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ABSTRACT
Spurious TCP retransmission timeouts (RTOs) have been
reported to be a problem on network paths involving links
that are prone to sudden delays due to various reasons. Es-
pecially many wireless network technologies contain such
links. Spurious retransmission timeouts often cause unnec-
essary retransmission of several segments, which is harmful
for TCP performance. Recent proposals for avoiding un-
necessary retransmissions after a spurious RTO require use
of TCP options which must be implemented and enabled
at both ends of the connection. We introduce a new TCP
sender algorithm for recovery after a retransmission timeout
and show that unnecessary retransmissions can be avoided
without TCP options. The algorithm effectively avoids the
unnecessary retransmissions after a spurious retransmission
timeout, improving the TCP performance considerably. The
algorithm is friendly towards other TCP connections, be-
cause it follows the congestion control principles and in-
jects packets to the network at same rate as a conventional
TCP sender. We implemented the algorithm and compared
its performance to conventional TCP and Eifel TCP when
RTOs occurred either due to sudden delays or due to packet
losses. The results show that our algorithm either improves
performance or gives similar throughput as the other TCP
variants evaluated in different test cases.

1. INTRODUCTION
In the recent years the variety of Internet links with differ-
ent properties has increased dramatically. The high speed
networks have reached Gigabit rates, whereas the increasing
number of mobile wireless access networks have introduced
a prolific number of mobile hosts attached to the Internet
through a slow, wireless links. Moreover, the challenging
characteristics of wireless links, in particular high packet
loss rate or delays due to various reasons such as link-layer
retransmissions or hand-offs between the points of attach-
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ment to the Internet, have introduced a large set of problems
for the Internet transport protocols.

The TCP protocol [23] is the dominant Internet transport
protocol and its congestion control algorithms [4] are essen-
tial for the stability of the Internet. Because these algo-
rithms have a strong effect on TCP performance, finding
solutions to improve TCP performance in various challeng-
ing conditions has yielded a large number of studies. For
example, a taxonomy of the different solutions for improv-
ing TCP performance over slow wireless links can be found
in [21]. The traditional problem regarding the use of TCP
over wireless links or other challenging channels has con-
cerned TCP congestion control. If a packet is lost, TCP in-
terprets it as an indication of congestion and a TCP sender
needs to reduce its transmission rate. Hence, TCP perfor-
mance deteriorates with increasing packet loss rate. If the
packet loss occurred due to corruption, reducing the TCP
transmission rate is, however, the wrong action to take.

TCP uses the fast retransmit mechanism [4] to trigger re-
transmissions after receiving three successive duplicate ac-
knowledgements (ACKs). If for a certain time period TCP
sender does not receive ACKs that acknowledge new data,
the TCP retransmission timer expires as a backoff mech-
anism. When the retransmission timer expires, the TCP
sender retransmits the first unacknowledged segment assum-
ing it was lost in the network. Because a retransmission
timeout (RTO) can be an indication of severe congestion in
the network, the TCP sender resets its congestion window
to one segment and starts increasing it according to the slow
start algorithm. However, if the RTO occurs spuriously and
there still are segments outstanding in the network, a false
slow start is harmful for the potentially congested network
as it injects extra segments to the network at increasing rate.

Since wireless networks are often subject to high packet loss
rate due to corruption or hand-offs, reliable link-layer proto-
cols are widely employed with wireless links. The link-layer
receiver often aims to deliver the packets to the upper pro-
tocol layers in order, which implies that the later arriving
packets are blocked until the head of the queue arrives suc-
cessfully. Due to the strict link-layer ordering, the communi-
cation end points observe a pause in packet delivery that can
cause a spurious TCP RTO instead of getting out-of-order
packets that could result in a false fast retransmit instead.
Either way, interaction between TCP retransmission mech-
anisms and link-layer recovery can cause poor performance.
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Wireless links may also suffer from link outages that cause
persistent data loss for a period of time. If the link outage
lasts long enough, it triggers the TCP RTO at the sender
which then retransmits the unacknowledged TCP segments.
However, if the link layer protocol is highly persistent in its
retransmissions, it is able to deliver the original packets to
the TCP receiver once the link outage is finished. In this
case the TCP RTO may also be triggered spuriously. Other
potential reasons for sudden delays that have been reported
to trigger spurious RTOs include a delay due to tedious ac-
tions required to complete a hand-off or re-routing of packets
to the new serving access point after the hand-off, arrival of
competing traffic on a shared link with low bandwidth, and
a sudden bandwidth degradation due to reduced resources
on a wireless channel [13, 15].

In this paper we focus on attacking the TCP performance
problems resulting from unnecessary retransmissions that
originate from spurious RTOs. The possible solutions for
alleviating poor performance can roughly be divided in two
categories. One alternative is to avoid the RTOs in the
first place by changing the algorithm used for the RTO cal-
culation. Different constants and granularities applied to
the standard algorithm documented in [22] have been stud-
ied [3]. In addition, totally new algorithms for setting the
RTO timer have been suggested (e.g. [19]). However, we
believe it is very difficult to come up with an algorithm that
results in a good performance in various different network
environments.

Another way to mitigate the performance penalty due to
spurious retransmission timeouts is to change the TCP
sender behavior after a timeout. In particular, there are two
symptoms that typically follow the spurious retransmission
timeout when conventional TCP is used:

• The TCP sender often transmits several segments un-
necessarily, because after the RTO and first retrans-
mission the cumulative acknowledgements for the orig-
inal transmissions appear at the TCP sender one at a
time, triggering further unnecessary retransmissions.
Often a full TCP window is retransmitted quite un-
necessarily. In particular, this is very costly for slow
links.

• The TCP sender unnecessarily reduces TCP conges-
tion window to one segment. This, in turn, is costly
for high-bandwidth links as it takes a long time for the
sender to reopen the window.

In this paper we present a new algorithm, called Forward
RTO-Recovery (F-RTO), for a TCP sender to recover after
a retransmission timeout. Although the main motivation of
the algorithm is to recover efficiently from a spurious RTO,
we require it to achieve similar performance with the con-
ventional RTO recovery in other situations where RTO may
occur. Our approach requires modification only at the TCP
sender, while adhering to the TCP congestion control prin-
ciples. Moreover, the F-RTO recovery algorithm does not
require use of any TCP options or additional bits in the TCP
header, unlike other recent suggestions for avoiding unnec-
essary retransmissions, for example Eifel TCP [18]. The

F-RTO algorithm uses a set of simple rules for avoiding un-
necessary retransmissions after a spurious RTO. When the
first acknowledgements arrive after retransmitting the seg-
ment for which the RTO expired, the F-RTO sender does
not immediately continue with retransmissions like the con-
ventional RTO recovery does, but it first checks if the ac-
knowledgements advance the window to determine whether
it needs to retransmit, or whether it can continue sending
new data. F-RTO can be considered somewhat similar to
the Limited Transmit algorithm [2], but applied to the RTO
recovery.

