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Abstract: We study elliptic fibrations for F-theory compactifications realizing 4d and

6d supersymmetric gauge theories with abelian gauge factors. In the fibration these U(1)

symmetries are realized in terms of additional rational section. We obtain a universal char-

acterization of all the possible U(1) charges of matter fields by determining the correspond-

ing codimension two fibers with rational sections. In view of modelling supersymmetric

Grand Unified Theories, one of the main examples that we analyze are U(1) symmetries

for SU(5) gauge theories with 5 and 10 matter. We use a combination of constraints on

the normal bundle of rational curves in Calabi-Yau three- and four-folds, as well as the

splitting of rational curves in the fibers in codimension two, to determine the possible

configurations of smooth rational sections. This analysis straightforwardly generalizes to

multiple U(1)s. We study the flops of such fibers, as well as some of the Yukawa couplings

in codimension three. Furthermore, we carry out a universal study of the U(1)-charged

GUT singlets, including their KK-charges, and determine all realizations of singlet fibers.

By giving vacuum expectation values to these singlets, we propose a systematic way to

analyze the Higgsing of U(1)s to discrete gauge symmetries in F-theory.
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1 Introduction

Recent years have seen much progress towards refining F-theory compactifications, includ-

ing the realization of symmetries of the low energy effective theory that allow more realistic

model building. These developments have been fuelled by increasingly sophisticated mathe-

matical techniques that are required to construct the geometries underlying such F-theory

compactifications. In lockstep with this, there has been a definite trend towards char-

acterizing universal aspects of string compactifications, with a view to going beyond an

example-driven approach. One of the areas where a universal characterization would be

particularly bountiful is that of additional symmetries, such as abelian and discrete gauge

symmetries, due to the direct phenomenological impact.

The main result of this paper is to provide such a universal characterization of possible

U(1) symmetries and associated matter charges in F-theory. Furthermore, we obtain a

characterization of U(1)-charged singlets, which in turn can be used to Higgs abelian gauge

groups to discrete symmetries.

The framework we are working within is F-theory compactifications on elliptically

fibered Calabi-Yau three- and four-folds, where non-abelian gauge groups are modelled in

terms of singularities above codimension one loci in the base of the fibration [1]. Appli-

cations include the modelling of six-dimensional N = (1, 0) or four-dimensional N = 1

supersymmetric gauge theories, whose gauge group is determined by the Kodaira type of

the singularity [2, 3]. Matter is engineered from codimension two singularities, whose fibers

are characterized in terms of representation theoretic data, associated to the representation

graph of the matter multiplet [4]. Abelian symmetries, which for instance are important

model building tools for four-dimensional GUT models in F-theory [5–7], are realized math-

ematically in terms of rational sections of the elliptic fibrations, i.e. maps from the base

to the fiber [8]. The rational sections, under the elliptic curve group law, form an abelian
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group, the Mordell-Weil group, Zn ⊕ Γ, where Γ is a discrete group, the origin of which is

the zero-section σ0. Such a rank n Mordell-Weil group gives rise to n abelian gauge factors

in the low energy effective theory, by reducing the M-theory C3-form upon the (1, 1)-cycles

that are dual to the rational sections.

Numerous examples of F-theory compactifications with U(1) symmetries are by now

well-studied starting with the general theory of realizing the elliptic fiber with one [9],

two [10–13] and three [14] rational sections, toric constructions of various kinds [15–18],

models based on refined Weierstrass fibrations [19–22], as well as a survey of all local spec-

tral cover constructions [23] or from Higgsing of E8 [24]. Unfortunately, none of these

approaches are both comprehensive, i.e. explore the complete set of possible U(1) sym-

metries, and at the same time global (in the case of the spectral cover survey and E8

embedding, which are general but only in terms of local models).

Clearly it is highly desirable to determine the possible U(1) symmetries in general,

as these impose vital phenomenological input, and can lead to potentially non-standard

physics beyond the Standard Model (see e.g. [25]). Furthermore, from a conceptual point of

view, it is very appealing to be able to constrain these symmetries from the analysis of the

fiber alone. One avenue that would lead in principle to such a general result is to determine

the possible realizations of non-abelian gauge groups via Tate’s algorithm [26, 27] applied

to the elliptic fibrations with extra sections in [9, 11, 12]. This program was pursued

in [28, 29], resulting in a large class of new Tate-like models, however, in order to be able

to carry out the algorithm, some technical simplifications had to be made, thus potentially

jeopardizing the universality of the result.

In this paper, we propose and provide a systematic analysis and universal characteri-

zation of such U(1) symmetries in F-theory. Recall, that matter in a representation R of

the gauge group, arises from wrapping M2-branes on irreducible components of the fiber in

codimension two. The U(1) charges of such matter multiplets are computed by intersect-

ing the U(1) generator, which is constructed from the rational sections, with these fiber

components. To classify the possible charges, one requires the following input: firstly, a

complete understanding of the types of codimension two fibers that realize matter, which

is now available in [4], and secondly, the possible configurations that the rational sections

can take within these fibers. As we will demonstrate, the latter can be constrained in terms

of general consistency requirements on P1s, i.e. rational curves, in Calabi-Yau varieties.

The possible codimension two fibers in an elliptic fibration with a holomorphic zero-

section can be characterized in terms of classical Coulomb phases of d = 5 or d = 3 N = 2

supersymmetic gauge theories [30–35], in terms of so-called box graphs [4]. In particular,

the box graphs characterize all possible splittings of the codimension one Kodaira fibers into

codimension two fibers, which realize matter. In terms of the singular Weierstrass model,

these characterize distinct small resolutions, which are connected by flop transitions.

A rational section is characterized by the property that its intersection with the fiber

is one. In codimension one, this implies that the section intersects a single rational curve

in the Kodaira fiber transversally in a point.1 In codimension two, the section can again

1In principle, the section could contain codimension one fiber components, however, it would then not

be irreducible.
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transversally intersect a single rational curve in the fiber, however, in addition, it can also

contain components of the fiber. This effect has been referred to in the existing literature

as the section wrapping the fiber component. This phenomenon was first observed in [9],

where these fibers were shown to produce U(1) charges distinct from fibers where both the

zero-section and the additional section intersect transversally.

For each section σ there are two configurations that can occur in codimension two.

Either the section intersects a single component transversally, or it contains (i.e. wraps)

fiber components. The wrapping is highly constrained by the requirement that the inter-

section of σ with the fiber remains one, which we shall see translates into conditions on

the normal bundle degrees of the wrapped curves. Concretely, we consider smooth elliptic

Calabi-Yau varieties Y of dimension three and four and, subject to the following constraint,

we determine the possible section configurations: intersections of σ with fiber components

in codimension one are preserved in codimension two, in particular, they are consistent

with the splitting as dictated by the box graphs.

For purposes of F-theory model building our main focus will be on SU(n) gauge theories

with fundamental and anti-symmetric matter, and in fact large parts of this paper will focus

on n = 5 with the view to realize SU(5) GUT models in F-theory with additional U(1)

symmetries. We determine all possible section configurations in codimension two fibers

for these matter representations, and thereby the U(1) charges. For SU(5) with one U(1)

there are three distinct codimension one configurations of the zero-section σ0, relative to

the additional rational section σ1, where they intersect transversally the same P1 I
(01)
5 ,

nearest I
(0|1)
5 and next to nearest I

(0||1)
5 neighbor P1s of the I5 Kodaira fiber (see figure 3).

We determine all section configurations for 5 and 10matter, under the assumption that

the sections remain smooth divisors in the Calabi-Yau geometry — the precise setup that

enters this discussion is summarized in section 4.1. The resulting charges are as follows:

U(1) charges of 5̄ matter for





I
(01)
5 ∈ {−3,−2,−1, 0,+1,+2,+3}

I
(0|1)
5 ∈ {−14,−9,−4,+1,+6,+11}

I
(0||1)
5 ∈ {−13,−8,−3,+2,+7,+12}

U(1) charges of 10 matter for





I
(01)
5 ∈ {−3,−2,−1, 0,+1,+2,+3}

I
(0|1)
5 ∈ {−12,−7,−2,+3,+8,+13}

I
(0||1)
5 ∈ {−9,−4,+1,+6,+11} .

(1.1)

This result holds for both three- and four-folds alike, which we will carefully derive using

the constraints on the normal bundles of rational curves in Calabi-Yau varieties. For

four-folds we also discuss some extension to Yukawa couplings, which arise in codimension

three, and show how the box graph analysis generalizes as well as how the U(1) charges

of the interacting matter representations are consistent with the section configuration in

codimension three fibers.

