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Abstract. Although the combination of OWL and Horn rules results
in the creation of a highly expressive language, i.e. SWRL, there are
still many occasions where this language fails to accurately represent
knowledge of our world. In particular, SWRL fails at representing vague
and imprecise knowledge and information. Such type of information is
apparent in many applications like multimedia processing and retrieval,
information fusion, etc. In this paper, we propose f-SWRL, a fuzzy ex-
tension to SWRL to include fuzzy assertions (such as ‘Mary is tall in the
degree of 0.9’) and fuzzy rules (such as ‘being healthy is more important
than being rich to determine if one is happy’).

1 Introduction

According to widely known proposals for a Semantic Web architecture, De-
scription Logics (DLs)-based ontologies will play a key role in the Semantic
Web [Pan04]. This has led to considerable efforts to developing a suitable on-
tology language, culminating in the design of the OWL Web Ontology Lan-
guage [BvHH+04b], which is now a W3C recommendation. Although OWL adds
considerable expressive power with respect to languages such as RDF, it does
have expressive limitations, particularly with respect to what can be said about
properties. E.g., there is no composition constructor, so it is impossible to cap-
ture relationships between a composite property and another (possibly com-
posite) property. One way to address this problem would be to extend OWL
with some form of “rules language” [HPS04]. One such proposed extension is
SWRL (Semantic Web Rule Language) [HPSB+04], which is a Horn clause rules
extension to OWL DL4 that overcomes many of these limitations.

(∗) This is a revised and extended version of a paper with the same title that was pub-
lished in the International Conference on Artificial Neural Networks (ICANN 2005).
This work is supported by the FP6 Network of Excellence EU project Knowledge
Web (IST-2004-507842).

4 OWL DL is a key sub-language of OWL.



Even though the combination of OWL and Horn rules results in the cre-
ation of a highly expressive language, there are still many occasions where this
language fails to accurately represent knowledge of our world. In particular
these languages fail at representing vague and imprecise knowledge and infor-
mation [Kif05]. Such type of information is very useful in many applications
like multimedia processing and retrieval [SST+05,BvHH+04a], information fu-
sion [Mat05], and many more. Experience has shown that in many cases dealing
with such type of information would yield more efficient and realistic applications
[AL05,ZYZ+05]. Furthermore, in many applications, like ontology alignment and
modularization, the interconnection of disparate and distributed ontologies and
modules is hardly ever a true or false situation, but rather a matter of a confi-
dence or relatedness degree.

In order to capture imprecision in rules, we propose a fuzzy extension of
SWRL, called f-SWRL. In f-SWRL, fuzzy individual axioms can include a speci-
fication of the “degree” (a truth value between 0 and 1) of confidence with which
one can assert that an individual (resp. pair of individuals) is an instance of a
given class (resp. property); and atoms in f-SWRL rules can include a “weight”
(a truth value between 0 and 1) that represents the “importance” of the atom in
a rule. For example, the following fuzzy rule asserts that being healthy is more
important than being rich to determine if one is happy:

Rich(?p) ∗ 0.5 ∧ Healthy(?p) ∗ 0.9 → Happy(?p),

where Rich, Healthy and Happy are classes, and 0.5 and 0.9 are the weights for
the atoms Rich(?p) and Healthy(?p), respectively. Additionally, observe that the
classes Rich, Healthy and Happy are best represented by fuzzy classes, since the
degree to which someone is Rich is both subjective and non-crisp.

In this paper, we will present the formal syntax and semantics of f-SWRL. In
particular, we specify a set of key constraints of the desired semantics of f-SWRL.
These constraints provides a unified framework for model theoretic semantics of
f-SWRL based on fuzzy and weight operations. We will provide several examples
illustrate the features of f-SWRL. To the best of our knowledge, this is the first
effort on fuzzy extensions of the SWRL language.

2 Preliminaries

2.1 OWL

OWL is a standard (W3C recommendation) for expressing ontologies in the
Semantic Web. The OWL language facilitates greater machine understandabil-
ity of Web resources than that supported by RDFS by providing additional
constructors for building class and property descriptions (vocabulary) and new
axioms (constraints), along with a formal semantics. The OWL recommenda-
tion actually consists of three languages of increasing expressive power: OWL
Lite, OWL DL and OWL Full. OWL Lite and OWL DL are, like DAML+OIL,
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Abstract Syntax DL Syntax Semantics

Class(A) A AI ⊆ ∆I

Class(owl:Thing) > >I =∆I

Class(owl:Nothing) ⊥ ⊥I = ∅
intersectionOf(C1, C2, . . . ) C1 u C2 (C1 u C2)

I = CI1 ∩ CI2
unionOf(C1, C2, . . . ) C1 t C2 (C1 t C2)

I = CI1 ∪ CI2
complementOf(C) ¬C (¬C)I = ∆I \ CI

oneOf(o1, o2,. . . ) {o1}t {o2} ({o1}t {o2}) I ={o1
I ,o2

I}
restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) ∃R.{o} (∃R.{o})I = {x | 〈x, oI〉 ∈ RI}
restriction(R minCardinality(m)) > mR (> mR)I = {x | ]{y.〈x, y〉 ∈ RI} ≥ m}
restriction(R maxCardinality(m)) 6 mR (6 mR)I = {x | ]{y.〈x, y〉 ∈ RI} ≤ m}
restriction(T someValuesFrom(u)) ∃T.u (∃T.u)I = {x | ∃t.〈x, t〉 ∈ T I ∧ t ∈ uD}
restriction(T allValuesFrom(u)) ∀T.u (∀T.u)I = {x | ∃t.〈x, t〉 ∈ T I → t ∈ uD}
restriction(T hasValue(w)) ∃T.{w} (∃T.{w})I = {x | 〈x, wD〉 ∈ T I}
restriction(T minCardinality(m)) > mT (> mT )I = {x | ]{t | 〈x, t〉 ∈ T I} ≥ m}
restriction(T maxCardinality(m)) 6 mT (6 mT )I = {x | ]{t | 〈x, t〉 ∈ T I} ≤ m}
ObjectProperty(S) S SI ⊆ ∆I ×∆I

