,
by (7.35), t(R) = [),*&,. Since R is complete, by Chevalley's theorem, for
every positive integer N, <8, c x(R) + mN for t » 0, and it follows that for
every N > 0, x(R)S = (r\,<B,)S c aO8'5) Q *{R)S + ™NS, which implies
that x(R)S = ([), 03(5), which is x(S).   D

(7.37) Remark. So far as we know, it may be true that whenever (R, m, K) —>
(S, n, L) is a flat local homomorphism such that R is complete, S/mS is
geometrically regular over K, and (STe(i)d is regular for some d e R°, then
(zi, ... , Zf,)M is tightly closed in Af for every finite length module Af in
which 0 is tightly closed, where the z 's are any elements in n whose images
in S/mS are a system of parameters. (We are no longer assuming that L/K
is separable.) If this is true, one obtains by exactly the same proof given for
Theorem 7.36 that if (R, m, K) -> (S, n, L) is a flat local homomorphism
such that R is complete, S/mS is geometrically regular over K, and (STea)d is
regular for some d G R° (this is needed to insure the existence of a common test
element), then x(S) = x(R)S. Once this is known it will also follow that if c is a
completely stable test element in F, S is excellent, and R —► S is smooth, then
c is a completely stable test element in S. The point is that one needs to see
that for every prime Q of S, the image of c is a test element in (Sq)', and one
knows that the image of c is a test element in (RpJ, where F is the contraction
of Q to R. At this point one does not know that (Rp)'—> (SqJ is smooth (see
Remark 7.23), but we do not need this: only that there exists d G (Rp)° such
that ((SQ)Te<i)d is regular and that the closed fiber is geometrically regular. Since
Rp —> Sq is smooth by hypothesis and Sq —► (Sq)' is smooth (S is excellent:
this is the only part of excellence we need), Rp —► (SqJ is smooth, and so the
closed fiber, which is the same as the closed fiber of the map (RpJ —► (SqJ,
is geometrically regular. Since we can choose d G (Rp)° such that ((Rp)Ted)d
is regular and since (R/Ored —* (Solved is smooth, we have that ((SQ)Te<i)d is
regular. Since Sq -> Sq is smooth, ((SQjte(i)d is regular. Thus, the image of c
is a completely stable test element in S.

Although we cannot, in general, handle the situation where fibers are geomet-
rically F-regular rather than regular, we can handle products in certain cases.
We shall discuss both ordinary tensor products of algebras of finite type over
a field and complete tensor products of complete local rings with a common
coefficient field.   In both cases, the key to the theory is the existence, underLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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certain hypotheses, of test elements of the form c ® d or c®d. We need some
preliminary lemmas:
(7.38)   Lemma. Let R be a complete local ring.

(a) Suppose that R has an infinite residue field and let 7 be any property
of rings. Let S = F[[xi, ... , x„]]. Let J be the radical defining ideal
of the closure of the set of primes Q of S such that Sq has property
7. Then J is either the maximal ideal of S or else has the form IS,
where I is a radical ideal of R.

(b) Suppose that R is equicharacteristic. Then the homomorphism R —>
R[[xi, ... , x„]] has regular fibers.

(c) Suppose that R has a perfect coefficient field K c R, and let L3 K be
afield. Then the fibers of the map R -* L[[R]] are geometrically regular.

Proof, (a) J is a radical ideal of S invariant under all automorphisms of S.
We shall prove that such an ideal has one of the two forms specified. We first
consider the case n = 1, so that 5 = F[[x]]. Let / = Ylllo rix' be any element
of J . By the discussion in (7.30), we know that every r,x' G /, and since J
is radical, we see that r,x G J for i > 1 and it follows that / has the form
IS + I'xS where / C /' are ideals of R. For every element u e m, the
maximal ideal of R, there is a continuous automorphism of R[[x]] that fixes
R and sends x to x - u. It follows that IS + I'(x - u)S = IS + I'xS and so
ml' C I. If I' = R then m C I and so J is either the maximal ideal of S or
S itself. If I' Cm we have that I'1 C ml' C I C V , so that Rad/' = Radf.
Since I = J n R is radical, we must have I' = I and J = IS.