At this juncture we should clarify an important point regarding the normalization of

the charges. The rational section, σ1, gives rise to a Q-divisor that is suitably orthogonal

to the divisors associated to the SU(5) singular fibers, using the homomorphism between
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the Mordell-Weil group and the Q-divisors written in [36], φ(σ1). The generator of a

U(1) symmetry is an integral divisor and must be a multiple of the above Q-divisor to be

orthogonal to the gauge group, that is, it must have the form mφ(σ1) where m is such that

the divisor is integral. Normalization of the U(1) charges fixes the multiplier: there must

not exist another integral divisor D ∈ H2(Y,Z) such that mφ(σ1) = m′D for any non-unit

m′ ∈ Z. With a U(1) generator so defined and normalized the U(1) charges will be in the

possibilities listed in (1.1).

One key realization here is that the analysis of the section configuration holds true for

any rational section, and thereby models with multiple sections and thus U(1)n additional

gauge symmetry, can be obtained by combining the configurations in our classification.

We discuss several examples with multiple U(1)s in section 9. All matter charges and fiber

types in codimension two known from explicit models in the literature with one ore more

U(1) symmetries appear in our classification, however these form a strict subset of possible

charges, and it would indeed be very interesting to construct explicit realizations for the

new fiber types. We also compare our charges to the ones obtained from Higgsing E8

in [24], and find that our class of models is strictly larger than the ones arising from E8.

Regarding the singlets in [24], we provide realizations for all charges of singlets in terms

of I2 fibers with rational sections. A detailed discussion of the comparison to E8 can be

found in appendix B.

Furthermore, we are able to determine the fiber configurations for singlets, i.e. en-

hancements from I1 fibers in codimension one to I2 fibers in codimension two. Contrary to

the remaining part of the paper, this analysis is general only for three-folds. One important

criterion for determining the singlets is the contractibility of curves, which is known for

three-folds, but not to our knowledge, in the case of four-folds. However, we determine all

possible codimension two I2 fibers with rational sections, without imposing any constraints

on the normal bundle degree. This result can be seen as a general study of singlets, and

imposing further constraints on the normal bundle to impose contractibility should then

reduce these to the set of singlets in four-folds. Finally, we discuss flops of fibers with

rational sections. It appears that flops can map out of the class of fibers where the section

remains a smooth divisor in the Calabi-Yau, and it would be particularly interesting to

study such singular flops in the future.

Finally, we discuss the possibility, based on the singlet curve classification, to study

more general Higgsings of the U(1) symmetry to discrete symmetries, by giving U(1)-

charged singlets a vacuum expectation value (vev). The case of charge q = 2, 3 singlets

and the Higgsing to Zq has recently appeared in [37–39]. We provide both singlet fibers

for higher charges, as well as determine the realization of the various KK-charges, i.e.

intersections with the zero-section.

The plan of this paper is as follows. In section 2 we summarize all the necessary

information about codimension two fibers from [4]. Furthermore, we extend that analysis,

and determine the Coulomb phases for SU(n) gauge theories with a general (not necessarily

the one arising from U(n)) additional U(1) symmetry. In section 3, we discuss rational

curves in Calabi-Yau three- and four-folds, and determine constraints on their normal

bundles. These results will be an important input and constraining factor in our analysis.
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We then argue at the beginning of section 4 that the constraints on the rational curves

contained in a rational section, turn out to be identical in elliptic three- and four-folds,2 thus

allowing us in the remainder of this section to perform full classification of the codimension

two fibers for both dimensions simultaneously. The case of fundamental matter for SU(n)

is discussed in the second half of section 4 and the anti-symmetric matter for n = 5 is

discussed in section 5 and appendix A. The latter can of course also be generalized to

n > 5, however we leave this for the enterprising reader. Flops among these fibers are

discussed in section 6. Singlets are discussed in section 7 and multiple U(1)s, as well as

Higgsing to discrete subgroups are the subject of section 9. For four-folds we generalize

our results to codimension three, and describe some of the Yukawa couplings and section

compatibility conditions in section 8. We close with discussions and future directions

in section 10.

To summarize the applicability of our results to three- and four-folds: sections 4 and 5

on charges of fundamental and anti-symmetric matter apply to both three- and four-folds.

The section on flops is applicable to three-folds, the section on singlets 7.2 to three-folds

and section 7.3 to four-folds. Finally, the section on codimension three to four-folds, only.

2 Coulomb phases and fibers

Before discussing rational sections we will review the results in [4], which give a compre-

hensive characterization of the singular fibers in codimension two of an elliptic fibration.

The main idea is that the classical Coulomb phases of a 5d or 3d N = 2 supersymmetric

gauge theory with matter obtained by compactifying M-theory on an elliptically fibered

Calabi-Yau three- or four-fold, encode the information about the structure of singular fibers

in codimensions one, two, and three. Distinct Coulomb phases, which are separated by

walls characterized by additional light matter, correspond to distinct smooth Calabi-Yau

varieties, which are related by flop transitions.

For this paper, the main case of interest is su(5),3 and we shall restrict our attention in

section 2.1 to explaining the correspondence between singular fibers, gauge theory phases,

and box graphs to the case of su(5) with matter in the 5 and 10 representations, respec-

tively. For more general results see [4]. In addition, in section 2.3 we will also extend the

analysis of Coulomb phases to su(5)⊕ u(1).

2.1 Box graphs and Coulomb phases

Our main interest regarding the results in [4] is the characterization of the fibers in codi-

mension two in an elliptically fibered Calabi-Yau variety of dimension three or four. We

will assume that any such fibration has at least one section. The generic codimension

one fibers in such a variety are either smooth elliptic curves, or singular fibers, which are

collections of rational curves, i.e. smooth P1s, intersecting in an affine Dynkin diagram of

2This is true only in this specific context of elliptically fibered Calabi-Yau geometries and we make the

complete setup clear in section 3. It is by for not true, for rational curves in general Calabi-Yau varieties.
3From the point of view of the box graphs, and also the elliptic fibration, it is more natural to consider

the Lie algebra, rather than group.
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an ADE Lie algebra g. This classification, due to Kodaira and Néron [2, 3], holds true in

codimension one, however fibers in higher codimension can deviate from this. The main

result in [4], is to map the problem of determining the codimension two fibers to the prob-

lem of characterizing the Coulomb branch phases of a 3d or 5d N = 2 supersymmetric

gauge theory with matter in a representation R of the gauge algebra g [30–34].

Let us first discuss briefly the connection between Coulomb phases and resolutions of

singular elliptic Calabi-Yau varieties. The topologically distinct crepant resolutions, i.e.

resolutions preserve keep the Calabi-Yau condition, of a singular Calabi-Yau variety are

parameterised by the phases of the classical Coulomb branch of the 3d N = 2 gauge theory4

obtained from the compactification of M-theory on the four-fold [4, 34, 35].

The 3d N = 2 vector multiplet V in the adjoint of the gauge algebra g has bosonic

components given by the vector potential A and a real scalar φ. We are interested in the

theory with additional chirals Q, transforming in a representation R of g. The classical

Coulomb branch is characterized by giving the scalars φ a vacuum expectation value, which

breaks the gauge algebra g to the Cartan subalgebra, where φ is such that

〈φ, αk〉 ≥ 0 , (2.1)

and αk are the simple roots of g. The Coulomb branch is therefore characterized by the

Weyl chamber of the gauge algebra g.

The presence of the chiral multiplets Q in a representation R of g adds a substructure

to the Coulomb branch. The vevs of φ give rise to a real mass term for the chiral multiplets,

L ⊃ |〈φ, λ〉|2|Q|2 , (2.2)

where λ is a weight of the representation R. The mass term vanishes along walls

〈φ, λ〉 = 0 . (2.3)

A classical Coulomb phase of the 3d gauge theory is then one of the subwedges of the

Weyl chamber delineated by the walls where chiral multiplets become massless. A phase

associated to the representation R is then specified by a map

ε : R → {±1}

λ 7→ ε(λ) ,
(2.4)

such that 〈φ, λ〉 has a definite sign ε(λ), i.e.

ε(λ)〈φ, λ〉 > 0 . (2.5)

Solutions for φ will not exist for every possible sign assignment ε, i.e. the phases are the non-

empty subwedges of the Weyl chamber satisfying (2.5). In particular the condition (2.5)

means that the weight ε(λ)λ is in this subwedge that characterizes the corresponding phase.

In [4] the phases for g of ADE type were determined with various representations R, and

4A similar statement is true for Calabi-Yau three-folds in terms of the phases of the associated 5d

gauge theory.
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shown to be characterized in terms of sign-decorated representation graphs, so-called box

graphs, of R, which are essentially a graphical depiction of the maps ε. It was shown

that there are simple, combinatorial rules for determining the box graphs corresponding

to non-empty subwedges, and that furthermore these encode vital information about the

elliptic Calabi-Yau geometry (the intersection ring and relative cone of effective curves in

the elliptic fiber).