ObjectProperty(S′ inverseOf(S)) S− (S−)I ⊆ ∆I ×∆I

DatatypeProperty(T ) T T I ⊆ ∆I ×∆D

Table 1. OWL Class and Property Descriptions

basically very expressive Description Logics (DLs); they are almost5 equivalent
to the SHIF(D+) and SHOIN (D+) DLs. OWL Full provides the same set
of constructors as OWL DL, but allows them to be used in an unconstrained
way (in the style of RDF). It is easy to show that OWL Full is undecidable, be-
cause it does not impose restrictions on the use of transitive properties [HST99];
therefore, when we mention OWL in this paper, we usually mean OWL DL.

Let C, RI, RD and I be the sets of URIrefs that can be used to denote classes,
individual-valued properties, data-valued properties and individuals respectively.
An OWL DL interpretation is a tuple I = (∆I ,∆D, ·I) where the individual
domain ∆I is a nonempty set of individuals, the datatype domain ∆D is a
nonempty set of data values, ·I is an individual interpretation function that
maps

– each individual name a ∈ I to an element aI ∈ ∆I ,
– each class name CN ∈ C to a subset CNI ⊆ ∆I ,
– each individual-valued property name RN ∈ RI to a binary relation RNI ⊆

∆I ×∆I and
– each data-valued property name TN ∈ RD to a binary relation TNI ⊆

∆I ×∆D.

5 They also provide annotation properties, which Description Logics do not.
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Let RN ∈ RI an individual-valued property URIref, R an individual-valued
property, TN ∈ RD a data-valued property URIref and T a data-valued prop-
erty. Valid OWL DL individual-valued properties are defined by the DL syntax:
R ::= RN | R−; valid OWL DL data-valued properties are defined by the DL
syntax: T ::= TN. Let CN ∈ C be a class name, C, D class descriptions, o ∈ I
an individual, u an OWL datatype range and m ∈ N an integer. Valid OWL DL
class descriptions are defined by the DL syntax:

C ::= > | ⊥ | CN | ¬C | C uD | C tD | {o}
∃R.C | ∀R.C |> mR, |6 mR
∃T.u | ∀T.u |> mT, |6 mT

The individual interpretation function can be extended to give semantics
to class and property descriptions shown in Tables 2, where A ∈ C is a class
URIref, C,C1, . . . , Cn are class descriptions, S ∈ RI is an individual-valued prop-
erty URIref, R is an individual-valued property description and o, o1, o2 ∈ I are
individual URIrefs, u is a data range, T ∈ RD is a data-valued property and ]
denotes cardinality.

An OWL DL ontology can be seen as a DL knowledge base [HPSvH03],
which consists of a set of axioms, including class axioms, property axioms and
individual axioms.6 A DL knowledge base consists of a TBox, an RBox and an
ABox. A TBox is a finite set of class inclusion axioms of the form C v D,
where C, D are L-classes. An interpretation I satisfies C v D if CI ⊆ DI .
An RBox is a finite set of role axioms, such as role inclusion axioms (R v S),
functional role axioms (Func(R)) and transitive role axioms (Trans(R)); the kinds
of role axioms that can appear in an RBox depend on the expressiveness of L.
An interpretation I satisfies R v S if RI ⊆ SI ; I satisfies Func(R) if, for all
x ∈ ∆I , ]{y ∈ ∆I | 〈x, y〉 ∈ RI} ≤ 1 (] denotes cardinality); I satisfies Trans(R)
if, for all x, y, z ∈ ∆I , {〈x, y〉, 〈y, z〉} ⊆ RI → 〈x, z〉 ∈ RI . An ABox is a finite
set of individual axioms of the form a : C, called class assertions, or 〈a, b〉 : R,
called role assertions. An interpretation I satisfies a : C if aI ∈ CI , and it
satisfies 〈a, b〉 : R if 〈aI , bI〉 ∈ RI . An interpretation I satisfies a knowledge
base Σ if it satisfies all the axioms in Σ. Σ is satisfiable (unsatisfiable) iff there
exists (does not exist) such an interpretation I that satisfies Σ. Let C, D be
L-classes, C is satisfiable w.r.t. Σ iff there exist an interpretation I of Σ s.t.
CI 6= ∅; C subsumes D w.r.t. Σ iff for every interpretation I of Σ we have
CI ⊆ DI .

2.2 SWRL

SWRL is proposed by the Joint US/EU ad hoc Agent Markup Language Com-
mittee.7 It extends OWL DL by introducing rule axioms, or simply rules, which
have the form:

antecedent → consequent,

6 Individual axioms are called facts in OWL.
7 See http://www.daml.org/committee/ for the members of the Joint Committee.
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where both antecedent and consequent are conjunctions of atoms written a1 ∧
. . . ∧ an. Atoms in rules can be of the form C(x), P (x,y), Q(x,z), sameAs(x,y),
differentFrom(x,y) or builtIn(pred,z1, . . . , zn), where C is an OWL DL descrip-
tion, P is an OWL DL individual-valued property, Q is an OWL DL data-valued
property, pred is a datatype predicate URIref, x,y are either individual-valued
variables or OWL individuals, and z, z1, . . . , zn are either data-valued variables
or OWL data literals. An OWL data literal is either a typed literal or a plain
literal; see [BvHH+04b,PH05] for details. Variables are indicated using the stan-
dard convention of prefixing them with a question mark (e.g., ?x). For example,
the following rule asserts that one’s parents’ brothers are one’s uncles:

parent(?x, ?p) ∧ brother(?p, ?u) → uncle(?x, ?u), (1)

where parent, brother and uncle are all individual-valued properties.
In SWRL, URI references (URIrefs) are used to identify ontology elements

such as classes, individual-valued properties and data-valued properties. A URI
reference (or URIref) is a URI, together with an optional fragment identifier
at the end. Uniform Resource Identifiers (URIs) are short strings that identify
Web resources [Gro01]. The reader is referred to [HPSB+04] for full details of
the model-theoretic semantics and abstract syntax of SWRL.