Now suppose that n > 1. Since every automorphism of

R = R[[x\, ... , x„_i]]
extends to S = R'[[x„]], J' = J f\ R' is a radical ideal stable under every
automorphism of R'. If J is not the maximal ideal of S then / = J'S where
J' is either of the form IR' or else J' is the maximal ideal Q' of R'. But
Q'S is not stable under the automorphisms of 5 which permute the x,. It
follows that J = IS .

(b) For this it suffices to show that when R is a domain the generic fiber is
regular, and it is harmless to replace F by a module-finite extension domain R',
since the new generic fiber is faithfully flat over the original. If the coefficient
field is characteristic 0 or perfect we can choose F' so that it is the integral
closure of a regular ring in a separable finite algebraic extension of its fraction
field, and this proves the result. In characteristic p, if the residue field is
infinite, the radical ideal J defining the singular locus in S = R[[Xi, ... , x„]]
is nonzero and has the form IS where I is an ideal of R or else is the maximal
ideal of S, by (a). We may assume that F is not a field. We then see that J
must contain a nonzero element of R, as required.

(c) Let F be a finite algebraic field extension of the fraction field of R/P,
where F is a prime ideal of R. We must show that F ®R L[[R]] is regular.
Choose a domain D module-finite over R with fraction field F . Then F ®R
L[[R]] SiF®D(D ®R L[[R]]) 3 F ®D (L[[D]]). Thus, we may assume that F
is a domain with fraction field F , and it suffices to show that F ®R L[[R]] is
regular. R is module-finite over a regular ring A = A"[[x]], where x indicates a
string x\,... ,x„, and we have that F ®R L[[R]] = F ®A L[[A]]. We can find aLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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finite algebraic field extension F' of F such that F' is a separable extension of
A"[[x'/?]] for some q = pe (since K is perfect). Since enlarging F to F' only
makes the problem harder and since the separable part of the field extension
will not disturb regularity, we have reduced to the case where F is the fraction
field of K[[xxlq\\. But then F®RL[[R]] is a localization of K[[xx'q]]®RL[[x]]
with F = A"[[x]], and this is F[[x1/<7]], which is regular.   □

(7.39) Discussion. We want to discuss the complete tensor product R®kS in
the situation where (R, m, K') and (S, n, L) are complete local rings, K c R
is a subfield such that the residue field K' of R is a finite algebraic extension
of K, and K is an arbitrary subfield of £. More generally, we want to discuss
M®kN where Af is a finitely generated R-module and N is a finitely generated
^-module. We shall take M®kN to be the completion of M®kN with respect
to the ideal J = m®KS + R®Kn. Note that (R ®K S)/J Si K' ®K L is finite-
dimensional as an L-vector space and is an Artin ring (which is a complete
intersection over L). It follows that R®KS is a semilocal Noetherian ring
which is local if K' ®k L is a field (e.g., if K' = K). If U\, ... , ur generate
Af and V\, ... , vs generate N it is easy to see that the images of the u, ® Vj
generate M®kN as a module over R ®# S. If R is module-finite over a
complete local ring A containing K and S is module-finite over a complete
local ring B containing K, then we may identify R®kS = R ®A (A®kB)r ® S
and, more generally, M®KN = M ®A (A®KB)B ® N. When S = L, a field
containing K, and K' = K, we may identify R®kL with L[[R]] discussed in
(6.3). When K' and L are both finite algebraic extensions of K, our notion
of complete tensor product coincides with the one given by Serre [S], Chapitre
V, A2.

Note that we can always represent F as a finite module over A = A"[[x]],
where x denotes a string of formal indeterminates. In this case, A®KS =
S[[x]], and R®KS =* R ®A (S[[x]\). Moreover, R®KS is (faithfully) flat over
both R and S1 : in the case of R, one may see this by using the fact that
it is clear when R = A = A"[[x]] and making a base change. In the case of
S, one reduces to showing that R®k is an exact functor on finitely generated
S-modules: this follows from the fact that (R/m')®K is exact for all t, along
with the observation that (R®kN)/m'(R®KN) = (R/m1) ®K N.

We also note that R®a: and ®kS are faithfully flat functors from finitely
generated R-modules and finitely generated S-modules, respectively, to finitely
generated (F®jt»S)-modules (one may also think of these functors as (R®kS)®r
and (R®KS)®S , respectively). Moreover, M®KN Si (M®kS)®r^kS(R®kN) .
(7.40) Lemma. Let R and S be Noetherian rings of characteristic p.