For our purposes g = su(5) and R = 5 or 10. We denote the weights of these

representations in terms of the fundamental weights Li

5 : λ ∈ {L1, L2, L3, L4, L5} , 10 : λ ∈ {Li + Lj | i < j; i, j = 1, · · · , 5} , (2.6)

where
∑

i Li = 0. The simple roots of su(5) in this basis are

αk = Lk − Lk+1 . (2.7)

The result of [4] applied to g = su(5) with R = 5 can be summarized as follows: each

consistent phase Φε is characterized by a map ε as in (2.4), subject to the constraint that

it satisfies

5 flow rules :

{
ε(Li) = + ⇒ ε(Lj) = + for all j < i

ε(Li) = − ⇒ ε(Lj) = − for all j > i .
(2.8)

This results in phases that also include all + or all − sign assignments to the weights.

These are in fact phases of the su(5) ⊕ u(1) theory. The phases for the su(5) theory need

to satisfy an additional constraint, which ensures that the sum of all the Li vanishes (trace

condition) [4]. In this paper we are interested in the phases for the theory with additional

abelian factors. It is a priori not clear that all phases of any su(5) ⊕ u(1) theory can be

characterized in terms of the phases above, and we will prove this fact in section 2.3.

Likewise, for R = 10 a sign assignment ε gives rise to a phase, if and only if

10 flow rules :

{
ε(Li+Lj) = + ⇒ ε(Lk+Ll) = + for all (k, l), k≤ i , l≤j

ε(Li+Lj) = − ⇒ ε(Lk+Ll) = − for all (k, l), k≥ i , l≥j .
(2.9)

Again for su(5) there is an additional trace condition, which however we do not impose as

we are interested in theories with u(1) factors. The connection between Coulomb phases

and box graphs is then formulated as follows (see [4] and section 2.3):

Fact 2.1. The classical Coulomb phases for 3d N = 2 supersymmetric su(5)⊕ u(1) gauge

theories with matter in the R = 5 or 10 representation are in one-to-one correspondence

with maps ε as in (2.4), satisfying the flow rules (2.8) or (2.9), respectively. We will denote

these by ΦR
ε .

Each phase ΦR
ε associated to such a map ε can be represented graphically in terms of

a box graph BR
ε .

Definition 2.1. A box graph BR
ε for a Coulomb phase ΦR

ε is given in terms of the repre-

sentation graph of R, i.e. a graph where each weight λ of R is represented by a box, and

two weights are adjacent if they are mapped into each other by the action of a simple root,

together with a sign assignment/coloring, given by ε(λ).

– 7 –
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Figure 1. The 5 and 10 representation of SU(5). Each box represents a weight Li (Li+Lj) of the

fundamental (anti-symmetric) representation and the walls inbetween each box correspond to the

action of the simple roots αk = Lk −Lk+1 on the weights as indicated by the arrows. The direction

of the arrow indicates the addition of the corresponding simple root.

Generically we will draw these by coloring + as blue and − as yellow. The representa-

tion graphs for 5 and 10 of su(5) are shown in figure 1. The phases/box graphs for 5 are

shown in figure 2, for 10 in appendix A.

2.2 Box graphs and singular fibers

The Coulomb phases encode information about the effective curves of the elliptic fibration

in codimension two. Let us begin with a few useful definitions. In the following Y is

a smooth elliptic Calabi-Yau variety of dimension at least three with a section, which

guarantees the existence of a Weierstrass model for this fibration. The information about

the Coulomb phases can be reformulated in terms of the geometric data of a certain relative

subcone inside the cone of effective curves. A curve is defined to be effective if it can be

written in terms of a positive integral linear combination of integral curves (i.e. actual

complex one-dimensional subspaces) of Y . The cone of effective curves in Y is denoted

by NE(Y ).5 For an elliptic fibration, the notion of relative cone of curves is of particular

importance. Let W be the singular Weierstrass model, associated to Y . In fact, for a

given singular Weierstrass model there are generically several, topologically distinct smooth

models, Yi. The singular limit corresponds, in codimension one, to the maps

πi : Yi → W , (2.10)

such that all rational curves in the singular Kodaira fibers, which do not meet the section,

are contracted [40]. Associated to this, there is the notion of a relative cone of effective

curves (see e.g. [41]):

Definition 2.2. The relative cone of curves NE(πi) of the morphism πi in (2.10) is the

convex subcone of the cone of effective curves NE(Yi) generated by the curves that are

contracted by πi.

The phases/box graphs are in one-to-one correspondence with pairs (Yi, πi), specified

in the following way: each fiber in codimension one is characterized by rational curves Fk

associated to the simple roots of the gauge group G. In codimension two some of the Fk

become reducible and split into a collection of rational curves

Fk → C1 + · · ·+ Cℓ , (2.11)

5These are numerically effective curves, where we mod out by the equivalence that two curves are

identified if they have the same intersections with all Cartier divisors.
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Figure 2. Box graphs for u(5) phases with 5 matter. On the left are the splittings that occur over

matter loci for the corresponding phase.

where each Cj is associated to ε(λ)λ for λ a weight of the representation R, or to a simple

root. The main result in [4] can then be stated as follows:

Fact 2.2. There is a one-to-one correspondence between consistent phases or box graphs BR
εi

characterized by the sign assignments εi satisfying the conditions in Fact 2.1 and crepant

resolution of W , (Yi, πi). In particular, the box graphs determine the relative cone of

effective curves for the maps πi as

NE(πi) =
〈
{Fk | k = 0, · · · , rank(g)} ∪ {Cεi(λ)λ | λ weight of R}

〉
Z+ . (2.12)

The extremal generators of this cone are

1. The rational curves Fk, that remain irreducible in codimension two.

2. Cεi(λ)λ is extremal if there exists a j such that BR
εj = BR

εi |εj(λ)=−εi(λ), i.e. there is

another consistent box graph or phase, such that the only sign change occurs in the

weight λ.

From the box graphs we can determine which Fk remain irreducible: Fk, associated

to the simple roote αk, remains irreducible, if any weight λ, for which λ + αk is another

weight in the representation R, the weight λ+ αk has the same sign assignment, i.e.6

ε(λ) = ε(λ+ αk) . (2.13)

Fact 2.3. Two crepant resolutions (Yi, πi) and (Yj , πj) of the singular Weierstrass model

W are related by a simple flop, if the corresponding box graphs are related by a single

sign change

BR

εj = BR

εi |εj(λ)=−εi(λ) (2.14)

for some weight λ. I.e. they correspond to single box changes of signs, which map one

extremal generator to minus itself.

In the remainder of this paper, it will be very important to understand the degrees of

normal bundles of curves in the fibers of elliptic Calabi-Yau varieties. The description of

6This condition is formulated in [4] as adding the simple root does not cross the anti-Dyck path that

separates the + and - sign assigned weights in the box graph.
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the codimension two fibers in terms of box graphs allows us to determine the intersections

of the extremal generators with the so-called Cartan divisors, DFk
, which are Fk fibered

over the codimension one discriminant locus. They are dual to the rational curves Fk,

with which they intersect in the Calabi-Yau Y in the negative Cartan matrix −Ckl of the

gauge algebra

DFk
·Y Fl = −Ckl . (2.15)

Consider now a codimension two fiber where Fk splits as in (2.11). Then

DFm ·Y Ca = ε
(
λ(a)

)
λ(a)
m , m = 1, · · · , rank(g) , (2.16)

i.e. it intersects with the rational curves Ca in a weight λ(a) of the representation R. Which

weight this is, i.e. the intersections of the fiber components with the Cartan divisors, and

with which sign assignment it occurs can be determined from the box graphs.

Fact 2.4. Let C be an extremal generator of the cone NE(πi) for a pair (Yi, πi), associated

to the box graph BR
εi as in Fact 2.2, associated to a weight λ of the representation R. The

Dynkin labels εi(λ)λm = DFm ·Y C can be computed from the box graph BR
εi as follows: if

λ± αm is not a weight in the representation then DFm ·Y C = 0. Else:

1. If εi(λ) = εi(λ± αm) then DFm ·Y C = +1.

2. If εi(λ) = −εi(λ± αm) then DFm ·Y C = −1.

This fact together with DFm ·Y Fm = −2, will be used quite regularly in the analysis

of the normal bundles in sections 4 and 5.

Finally, let us note that the number NRq of phases, i.e. pairs (Yi, πi), with matter in

the representation R and u(1) charge q under the gauge algebra g⊕ u(1) is given in terms

of the quotiented Weyl group:

Fact 2.5. The number NR
q of classical Coulomb phases for gauge algebras g ⊕ u(1) and

representation R with u(1) charge q is

NRq =

∣∣∣∣
Wg̃

Wg

∣∣∣∣ , (2.17)

where g̃ is the Lie algebra characterizing the local enhancement in codimension two, i.e.

decomposing its adjoint into representations of the gauge algebra contains the representation

Rq and its conjugate as follows

g̃ → g⊕ u(1)

Adj (g̃) → Adj (g)⊕ Adj (u(1))⊕Rq ⊕R−q .
(2.18)

For g = su(5) and R = 5 or 10, g̃ = su(6) or so(10) and N5 = 6 and N10 = 16. For

su(5) with 5 we summarized the phases in figure 2, including which of the Fk split. The

components into which they split are precisely those adjacent to the sign change, which is

clear from the statements in Fact 2.2. The curves C±
i correspond to the weights ±Li, which
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are generators of the cone defined by ΦR
ε . Note that the 5 representation can also arise

from a higher rank enhancement e.g. to su(n), n > 6. Such enhancements when realized in

the geometry would require very special tuning of the complex structure, with the fibers

corresponding to monodromy-reduced In fibers. These will not be considered here, but the

reader is referred to [42]. The structure of splittings in codimension two for 10 matter are

listed in appendix A, tables 7 and 8, which include all the information about the splitting

in codimension two, the extremal generators of the relative cone of effective curves, and

the associated box graphs.