2.3 Fuzzy Sets

While in classical set theory any element belongs or not to a set, in fuzzy set
theory [Zad65] this is a matter of degree. More formally, let X be a collection of
elements (the universe of discourse) with cardinality m, i.e X = {x1, x2, . . . , xm}.
A fuzzy subset A of X, is defined by a membership function µA(x), or simply
A(x), x ∈ X. This membership function assigns any x ∈ X to a rational number
between 0 and 1 that represents the degree in which this element belongs to X.
The support, Supp(A), of A is the crisp set Supp(A) = {x ∈ X | A(x) 6= 0}.

Using the above idea, the most important operations defined on crisp sets and
relations (complement, union, intersection) are extended in order to cover fuzzy
sets and fuzzy relations. These operations are now being performed by mathe-
matical functions over the unit interval. More precisely, the complement ¬A of
a fuzzy set A is given by (¬A)(x) = c(A(x)) for any x ∈ X, where the function
c : [0, 1] → [0, 1] is called a fuzzy complement (or simply c-norm), which should
satisfy the boundary conditions, c(0) = 1 and c(1) = 0, and be monotonic de-
creasing, i.e. for a ≤ b, c(a) ≥ c(b). Examples of c-norms include the Lukasiewicz
negation c(a) = 1 − a, which additionally is continuous and involutive, i.e., for
each a ∈ [0, 1], c(c(a)) = a holds. The intersection of two fuzzy sets A and B
is given by (A ∩ B)(x) = t[A(x), B(x)], where the function t : [0, 1]2 → [0, 1]
is called a triangular norm (t-norm) that should satisfy boundary condition, i.e.
t(a, 1) = a, be monotonic increasing, commutative, i.e. t(a, b) = t(b, a), and as-
sociative, i.e., t(a, t(b, c)) = t(t(a, b), c). Examples of t-norms include the Gödel
t-norm t(a, b) = min(a, b), which additionally is idempotent, i.e. min(a, a) = a.
The union of two fuzzy sets A and B is given by (A ∪ B)(x) = u[A(x), B(x)],
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where the function u : [0, 1]2 → [0, 1] is called a triangular conorm (or simply
s-norm, or u-norm), which should satisfy boundary condition, i.e. u(a, 0) = a,
be monotonic increasing, commutative and associative. Examples of u-norms in-
clude the Gödel u-norm u(a, b) = max(a, b), which additionally is idempotent.
A binary fuzzy relation R over two countable crisp sets X and Y is a function
R : X × Y → [0, 1]. The composition of two fuzzy relation R1 : X × Y → [0, 1]
and R2 : Y ×Z → [0, 1] is given by [R1 ◦t R2]= supy∈Y t[R1(x, y), R2(y, z)]. Such
a type of composition is referred to as sup -t composition.

Another important operation in fuzzy logics is the fuzzy implication, which
gives a truth value to the predicate A ⇒ B. A fuzzy implication is a function ω
of the form ω : [0, 1]2 → [0, 1], which is monotonic decreasing (increasing) on the
first (second) argument. In fuzzy logics, we are usually interested in two kinds
of fuzzy implications, i.e.,

– S-implication: ωu,c(a, b) = u(c(a), b),
– R-implication: ωt(a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b},

where a, b are the truth values for A and B, respectively.
We now recall some properties of the above two fuzzy operations that we are

going to use in the investigation of the properties of the f-SWRL language.

Lemma 1. [KY95] For any a, b, c ∈ [0, 1], t a t-norm, ωt the respective R-
implication and ω an R or an S-implication, the following properties are satisfied:

1. t(a, b) ≤ c iff ωt(a, c) ≥ b,
2. ωt(a, b) = 1 iff a ≤ b,
3. ω(0, b) = 1, (dominance of falsity)
4. ω(1, b) = b (neutrality of truth)

The last two properties follow easily from the definitions of the fuzzy implications
and the boundary conditions of t-norms and u-norms.

The reader is referred to [KY95,Haj98] for details of fuzzy logics and their
applications.

3 A Motivating Use Case

In this section, we discuss a motivating use case from a casting company, which
has a knowledge base that consists of person-models. Advertisement companies
are using this knowledge base to look for models to be used in advertisements
or other activities. Each entry in the knowledge base contains a photo of the
model, personal information and some body and face characteristics. The casting
company has created a user interface for inserting the information of the models
as instances of a predefined ontology. It also provides a query engine to search
for models with specific characteristics. A user can query the knowledge base
providing high-level information about the models (such as the name, the height,
the type of the hair etc.).

Now we suppose that we have only information about the following two
models in the knowledge base:
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– Mary has height 172cm and has weight 50kg.
– Susan has height 180cm and has weight 61kg.

If an advertisement company requires a thin female model. Since thinness can
be regarded as a function of both the weight as well as the height of a person,
one can define thinness as follows.

– One is thin iff one is both tall and light.
– One is tall iff one’s height is larger than 175cm.
– One is light iff one’s weight is less than 60kg.

Under such definitions, it is obvious that there are no thin female models in
the knowledge base. Susan is over 175cm tall but is not under 60kg, while Mary
is under 60kg but not over 175cm. Although Mary fails to satisfy the height
requirement for only 3cm, which in fact is a rather small value, she satisfies the
weight condition; in fact, she is 10kg lighter than the required weight. In fact, the
advertisement company might classify her as a thin model if it regards weight a
more important factor than height in terms of thinness.