We implemented the F-RTO algorithm in Linux OS and
compared its performance to conventional TCP and Eifel
TCP in different scenarios where RTOs occurred either due
to sudden delays or due to packet losses. The results show
that when RTOs are spurious, the F-RTO algorithm sig-
nificantly improves TCP performance compared to conven-
tional RTO recovery and performs slightly better than Eifel
TCP. When the RTOs are due to packet losses, F-RTO
yields similar throughput as conventional TCP while Eifel
TCP has performance problems.

The rest of the paper is organized as follows. In Section 2 we
describe the problem caused by unnecessary retransmission
timeouts in greater detail and discuss the related work with
suggested solutions to the problem. In Section 3 we describe
the F-RTO algorithm for making forward transmissions after
RTO. We continue by giving some examples of the F-RTO
algorithm behavior in different situations involving RTOs in
Section 4. In Section 5 we describe the experiments made
with F-RTO in different network environments and the re-
sults of the experiments. Finally, we give some thoughts on
the future work on F-RTO in Section 6 and conclude our
work in Section 7.

2. RELATED WORK ON SPURIOUS RE-
TRANSMISSION TIMEOUTS

Most of the retransmissions in current TCP implementa-
tions are expected to be triggered by duplicate ACKs. A
TCP retransmission timeout is considered as a fallback
mechanism for the cases when retransmissions cannot be
triggered by duplicate ACKs. More specifically, a RTO-
triggered retransmission is needed when a retransmission is
lost, or when nearly a whole window of data is lost, thus
making it impossible for the receiver to generate enough du-
plicate ACKs for triggering TCP fast retransmit. Under
these assumptions, retransmitting the unacknowledged seg-
ments immediately after the RTO is likely to be the most
efficient way of recovering.

With the conventional RTO recovery the TCP sender re-
transmits the first unacknowledged segment, sets the con-
gestion window to one segment and the slow start threshold
(ssthresh) to half of the number of currently outstanding
segments, when the RTO expires. After this the sender con-
tinues in slow-start, increasing the congestion window by
one segment on each ACK that advances the window and
retransmitting the next unacknowledged segments allowed
by the congestion window. In effect the sender retransmits
an exponentially increasing number of segments on each sub-
sequent round-trip time until the congestion window reaches
ssthresh and the sender enters congestion avoidance [4]. This
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allows efficient recovery of lost segments especially if several
segments were lost within the same window.

However, if no segments were lost but the retransmission
timer expires spuriously, the segments retransmitted in the
slow-start are sent unnecessarily. Particularly, this phe-
nomenon is very possible with the various wireless access
network technologies that are prone to sudden delay spikes.
Figure 1 shows a time-sequence diagram of a TCP transfer,
when a 3-second delay occurs on the link. The retransmis-
sion timer expires because of the delay, spuriously triggering
the RTO recovery and unnecessary retransmission of all un-
acknowledged segments. This happens because after the de-
lay the ACKs for the original segments arrive at the sender
one at the time but too late, because the TCP sender has
already entered the RTO recovery. Therefore, each of the
ACKs trigger the retransmission of segments for which the
original ACKs will arrive after awhile. This continues until
the whole window of segments is eventually unnecessarily
retransmitted. Furthermore, because a full window of re-
transmitted segments arrive unnecessarily at the receiver, it
generates duplicate ACKs for these out-of-order segments.
Later on, the duplicate ACKs unnecessarily trigger fast re-
transmit at the sender.
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Figure 1: A delay triggers spurious retransmission.

There is no known way to prevent the retransmission time-
out from expiring because of a sudden delay. However, by
having additional information in the TCP segments, the un-
necessary retransmissions following the spurious RTO can
be avoided. The Eifel algorithm [18] suggests that the TCP
sender indicates whether a segment is transmitted for the
first time, or whether it is a retransmission. When this infor-
mation is echoed back in the acknowledgement, the sender
can determine whether the original segment arrived at the
receiver and declare the retransmission either correct or spu-
rious action. Based on this knowledge, the sender either re-
transmits the unacknowledged segments in the conventional
way, assuming the RTO was triggered by a segment loss, or
reverts the recent changes on the congestion control param-
eters and continue with transmitting new data. The latter
alternative is likely to be the correct action to take when the
original segment was acknowledged after the RTO, indicat-

ing that the RTO was spurious.

The Eifel algorithm suggests using either the TCP times-
tamps option [7] or two of the reserved bits in the TCP
header for distinguishing the original transmissions from re-
transmissions. Using the reserved bits in the TCP header
requires modification to TCP at both ends. The TCP times-
tamps option is deployed on some Internet hosts1, but in
order to take advantage of Eifel, timestamps option would
need to be deployed at both ends of the TCP connection.
Given that the sudden delays are often a problem on wire-
less links with low bandwidth, including timestamps in each
TCP segment increases the TCP header overhead and makes
the communication inefficient. Moreover, the TCP times-
tamps are not supported in the current TCP/IP header com-
pression specifications [14, 9].

Instead of distinguishing the ACKs of the original transmis-
sions from the ACKs of the retransmissions at the TCP
sender, the receiver can indicate whether it received a
segment that had arrived earlier. The Duplicate SACK
(DSACK) enhancement [11] suggests to use the first SACK
block to indicate duplicate segments arriving at the receiver.
This alternative has its benefits over the Eifel algorithm pre-
sented above, because the SACK option is being more widely
deployed than the TCP timestamps [1], and the SACK
blocks are appended to the TCP headers only when neces-
sary. However, if the unnecessary retransmissions occurred
due to spurious RTO caused by a sudden delay, the ac-
knowledgements with the DSACK information arrive at the
sender only after the acknowledgements of the original seg-
ments. Therefore, the unnecessary retransmissions following
the spurious RTO cannot be avoided by using DSACK. In-
stead, the suggested recovery algorithm using DSACK can
only revert the congestion control parameters to the state
preceding the spurious retransmission [5]. Both ends of the
TCP connection need to be aware of the DSACK extension
in order to take advantage of it.