2.3 U(1)-extended Coulomb phases

In [4] the phases for the su(5)⊕u(1) theory were determined in the case where the u(1) cor-

responds to
∑5

i=1 Li, where the Li are the fundamental weights introduced in the previous

section, i.e. this u(1) corresponds to the trace of the u(5). In this section we show that the

analysis there holds more generally for the classical Coulomb phases of su(5)⊕ u(1), where

the U(1) does not necessarily have this origin.7 Note that the phases for the su(5) ⊕ u(1)

theory are one-to-one with the elements of the quotiented Weyl group Wg̃/Wsu(5), as sum-

marized in Fact 2.5, which is strictly larger than the number of phases for the theory

without an abelian factor.

Let Rq be a representation R of su(5) with charge q under the u(1). Let us consider

the maps ε : Rq → {±1} corresponding to a consistent, non-empty, subwedge of the

fundamental Weyl chamber. The walls of these subwedges are characterized by

〈φ, (λi; q)〉 ≡ 〈φ, λi〉+ qφu = 0 , (2.19)

where φu is the additional component of φ along the u(1) generator. Consider the 5q
representation of su(5) ⊕ u(1). The fundamental weights of su(5), the Li, in the Cartan-

Weyl basis take the form
λ1 : (1, 0, 0, 0)

λ2 : (−1, 1, 0, 0)

λ3 : (0,−1, 1, 0)

λ4 : (0, 0,−1, 1)

λ5 : (0, 0, 0,−1) .

(2.20)

In the same basis the simple roots of the su(5) are

α1 : (2,−1, 0, 0) , α2 : (−1, 2,−1, 0) , α3 : (0,−1, 2,−1) , α4 : (0, 0,−1, 2) . (2.21)

To reiterate, to determine the maps ε which correspond to non-empty phases it is needed

to find the maps ε : 5q → {±1} such that the inequalities

〈φ, αi〉 > 0

ε((λi; q))〈φ, (λi; q)〉 > 0
(2.22)

have integral solutions for φ.

7There can corrections to the classical Coulomb phase analysis with additional abelian factors, as dis-

cussed in 6d in [43, 44], which will not play a role here.

– 11 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
4

Similarly to the derivation of the flow rules alluded to in the earlier parts of this section

one can show that if ε((λi; q)) = −1 and ε((λi+1; q)) = +1 then there would be no such

solutions: for such an ε it would be the case that

〈φ, λi+1〉+ qφu − (〈φ, λi〉+ qφu) > 0 ⇔ 〈φ, λi+1 − λi〉 > 0 . (2.23)

However, the simple roots are αi = λi − λi+1 and the first of the inequalities in (2.22)

implies

〈φ, λi − λi+1〉 > 0 . (2.24)

Obviously there is no such φ which solves these inequalities: all subwedges of the funda-

mental Weyl chamber defined by this map ε are empty. This leads to the same flow rules

as listed in (2.8).

Again there are six phases, of which two have all positive or all negative signs, and are

only non-empty in the theory with a u(1) symmetry in addition to the su(5), indeed these

extra phases occur precisely for matter charged under the additional u(1). Consider now

the phase associated to the map ε((λi; q)) = +1 for all i. Then, using that
∑

λi = 0, as

can be seen explicitly above from the presentation in the Cartan-Weyl basis,

5∑

i=1

(〈φ, λi〉+ qφu) > 0 ⇔ qφu > 0 . (2.25)

Such inequalities can only be solved if q 6= 0, and similiarly for the all negative phase.

These are the two additional phases for charged matter.

One can also consider the 10q representation of su(5)⊕u(1) in the same way. Similarly

to the case when of the 5q representation one finds an augmented set of maps ε when q is

non-zero. There are sixteen phases when q 6= 0 and eight when q = 0. These sets of phases

correspond to the different sets of phases in [4], except here there is no assumption that

the generator of the u(1) symmetry is necessarily that in the u(5).

To summarize if the matter is charged under the u(1) symmetry then there are addi-

tional phases of the classical Coulomb branch for the su(5)⊕u(1) theory with fundamental

or anti-symmetric matter. The additional phases imply that there are additional distinct

resolved geometries associated to the singular Calabi-Yau four-fold, induced by the spe-

cialisation of complex structure necessary to produce matter charged under the additional

u(1), i.e. geometrically, the existence of additional rational sections.

3 Rational curves in Calabi-Yau varieties

The goal of this paper is to constrain the possible U(1) charges of matter in 4d and 6d F-

theory compactifications, by determining the possible codimension two fibers with rational

sections. The relevant characteristic of the codimension two fibers that determine the

U(1) charge are the intersection numbers between the rational curves in the fiber and the

section. We constrain these by combining the input from the box graphs on the codimension

two fibers with general constraints on the normal bundles of rational curves in projective

varieties. From section 2 we obtain the information about the relative cone of effective

curves NE(πi), for each resolution (Yi, πi) of a singular Weierstrass model W . All curves

in NE(πi) are rational, i.e. they are smooth P1s in Yi. In the following we will summarize
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several Theorems that we use in the later sections to constain the fibers with rational

sections for Calabi-Yau three- and four-folds. The protagonist in this discussion is the

normal bundle of rational curves in Calabi-Yau varieties.

3.1 Rational curves and normal bundles

In this section we collect useful results about rational curves in Calabi-Yau varieties, in

particular related to the normal bundle, which will allow us to constrain the fibers with

rational sections. Unless otherwise stated Y is a smooth Calabi-Yau variety.

The first theorem constrains the degree of the normal bundle of a rational curve in a

Calabi-Yau variety.

Theorem 3.1. Let Y be a smooth Calabi-Yau variety of dimension n and C a smooth

rational curve in Y . Then the normal bundle of C in Y , NC/Y , is

NC/Y =
n−1⊕

i=1

O(ai) , with
n−1∑

i=1

ai = −2 .

Proof. E.g. for n = 3 see [45]. Let Y be of dimension n, then NC/Y is defined by the short

exact sequence

0 → TC → TY |C → NC/Y → 0 , (3.1)

where T denotes the respective tangent bundles. This implies that NC/Y is a rank n − 1

vector bundle on C which, by the Birkhoff-Grothendieck Theorem [46], can be written

uniquely up to permutations, as a direct sum of line bundles on C,

NC/Y =
n−1⊕

i=1

O(ai) .

By the Calabi-Yau condition on Y , the canonical bundle is trivial and thus, c1(TY |C) = 0.

Combining this with c1(TC) = 2 the exact sequence gives that c1(NC/Y ) = −2. Thus∑
ai = −2.

In the following we will encounter rational curves which are contained within divi-

sors, for instance, Cartan divisors associated to the elliptic fibration, which we introduced

in (2.15). They are ruled by the rational curves Fk associated to simple roots of the gauge

algebra, above the codimension one discriminant locus. Likewise we will see that the sec-

tion, which we will assume to be a smooth divisor in the Calabi-Yau, can contain rational

curves in the fiber that occur above codimension two. In all such instances it will be crucial

to relate the normal bundle of the curve in the Calabi-Yau to the normal bundle in the

divisor. This is achieved using the following exact sequence of normal bundles:

Theorem 3.2. Let Y be a smooth projective variety, D a non-singular divisor in Y , and

C a smooth rational curve contained in D. Then there is a short exact sequence of normal

bundles

0 → NC/D → NC/Y → ND/Y

∣∣
C
→ 0 . (3.2)

Proof. [47], 19.1.5.
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One of the goals in later sections will be to determine the intersection of the rational

section with various curves in the fiber. In particular, when these rational curves are

contained in the section, this intersection is determined by the degree of the normal bundle

of the divisor as follows — here C does not necessarily have to be a rational curve:

Theorem 3.3. Let Y be a smooth projective variety, D a divisor in Y and C a curve

C ⊂ D ⊂ Y . Then

D ·Y C = deg
(
ND/Y

∣∣
C

)
(3.3)

Proof. [48], Theorem 15.1.

Combining these properties, we can in fact relate the intersection of any non-singular

divisor and a smooth rational curve contained inside it in terms of the degree of the normal

bundle of the curve inside the divisor.