(a) Let R be an algebra finitely generated over a field K such that the total
quotient ring 7 of R is separable over K (i.e., a product of separable
field extensions). Then U = {P G SpecR : Rp is geometrically regular
over K} is Zariski open in SpecR, and contains the minimal primes
of R. Hence, there is an element c e R° such that Rc is geometrically
regular over K.

(b) Let (R, m, K) be complete, reduced, local with coefficient field K such
that for every q = pe, Kxlq[[R\] is reduced (an equivalent statement is
that K°°[[R]] is reduced). Then there exists an element c G R° such
that Kxlq[[R]]c is geometrically regular over Kx>q for all q.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(c) Let (R, m, K) be a complete local ring with coefficient field K. Let D
be a complete local domain with coefficient field LD K, let D' be any
complete local domain between D and Dxlq for fixed q, and let 7, 3"'
be the fraction fields of D, D' respectively. Then 3"' ®d> (R®kD') is
faithfully flat over 7 ®D (R®KD).

(d) Let R, S be complete local rings with coefficient fields K, L (re-
spectively, finitely generated algebras over fields K, L). Suppose that
K c L. Let the symbol " ® " denote complete tensor product ®k over
K in the first case (cf. (7.39)) (respectively, the usual tensor product ®k
over K). Assume that Kx/q[[R\] is reduced for all q = pe (respectively,
that the fraction field of R is separable over K; this is equivalent to the
assertion that Kxlq ®KR is reduced for all q). Let c e R° be such that
Kxlq[[R]]c is geometrically regular over Kx/q for all q (respectively, Rc
is geometrically regular over K). Let d e S° be such that Sd is regular.
Then (R ® S)clgld is regular.

Proof, (a) is a well-known consequence of the Jacobian criterion (cf. [N], §46).
(b) Let A"°°(R) denote [)qKx'q[[R]], which by Lemma 6.6 is an excellent

ring with completion K°°[[R]]. Since K°°(R) -> A"°°[[F]] is smooth, one is
reduced iff the other is. The defining ideal of the regular locus in A"°°(R)
cannot be contained in any minimal prime of K°°(R). Let c be an element
of Ar°°(F)0 in this ideal. Since K°°(R) is purely inseparable over R, we may
replace c by a power which is actually in R° . Thus, c G R° and K0C(R)C is
regular. We claim that Kxlq[[R]]c is geometrically regular over Kxlq for all q.
For if L is a finite purely inseparable extension of Kxlq then L C Kxlq' for
some q' > q and L®K(Kxlq[[R]\) (subscripted ® is the usual tensor product)
a L[[R]J . Since L[[R]] -+ Kx/q'[[R]] - A"°°(F) is faithfully flat, so is the result
of localizing at c. Since A"°°(R)C is regular, so is F[[F]]C.

(c) The ring R is module-finite over a formal power series ring B = K[[y]].
Then 7' ®D, (R®KD') StR®B ((7' ®D> (B®KD'))) and similarly

7 ®D (R®KD) siR®B ((? ®D (B®KD))).

Thus, we may assume without loss of generality that R — B = F[[>>]], and we
need only show that 7' ®D, (D'[\y]]) is flat over 7®D (D[[y]]). By (7.38b) we
can choose c e D- {0} such that Z)[[y]]c is regular and c' G D' - {0} such that
D'[[y]]c is regular. Then d = cc' has a power in D, and so we have d e D
such that D[[y]]d and D'[\y]]d are both regular. Since D[[y]]d -> £>'[[>>]]</
is a purely inseparable extension of regular rings, the map is flat, and this is
preserved by further localization.

(d) Since the composite map S -> R®S -> (F® S)c<Sld is flat, so is Sd ->
(R ® S)c®d . Since Sd is regular, it suffices to prove that the fibers of the map
S -+ (R®S)C axe regular. We are then free to replace S by its quotient D - S/P
by a typical prime ideal F, and we must show that the generic fiber of the map
D -> (R®D)C is regular: if D has fraction field 7 this means that we must show
that 7®d (R®D)C is regular (where all tensor products marked with a subscript
are ordinary tensor products). If D' is a domain module-finite over D with
fraction field 7' then 7' ®D< ((R ® D')c) Si 7' ®T (3" ®D ((R ® D)c)) is faithfully
flat over 7®D ((R ® D)c). Thus, there is no loss of generality in assuming thatLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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D is the integral closure of the regular ring A - L[[x\, ... , x„]] (respectively,
L[xj, ... , x„]) in a finite separable field extension of a finite purely inseparable
extension of the fraction field of A . We give the rest of the proof only for the
complete local case: the modifications needed for the case of algebras of finite
type over a field are completely straightforward.