3. F-RTO ALGORITHM
The F-RTO algorithm affects the TCP sender behavior only
after a retransmission timeout, otherwise the behavior is
similar to the conventional TCP. The guideline behind F-
RTO is, that an RTO either indicates a loss, or it is caused
by an excessive delay in packet delivery while there still
are outstanding segments in flight. If the RTO was due to
delay, i.e. the RTO was spurious, acknowledgements for non-
retransmitted segments sent before the RTO should arrive
at the sender after the RTO occurred. If no such segments
arrive, the RTO is concluded to be non-spurious and the
conventional RTO recovery with go-back-N retransmissions
should take place at the TCP sender.

To implement the principle described above, an F-RTO
sender acts as follows: if the first ACK arriving after a
RTO-triggered retransmission advances the window, trans-
mit two new segments instead of continuing retransmissions.
If also the second incoming acknowledgement advances the
window, RTO is likely to be spurious, because the second
ACK is triggered by an originally transmitted segment that

1A study on use of the different TCP options indicates that
15 % of the WWW clients connected to a WWW server on
the Internet used TCP timestamps in the early 2000s [1].
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has not been retransmitted after the RTO. If either one of
the two acknowledgements after RTO is a duplicate ACK,
the sender continues retransmissions similarly to the con-
ventional RTO recovery algorithm.

When the retransmission timer expires, the F-RTO algo-
rithm takes the following steps at the TCP sender. In the
algorithm description below we use SND.UNA to indicate the
first unacknowledged segment.

1. When the retransmission timer expires, retransmit the
segment that triggered the timeout. As required by the
TCP congestion control specifications, the ssthresh is
adjusted to half of the number of currently outstanding
segments. However, the congestion window is not yet
set to one segment, but the sender waits for the next
two acknowledgements before deciding on what to do
with the congestion window.

2. When the first acknowledgement after RTO arrives at
the sender, the sender chooses the following actions
depending on whether the ACK advances the window
or whether it is a duplicate ACK.

(a) If the acknowledgement advances SND.UNA, trans-
mit up to two new (previously unsent) segments.
This is the main point in which the F-RTO al-
gorithm differs from the conventional way of re-
covering from RTO. After transmitting the two
new segments, the congestion window size is set
to have the same value as ssthresh. In effect
this reduces the transmission rate of the sender
to half of the transmission rate before the RTO.
At this point the TCP sender has transmitted a
total of three segments after the RTO, similarly
to the conventional recovery algorithm. If trans-
mitting two new segments is not possible due to
advertised window limitation, or because there is
no more data to send, the sender may transmit
only one segment. If no new data can be trans-
mitted, the TCP sender follows the conventional
RTO recovery algorithm and starts retransmit-
ting the unacknowledged data using slow start.

(b) If the acknowledgement is duplicate ACK, set the
congestion window to one segment and proceed
with the conventional RTO recovery. Two new
segments are not transmitted in this case, be-
cause the conventional RTO recovery algorithm
would not transmit anything at this point ei-
ther. Instead, the F-RTO sender continues with
slow start and performs similarly to the conven-
tional TCP sender in retransmitting the unac-
knowledged segments. Step 3 of the F-RTO al-
gorithm is not entered in this case. A common
reason for executing this branch is the loss of a
segment, in which case the segments injected by
the sender before the RTO may still trigger du-
plicate ACKs that arrive at the sender after the
RTO.

3. When the second acknowledgement after the RTO ar-
rives, either continue transmitting new data, or start
retransmitting with the slow start algorithm, depend-
ing on whether new data was acknowledged.

(a) If the acknowledgement advances SND.UNA, con-
tinue transmitting new data following the con-
gestion avoidance algorithm. Because the TCP
sender has retransmitted only one segment after
the RTO, this acknowledgement indicates that an
originally transmitted segment has arrived at the
receiver. This is regarded as a strong indication of
a spurious RTO. However, since the TCP sender
cannot surely know at this point whether the seg-
ment that triggered the RTO was actually lost,
adjusting the congestion control parameters af-
ter the RTO is the conservative action. From this
point on, the TCP sender continues as in the nor-
mal congestion avoidance.

If this algorithm branch is taken, the TCP
sender ignores the send high variable that
indicates the highest sequence number trans-
mitted so far [10]. The send high variable
was proposed as a “bugfix” for avoiding un-
necessary multiple fast retransmits when
RTO expires during fast recovery with
NewReno TCP. As the sender has not re-
transmitted other segments but the one that
triggered RTO, the problem addressed by the
bugfix cannot occur. Therefore, if there are
duplicate ACKs arriving at the sender after the
RTO, they are likely to indicate a packet loss,
hence fast retransmit should be used to allow
efficient recovery. Alternatively, if there are not
enough duplicate ACKs arriving at the sender
after a packet loss, the retransmission timer
expires another time and the sender enters step
1 of this algorithm to detect whether the new
RTO is spurious.

(b) If the acknowledgement is a duplicate ACK, set
congestion window to three segments, continue
with the slow start algorithm retransmitting un-
acknowledged segments. The duplicate ACK in-
dicates that at least one segment other than the
segment that triggered RTO is lost in the last win-
dow of data. There is no sufficient evidence that
any of the segments was delayed. Therefore, the
sender proceeds with retransmissions similarly to
the conventional RTO recovery algorithm, with
the send high variable stored when the retrans-
mission timer expired to avoid unnecessary fast
retransmits.

If either one of the two acknowledgements arriving after the
RTO is a duplicate ACK, the algorithm is safe, because it re-
verts back to the conventional retransmissions and adjusts
the congestion window appropriately. However, the valid-
ity of the algorithm when the two first acknowledgements
advance SND.UNA is worth discussing. As described above,
this indicates that at least one segment was delayed. If the
next segments in the window were also delayed, for example
being blocked by the first delayed segment, the algorithm
performs as intended, as we will show in Section 4. If the
next segments would not have been delayed, they would have
arrived before the delayed segment and triggered duplicate
ACKs. We will discuss the F-RTO behavior under packet
reordering in more detail in Section 4.
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(a) Conventional RTO recovery.