Corollary 3.4. Let Y be a smooth Calabi-Yau n-fold and C a rational curve contained

inside a smooth divisor D in Y . Then

D ·Y C = −2− deg
(
NC/D

)
. (3.4)

Proof. By Theorem 3.1 the degree of NC/Y is −2, which by Theorem 3.2 has to be the sum

of the degrees −2 = deg(NC/D) + deg(ND/Y |C) = deg(NC/D) +D ·Y C by Theorem 3.3.

With these general results we now turn to determining the possible degrees of normal

bundles of rational curves in Calabi-Yau three-folds and four-folds in the next two sections,

respectively. In particular we will constrain the normal bundles of rational curves in divi-

sors, for instance rational sections, which by the above corollary will imply constraints on

the intersections and thereby U(1) charges.

3.2 Calabi-Yau three-folds

In this section, let Y be a smooth Calabi-Yau three-fold. Some results in rational curves

in elliptically fibered three-folds (not necessarily Calabi-Yau varieties) can be found in

Miranda [49], which however does not discuss rational sections, or the generalization to

higher dimensional varieties, which we will be important for us. Let D be a smooth

divisor in Y , and C a smooth rational curve contained in D. Then it follows directly from

Corollary 3.4 that8

D ·Y C = −2− C ·D C . (3.5)

We will often encounter the following situation: consider a rational curve C in a smooth

elliptic Calabi-Yau variety Y . From the box graph analysis, we know its normal bundle in

Y . We can then ask what normal bundles the curve can have in a divisor D — for instance

the section. By the Corollary 3.4, the degree of the normal bundle NC/D is linked directly

to the intersection in Y of the divisor with the curve, which in the case when D is a section

determine the U(1) charge. Thus, constraining the normal bundles of C in the rational

8We will most of the time refrain from using (C)2D = C ·D C as this does not generalize to higher

dimensional varieties.
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section results in constraints on the possible charges. The following theorem determines

what the possible normal bundles of rational curves in divisors can be, given the normal

bundle of the curve in Y . We furthermore summarize the bounds that are then implied

upon the intersection of the divisor with the curve.

Theorem 3.5. Let Y be a smooth Calabi-Yau three-fold, D a non-singular divisor in Y ,

and C a rational curve contained in D.

(i) Let (C)2D = deg(NC/D) = k. If k ≥ −1 the short exact sequence of normal bundles

in Theorem 3.2 splits and

NC/Y = O(k)⊕O(−2− k) . (3.6)

(ii) Let NC/Y = O(−1)⊕O(−1). If D is a smooth divisor containing C, then

NC/D = O(k) , k ≤ −1 , (3.7)

and there exists a non-trivial embedding

O(k) →֒ NC/Y = O(−1)⊕O(−1) , (3.8)

and

D ·Y C = −2− k ≥ −1 . (3.9)

(iii) Let NC/Y = O ⊕O(−2). If D is a smooth divisor containing C, then

NC/D = O(k) , k = 0 or k ≤ −2 , (3.10)

and there exists a non-trivial embedding

O(k) →֒ NC/Y = O ⊕O(−2) , (3.11)

and

D ·Y C = −2− k =

{
−2 k = 0

≥ 0 k ≤ −2
. (3.12)

(iv) More generally, there is an embedding (without loss of generality m ≥ −1)

O(k) →֒ O(m)⊕O(−2−m) for k = m or k ≤ −2−m. (3.13)

Proof. To show (i) note that by Theorem 3.1 the degrees of the normal bundle have to

sum to −2, so NC/Y = O(a) ⊕ O(−2 − a), where without loss of generality a ≤ −1. By

assumption NC/D = O(k). The map O(k) → O(a) with k ≥ −1 ≥ a is trivial map, unless

a = k, in which case the Theorem follows. Else, if a 6= k then O(k) needs to embed into

O(−2 − a) and therefore k = −2 − a. Part (ii) follows by applying (i) which implies that

if k > −1 then the normal bundle NC/Y cannot be O(−1) ⊕ O(−1). Thus k ≤ −1, and

there is an embedding of O(k) into O(−1) ⊕ O(−1). Similar arguments show parts (iii)

and (iv).
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Finally, the following theorem, which we will only make use of in our analysis of singlets,

determines the normal bundles of contractible curves in three-folds:

Theorem 3.6. Let C be a smooth, rational curve that can be contracted in a smooth

three-fold Y . Then the normal bundle is

NC/Y = O(a)⊕O(b) , (a, b) = (−1,−1), (−2, 0), or (−3, 1) . (3.14)

Such a curve is referred to as a (−2)−curve.

Proof. [50, 51].

3.3 Calabi-Yau four-folds

For applications to 4d F-theory compactifications, including GUT model building, it is

crucial to determine constraints for Calabi-Yau four-folds. In the following section, let Y

be a smooth Calabi-Yau four-fold, and C a rational curve, contained in a smooth divisor D.

For elliptic fibrations, we will in fact be interested in a slightly more specialized situation,

where inside the divisor D there is a surface S which is ruled by C. Specifically, we have

in mind what is usually referred to as matter surface, which is a P1-fibration, i.e. a ruled

surface, over the matter curve (the codimension two locus in the base). These matter

surfaces are contained within the Cartan divisors, which are dual to the rational cuves Fi

in the notation of section 2. In this setup, we will now show that the classification for

three-folds will in fact carry over directly to four-folds in codimension two.9

Again, the goal is to connect the intersection of divisors (in particular the section)

with a rational curve C in Y to the degrees of the normal bundle of C in Y . Recall the

short exact sequence of normal bundles from Theorem 3.2 [47]

0 → NC/D → NC/Y → ND/Y |C → 0 . (3.15)

By Theorem 3.1, the normal bundle is a direct sum of line bundles, where the sum of

degrees needs to add up to −2

NC/Y = O(a)⊕O(b)⊕O(−2− a− b) . (3.16)

To determine the degrees a and b, there are two cases of interest when C is a rational curve

in a codimension two fiber in an elliptic Calabi-Yau four-fold: either the rational curve C

corresponds to one of the curves that split in codimension two, or it remains irreducible.

From the box graphs, we can determine the intersection of the Cartan divisors with the

curves, D ·Y C, which in turn by Theorem 3.3, constrain ND/Y |C . The following theorem

determines the normal bundle NC/Y given the information about ND/Y |C :

Theorem 3.7. Let C be a smooth rational curve, contained in a smooth divisor D in a

smooth Calabi-Yau four-fold Y .

9It would appear that in fact it holds in codimension two for any elliptic Calabi-Yau n-fold.
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(i) If ND/Y |C = O(−1) and D contains a surface S, which is ruled by C, then

NC/D = O ⊕O(−1) , (3.17)

and the short exact sequence (3.15) splits

NC/Y = O ⊕O(−1)⊕O(−1) . (3.18)

(ii) Likewise for ND/Y |C = O(−2) and D is ruled by C then

NC/D = O ⊕O , (3.19)

and

NC/Y = O ⊕O ⊕O(−2) . (3.20)

Proof. (i) If there is a surface in D which is ruled by C then there is an embedding

O →֒ NC/D . (3.21)

If ND/Y |C = O(−1) and given that the degrees in NC/Y sum to −2, it follows that

NC/D = O(m)⊕O(−1−m) . (3.22)

As O = NC/S needs to embed into NC/D, it follows that m = 0. The extension group of

O ⊕ O(−1) and O(−1) is trivial, and thereby the exact sequence splits. (ii) By similar

arguments as in (i) NC/D = O(m)⊕O(−m), and for O to embed into this m = 0. Again

the extension group is trivial and the normal bundle sequence splits.

For σ a rational section, which contains curves in the fiber, we can now constrain

the possible normal bundle degrees of C in σ. The last theorem provides us with the

information about the normal bundles NC/Y . As in Theorem 3.5, we now determine the

constraints on the intersection numbers σ·Y C (where σ will be now be a rational section) by

constraining the degrees of the normal bundle of C in σ, which are related by Corollary 3.4.

Theorem 3.8. Let σ be a smooth divisor in Y , a smooth Calabi-Yau four-fold, and C ⊂ σ

a rational curve.

(i) If NC/Y = O ⊕O(−1)⊕O(−1), then there is an embedding

NC/σ = O(a)⊕O(b) →֒ NC/Y = O ⊕O(−1)⊕O(−1) (3.23)

and

σ ·Y C = −2− a− b . (3.24)

The values for a and b are constrained to be (wlog a ≥ b)

a ≤ 0 , b ≤ −1 , a+ b ≤ −1 , (3.25)

which implies that

σ ·Y C ≥ −1 . (3.26)
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(ii) If NC/Y = O ⊕O ⊕O(−2), then there is an injection

NC/σ = O(a)⊕O(b) →֒ NC/Y = O ⊕O ⊕O(−2) (3.27)

and

σ ·Y C = −2− a− b . (3.28)

The values for a and b are constrained to be

a = b = 0 or a ≤ 0 , b ≤ 0 , a+ b ≤ −2 , (3.29)

which implies that

σ ·Y C =

{
−2 a = b = 0

≥ 0 a+ b ≤ −2
. (3.30)

Proof. This follows directly from the short exact sequence (3.15) and Corollary 3.4.