The separable part of the extension will not affect regularity. This means
that we may assume without loss of generality that D lies between L[[x]] and
Lxlq[[xxlq]] = D'. Let 7' be the fraction field of D'. Then 7' ®D< (R®D')
is faithfully flat over 7 ®d (R®D) by part (c), and so it will suffice to prove
that (7' ®D< (R®D'))C is regular. We have reduced to the case where D =
Lx/q[[xxlq]], and we may simplify notation and write D — L[[x]]. Thus, what
we must show is that the generic fiber of the map L[[x]] -+ L[[F]][[x]]c is
regular, and it will suffice to show that F[[R]][[x]]c itself is regular. It makes
the problem harder to enlarge L, and so we may assume that L = L°° and
hence that L D K°° . We already know that A"°°[[F]]C is regular, and it follows
that this remains true when we enlarge the field K°° to L, by (7.38c). Replacing
R by L[[F]], we see that if Rc is regular then so is R[[x]]c, and this follows
from the fact (7.38b) that the fibers of the map R -> R[[x]] axe regular.   □

Before establishing our main results, Theorem 7.42 and Theorem 7.45, on
products, we need:

(7.41) Lemma. Let (R, m, K'), (S, n, L) be complete local rings containing
afield K such that [K' : K] is finite. Let I, J be finitely generated ideals of
R and S respectively and let ® denote ®K (respectively, ®k) ■ Let M be a
finitely generated R-module and M' a finitely generated S-module (respectively,
arbitrary R- and S-modules). Then:

(a) AmiA/®A/' / ® J - (AnnA/ /) ® M' + M ® (Ann^- J) ■
(b) AnnM0M'(I ®S + R®J) = (Ann^/) ® (Ann^ J).

Proof, (a) Let a : R —► Rs and ft: S —* S' be maps such that the entries of the
matrices are sets of generators for I, J , respectively. The entries of a matrix
for a ® P generate I ® J and

AnnM0M' I ® J = Ker((Af ® A/') ®ms (a ® j3)) a (Af ®R a) ® (M' ®s B).

Ker(Af ®R a) = Annw / and so M ®Ra induces an injection (Af/ Annw /) -»
AF ; similarly, Af' ®s ft induces an injection (Af'/ Ann^- J) -* Af''. Since
® is exact, we have an induced injection of (Af/Ann^f) ® (Af'/ Ann^ /) =
(Af ® M')/(M ® AnnA// J + Annw I®M') into (Af ® M')st such that the corre-
sponding map M®M' -> (Af ® Af')-5' is isomorphic to (M®M')®R®s(a®P).
The result now follows.

(b) AnnMI = Kex(M ® a) (with a as in the proof of (a)); applying ®Af'
yields that (AnnM I) ® M' - AnnM®M> I ® S. Similarly, Af ® Ann^- /' =
AnnM®M' R ® / ■ Thus, AnnM9M'(I ®S + R® J) = ((AnnM /) ® Af') n (Af ®
(AnnA/-/)) = AnnA/f® Ann^f//.    n

(7.42) Theorem. Let (R, m, K), (S, n, L) be complete local rings with co-
efficient fields K, L (respectively, finitely generated algebras over fields K, L)
where K, L have characteristic p and K c L. Suppose that Kxlq[[RTed\] is
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reduced for all q (respectively, that the total quotient ring of Rred is separable
over K). Then:

(a) There are weak test elements c G R° and d e S° such that c® d (in
the complete case we use this notation for c®d) is a weak test element
in R®kS (respectively, R®k S). If R, S are reduced then the word
"weak" can be omitted.

(b) Let N c Af be finitely generated R-modules, and let N' c M' be
finitely generated S-modules. Suppose that N is tightly closed in M
and N' is tightly closed in M'. Suppose either that

(i)   K is perfect or
(ii) M/N and M' /N' are finite length modules with socles of length

one (in the case of finitely generated algebras, if the socle in M/N
is = R/m = K' and the socle in M'/N' = S/n = L', also assume
that K'®KL' is a field).