The above problems can be solved if we use a fuzzy knowledge representation,
instead of a crisp knowledge representation. In particular, we can define tall and
light in a fuzzy way, i.e., by using degrees of confidence. For instance, based
on the above data of the two models as well as the policy of the advertisement
company, we can have the following fuzzy assertions.

– Mary is tall with a degree no less than 0.65.
– Mary is light with a degree no less than 0.9.
– Susan is tall with a degree no less than 0.8.
– Susan is light with a degree no less than 0.6.

Note that the above membership degrees of the individuals Mary and Susan to
the fuzzy classes “tall” and “light” have resulted by providing a fuzzy partition
[KY95] of the space of the possible values that ones height and weight can obtain.
For example, the fuzzy partitions in our example can be depicted in Fig. 1.

In addition to the fuzzy assertion, we can also deduce “one is thin” in a fuzzy
way. For instance, we can introduce the following fuzzy rule about thinness: One
is thin if one is tall (with importance factor 0.7) and light (with importance
factor 0.8).

After introducing the syntax and semantics of f-SWRL, we will revisit this
use case in Section 4.

4 f-SWRL

Fuzzy rules are of the form antecedent → consequent, where atoms in both the an-
tecedent and consequent can have weights (i.e., importance factors), i.e., numbers
between 0 and 1. More specifically, atoms can be of the forms C(x)∗w, P(x,y)∗w,
Q(x,z)∗w, sameAs(x,y)∗w, differentFrom(x,y)∗w or builtIn(pred,z1, . . . , zn), where
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Fig. 1. The fuzzy partition of Height and Weight

w ∈ [0, 1] is the weight of an atom, and omitting a weight is equivalent to spec-
ifying a value of 1. For instance, the following fuzzy rule axiom, inspired from
the field of emotional analysis, asserts that if a man has his eyebrows raised
enough and his mouth open then he is happy, and that the condition that he
has his eyebrows raised is a bit more important than the condition that he has
his mouth open.

EyebrowsRaised(?a) ∗ 0.9 ∧MouthOpen(?a) ∗ 0.8 → Happy(?a), (2)

In this example, EyebrowsRaised, MouthOpen and Happy are class URIrefs, ?a
is a individual-valued variable, and 0.9 and 0.8 are the weights of the atoms
Eyebrows- Raised(?a) and MouthOpen(?a), respectively.

In this paper, we only consider atomic fuzzy rules, i.e., rules with only one
atom in the consequent. The weight of an atom in a consequent, therefore, can
be seen as indicating the weight that is given to the rule axiom in determining
the degree with which the consequent holds. Consider, for example, the following
two fuzzy rules:

parent(?x, ?p) ∧ Happy(?p) → Happy(?x) ∗ 0.8 (3)

brother(?x, ?b) ∧ Happy(?b) → Happy(?x) ∗ 0.4, (4)

which share Happy(?x) in the consequent. Since 0.8 > 0.4, more weight is given
to rule (3) than to rule (4) when determining the degree to which an individual
is Happy.

In what follows, we formally introduce the syntax and model-theoretic se-
mantics of fuzzy SWRL.
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4.1 Syntax

In this section, we present the syntax of fuzzy SWRL. To make the presentation
simple and clear, we use DL syntax (see the following definition) instead of the
XML, RDF or abstract syntax of SWRL.

Definition 1. Let a,b be individual URIrefs, l a OWL data literal, C, D OWL
class descriptions, r, s OWL individual-valued property descriptions, r1, r2 indi-
vidual-valued property URIrefs, s, s1 data-valued property URIrefs, pred a datatype
predicate, w, w1, . . . , wn ∈ [0, 1],

⇀
v ,

⇀
v 1, . . . ,

⇀
v n are (unary or binary) tuples of

variables and/or individual URIrefs, a1(
⇀
v1), . . . , an(

⇀
vn) and c(

⇀
v ) are of the forms

C(x), r(x, y), s(x, z), sameAs(x, y), differentFrom(x, y), m or builtIn(pred, z1,
. . . , zn), where x, y are individual-valued variables or individual URIrefs, m is
a truth constant, which is a rational number between 0 and 1, and z, z1, . . . , zn

are data-valued variables or OWL data literals.
An f-SWRL ontology can have the following kinds of axioms:

– class axioms: C v D (class inclusion axioms);
– property axioms: r v r1 ( individual-valued property inclusion axioms), Func(r1)

(functional individual-valued property axioms), Trans(r2) (transitive prop-
erty axioms), s v s1 (data-valued property inclusion axioms), Func(s1)
(functional data-valued property axioms);

– individual axioms (facts): (a : C) ≥ m, (a : C) ≤ m (fuzzy class asser-
tions), (〈a,b〉 : r) ≥ m, (〈a,b〉 : r) ≤ m (fuzzy individual-valued property
assertions), (〈a,l〉 : r) ≥ m, (〈a,l〉 : r) ≤ m (fuzzy data-valued property as-
sertions), a = b (individual equality axioms) and a 6= b (individual inequality
axioms);

– rule axioms: a1(
⇀
v1) ∗w1 ∧ · · · ∧ an(

⇀
vn) ∗wn → c(

⇀
v ) ∗w (fuzzy rule axioms).