This concludes our summary of properties of rational curves. We now turn to combin-

ing these constraints on the intersection numbers and normal bundles, with the constraints

from the box graphs that specify how codimension one fibers split in codimension two. The

next two sections will discuss this in the case of SU(n) with various matter representations.

4 SU(5) × U(1) with 5 matter

The ultimate physics application of our analysis of codimension two fibers is the case

of SU(5) GUTs with additional U(1) symmetries. The constraints on the section and

codimension two fiber structure provide a systematic way to obtain a comprehensive list

of all possible U(1) charges for matter in the 5 and 10 representation of the GUT group

SU(5). In this section we will first focus on fundamental matter.

Throughout this section let Y be an elliptically fibered Calabi-Yau variety. The zero

section of the fibration will be denoted by σ0, and the additional rational section needed

for there to be a U(1) symmetry as σ1.

4.1 Setup and scope

There are a few assumptions that go into this analysis, and to make it clear what the scope

of the results in this paper are, we will now list them.

(1.) We assume that each section in codimension one intersects exactly one fiber compo-

nent transversally once, i.e. the sections do not contain components of codimension

one fibers.10

(2.) The rational sections, as divisors in Y , will always be assumed to be smooth.

10This in fact seems to not be a real constraint, as wrapping in codimension one would imply that the

section is either ruled by rational curves in the fiber (and thereby would contract to a curve in the singular

limit) or not be irreducible.
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(3.) The codimension one locus in the base of the fibration, above which there are singular

fibers I5, is smooth.

(4.) The U(1) generator is an integral divisor normalized as described after (4.6).

Within the setup outlined above, the following can be regarded as complete classification

of codimension two fibers for both Calabi-Yau three- and four-folds with one extra rational

section, and thereby the possible matter charges.

4.2 Codimension one fibers with rational sections

The codimension one fibers for SU(5) GUTs realized in F-theory are fibers of Kodaira type

I5. These fibers consist of a ring of five smooth rational curves, Fi for i = 0, · · · , 4.

Further, as these curves are the components of the fiber over generic points above a

codimension one locus in the base, SGUT , one can define divisors in Y , which are ruled by

the curves Fi over SGUT . These divisors, DFi , are called the Cartan divisors, and satisfy

DFi ·Y Fj = −Cij , (4.1)

where Cij is the Cartan matrix of affine SU(5).

Let σ be a rational section of the elliptic fibration, i.e. it has to satisfy

σ ·Y Fiber = 1 . (4.2)

Throughout this paper it shall be assumed, see section 4.1, that this condition is satisfied

by σ having exactly one transversal intersection with one of the components of the generic

codimension one fiber and having no intersection with the other components. The section

thus intersects, say, the mth component of the fiber

σ ·Y Fi =

{
1 i = m

0 i 6= m.
(4.3)

It shall always be supposed, without loss of generality, that one section, the zero-section,

shall intersect the component F0. Up to inverting the order of the simple roots there

are three distinct codimension one fiber types once this information about the additional

rational section is included. These are, using the notation introduced in [28],

I
(01)
5 : σ0 ·Y F0 = σ1 ·Y F0 = 1

I
(0|1)
5 : σ0 ·Y F0 = σ1 ·Y F1 = 1

I
(0||1)
5 : σ0 ·Y F0 = σ1 ·Y F2 = 1 ,

(4.4)

corresponding to the three configurations shown in figure 3.

The U(1) generator comes from the Shioda map as applied to the extra rational section,

σ1. The Shioda map associates to a rational section σ1 an element S(σ1) in H2d−2(Y,Z),

where d is the complex dimension of Y , which is perpendicular to all horizontal divisors

(i.e. divisors pulled back from the base), the zero section as well as the Cartan divisors,
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Figure 3. Three types of codimension one I5 fibers with sections σ0 (blue) and σ1 (red) distributed

as I
(01)
5 , I

(0|1)
5 and I

(0||1)
5 , respectively.

associated to the Fi, which ensures that the non-abelian SU(5) gauge bosons are uncharged

under the U(1) [9]. In order to compute U(1) charges of matter, we are interested in the

intersection of the Shioda map with curves in the fiber, for which the subtractions from

contributions of horizontal divisors are not relevant, and we therefore define S(σ1) to be

such that

S(σ1) ·Y C = q(C) , (4.5)

the charge under the U(1). In this way the Shioda map is specified by the codimension one

data of the fibration. For SU(5) with Mordell-Weil group rank one the Shioda divisors are

I
(01)
5 : S(σ1) = σ1 − σ0

I
(0|1)
5 : S(σ1) = 5σ1 − 5σ0 + 4DF1 + 3DF2 + 2DF3 +DF4

I
(0||1)
5 : S(σ1) = 5σ1 − 5σ0 + 3DF1 + 6DF2 + 4DF3 + 2DF4 .

(4.6)

To arrive at the specific forms above some further assumptions need to be made for the

divisor S(σ1) that generates the U(1) symmetry from the Shioda map. Imposing orthog-

onality to the SU(5) Cartan divisors specifies the above up to a multiplicative constant.

This constant is fixed by the requirement that S(σ1) should be integral, and that there

should be no other integral divisor D such that S(σ1) = m′D for some |m′| > 1. The last

condition is required for the U(1) symmetry to be normalized appropriately. Assumption

(4.) in section 4.1 is precisely that there does not exist such an integral divisor D.

4.3 Normal bundles in elliptic Calabi-Yau varieties

We start with an I5 fiber, with components Fi, intersecting in the affine Dynkin diagram

of SU(5). Along codimension two enhancement loci, some fiber components become re-

ducible. The resulting codimension two fibers, which give rise to matter in the fundamental

representation, were determined in section 2, from the Coulomb phases/box graphs, where

one of the Fj curves splits as follows

Fj → C+ + C− . (4.7)

In the case of SU(5) with 5 these are shown in figure 4, including the fibers that split,

shown as dashed lines.

In this analysis we allow for a non-holomorphic zero section [11, 15] which means

that over codimension two σ0 can also contain curves in the fiber. Let σ denote either
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Figure 4. Box graphs and codimension two fibers where the Fj that split into C± in codimension

two are shown with dashed lines, for the su(5) ⊕ u(1) theory with matter in the fundamental

representation.

σ0 or σ1. We will now determine the fibers including the rational sections in codimension

two. In addition to intersecting the components of the codimension two fiber transversally,

the section can contain entire fiber components C ⊂ σ, which in the existing literature is

refered to as wrapping. In addition to consistency of the embedding of the rational curves

into the divisors σ, we will use two constraints to determine all possible fibers:

1. If σ ·Y Fi = 0 or 1, then this holds also in codimension two, in particular when the

curve Fi splits it is necessary that the sum of the two curves, C+ and C−, intersects

with the section as Fi did.

2. σ ·Y Fiber = 1.

Denote by Fp the codimension one fiber component that splits

Fp → C+ + C− . (4.8)

From the box graph analysis it is known that the intersection with DFp of these curves is

DFp ·Y C± = −1 . (4.9)

For the case where a curve Fi in the fiber remains irreducible, again from the box graph

analysis, we have that

DFi ·Y Fi = −2 . (4.10)

We will now determine, using (4.9) and (4.10), the normal bundles of the curves C± and

Fi in Y , which will in turn fix the possible intersection of these curves with the section.

4.3.1 Three-folds

First consider the case where Y is a Calabi-Yau three-fold. Then by Theorem 3.5 (i), (4.9)

fixes the normal bundles to be

NC±/Y = O(−1)⊕O(−1) . (4.11)

If a curve C = C± is contained in the divisor σ, C ⊂ σ, then from Theorem 3.5 (ii) it

follows that

NC/σ = O(k) , k ≤ −1 , (4.12)
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and this in turn bounds the intesection of the curve with the section

σ ·Y C = −2− k ≥ −1 . (4.13)

On the other hand, if σ does not contain one of the curves C = C±, then σ ·Y C ≥ 0. In

summary we can conclude that the intersection number of σ with the two curves C± is

always bounded below as follows

σ ·Y C± ≥ −1 . (4.14)

If Fi is irreducible and Fi ⊂ σ then its normal bundle in Y is given by

NC±/Y = O ⊕O(−2) , (4.15)

and by (4.10) and Theorem 3.5 (iii)

NFi/σ = O(k), k = 0 or k ≤ −2 , (4.16)

and

σ ·Y Fi =

{
−2 k = 0

≥ 0 k ≤ −2
. (4.17)

4.3.2 Four-folds

Likewise we can consider the case when Y is a smooth Calabi-Yau four-fold. We will now

show that the constraints on the intersections of the section with the fiber components in

this case are the same as the ones we derived for three-folds. In section 4.3 we started by

considering a rational Fp in the fiber, which in codimension two splits and

DFp ·Y C± = −1 . (4.18)

Let S± be the surfaces ruled by C± over the codimension two locus in the base. Then

S± ⊂ DFp which implies by Theorem 3.7 (i), that

NC±/DFp
= O ⊕O(−1) , (4.19)

and that the normal bundle to these curves in the four-fold is

NC±/Y = O ⊕O(−1)⊕O(−1) . (4.20)

Consider now the situation that S = S± is contained in σ, and thereby C = C± ⊂ σ.