Then N®KM' + M®KN' (respectively, N®kM' + M®KN') is tightly closed
in M®kM' (respectively, in M ®x Af').
Proof. Except for a few parenthetical comments, we shall give the proof only
for the complete local case and complete tensor products: the argument for
algebras of finite type and ordinary tensor product is entirely similar.

(a) It suffices to do the case where R, S axe reduced. Since S is reduced
and the singular locus is closed we can choose d e S° such that Sd is regular.
By (7.40b) we can choose c G R° such that F1,/9[[R]]C is geometrically regular
over Kxlq for all q . By (7.40d) we have that (R®KS)c<Sld is regular. Since ®k
is exact, c®l and \®d are nonzerodivisors in R®kS , and hence so is c®d.
By Theorem 6.2, c ® d has a power which is a (completely stable) test element
for R®KS.

(b) First off, we can replace Af, Af' by M/N and M'/N'. The assertion
becomes that if 0 is tightly closed in Af and 0 is tightly closed in Af' then 0
is tightly closed in M®kM' . In case (i), where the modules are not assumed to
have finite length, we can nonetheless reduce to that case, since, in each module,
0 will be an intersection of tightly closed submodules whose quotients are finite
length. Since both R, S have weak test elements, by [HH4], (8.13b) we may
assume without loss of generality that each of Af, Af' is killed by a power of
a maximal ideal. (This reduction will also work in the affine case: the residue
fields K', L' at the appropriate maximal ideals of F and S respectively will
be finite algebraic extensions of K and L. Note that the notions of length and
dimension over K or L will be different.) We need to show that if either (i)
K is perfect or (ii) the socles in Af, Af' are one-dimensional (and K' ®k L'
is a field), then 0 is tightly closed in M ®K M': note that since Af, Af' have
finite length, we may write M ®K M' instead of M®KM'.

Let T = R®KS. It is easy to see that Ff(M®KM') Si F|(Ar)®f,(JC)F|(Af').
Here, we might have written " K " instead of " F£(K) ": we have used the latter
notation to make it clear how K is acting on FB(M) and F|(Af').

If the socles in Af, Af' have length one and are generated by u, u' respec-
tively, then the socle in M®kM' is generated by u ® u', since Ru®kSu' =
AnnM m®K AnnM> n = AnnM^M, (m®S + R®n) by (7.41b). In the complete
local case, this socle has length one over R®S. (In the case of affine alge-
bras, the socle still has length one because of the assumption that K' ®K L'License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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is a field.) Thus, if 0 is not tightly closed in M®KM', then u ® u' is in
the tight closure of 0. But then (c ® d)(u ® u')q = (cuq) ® (du'q) = 0 in
F*(M®KM') £ FeR(M)®FeK(K)F§(M') for all q > 0, and this implies that
cuq = 0 for infinitely many q or else that du'9 = 0 for infinitely many q.
By [HH4], Lemma 8.16, if a ring has a weak test element, c' is not in any min-
imal prime, and c'xq = 0 (or is in 0*) for infinitely many values of q , then x
is in the tight closure of 0. Thus, either u G 0*M or u' G 0*M,, a contradiction.

Now suppose that K is perfect. Let c G R° and d e S° be as in part (a), so
that c is a weak test element in R, d is a weak test element in S, and c ® d
is a weak test element in T = R® S. Let 1^ denote the set of all elements v
in Af such that cvq = 0 (where q = pe) and let H^ be the set of all elements
w in Af' such that dwq = 0. Then the set Ye of all elements y G Af ® Af'
such that (c ® d)yq = 0 may be identified with Ve ® M' + M ® We . Since K is
perfect we may identify F|(Af) ®Fe(K) F|(Af') with F^(M) ®K F|(Af'). The
kernel of multiplication by c®d is Xe — (AnnFe(M^c)®M' + M®(AnnFe(M,)d)
by (7.41a). Thus, Ye is the inverse image of Xe under the map Af ®K N —>
FB(M) ®K F|(Af'), where the two copies of K over which we are tensoring
may be thought of as the same (if K were not perfect, we would have to write
Ffr(K) for the second). Now, quite generally, given maps of F-vector spaces
a : M —> H, B ; M' —> H', the inverse image under a ®k P of a subspace of
the form H0 ®K H'+ H ®K H^ C H ®K H' is a-{(H0) ®K M' + M ® B~X(H^) :
this follows from the injectivity of the tensor product over K of the injective
maps M/a~x(H0) -► H/H0 and M'/p-^Hfi - H'/%. The statement that
Ye may be identified with Ve ®k M' + M ®K We now follows.