16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21
3.2

3.3

3.4

3.5

3.6

3.7

3.8

x 10
4

Time, s

S
eq

ue
nc

e 
nu

m
be

r, 
by

te
s

data sent
ack rcvd

SND.UNA
advance
Next ACKs

on first ACK
two new segments
F−RTO transmits

F−RTO continues by
sending new data

RTO expires delay
pkt loss

(b) F-RTO recovery.

Figure 2: Comparison of the conventional RTO and F-RTO after an excessive delay.

When algorithm branch (3a) is taken, the sender does not
reduce the congestion window to one segment, but halves
it to the level of ssthresh. Because the sender does not
enter slow start, it increases congestion window only once in
a round-trip time after RTO, and therefore is slightly more
conservative than the conventional recovery algorithm. In
fact, if the segment that triggered RTO was not lost, the
correct behavior would have been to not decrease the con-
gestion window at all. If the DSACK option is in use, the
sender can detect whether the retransmission was unnec-
essary, and revert the last adjustments on the congestion
control parameters in such a case. In general, it is possible
to separate the detection of a spurious RTO from the actions
taken as congestion control response, and employ a different
response alternative than what was described above. We
will discuss some of the suggested response alternatives that
could be applied with F-RTO-based detection in Section 6.

If an ACK acknowledges the whole outstanding window up
to the highest transmitted segment at algorithm branch
(2a), the TCP sender should not declare the RTO spurious,
but follow the conventional TCP behavior. A common case
of this is that the RTO was caused due to lost retransmis-
sion, and the rest of the window was successfully delivered
to the receiver before the RTO occurred. In this case the
ACK following the RTO acknowledges all of the outstand-
ing window, and the F-RTO algorithm as described above
could end up in algorithm branch (3a) that is meant to be
applied in the case of a spurious RTO. With some kind of
burst avoidance mechanism and a conservative congestion
control after spurious RTOs this exception is not necessar-
ily needed, because then the TCP behavior stays within the
congestion control rules, as it was in our case when using
the Linux TCP implementation. However, considering the
use of F-RTO as a generic detection mechanism for spurious
RTOs the additional rule given above is recommended.

Branch (3a) can also be taken when a segment loss is imme-
diately followed by a delay. In this case the retransmission

triggered by the timer was not unnecessarily made. Arrival
of new acknowledgements after the RTO indicates that there
was only one segment loss in addition to the excessive delay
that triggered the RTO. Therefore, we consider that reduc-
ing the congestion window to half of its previous size is an
adequate action at this point, because a similar action is
taken when TCP sender enters fast recovery.

4. DISCUSSION OF F-RTO BEHAVIOR IN
SPECIFIC SCENARIOS

In this section we discuss the different reasons that may
cause the RTO to expire and study the different scenarios af-
ter a RTO has expired due to these reasons. We compare the
packet traces produced using the conventional RTO recovery
and using F-RTO, and discuss the differences of the two re-
covery methods. Selective Acknowledgements (SACK) [20]
and limited transmit [2] TCP enhancements are used in the
examples presented in this section, since SACK can be con-
sidered rather widely deployed today, and limited transmit
is a sender side modification that can be implemented with
F-RTO to further improve the TCP performance. However,
the F-RTO algorithm does not require either of these en-
hancements to be present.

4.1 Sudden delays
Recovering efficiently from spurious retransmission timeouts
is the main motivation of the F-RTO algorithm. Figure 2
compares the packet traces of the conventional RTO recov-
ery and F-RTO. Figure 2(a) shows that the conventional re-
covery method eventually retransmits the whole window of
segments unnecessarily, since the acknowledgements of the
originally transmitted segments arrive at the sender after
the RTO. When the retransmissions arrive at the receiver,
it generates a duplicate ACK for each arriving retransmis-
sion, thus causing an unnecessary fast retransmit at the TCP
sender.

Figure 2(b) shows that F-RTO avoids the unnecessary re-
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(a) Conventional RTO recovery.
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(b) F-RTO recovery.

Figure 3: Comparison of the conventional RTO and F-RTO after a lost retransmission.

transmissions following the spurious RTO. The first ac-
knowledgement arriving at the sender after the RTO ad-
vances SND.UNA, and the sender transmits two previously
unsent segments. The second ACK arriving after the RTO
acknowledges two originally transmitted delayed segments,
hence the sender continues transmitting new data. However,
since the congestion window was reduced after the RTO,
the sender waits for a few acknowledgements without send-
ing new segments to balance the number of packets in flight
towards the present congestion window size.

4.2 Lost retransmission
A common reason for triggering TCP RTO is the loss of a
retransmitted segment. Once a segment has been retrans-
mitted, it can only be retransmitted again after the RTO
expires. Figure 3 compares the packet traces of the conven-
tional RTO recovery with the traces of the F-RTO recovery
when a retransmitted segment is lost and it is retransmitted
again as triggered by RTO. One can notice that the behavior
of the conventional RTO recovery and the F-RTO recovery
is similar. In the scenario shown, both variants get to trans-
mit two new segments after the RTO, and then proceed with
transmitting new data.

Figure 3(a) shows that when the RTO retransmission ar-
rives at the receiver, it acknowledges the whole window, and
the conventional TCP sender can proceed with sending new
data in slow start. In the presented case the F-RTO recovery
shown in Figure 3(b) differs from the conventional recovery
only by not entering slow start after the RTO. Because the
next ACK arriving at the sender after the RTO acknowl-
edges all outstanding packets, that is, advances SND.UNA,
the F-RTO sender transmits new segments using congestion
avoidance. Instead of setting the congestion window to one
segment, F-RTO decreases it to half of its previous size. As
one can see, the practical difference between the recovery
alternatives is negligible because the number of outstanding
packets was rather small when the first packet loss occurred
in the presented scenario.

Using congestion avoidance instead of slow start after the
F-RTO recovery does not limit the TCP performance in
cases where the number of outstanding segments is larger
than in the example above. However, because F-RTO sets
the congestion window to half of its previous size when the
next acknowledgements advance SND.UNA, and on the other
hand, because we require using burst avoidance with F-
RTO, the conventional RTO recovery algorithm and F-RTO
result in similar performance. In our implementation the
burst avoidance method decreases the congestion window to
allow transmitting at most three segments for the first in-
coming ACK. If the congestion window size is reduced below
the slow start threshold, the sender uses slow start in adjust-
ing the congestion window when the next acknowledgements
arrive.