Omitting a degree or a weight is equivalent to specifying the value of 1. ¦

According to the above definition, f-SWRL extends SWRL with fuzzy class
assertions, fuzzy property assertions and fuzzy rule axioms. We have some re-
marks here. Firstly, in f-SWRL, there are two (i.e. ≥ and ≤) kinds of fuzzy asser-
tions; as first pointed out in [HKS02], we can simulate the form of (a : C) = m
by considering two assertions of the form (a : C) ≥ m and (a : C) ≤ m. Sec-
ondly, although f-SWRL supports degrees in fuzzy assertions, it does not support
degrees in fuzzy class axioms and fuzzy property axioms because it is not very
clear how to obtain degrees for them. Nevertheless, it is worth noting that fuzzy
class axioms and fuzzy property axioms have fuzzy interpretations instead of
crisp interpretations (see Section 4.3). Furthermore, we allow the use of truth
constants m [Pav79,Haj98] in the consequence of a fuzzy rule axiom. This could
enable us to simulate fuzzy assertions of the form (a : C) ≤ m with fuzzy rule
axioms (see Section 4.3).
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4.2 Constraints on Semantics

In order to make the semantics of f-SWRL more intuitive, in this section we
briefly clarify the constraints of our desired semantics for f-SWRL. The pro-
posed constraints provide a unified framework for giving model theoretic seman-
tics for f-SWRL based on fuzzy intersections (t-norms), fuzzy union (u-norms),
fuzzy negations (c-norms), fuzzy implications (ω-norms) and weight operations
g(w, d) : [0, 1]2 → [0, 1], i.e. how to handle the degree d of an atom (in an-
tecedents) and its weight w.

Firstly, one of the most useful relationships which is used to manipulate
expressions in propositional logic is the modus ponen, which states that A∩(A ⇒
B) ⇒ B (if A is true and A implies B, then B is also true). This suggests the
following constraint on fuzzy implications.

Constraint 1 The fuzzy implications used in the semantics of f-SWRL should
satisfy the modus ponen:

ω(t(a, ω(a, b)), b) = 1.

It is easy to verify that, e.g., the following two sets of fuzzy operations satisfy
the above constraint:

– {t(a, b) = min(a, b), ωt(a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b}},
– {t(a, b) = a · b, ωt(a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b}},

while the set of fuzzy operations {t(a, b) = min(a, b), u(a, b) = max(a, b), c(a) =
1 − a, ωu,c(a, b) = u(c(a), b)} does not (e.g., when a = 0.4, b = 0.5). In short,
R-implication satisfies Constraint 1, while S-implication does not.

Secondly, we require the weight operations g(w, d) in antecedents satisfy the
following properties.

Constraint 2 The weight operations g(w, d) used in the semantics of f-SWRL
should satisfy the following properties:

1. monotone in d: if d1 < d2 then g(w, d1) < g(w, d2),
2. g(0, d) = 1, g(1, d) = d.

The intuition of Property 1 is immediate. Property 2 ensures that the weight 0
would not affect the result of fuzzy intersections in the antecedent, and that the
full membership degree would participate in fuzzy intersections when the weight
is 1.

It is easy to verify that, e.g., the following two weight operations satisfy the
above constraint:

– g(a, b) =
{

a · b if a 6= 0
1 if a = 0 ,

– g(a, b) = ωt(a, b),
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while the weight operation g(a, b) = min(a, b) does not (e.g. when a = 0).
Thirdly, in order to enable the use of weights in the head atoms as the weights

of the rule axiom, we have the following constraint.

Constraint 3 Given a fuzzy rule A → c ∗ w, where A is the antecedent of the
rule and c is the consequent atom with weight w, the semantics of f-SWRL should
satisfy the following property:

ω(A(I), c(I)) ≥ w,

where A(I) and c(I) are interpretations of A and c, respectively.

Intuitively speaking, the above constraint requires that the degree of fuzzy
implication should be no less than the weight. This constraint is inspired by
Theorem 5 from [DP01], which shows an important property of the weighted

rules of the form A
θ→C, where θ is a weight of the rule.

Furthermore, individual axioms (or facts) are special forms of rule axioms in
SWRL. This suggests yet another constraint on the semantics of f-SWRL.

Constraint 4 The semantics of f-SWRL should ensure that fuzzy individual
axioms (fuzzy facts) are special forms of fuzzy rule axioms.

It is worth noting that we do not require fuzzy class (or property) axioms be
special forms of fuzzy rule axioms. In some decidable sub-languages of SWRL,
such as the DL-safe SWRL [MSS04], class (or property) axioms are not special
forms of rule axioms.

4.3 Model-theoretic Semantics

In this section, we give a model-theoretic semantics for fuzzy SWRL, based on
the constraints specified in the precious section. Although many f-SWRL axioms
share the same syntax as their counterparts in SWRL, such as class inclusion
axioms, they have different semantics because we use fuzzy interpretations in
the model-theoretic semantics of f-SWRL.

Before we provide a model-theoretic semantics for f-SWRL, we introduce the
notions of datatype predicates and datatype predicate maps.

Definition 2. (Datatype Predicate) A datatype predicate (or simply pred-
icate) p is characterised by an arity a(p), or a minimum arity amin(p) if p can
have multiple arities, and a predicate extension (or simply extension) E(p). ¦

For example, =int is a datatype predicate with arity a(=int) = 2 and ex-
tension E(=int) = {〈i1, i2〉 ∈ V (integer)2 | i1 = i2}, where V (integer) is the
set of all integers. Datatypes can be regarded as special predicates with arity 1
and predicate extensions equal to their value spaces; e.g., the datatype integer
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can be seen as a predicate with arity a(integer) = 1 and predicate extension
E(integer) = V (integer).8

Definition 3. (Predicate Map) We consider a predicate map Mp that is a
partial mapping from predicate URI references to predicates. ¦

Intuitively, datatype predicates (resp. datatype predicate URIrefs) in Mp are
called built-in datatype predicates (resp. datatype predicate URIrefs) w.r.t. Mp.
Note that allowing the datatype predicate map to vary allows different imple-
mentations of f-SWRL to implement different datatype predicates.

Based on the constraints we specified in the previous section, we define the
semantics of f-SWRL as follows.