Let us suppose that c, d, and c ® d are all #'-weak test elements, where
q' = pe'. If 0 is not tightly closed in M ®k N we see that there is a nonzero
element in C\e>ei(Ve ®k Af' + M ®k We) in M ®k M'. The result is now
immediate because from part (c) of Proposition 7.9 we know that Ve = 0 and
We = 0 for e » 0.   □

(7.43) Example. We can obtain an instructive example by modifying Example
6.18. Let A be a field containing an element t that is not a pth power, let
L = K[9] where 9 = tx">, let R = K[[x, y, z,, ... , z„]]/(/) where / =
xp - typ - J2"j=\ zj where every hj is an integer strictly bigger than p and
not divisible by p (for definiteness, we may take all the hj to be p + 1). Let
S = K[[u, 0u]] c L[[u]], where u is a new indeterminate. Then the prime
ideal P = (zj)R is tightly closed in S, but F®*.? is not tightly closed in
R®kS : ux - udy is in the tight closure but not in the ideal (its pth power is
up(xp-typ)e(zh/)c(zp)).

(7.44) Definitions and discussion. Let R be a Noetherian F-algebra where
K is a field of characteristic p. We say that R is geometrically weakly F-
regular (respectively, geometrically F-regular) over K if for every finite purely
inseparable extension K' of K, AT' ®# R is weakly F-regular (respectively,
F-regular) over A. Note that if F is geometrically weakly F-regular over K
then, in particular, for every F-subalgebra T of R, if K' is a finite purely
inseparable extension of K, K'®kT <z K'®KR is reduced. Thus if T = L c R
is a field, then L is separable over K and L[K°°] c L°° may be identified with
L ®K K°°.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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If R is (essentially) of finite type over a field L containing K then K°° ®k
RSiK°°®K (L ®L S) Si (L[K°°]) ®LR if L is separable over K. Thus, R is
geometrically (weakly) F-regular iff A"°° ®K R is (weakly) F-regular, since the
latter is faithfully flat over K' ®K R for K' c K°° finite over K and is the
direct limit of these in a system with faithfully flat maps (cf. (6.14a)). Notice
that it is possible that L[K°°] ®L R is weakly F-regular even though L is not
separable over K: this occurs, for example when R = L.
(7.45)   Theorem. Let R and S be rings of characteristic p.

(a) Let (R, m, K) and (S, n, L) be complete local rings with coefficient
fields K and L and suppose that R and S are weakly F-regular. Then
R®kS is weakly F-regular.

(b) Let R, S be finitely generated algebras over fields K and L with A" c
L.

(i) Suppose that Rm, Sn are weakly F-regular for maximal ideals
m, n such that (R/m) ®K (S/n) is a field. Then (R ®K S)q is
weakly F-regular, where Q is the maximal ideal m®KS+R®xn .

(ii) Suppose that R is geometrically weakly F-regular over K, and
that S is geometrically weakly F-regular over K (respectively,
that L[K°°] ®R S is weakly F-regular over K). Then R®k S is
geometrically weakly F-regular over K (respectively, weakly F-
regular over K).

Proof, (a) Because R, 5 are weakly F-regular, they are normal and, hence,
approximately Gorenstein (cf. [Ho4] and [HH4], (8.6)). Thus, there are de-
creasing sequences {/,},, {/,},, respectively of m- (respectively, «-) primary
irreducible ideals cofinal with the powers of m (respectively, n ) in R (respec-
tively, S). Then (R/I,)®k(S/J,) has a one-dimensional socle (cf. the proof
of (7.42bii)) and so {Ii®kS -I- F®jf/,}, is a sequence of irreducible ideals in
R®kS primary to the maximal ideal Q and cofinal with the powers of Q.
Thus, it suffices to check that I,®kS + R®kJi is tightly closed for every t,
which is immediate from (7.42bii).

The proof of (bi) is virtually identical to the proof of (a): simply use the
affine case of (7.42bii).