There is a normal bundle exact sequence

0 → NC/S → NC/σ → NS/σ|C → 0 . (4.21)

As S is ruled by C we know that NC/S = O. On the other hand, we know that by the

normal bundle exact sequence for C ⊂ σ ⊂ Y

0 → NC/σ → NC/Y = O ⊕O(−1)⊕O(−1) → Nσ/Y |C → 0 , (4.22)
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thus writing NC/σ = O(a)⊕O(b) Theorem 3.8 (i) states that a ≤ 0, b ≤ −1 and a+b ≤ −1.

However, from (4.21), we know that O →֒ O(a)⊕O(b), therefore we must have a = 0 and

b ≤ −1, i.e.

NC±/σ = O ⊕O(k) , k ≤ −1 . (4.23)

This proves that the conditions on the normal bundle degrees of NC/σ for four-folds are

exactly the same as the ones we derived in the case of three-folds (4.13) resulting in the

same bounds on σ ·Y C± as in (4.14).

Likewise, when Fi ⊂ Si is contained in the section, where Si is the surface ruled by Fi

over the codimension two locus in the base, then DFi ·Y Fi = −2 and by Theorem 3.7 (ii)

NFi/Y = O ⊕O ⊕O(−2) . (4.24)

Again applying the normal bundle exact sequences to Fi ⊂ Si ⊂ σ as well as Fi ⊂ σ ⊂ Y

we infer from 3.8 (ii) that

NFi/σ = O ⊕O(k) , k = 0 or k ≤ −2 , (4.25)

which again is identical to the constraints that we had on the normal bundle degree for

Fi ⊂ σ in the three-fold case in (4.16) and thus the bound on σ ·Y Fi is also identical to

that case and depends only on k.

It seems that similar arguments will hold for elliptic Calabi-Yau n-folds in codimension

two, quite generally for n ≥ 3, where instead of a ruled surface S±, there is a ruled n− 2

dimensional sub-variety, which is ruled by the rational curves in the fiber. This seems

to only add additional O summands to the normal bundle, and the constraints on the

intersections would appear to be the same as the ones we derived for n = 3 and n = 4.

4.4 Codimension two fibers with rational sections

In the last section we have shown that the conditions on the normal bundle degrees for

rational curves in the elliptic fibration which are contained in the section, are characterized,

for both three- and four-folds by one integer, namely, the degree of the normal bundle

NC/σ = O(k) for three-folds, and NC/σ = O ⊕ O(k), for four-folds, respectively, where

k is bounded as described in the previous section. The happy fact, that the degrees in

three-and four-folds (in this specifc context), are constrained in the same way, allows us

to carry out a full classification simultaneously for both cases. The only important input

is the degree of the normal bundles deg(NC/σ) = k, upon which the charges will depend.

One last word of caution before we start our analysis: in the case of four-folds, whenever

a rational curve C in the fiber is contained in σ, we mean this to imply always, that there

is a surface S, which is ruled by C over the codimension two locus, which is also contained

in σ (i.e. in compliance with the general discussion in section 4.3.2).

The two cases to consider now separately are

σ ·Y Fp = σ ·Y (C+ + C−) =

{
0 Case (a)

1 Case (b)
. (4.26)
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(a) σ ·Y Fp = 0:

From (4.13) it follows that σ ·Y C± ≥ −1. There are three solutions to σ ·Y Fp = 0:

(σ ·Y C+, σ ·Y C−) = (−1, 1) , (0, 0) and (1,−1) . (4.27)

There are several ways that each of these intersections can be realized: σ ·Y C+ = −1

implies C+ ⊂ σ and the degree of the normal bundle of C+ in σ is deg(NC+/σ) = −1.

Likewise, σ ·Y C+ = 0 implies C+ ⊂ σ and deg(NC+/σ) = −2 or C+ 6⊂ σ with no

transverse intersection. On the other hand the intersections for C− can be realized

as follows: σ ·Y C− = 1 implies either, that C− 6⊂ σ, and intersects σ transversally

once, or C− ⊂ σ and deg(NC−/σ) = −3. The case for σ ·Y C+ = 1 proceeds in the

same fashion, by swapping C+ and C−. The intersection σ ·Y C− = 0 implies either,

that C− 6⊂ σ, and does not intersects σ, or C− ⊂ σ and deg(NC−/σ) = −2.

In the last case, it is important to note that by the structure of the codimension two

fiber the two curves C±, which are both contained in the divisor DFp , intersect

C+ ·DFp
S− = 1 , (4.28)

where S− is the matter surface, which is ruled by C− in the case of four-folds, and is

equal to C− for three-folds. I.e. if one of the curves is contained in the section, then

the other curve will automatically acquire an intersection with the section. Thus the

combinations C+ ⊂ σ, deg(NC+/σ) = −2 and C− 6⊂ σ , σ ·Y C− = 0 do not have any

solution in an I6 fiber.

In summary we obtain the following configurations:

σ ·Y C+ σ ·Y C− C+ configuration C− configuration

−1 1 C+⊂σ , deg(NC+/σ)=−1 C− 6⊂σ , σ ·Y C−=1

C+⊂σ , deg(NC+/σ)=−1 C−⊂σ , deg(NC−/σ)=−3

0 0 C+⊂σ , deg(NC+/σ)=−2 C−⊂σ , deg(NC−/σ)=−2

C+ 6⊂σ , σ ·Y C+=0 C− 6⊂σ , σ ·Y C−=0

1 −1 C+ 6⊂σ , σ ·Y C+=1 C−⊂σ , deg(NC−/σ)=−1

C+⊂σ , deg(NC+/σ)=−3 C−⊂σ , deg(NC−/σ)=−1

(4.29)

(b) σ ·Y Fp = 1:

Making use again of the bound (4.13), the solutions to σ ·Y (C+ + C−) = 1 are

(σ ·Y C+, σ ·Y C−) = (−1, 2) , (0, 1) , (1, 0) and (2,−1) . (4.30)

The only new configuration that has not already appeared in case (a) is σ ·Y C− = 2.

One configuration that realizes this is C− 6⊂ σ, but C− has two transverse intersection

points with σ. Note that in this case C+ is contained in σ, and thus contributes an

intersection by (4.28). If C− ⊂ σ then deg(NC−/σ) = −4. The complete set of section
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configurations in this case are summarized in the following table:11

σ ·Y C+ σ ·Y C− C+ configuration C− configuration

−1 2 C+ ⊂ σ , deg(NC+/σ) = −1 C− 6⊂ σ , σ ·Y C− = 2

C+ ⊂ σ , deg(NC+/σ) = −1 C− ⊂ σ , deg(NC−/σ) = −4

0 1 C+ ⊂ σ , deg(NC+/σ) = −2 C− 6⊂ σ , σ ·Y C− = 1 (∗)

C+ ⊂ σ , deg(NC+/σ) = −2 C− ⊂ σ , deg(NC−/σ) = −3

C+ 6⊂ σ , σ ·Y C+ = 0 C− 6⊂ σ , σ ·Y C− = 1

1 0 C+ 6⊂ σ , σ ·Y C+ = 1 C− ⊂ σ , deg(NC−/σ) = −2 (∗)

C+ ⊂ σ , deg(NC+/σ) = −3 C− ⊂ σ , deg(NC−/σ) = −2

C+ 6⊂ σ , σ ·Y C+ = 1 C− 6⊂ σ , σ ·Y C− = 0

2 −1 C+ 6⊂ σ , σ ·Y C+ = 2 C− ⊂ σ , deg(NC−/σ) = −1

C+ ⊂ σ , deg(NC+/σ) = −4 C− ⊂ σ , deg(NC−/σ) = −1

(4.31)

Note that for each value of σ ·Y C± there are two realizations in terms of different

configurations, and in the following we will only consider one of these.

Furthermore, we need to discuss the remaining fiber components. From the box graphs,

we know that the intersection of rational curves in the fiber in codimension two is that of

an I6 Kodaira fiber. Thus, if a component C± is contained in σ it induces intersections of

the section with the adjacent fiber components. Depending on the position of the section

in codimension one, there are two cases again to consider: let Fq be such that it remains

an irreducible fiber component in codimension two. Then

(a) σ ·Y Fq = 0:

either Fq 6⊂ σ and has no transverse intersections, or Fq ⊂ σ then deg(NFq/σ) = −2.