4.3 Burst losses
Because losses of several successive packets can result in a
retransmission timeout, it is interesting to compare the F-
RTO behavior with the conventional RTO recovery in such a
case. Figure 4 compares the packet trace of the conventional
recovery after a RTO caused by a window of lost segments
with the packet trace of the F-RTO recovery. One can see
from Figure 4(a) that the segment retransmitted after the
second RTO is successfully acknowledged, after which the
TCP sender retransmits the rest of the lost segments in slow
start.

Figure 4(b) shows a similar scenario with a F-RTO sender.
When the segment retransmitted due to RTO is acknowl-
edged, the F-RTO sender transmits two new segments. Be-
cause several other segments were dropped in the last win-
dow, the two new segments trigger duplicate ACKs. As
given by the F-RTO algorithm, the arrival of the duplicate
ACK as the second acknowledgement following the RTO
makes the sender retransmit unacknowledged segments in
slow start. When the second acknowledgement after the
RTO arrives, the sender has a congestion window of three
segments, similarly to the conventional RTO recovery after
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Figure 4: Comparison of the conventional RTO and F-RTO after a burst loss.

two round-trip times. From this point on the congestion
window is increased according to the standard TCP conges-
tion control specifications. More generally, if there are any
packets lost in the last window of data in addition to the
one that triggers RTO, the F-RTO sender enters slow start
and retransmits the unacknowledged segments, because the
two new segments transmitted after the RTO would trigger
duplicate ACKs at the receiver.

F-RTO has a side-effect of triggering an acknowledgement
for every incoming retransmission at the TCP receiver, be-
cause the receiver is required to send an immediate ACK
when it has out-of-order segments in its buffers [4]. How-
ever, we believe this detail does not increase the stress on the
network significantly, since it only affects the TCP sender’s
transmission rate during the slow start.

4.4 Packet reordering
Packet reordering is a scenario worth discussing when evalu-
ating the F-RTO behavior, although packet reordering does
not usually cause the retransmission timer to expire. A more
detailed study on the effect of packet reordering on TCP per-
formance can be found in [5], hence we only discuss here how
the F-RTO algorithm relates to packet reordering.

A delayed segment that arrives at the TCP receiver out-
of-order appears as a hole in the sequence number space
of incoming packets, thus having largely similar effects on
the TCP behavior than a dropped packet. Packet reorder-
ing may cause fast retransmit, but if there are no retrans-
mission timeouts involved, the F-RTO algorithm does not
change the TCP behavior from the conventional recovery.
A more interesting scenario arises if the RTO timer expires
while packets arrive at the receiver out of order. If the out-
of-order segments cause duplicate ACKs to arrive at the
sender after the RTO, the F-RTO sender retransmits the
unacknowledged packets, similarly to the conventional RTO
algorithm. If the delayed packets trigger new acknowledge-
ments that arrive at the sender just after the RTO, the F-

RTO sender proceeds with sending new data. This is likely
to be the correct action, because the acknowledgements were
triggered by a segment transmitted before the retransmis-
sion timeout.

5. PERFORMANCE ANALYSIS
In order to validate the discussion in Section 4, we made ex-
periments in networks with characteristics similar to those
that could be expected when communicating over a bottle-
neck wireless link to a fixed server in a nearby network. This
is a typical environment where scenarios presented in Sec-
tion 4 may occur. We compared the F-RTO performance to
the performance achieved with the conventional RTO recov-
ery, both with SACK TCP and with NewReno TCP. In ad-
dition, we conducted experiments with the Eifel algorithm.

5.1 Test Arrangements
The general test setup is illustrated in Figure 5. We emulate
the wireless link and the last-hop router by using a real-time
wireless network emulator [16]. The end hosts are Linux
systems, in which we implemented the F-RTO algorithm.
The fixed link is an isolated LAN that is connected to the
remote host and to the network emulator.

Mobile Host Remote HostLast−hop Router

100 Mbps
fixed link

TCP sourceLBTCP sink 28.8 kbps
wireless link

LB = link buffers

LB
router buffer

Figure 5: Test setup.

We selected the link parameters to approximate the prop-
erties of a typical currently used wireless wide-area net-
working system, such as the General Packet Radio Service
(GPRS) [8]. The emulated wireless link has a bandwidth
of 28,800 bps and a propagation delay of 200 ms. The last-
hop router has a router buffer for holding seven packets.
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In addition to the router buffer, the emulated wireless link
uses a link send buffer and a link receive buffer for both
uplink and downlink traffic. Any link that provides a re-
transmission mechanism needs to have a certain amount of
buffering capacity. The link send buffer holds packets that
have not yet been acknowledged as received, and the link re-
ceive buffer collects out-of-order packets for delivering them
for the upper layer receiver in the correct order. The link
buffers have a size of 1776 bytes, which is large enough to
cover the bandwidth-delay product of the link.

We made one set of experiments with a wireless link that
does not drop packets, but randomly inflicts sudden delays
for some packets. Another set of experiments was made
using an unreliable link that drops random packets with
given packet drop probabilities. Finally, experiments were
conducted by having periods of persistent packet loss on the
link. The link scenarios are listed below:

• Sudden delays. Since the primary motivation of
the F-RTO algorithm is to improve the TCP perfor-
mance when sudden delays cause spurious retransmis-
sion timeouts, we start by a scenario that involves
sudden delays on the link. We explained the possi-
ble reasons for a sudden delay on the wireless access
network in the introduction. Such a delay can occur,
for example, due to loss burst with a link layer pro-
tocol providing highly persistent reliability. During
the delay no packets are delivered to the receiver. In
this scenario a packet is delayed with a probability
of 0.02. The random delay lengths are exponentially
distributed with a mean delay length of 3.5 seconds.
Exponential distribution has been reported to charac-
terize the length of the loss periods on a wireless link
reasonably well [17]. Even though the link is reliable
in this scenario, packet losses may occur due to con-
gestion at the last-hop router.

• Packet losses. In this scenario a packet is randomly
dropped by the link with given probability. This sce-
nario models the case of an unreliable link layer over a
lossy link. Therefore the packet delays on the link are
fairly constant. We tested packet loss probabilities of
2 %, 5 %, and 10 %. The packet losses are uniformly
distributed. The main purpose of these scenarios is
to test the TCP performance when the retransmission
timeouts occur due to lost segments. These timeouts
occur mainly when retransmissions are lost, since lost
original packets are usually recovered by fast retrans-
mit.