To prove (bii), first note that the discussion in (7.44) permits us to reduce
to the case where K is perfect (replacing K, L, R, S by K°°, L[K°°],
K°° ®K R, and L[K°°] ®L S Si K°° ®K S, respectively: K°° ® (R ®K S) Si
(K°° ®K R) ®K°° (L[K°°] ®L S)). (In the parenthetical case we do not have
this last isomorphism, but it is true that (F°° ®a: R) ®a:°° (L[K°°] ®l S) =
L[K°°]®L (R®KS) is faithfully flat over R®KS, which permits the reduction.)
Thus, we henceforth assume that K is perfect.

Let Q be an arbitrary maximal ideal of R®kS , and suppose it lies over the
(necessarily maximal) ideal m c R. It will suffice to show that (R ®K S)Q is
weakly F-regular. Let ft be a finite algebraic extension field of R/m which is
normal over K : since K is perfect, ft is a finite Galois extension of K. Since
K —► ft is smooth, so are R —» ft ®k R, and S —► ft ®k S = (ft ®# L) ®lS ,
and it follows from (7.25d) that Q®K R and Q®k S axe weakly F-regular.
Choose a maximal ideal Q' of ft ®K (R ®jc S) lying over Q. It will suffice
to show that ft ®K (R ®K S))Q> , which is faithfully flat over (R ®K S)Q, is
weakly F-regular. Q' lies over a maximal ideal m' of ft ®K R which in turnLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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lies over m in R. Thus, m' corresponds to a maximal ideal of ft ®K (R/m).
Since ft is a normal extension of K containing R/m, each such maximal ideal
corresponds to a F-embedding of R/m into ft, and has ft as its residue field.
Thus, (ft ®K R)/m' Si ft.

Now ft ®K L is a finite product, FT- Lj» °f nelds Lj D ft, and ft ®K (R ®k
S) = (ft ®K L) ®l (R ®k S) has a corresponding decomposition as fT Ly ®l
(F®^^). We may choose 7 so that the point Q' corresponds to a point Q" of
Spec(L, ®L (R ®K S)). We may then replace K by ft, L by the field Lj D ft
chosen just above, R by ft®/t:F,and S by Lj®LS. Note that Lj®K(R®KS) =
(ft ®a: F) ®n (Lj ®L S), and so (ft ®K (R ®k S))q, Si (Lj ®K (R ®K S))Q» =
((ft ®K R) ®n (Lj ®L S))Q„ .

Changing back to our original notation, we see that we may assume without
loss of generality that R/m = K. But then the maximal ideals of R®K S
lying over m simply correspond to the maximal ideals n of S, and we have
Q = m®K S + R® n . We are now in the situation of (bi), and the proof is
complete.   0

(7.46) Corollary. If R is a finitely generated algebra over afield K of char-
acteristic p and R is geometrically weakly F-regular over K then ft ®k R is
geometrically weakly F-regular over ft for every field ft D K.
Proof. It suffices to prove that ft00 ®K R is weakly F-regular. Since R is geo-
metrically weakly F-regular, and ft00^00] = ft00 is weakly F-regular, this is
immediate from the parenthetical version of (7.45bii), taking S = L = ft00 .   a

(7.47) Remark. In (7.43bii), one does need the geometric weak F-regularity
of R to conclude that R®k S is weakly F-regular: S might be L[K'] with
K' C F°° . On the other hand, once this is assumed, it should not be necessary
to assume that L[K°°]®KS is weakly F-regular to insure that R®KS is weakly
F-regular: the weak F-regularity of -S itself should suffice. (One cannot take,
for example, F = K' c F°° , since this is not geometrically weakly F-regular
over K.) While we have not been able to prove a stronger result, one expects
weak F-regularity to behave quite similarly to regularity in the way that it is or
is not preserved in products and under base extensions. This is one reason for
thinking that a stronger result should hold. If F is geometrically regular over
K and S is weakly F-regular then one does, in fact, have the stronger result,
since S -» R®k S has a weakly F-regular base and regular fibers and we may
apply Theorem 7.25d.