Definition 4. Let c, t, u be fuzzy negations, fuzzy intersections and fuzzy unions,
g weight operations that satisfy Constraints 2. Due to Constraint 1, we choose
the R-implication as the fuzzy implication. Given a datatype predicate map Mp, a
fuzzy interpretation is a triple I = 〈∆I ,∆D, ·I〉, where the abstract domain ∆I is
a non-empty set, the datatype domain contains at least all the data values in the
extensions of built-in datatype predicates in Mp, and ·I is a fuzzy interpretation
function, which maps

1. individual URIref and individual-valued variables to elements of ∆I ,
2. a class description C to a membership function CI : ∆I → [0, 1],
3. an individual-valued property URIref r to a membership function rI : ∆I ×

∆I → [0, 1],
4. an data-valued property URIref q to a membership function qI : ∆I×∆D →

[0, 1],
5. a truth constant m to itself: mI = m,
6. a built-in datatype predicate URIref pred to its extension predI = E(Mp(pred)) ∈

(∆D)n, where n = a(Mp(pred)), so that

builtInI(pred, z1, . . . , zn) =
{

1 if 〈zI1 , . . . , zIn〉 ∈ predI

0 otherwise,

7. the built-in property sameAs to a membership function

sameAsI(x, y) =
{

1 if xI = yI

0 otherwise,

8. the built-in property differentFrom to a membership function

differentFromI(x, y) =
{

1 if xI 6= yI

0 otherwise.

The fuzzy interpretation function can be extended to give semantics for fuzzy
class descriptions listed in Table 2.
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DL Syntax Semantics

A AI : ∆I → [0, 1]

> >I (a) = 1
⊥ ⊥I(a) = 0

C1 u C2 (C uD)I(a) = t(CI(a), DI(a))
C1 t C2 (C tD)I(a) = u(CI(a), DI(a))
¬C (¬C)I(a) = c(CI(a))

{o1}t {o2} ({o1} t {o2})I(a) = 1 if a ∈{ oI
1, o

I
2}

({o1} t {o2})I(a) = 0 otherwise

∃r.C (∃r.C)I(a) = supb∈∆I t(rI(a, b), CI(b))
∀r.C (∀r.C)I(a) = infb∈∆I ωt(r

I(a, b), CI(b))
∃r.{o} (∃(r.{o})I(a) = supb∈∆I t(rI(a, b), {o}I(b))
> mr (> mr)I(a) = supb1,...,bm∈∆I tm

i=1r
I(a, bi)

6 mr (6 mr)I(a) = infb1,...,bm+1∈∆I um+1
i=1 c(rI(a, bi))

∃s.d (∃s.d)I(a) = supy∈∆D
t(sI(a, y), y ∈ dI)

∀s.d (∀s.d)I(a) = infy∈∆D ωt(s
I(a, y), y ∈ dI)

> ms (> ms)I(a) = supy1,...,ym∈∆D
tm
i=1s

I(a, yi)

6 ms (6 ms)I(a) = infy1,...,ym+1∈∆D um+1
i=1 c(sI(a, yi))

R− (R−)I(a, b) = RI(b, a)
Table 2. Syntax and Semantics of Fuzzy Class and Property Descriptions

A fuzzy interpretation I satisfies a class inclusion axiom C v D, written
I |= C v D, if ∀o ∈ ∆I , CI(o) ≤ DI(o).

A fuzzy interpretation I satisfies an individual-valued property inclusion ax-
iom r v r1, written I |= r v r1, if ∀o, q ∈ ∆I , rI(o, q) ≤ rI1 (o, q). I satisfies
a functional individual-valued property axiom Func(r1), written I |= Func(r1),
if ∀o ∈ ∆I , infq1,q2∈∆I u(c(rI1 (o, q1)), c(rI1 (o, q2))) ≥ 1. I satisfies a transitive
property axiom Trans(r2), written I |= Trans(r2), if ∀o, q ∈ ∆I , rI2 (o, q) =
supp∈∆I t[rI2 (o, p), rI2 (p, q)], where t is a triangular norm. A fuzzy interpretation
I satisfies a data-valued property inclusion axiom s v s1, written I |= s v s1, if
∀〈o, l〉 ∈ ∆I ×∆D, sI(o, l) ≤ sI1 (o, l). I satisfies a functional data-valued prop-
erty axiom Func(s1), written I |= Func(s1), if ∀o ∈ ∆I , inf l1,l2∈∆D

u(c(sI1 (o, l1)),
c(sI1 (o, l2))) ≥ 1.

A fuzzy interpretation I satisfies a fuzzy class assertion (a : C) ≥ m, written
I |= (a : C) ≥ m, if CI(a) ≥ m. I satisfies a fuzzy individual-valued property
assertion (〈a,b〉 : r) ≥ m2, written I |= (〈a,b〉 : r) ≥ m2, if rI(a,b) ≥ m2.
I satisfies a fuzzy data-valued property assertion (〈a, l〉 : s) ≥ m3, written
I |= (〈a, l〉 : s) ≥ m3, if sI(a, l) ≥ m3. The semantics of fuzzy assertions using
≤ are defined analogously. I satisfies an individual equality axiom a = b, written
I |= a = b, if aI = bI . I satisfies an individual inequality axiom a 6= b, written
I |= a 6= b, if aI 6= bI .

8 See [Pan04] for detailed discussions on the relationship between datatypes and
datatype predicates.
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A fuzzy interpretation I satisfies a fuzzy rule axiom a1(
⇀
v1)∗w1∧· · ·∧an(

⇀
vn)

∗wn → c(
⇀
v ) ∗ w, written I |= a1(

⇀
v1) ∗ w1 ∧ · · · ∧ an(

⇀
vn) ∗ wn → c(

⇀
v ) ∗ w, if

t(g(w1, a
I
1 (

⇀
v1

I
)), . . . , g(wn, aIn(

⇀
vn

I
))) ≤ ωt(w, cI(

⇀
v
I
)). ¦

There are some remarks on the above definition. Firstly, as we have seen
in the previous section, only R-implication satisfies Constraint 1. Therefore, we
implicitly use R-implication for fuzzy rule axioms (see below). In fact, given a
fuzzy rule axiom A → C, Definition 4 asserts that an fuzzy interpretation I
satisfies A → C if A(I) ≤ C(I), where A(I) and C(I) are interpretations of the
antecedent A and conclusion C, respectively. By applying Property 2 of Lemma
1, it follows that ωt(A(I), C(I)) = 1. One of the consequences of such semantics
is the support of chaining of rules. Suppose that we have two fuzzy rule axioms
A1 → C1, C1 → C2, if an fuzzy interpretation I satisfies both of them, i.e.
A1(I) ≤ C1(I) and C1(I) ≤ C2(I), it follows A1(I) ≤ C2(I). In other words, I
also satisfies the fuzzy rule axiom A1 → C2.