• Bursty losses. This scenario is to model the effect
of link outages when the link layer is not reliable and
drops several successive packets. The link conditions
are split into two distinct states. In a good state no
packets are dropped at the link. When the link is in
bad state, all packets in both directions are lost. The
link layer does not retransmit any packets. The two
states alternate randomly. The good state length is
uniformly distributed between 0.1 seconds and 20 sec-
onds. The bad state duration is exponentially dis-
tributed with a mean of 3.5 seconds.

In each of the scenarios presented above we test five TCP
variants based on the TCP implementation of Linux kernel
version 2.4.7 [24]. For the purposes of the experiments, we
disabled the ratehalving algorithm used by default in the
Linux TCP implementation, and made small modifications
to implement the Eifel algorithm as it has been defined by
its authors [18]2. In addition, we modified the SACK loss
recovery to behave similarly to the conservative algorithm
recently published by the IETF [6]. Firstly, we test a SACK
TCP [20] with the conventional RTO recovery, and with
the F-RTO recovery. Secondly, we do experiments with a
NewReno TCP [10] with both conventional and F-RTO re-
covery algorithms. Finally, we test a TCP variant using the
TCP timestamp option both with the SACK TCP and with
the NewReno TCP. This variant implements the Eifel algo-
rithm based on the use of TCP timestamps. Our Eifel sender
implementation continues transmitting new data and reverts
the changes made on the congestion window and ssthresh

when it detects a spurious timeout from the timestamps.
The limited transmit algorithm is used with all TCP alter-
natives.

We use unidirectional 100 KB bulk transfers from the fixed
end source to the mobile end sink as the workload. The
data is transmitted using a single TCP connection using a
maximum segment size of 256 bytes. A small segment size
is recommended for slow links in order to achieve a better
interactive response times [21], although this is a factor not
significant in our tests. For each scenario and TCP variant
the experiment is repeated 30 times.

5.2 Results
We present the results of the experiments by using box-
plot diagrams. The diagrams compare the throughput of
each TCP variant evaluated in the experimentation. The
box-plot diagram shows the median throughput for the 30
replications with a horizontal line splitting the filled box.
The lower and upper edge of the box represent the 1st and
3rd quartiles of the test results, respectively. The whiskers
are drawn at the minimum and the maximum throughput
measured with the TCP variant. On rare occasions some
test runs were involved with a notably different number of
RTOs than the majority of the tests due to randomness of
the link events. Because the RTOs typically have a strong
effect on the TCP performance, the minimum or maximum
throughput values may appear to differ considerably from
the results within the upper and lower quartiles in some
cases.

In addition to the box-plot diagrams we show with each
scenario a table presenting the median values for connection
elapsed time from sending the first SYN packet to receiving
the last FIN acknowledgement at the sender, the number
of packet losses, and the number of retransmitted segments
of each TCP variant. If the number of retransmissions is
higher than the number of lost packets, at least some of the
retransmissions are made unnecessarily. On the other hand,
the number of lost packets can be higher than the number

2The recent Linux kernels implement a timestamp-based de-
tection algorithm similar to Eifel, but there are a couple of
minor differences to the algorithm described in the original
article.
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Table 1: Results of the tests with sudden delays.

The median values of 30 replications.

TCP Variant Time (s)
/ 100 KB

Pkts
Lost

Nr. of
Rexmits

Eifel w/ SACK 77.94 11 16
F-RTO w/ SACK 76.23 4 12
Regular SACK 94.13 9 57
Regular NewReno 90.72 10 60
F-RTO w/ NewReno 75.18 6 13
Eifel w/ NewReno 79.21 11 19

of retransmissions, because lost acknowledgements do not
necessarily trigger retransmissions.

Sudden delays
Figure 6 shows the box-plot diagrams of the throughput
measured with different TCP variants. Additionally, Ta-
ble 1 shows the median values for the connection statis-
tics described above. The results show that using F-RTO
improves performance over the conventional RTO recovery
both with the SACK TCP and with the NewReno TCP. The
number of unnecessary retransmissions with the F-RTO al-
gorithm is considerably smaller than with the conventional
RTO recovery algorithm, resulting in improved throughput
with the F-RTO algorithm. There is no significant differ-
ence between the SACK TCP and the NewReno TCP, when
RTOs are triggered by excessive delays.
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Figure 6: TCP performance with different variants

with excessive delays on the link.

The Eifel TCP avoids most of the unnecessary retransmis-
sions similarly to the F-RTO algorithm. However, the Eifel
sender reverts the congestion control parameters back to the
values preceding the spurious RTO, and continues sending
at the previous rate although the last-hop router could not
drain the queue during the delay. Hence, Eifel typically has
more packet losses due to congestion than F-RTO, resulting
in a slightly lower throughput than F-RTO. This suggests
that responding to the spurious RTO by directly reverting

Table 2: Results of the tests with packet errors. The

median values of 30 replications.

TCP Variant Time (s)
/ 100 KB

Pkts
Lost

Nr. of
Rexmits

Eifel w/ SACK 80.68 39 26
F-RTO w/ SACK 75.69 36 24
Regular SACK 76.18 36 22
Regular NewReno 82.38 36 26
F-RTO w/ NewReno 81.67 36 26
Eifel w/ NewReno 89.64 38 27

the congestion control parameters may be too aggressive ac-
tion to take.

Packet losses
Figure 7 illustrates the throughput distribution with differ-
ent TCP variants when the wireless link has a packet loss
rate of 5 %. The trend with the packet loss rates of 2 % and
10 % is similar: the performance of F-RTO is not different
from the performance achieved with the conventional RTO
recovery, regardless of whether SACK or NewReno TCP is
used. In these tests the retransmission timeouts are usually
due to lost retransmissions. After the TCP sender has suc-
cessfully retransmitted the segment that triggered the RTO,
it can usually proceed with transmitting new data. Table 2
shows that the number of retransmissions are similar with
all TCP variants tested. As expected, the SACK TCP im-
proves the performance over the NewReno TCP, since there
are often multiple packet losses in one round-trip time, and
SACK recovers more efficiently in such a case.
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Figure 7: TCP performance with different variants

with packet drop probability of 0.05.

Eifel TCP using SACK and TCP timestamps has a lower
throughput than SACK TCP without timestamps. How-
ever, a closer examination of the TCP packet traces does
not show any problems related to the Eifel algorithm. The
difference is explained due to use of the TCP timestamps,
which adds 12 bytes of overhead to each packet transmitted,
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Table 3: Results of the tests with bursty losses on

the link. The median values of 30 replications.