8. Weakly F-regular affine F-algebras are F-regular
over "big" fields k .

The proof of the result below in the case where the field is uncountable was
shown to us by M. P. Murthy, who also suggested that the version given here
should be true.
(8.1) Theorem. Let K be a field of characteristic p of infinite transcendence
degree over its prime field and let R be a finitely generated K-algebra. Suppose
that R is weakly F-regular. Then R is F-regular.
Proof. Since F is weakly F-regular it is a normal ring, and, hence, a finite
product of domains.  It suffices to consider each factor separately.  Thus, weLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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may suppose without loss of generality that F is a domain.
We first treat the case where the field K is uncountable, utilizing an argument

of M. P. Murthy. We want to show that for every multiplicative system W
of F, the ring W~XR is weakly F-regular. Since every ideal of this ring
is expanded from R, if the condition fails there is an ideal I of R such
that IW~XR is not tightly closed in W~XR. Choose an element u of the
tight closure not in the ideal. After multiplying by an element of W, we may
assume that u e R. It follows that there is an element c G R° such that for
all nonnegative integers e there is an element /,e(T such that cfeuq G /[<?'.
We see at once that if we replace W by the multiplicative system generated by
all the fe, we obtain a new counterexample in which W is countable. Thus,
there is no loss of generality in assuming that W is countable. Moreover, we
may choose a maximal ideal m of the ring S - W~XR such that the image
of u in Sm is not in ISm , although it evidently is still in the tight closure of
ISm. It follows that Sm is not weakly F-regular. But the contraction F of
m to F must be a maximal ideal of R. (This is well known: the point is that
if the domain R/P is not a field, it cannot become a field when one localizes
at a countable multiplicative system if K is uncountable. To see this, write it
as a module-finite extension of a polynomial ring, replace each element of the
multiplicative system by a nonzero multiple in the polynomial ring, and use the
fact that a polynomial ring in one or more variables over an uncountable field
contains uncountably many irreducible elements that are not associates.) But
Sm = Rp, and if F is maximal, Rp is weakly F-regular by Theorem 3.4b.

We next treat the case where K is only assumed to have infinite transcen-
dence degree over its prime field. Let A be an uncountable index set and let
{zx : X G A} be a family of algebraically independent indeterminates over R
indexed by A. We write K(z) for the purely transcendental extension of K
obtained by adjoining all the zx . Choose a nonzero element c e R such that Rc
is regular. Let T = K(z)®kR,so that Tc may be identified with K(z)®#Rc.
Then Tc is regular (when the set A is finite we have a localization of a polyno-
mial ring in finitely many variables over Rc, and the general case then follows
easily by a direct limit argument). By replacing c by a suitable power we may
assume that c is a test element for T. To complete the proof, it will suffice
to show that T is weakly F-regular, for then it follows from the first part of
the proof (since K(z) is uncountable) that T is F-regular, and since T is
faithfully flat over R, R will be F-regular as well.

Next, we may choose a subfield L of K finitely generated over the prime
field of K containing all the coefficients of the polynomials occurring in a finite
presentation for F over K. We may therefore write R = K ®lR0, where Rq
is a finitely generated L-algebra. It follows that F0 may be identified with a
subring of R and is also a domain. Moreover, by enlarging L, if necessary,
we may suppose that c G Rq . Suppose that T is not weakly F-regular. Then
we can choose finitely many elements f, ... , f„ and an element u of T
such that u is in the tight closure of the ideal I generated by the f but
not in /. We shall obtain a contradiction. After enlarging L, if necessary,
we may choose finitely many of the zx, say zi,... , z/,, such that u and
fi, ... , fn are in L(zx, ... , zh) ®L Ro — Ri. Since c is a test element for
T, we have that cu" e (f9, ... , f9)T for all nonnegative integers e. Since T
is faithfully flat over R\ and all of the elements c, u, f axe in R\, it followsLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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that cuq e (f? , ... , f9)R\ for all q , and so u is in the tight closure of F =
(fi, ■■■ , fn)R\ in R\, but not in I{, since it is not even in I\T. It follows
that R\ is not weakly F-regular. However, we may choose yi, ... , yn in K
algebraically independent over L, and the L-isomorphism of L(z\, ... , zh) =
L(y\, ... , yh) — L(y) that sends z, to y, for every i induces an isomorphism
of R\ with F2 = L(y) ®LRo ■ It follows that R2 is not weakly F-regular. But
since L C L(y) C K, we have that R = K ®L(y) Ri, by the associativity of ®,
and since F is f aithfully flat over F2 and weakly F-regular, it follows that
F2 is weakly F-regular, a contradiction.   □
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