Secondly, there is more than one choice of semantics of fuzzy class descrip-
tions. The one we presented in Table 2 is simply a relatively straightforward
one out of many possible choices. For example, we decide to use R-implication
in value restriction (∀r.C) and datatype value restriction (∀s.d) because we use
R-implication in fuzzy rule axioms. The semantics of fuzzy number restrictions
were first presented in [Str05]. They are derived by the fuzzy version of the First-
Order formulae of classical number restrictions [Str05]. It is easy to see that the
fuzzy interpretation of (> 1r) is equivalent to that of (∃r.>).

Furthermore, the semantics of fuzzy functional role axioms is equivalent to
that of the fuzzy class inclusion axiom > v≤ 1r. Note that there are two ways to
encode fuzzy disjointness axioms. For example, to assert that C is disjoint with
D, one can encode it as the fuzzy class axiom C u D v ⊥ or C v ¬D, which
have different semantics. In this paper, we do not prejudge which approach is
better and leave it to the users to choose, based on the modelling requirements
in their applications.

Let us conclude this section by showing that f-SWRL satisfies all the con-
straints presented in Section 4.2.

Lemma 2. Given a f-SWRL rule axiom A → c∗w, where A is the antecedent of
the rule and c is the consequent atom with weight w, we have ωt(A(I), c(I)) ≥ w,
where A(I) and c(I) are interpretations of A and c, respectively.

Proof: According to the Definition 4, we have A(I) ≤ ωt(w, c(I)). Due to
Property 1 of Lemma 1, we have t(w,A(I)) ≤ c(I); i.e., t(A(I), w) ≤ c(I). Due
to Property 1 of Lemma 1 again, we have ωt(A(I), c(I)) ≥ w. ut

Lemma 3. In f-SWRL, fuzzy assertions are special forms of fuzzy rule axioms.

Proof: (a : C) ≥ m can be simulated by >(a) → C(a) ∗ m. According to
Definition 4, we have 1 ≤ ωt(m,CI(a)). Due to Property 2 of Lemma 1, we have
CI(a) ≥ m, which is the interpretation of (a : C) ≥ m.
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(a : C) ≤ m can be simulated by C(a) → m, where m is a truth constant.
According to Definition 4, we have CI(a) ≤ ωt(1,m). Due to Property 4 of
Lemma 1, we have CI(a) ≤ m, which is the interpretation of (a : C) ≤ m.

Similarly, (〈a, b〉 : r) ≥ m can be simulated by >(a)∧>(b) → r(a, b)∗m, and
(〈a, b〉 : r) ≤ m can be simulated by r(a, b) → m. ut

Based on Definition 4, Lemma 2 and Lemma 3, we have the following theo-
rem.

Theorem 1. f-SWRL satisfies Constraints 1-4.

5 Examples

In this section, we use some examples to further illustrate the semantics of f-
SWRL. Firstly, let us revisit our motivating example presented in Section 3, so
as to show that the use of different fuzzy and weight operations could lead to
very different results.

Example 1. The corresponding f-SWRL knowledge base about models consists
of the following fuzzy axioms:

– Mary is Tall with a degree no less than 0.65: (Mary : Tall) ≥ 0.65.
– Mary is Light with a degree no less than 0.9: (Mary : Light) ≥ 0.9.
– Susan is Tall with a degree no less than 0.8: (Susan : Tall) ≥ 0.8.
– Susan is Light with a degree no less than 0.6: (Susan : Light) ≥ 0.6.
– One is Thin if one is Tall (with importance factor 0.7) and Light (with im-

portance factor 0.8):

Tall(?p) ∗ 0.7 ∧ Light(?p) ∗ 0.8 → Thin(?p).

The interpretation of the above rule axiom is as follows.

t(g(0.7, TallI(?pI)), g(0.8, LightI(?pI))) ≤ ωt(1, ThinI(?pI)).

In this example, we first use the following operations: t(a, b) = min(a, b), ωt(a, b) ={
1 if a ≤ b
b if a > b

, g(a, b) =
{

a · b if a 6= 0
1 if a = 0 . According to Definition 4, we have

ThinI(MaryI) ≥ min(0.7 · 0.65, 0.8 · 0.9) = min(0.455, 0.72) = 0.455, while
ThinI(SusanI) ≥ min(0.7 · 0.8, 0.8 · 0.6) = min(0.56, 0.48) = 0.48. As a result,
Susan seems to be thinner than Mary in this setting.

If we choose another set of operations, the conclusion, however, can be com-
pletely different.

For example, now we use the following operations: t(a, b) = a · b, ωt(a, b) ={
1 if a ≤ b
b/a if a > b

, g(a, b) = ωt(a, b). According to Definition 4, we have ThinI(MaryI)

≥ ωt(0.7, 0.65)·ωt(0.8, 0.9) = 0.929·1 = 0.929, while ThinI(SusanI) ≥ ωt(0.7, 0.8)·
ωt(0.8, 0.6) = 1 · 0.75 = 0.75. As a result, Mary seems to be quite thinner than
Susan in this setting. ♦
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The above example indicates that t-torm based weights give quite different mean-
ing than ωt based weights.

Secondly, we revisit rules (3) and (4) discussed at the beginning of Section
4. Interestingly, this time the above two sets of operations lead to the agreeing
result.