TCP Variant Time (s)
/ 100 KB

Pkts
Lost

Nr. of
Rexmits

Eifel w/ SACK 123.89 50 45
F-RTO w/ SACK 64.94 42 40
Regular SACK 71.23 42 39
Regular NewReno 74.48 42 43
F-RTO w/ NewReno 67.80 39 43
Eifel w/ NewReno 80.03 42 42

resulting in approximately a 4 % increase in the number of
packets to send with the small segment size we were using.
By using a larger segment size the additional packet over-
head would have had less effect on the results.

Bursty losses
Figure 8 shows that the TCP performance with F-RTO does
not differ significantly from the performance with the con-
ventional RTO recovery when there are link outages. As
described in Section 4.3, the F-RTO sender transmits seg-
ments at a similar rate as the conventional RTO recovery,
although it transmits two new segments before continuing
retransmissions. The difference of whether to transmit the
two new segments before or after the retransmissions, does
not affect the throughput. Use of the SACK TCP does not
notably improve the performance with bursty losses, espe-
cially if the losses trigger a retransmission timeout. After
the RTO the TCP sender retransmits the unacknowledged
segments in slow start, regardless of whether SACK TCP or
NewReno TCP is used. Table 3 shows the median connec-
tion times and the retransmission statistics for the different
TCP variants.
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Figure 8: TCP performance with different variants

with bursty losses on the link.

The test results show that Eifel TCP gives a clearly worse
throughput than the conventional TCP when SACK TCP is
used. Our experiments revealed a significant problem when

using TCP timestamps for detecting unnecessary retrans-
missions in Eifel TCP. We will describe the problem below.

When the link is in the bad state as in our link outage sce-
nario, all packets are dropped for a period of time. There-
fore, the latest cumulative acknowledgements generated by
the receiver are also dropped by the link. This usually leads
to a retransmission timeout and an unnecessary retransmis-
sion of a segment that had already arrived at the receiver,
but for which the acknowledgement was lost. When this un-
necessary retransmission arrives at the receiver, it appears
as an out-of-order segment and generates a duplicate ACK
carrying a timestamp of an earlier data segment3. Further-
more, because the earlier acknowledgements were lost during
the link outage, the duplicate ACK appears as an acknowl-
edgement for new data to the TCP sender. Therefore, the
Eifel decision rules declare that the retransmission was spu-
rious, although a number of data segments were lost in the
last window.

The Eifel sender responds to the spurious retransmission in-
dication by sending new data and reverting the congestion
control variables. However, in the case described above the
sender gets back duplicate ACKs because there were data
segments missing. The sender enters fast recovery due to the
duplicate ACKs and reduces the congestion window. At this
point the sender stops sending data for a while to balance
the number of outstanding packets to the congestion window
size. Because the sender needs to wait for the halved conges-
tion window’s worth of acknowledgements to arrive before it
can continue retransmitting, and on the other hand, many of
the packets were dropped due to link outage, the pipe runs
out of packets while the sender is waiting for incoming ac-
knowledgements. Therefore, the Eifel sender has to wait for
another RTO to continue the retransmissions for the rest of
the lost segments. This leads to a significant degradation of
throughput. Unlike SACK, the NewReno TCP ensures that
a retransmission is made for each partial ACK. Therefore the
Eifel sender often avoids the second RTO with NewReno.

The events presented above showed up very frequently in
our experiments with bursty losses, which explains the poor
throughput of Eifel TCP in these tests. The reported be-
havior is specific to TCP timestamps used as an indication
of spurious retransmissions, and we do not believe it to show
up, if some other mechanism was used for indicating spuri-
ous retransmissions instead of TCP timestamps 4. Further-
more, our preliminary tests show, that if F-RTO recovery is
combined with Eifel, the problem described above does not
appear.

5.3 Fairness towards conventional TCP
We expect the connections using the F-RTO algorithm to
be friendly towards the TCP connections with conventional

3The specification for TCP round-trip time measure-
ments [7] requires that the echoed timestamp should cor-
respond to the most recent data segment that advanced the
window
4Some TCP implementations do not strictly follow
RFC 1323 by echoing the timestamp of a retransmitted seg-
ment arriving out-of-order at the receiver. Such implemen-
tation would have avoided the problem described here, but
may be vulnerable to IP-spoofing attacks.
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Figure 9: Effect of parallel connections on TCP performance. Test A includes three F-RTO connections, test

B uses only conventional RTO recovery.

RTO recovery, because F-RTO is ACK-clocked and it trans-
mits data at an equal rate as the conventional TCP. We
back up this reasoning by conducting experiments that use
six parallel bulk TCP connections as a workload over the
bottleneck wireless link. The workload is separated in two
connection sets having three connections each. The three
TCP connections in connection set 1 are started at the same
time, and the other three TCP connections in connection
set 2 are started three seconds after the first connection set.
The purpose of this study is to measure how much the con-
nections in connection set 2 interfere with the data transfer
in connection set 1. Especially, the effect of the new F-RTO
connections on the ongoing TCP transmissions should not
differ from the effect of conventional TCP connections.

The test setup with multiple TCP connections is similar to
the setup presented earlier in Figure 5, with the exception
that it consists of six TCP connections separated in two con-
nection sets. Connection set 1 consists of three TCP connec-
tions that use the conventional RTO recovery. Connection
set 2 has another three TCP connections, that use F-RTO in
test A, and the conventional RTO recovery in test B. All con-
nections transfer 50 KB of bulk data from the remote host
to the mobile host. This experiment was made both with
and without additional sudden delays on the link. As with
the experiments described earlier, the bottleneck link band-
width is 28,800 bps and the input queue length is 7 packets.
Injecting packets from six bulk TCP connections on this
kind of network results in severe congestion that causes a
number of packet losses and RTOs triggered at the TCP
sender. We repeated the experimentation 20 times.

For each connection set we measured the throughput of the
TCP connection that was the last to finish its data transfer,
i.e. the slowest connection of its connection set. This metric
gives a coarse understanding about the fairness between the

TCP connections, because a low throughput of the slowest
connection often indicates that the other connections have
used a larger share of the common bandwidth. Correspond-
ingly, a high throughput of the slowest connection indicates
that the equality between the parallel connections is better.
In addition, we present the throughput distribution of the
fastest connections in the connection sets.