Example 2. Suppose we have an f-SWRL knowledge base as follows:

– Tom is Happy with a degree no less than 0.7: (Tom : Happy) ≥ 0.7,
– Tom is a parent of Jane: 〈Jane, Tom〉 : parent,
– Tom is a brother of Kate: 〈Kate, Tom〉 : brother,
– if one’s parent is Happy, then one is Happy (with importance factor 0.8):

parent(?x, ?p) ∧ Happy(?p) → Happy(?x) ∗ 0.8,

– if one’s brother is Happy, then one is Happy (with importance factor 0.4):

brother(?x, ?b) ∧ Happy(?b) → Happy(?x) ∗ 0.4.

Let us use the two sets of operations in Example 1 with this knowledge base.

Firstly, we use the following operations: t(a, b) = min(a, b), ωt(a, b) =
{

1 if a ≤ b
b if a > b

,

g(a, b) =
{

a · b if a 6= 0
1 if a = 0 . According to Definition 4, we have ωt(0.8,HappyI(JaneI)) ≥

min(1·1, 1·0.7) = 0.7. Due to Property 1 of Lemma 1, we have HappyI(JaneI) ≥
0.7. As for Kate, we have ωt(0.4, HappyI(KateI)) ≥ min(1·1, 1·0.7) = 0.7; hence,
HappyI(KateI) ≥ 0.4. Hence, Jane seems to be happier than Kate.

Now we use the following operations: t(a, b) = a·b, ωt(a, b) =
{

1 if a ≤ b
b/a if a > b

,

g(a, b) = ωt(a, b). According to Definition 4, we have ωt(0.8, HappyI(JaneI)) ≥
ωt(1, 1)·ωt(1, 0.7) = 0.7; hence, HappyI(JaneI) ≥ t(0.8, 0.7) = 0.56. As for Kate,
we have ωt(0.4,HappyI(KateI)) ≥ ωt(1, 1)·ωt(1, 0.7) = 0.7; hence, HappyI(KateI) ≥
t(0.4, 0.7) = 0.28. Again, Jane seems to be happier than Kate. ♦

So far we have only seen fuzzy assertions of the form (a : C) ≥ m; in the
next example, we will use fuzzy assertions of the form (a : C) ≤ m.

Example 3. Suppose we have a slightly different f-SWRL knowledge base from
that in the previous example.

– Jane is Happy with a degree no larger than 0.75: (Jane : Happy) ≤ 0.75,
– Kate is Happy with a degree no larger than 0.85: (Kate : Happy) ≤ 0.85,
– Tom is a parent of Jane: 〈Jane, Tom〉 : parent,
– Tom is a brother of Kate: 〈Kate, Tom〉 : brother,
– if one’s parent is Happy, then one is Happy (with importance factor 0.8):

parent(?x, ?p) ∧ Happy(?p) → Happy(?x) ∗ 0.8 (5)
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– if one’s brother is Happy, then one is Happy (with importance factor 0.4):

brother(?x, ?b) ∧ Happy(?b) → Happy(?x) ∗ 0.4, (6)

Here we use the following operations: t(a, b) = min(a, b), ωt(a, b) =
{

1 if a ≤ b
b if a > b

,

g(a, b) =
{

a · b if a 6= 0
1 if a = 0 . From (5), we have HappyI(TomI) ≤ ωt(0.8,HappyI

(JaneI)) ≤ ωt(0.8, 0.75) = 0.75. Hence, we have HappyI(TomI) ≤ 0.75. From
(6), we have ωt(0.4,HappyI(KateI)) ≥ HappyI (TomI). Due to Property 1 of
Lemma 1, we have HappyI(KateI) ≥ min(0.4, HappyI(TomI)).

It is easy to verify that we have the same results if we use the other set of
operations. ♦

6 Discussion

In this paper, we have proposed f-SWRL, a fuzzy extension to SWRL to include
fuzzy assertions and fuzzy rules. We have provided formal syntax and semantics
for f-SWRL, shown how weights of atoms in consequences of fuzzy rule can be
used as important factors of fuzzy rules, illustrated the features of f-SWRL with
several examples.

The main strength of the proposal is the openness of the use of fuzzy and
weight operations. As many theoretical and practical studies [Voj01] have pointed
out, the choice of these operations is usually context dependent. Therefore, it is
appropriate to simply specify some key constraints of the desired semantics of
f-SWRL and to allow the use of any of these operations as long as they conform
to the key constraints. Like in SWRL, in f-SWRL assertions are special forms of
rules. Although class and property axioms are not associated with any degrees
or important factors, they have fuzzy interpretations instead of crisp interpre-
tations. We show that f-SWRL may be applied in many applications, such as
multimedia processing and retrieval. To the best of our knowledge, this is the
first effort on fuzzy extensions of SWRL.

Several ways of extending Description Logics using the theory of fuzzy logic
have been proposed in the literature [Yen91,TM98,Str01,Str05,SST+05]. Fur-
thermore, in [Str04] an approach to extend Description Logic Programs (DLPs)
with uncertainty was provided, where DLP is extended with negation as failure.
DLPs are different from SWRL in that rules in DLPs are programs instead of
axioms; therefore, the semantics of rules in DLPs are based on Herbrand models
instead of model theoretic semantics. [Voj01] presents an approach to fuzzy logic
programs which is similar to ours. In that approach, interpretations of rules are
based on Herbrand models, instead of model theoretic semantics. The main dif-
ference from our work is that weights are only for the whole rules, not for rule
atoms. The semantics of weights, accordingly, are based on fuzzy aggregation
functions, such as linear aggregation or weighted sum.
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Our future work includes further investigation of logical properties and com-
putational aspect of f-SWRL. Another interesting direction is to extend f-SWRL
to support datatype groups [Pan04], which allows the use of customised datatypes
and datatype predicates in ontologies.
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