Figure 9 shows the results of tests with additional delays.
Figure 9(a) shows the throughput distribution of the fastest
connection for both connection sets in test A using F-RTO
connections in connection set 2, and in test B using the
conventional RTO recovery in all TCP connections. Fig-
ure 9(b) gives the throughput of the slowest connections in
the connection sets. The box-plot diagrams show that the
connection sets between test A and test B give similar per-
formance. This indicates that the influence of the three new
F-RTO connections on the existing TCP connections on the
link is not different from the effect of starting three new
conventional TCP connections. Similarly, the results of the
experiments without random additional delays do not show
significant difference between the test runs involving F-RTO
connections and the test runs having only TCP connections
with the conventional RTO recovery. The results support
our reasoning of F-RTO being friendly towards the TCP
connections with the conventional RTO recovery.

6. DISCUSSION AND FUTURE WORK
Two problem cases were identified concerning the F-RTO
algorithm in Section 3, although they did not have mean-
ingful effect on performance in our experiments. First, the
presence of packet reordering can cause the F-RTO sender
to enter the conventional RTO recovery with go-back-N re-
transmissions even if the RTO was spurious. Similarly, du-
plicate ACKs during TCP fast recovery often prevent the
F-RTO algorithm from working. Second, if the sender does
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not have new data to transmit, or the receiver’s advertised
window does not allow the sender to transmit new data in
F-RTO algorithm step 2, the sender may not proceed to
detect whether the RTO was spurious. We discuss both of
these cases and possible solutions for them below.

A potential solution for enhancing F-RTO in the face of
reordering comes with the availability of the TCP SACK
option. By using the information in the SACK blocks after
an RTO, the TCP sender can get acknowledgements for seg-
ments transmitted before the RTO and thus detect a spuri-
ous RTO according to the principles given in Section 3 even
if there were duplicate ACKs arriving. Furthermore, avail-
ability of the SACK information makes it possible to better
utilize the F-RTO algorithm during fast recovery periods.
We intend to study the performance benefits of applying
the SACK information in the F-RTO algorithm as a future
work item.

In this paper we suggested that if a TCP sender cannot
transmit new previously unsent data in F-RTO algorithm
step 2, it should revert to the conventional RTO recovery
and continue by retransmitting unacknowledged data. This
is a straightforward solution and it can be considered to
be a safe against unpredictable side-effects, since the sender
reverts to the normal and well-known TCP behavior. How-
ever, in this situation a spurious RTO may go undetected, so
it may be desirable to look for other solutions. Fortunately,
there are alternatives that could be used to enable F-RTO
in window-limited situations. When limited by the appli-
cation or receiver’s advertised window, a TCP sender could
transmit data from the tail of the retransmission queue. The
downside of this action is, that it would cause more poten-
tially unnecessary retransmissions that are especially harm-
ful in environments that are not prone to spurious RTOs.
Another alternative worth considering when transmission is
limited by the receiver’s advertised window would be to sim-
ply transmit a segment with limited amount data beyond
the advertised window. In the worst case the TCP receiver
would just drop the segment, if it is incapable of storing it.
However, we believe that in many cases the receiver would
have acquired available buffer space for the last packet dur-
ing the time the packet propagates through the network.

In Section 3 we suggested to reduce the congestion window
and slow start threshold to half of their previous values af-
ter a spurious RTO has been detected. We considered this a
conservative enough in various possible scenarios. However,
reducing the congestion control parameters may not be the
best alternative in all situations, especially when the connec-
tion path has a high bandwidth-delay product. In the re-
search and standardization forums there have been different
suggestions from entering slow start after a spurious RTO
to fully reverting the congestion control parameters to the
state preceding the spurious RTO. Some alternatives have
been evaluated with a set of simulated network parameters
in related work [12], and we intend to compare different re-
sponse alternatives as well under various network conditions
in our future work.

7. CONCLUDING REMARKS
In this work we have shown that it is possible to avoid
most of the unnecessary retransmissions following the spu-
rious TCP retransmission timeouts without any additional
information in the TCP packet headers. We presented the
F-RTO algorithm that avoids the unnecessary retransmis-
sions following the spurious RTO by determining based on
the incoming acknowledgements whether to retransmit or
continue sending new data. In addition, because the use
of F-RTO algorithm effectively avoids unnecessary retrans-
mits, it obviates the NewReno “bugfix” rule that disables
fast retransmit during an RTO recovery. This allows more
efficient recovery from packet losses in some scenarios. An
F-RTO sender follows the conventional TCP congestion con-
trol principles by sending data at an equal rate as the con-
ventional TCP and by being clocked by incoming acknowl-
edgements. We showed by experiments that F-RTO im-
proves the TCP performance when there are sudden delays
on the link, and it yields competitive performance if the
RTOs are caused because of other reasons than delays.

We compared F-RTO with the Eifel algorithm and con-
cluded that their performance is similar in the majority of
cases. The Eifel algorithm can perform better than F-RTO,
if packet reordering or packet losses are present for the two
next segments following the RTO. Eifel makes the detection
of spurious RTO already on the first incoming ACK after
RTO, whereas F-RTO is able to detect the spurious RTO
after two acknowledgements have arrived. However, in most
of the cases F-RTO avoids unnecessary retransmissions as
successfully as Eifel does, and after one window has been
transmitted, it has delivered the same amount of data than
Eifel. On the other hand, while making the detection at the
first incoming acknowledgement, the Eifel algorithm can end
up to a false positive conclusion, if the outstanding acknowl-
edgements and data segments have been lost in the same
window due to a loss burst. The DSACK-based algorithms
are not directly comparable with F-RTO, since they are not
able to detect spurious retransmissions until one window of
data has been transmitted and therefore cannot be used for
avoiding unnecessary retransmissions.

So far we have verified the F-RTO algorithm by implement-
ing it in the Linux OS and running experiments by emu-
lating the expected behavior of the wireless link. Taking
this approach makes it possible to study the F-RTO perfor-
mance in a real network environment when the TCP traffic
is generated by the commonly used network applications.
We have contributed our implementation also to the Linux
kernel development, and F-RTO is included in the Linux
kernels starting from version 2.4.21, and in the development
kernel versions 2.5.43 and later. Therefore, it is possible for
the reader using Linux to try out the F-RTO algorithm by
getting a recent version of the Linux kernel.
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