(b) σ ·Y Fq = 1:

either Fq 6⊂ σ and has one transverse intersection, or Fq ⊂ σ then deg(NFq/σ) = −3.

We can now determine the complete set of fibers in codimension two with a ratio-

nal section σ. Again, Fp → C+ + C− is the rational curve that becomes reducible in

codimension two:

(i) C+, C− 6⊂ σ:

(a) σ ·Y Fp = 0 and σ ·Y Fm = 1, p 6= m:

it follows from table (4.29) that the only configuration is

C+, C− 6⊂ σ , σ ·Y C± = 0 . (4.32)

The section does not intersect either of the split components, indeed it must

merely remain on the component that it originally intersected in codimension

one, Fm. Figures 5 and 10 (i) represent this configuration.

11We will see that the intersection configurations with (∗) in fact do not have a realization in an I6 fiber.
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Figure 5. I5 fiber with rational section σ, shown intersecting F1 in codimension one. The left

hand side shows the case F2 → C+ +C− in codimension two and all the the section configurations

that are consistent, which correspond to all case (a) in the main text. The fiber components that

are contained in σ are colored red, and the numbers next to it refer to the degree of the normal

bundle of the curves inside σ. Furthermore, in each row the two configurations give rise to the same

intersection of σ ·Y C±, and are thus, from the point of view of U(1) charges, identical. Note that

for one of these configurations the entire fiber is contained in the section. The right hand side shows

the case when the fiber component F1, which intersects the section in codimension one, becomes

reducible in codimension two. Again, for each pair (σ ·Y C+, σ ·Y C−) there are two configurations

realizing those intersection numbers.

(b) σ ·Y Fp = 1:

from table (4.31) the only two solutions are

C+, C− 6⊂ σ , σ ·Y C± = 1 , σ ·Y C∓ = 0 . (4.33)

In this case the section intersects one of the split components transversally, and

does not contain any curves in the fiber. This is shown in figure 5, and more

generally, in figures 11, (i) and (ii), respectively.
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(ii) C+ ⊂ σ, C− 6⊂ σ:

(a) σ ·Y Fp = 0 and σ ·Y Fm = 1, p 6= m:

the configuration from table (4.29) is

C+ ⊂ σ , deg(NC+/σ) = −1

C− 6⊂ σ , σ ·Y C− = 1 .
(4.34)

The positive intersection of σ with C− arises from the single point of intersection

between the curves C+ and C−. Any fiber components, Fi, which are positioned

in the ring between C+ and Fm must also be contained in σ, so that σ ·Y Fi = 0.

This can be seen by considering first the intersection point of C+ with the curve

Fi, which is adjacent to it in the ring. Clearly this would have σ ·Y Fi = 1, which

would be inconsistent with codimension one unless i = m. Therefore Fi must

be contained in σ, with Fi ·σ DFi = −2, so that it has zero intersection number

in Y . This is consistent with Theorems 3.5 and 3.8. Identically, such wrapping

must continue until the section meets the fiber component that it intersects in

codimension one. This configuration is depicted in figure 5 and, more generally,

for In, in figure 10 (ii).

(b) σ ·Y Fp = 1:

there are two solutions in this case from table (4.31), however we will see only

the following gives rise to a consistent fiber:

C+ ⊂ σ , deg(NC+/σ) = −1

C− 6⊂ σ , σ ·Y C− = 2 .
(4.35)

The second solution characterized by C+ ⊂ σ , deg(NC+/σ) = −2 and C− 6⊂

σ , σ ·Y C− = 1 would imply that the section wraps C+, and thus by the

argument in the last paragraph, would gain a non-trivial intersection with all Fi

between C+ and C− unless, all of these curves are contained in σ with normal

bundle degree −2, so that σ ·Y Fi = 0. However, then C− would be the only not

contained fiber component, and would have intersection 2 with the section, which

would be in contradiction. Thus we are left with the only configuration (4.35).

Again, by the same arguments as given in the previous paragraph the section

must contain all the Fi between C+ and C−. If there were to be some Fi which

was not contained in σ then it would have a strictly positive intersection number

with σ from its neighbour in the ring, contradicting codimension one. C− then

has one intersection point with σ from the intersection with C+ and one from

the intersection with the Fi on its other side, giving the required intersection

number of +2. The fiber is represented in figure 5 and for In in figure 11 (iv).

(iii) C− ⊂ σ, C+ 6⊂ σ:

the analysis in the case is essentially identical to the analysis in case (ii), by exchang-

ing the roles of C+ and C−, and we do not repeat it here.
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(a) σ ·Y Fp = 0:

see figure 5 and figure 10 (iii).

(b) σ ·Y Fp = 1:

see figure 5 and figure 11 (iii).

(iv) C+, C− ⊂ σ:

(a) σ ·Y Fp = 0 and σ ·Y Fm = 1, p 6= m:

from table (4.29) there are three configurations, corresponding to degree of the

normal bundle of the curves in σ
(
deg(NC+/σ), deg(NC−/σ)

)
= (−1,−3) , (−2,−2) , (−3,−1) . (4.36)

In all of these cases, all Fi need to be contained in σ, which again follows by

noting that if only C± were contained in σ, then both Fp−1 and Fp+1 gain an

intersection from the wrapping of C±. Thus in order for all but Fm to have zero

intersection with σ, the entire fiber needs to be contained in σ with

deg(NFm/σ) = −3 , deg(NFi/σ) = −2 , i 6= m, p . (4.37)

The degree of deg(NFm/σ) ensures that this component has, consistently with

codimension one, intersection +1 with σ. See figure 5 and figure 10 parts (iv)-

(vi).

(b) σ ·Y Fp = 1:

table (4.31) implies there are four configurations of this type:
(
deg(NC+/σ), deg(NC−/σ)

)
= (−1,−4), (−2,−3), (−3,−2), (−4,−1). (4.38)

Again, just as in the last paragraph, the entire fiber needs to be contained in

σ with

deg(NFi/σ) = −2 , i 6= p . (4.39)

See figure 5 and figure 11 parts (v)-(viii).

This completes the analysis of what fiber configurations in codimension two are possible

with one rational section.

4.5 Compilation of fibers

The analysis in the last section allows us now to characterize all possible fibers in codimen-

sion two for an SU(5) model with one rational section. There are in total three distinct

codimension one configurations for the section, up to inverting the order of the curves Fi

in codimension one. For each of these, we now determine the fibers with rational section in

codimension two. As shown in tables (4.29) and (4.31), for each value of (σ ·Y C+, σ ·Y C−)

there are two realizations in terms of fibers, see e.g. figure 5. As these are indistinguishable

from the point of view of U(1) charges, in the following, we will only consider the fibers

with minimal wrapping. The different configurations are drawn for each phase of each

codimension one fiber type in figure 6. These tables contain information about

• Phase: given in terms of the box graph as well as the splitting Fi = C+ + C− for

each phase.
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• Codimension two fiber: in the present case for fundamental matter, the enhancement

is to an I6 fiber, i.e. SU(6). The intersection of the exceptional P1s is shown, including

the curves C± that arise from the splitting are marked by dashed lines.

• All possible codimension two fibers with section: a dot on one of the P1s corresponds

to a section intersecting the fiber component transversally in +1. If a fiber compo-

nent is contained in the section σ, then it is colored (blue or red). The “wrapped”

components carry a numerical label, which indicates the normal bundle degree of the

curve inside the section σ.

• Matter intersections: finally, the table contains the information about the intersection

of the section σ with the curves C±, which will then be used to compute the U(1)

charges.

Knowing the various configurations one can read off the values of σ ·Y C± in each case.

It is these values which determine the U(1) charges, after the application of the Shioda

map, as shall be seen in the subsequent section. In the phase where the codimension one

component Fp splits the possible values of σ ·Y C± are

(a) σ ·Y Fp = 0

σ ·Y C± ∈ {−1, 0, 1} . (4.40)

(b) σ ·Y Fp = 1

σ ·Y C± ∈ {−1, 0, 1, 2} . (4.41)

These values are the contributions to the U(1) charges from the rational sections. One sees

that there is an additional value for σ ·Y C when the codimension one curve that splits,

Fp, had the rational section intersecting it in codimension one. We should then anticipate

seeing additional U(1) charges in those phases where such a component of the I5 fiber

splits. Indeed we will see this in the next section.

4.6 U(1) charges

The U(1) charges of the curves C±, which are labelled by the weights of the fundamental

representation, are obtained by intersecting them with the Shioda map of the section σ1

S(σ1) = 5(σ1 − σ0) + Sf , (4.42)

where σ0 is the zero-section. Here, Sf depends on the codimension one fibers and is

determined by requiring that for all i

S(σ1) ·Y Fi = 0 . (4.43)

In particular, if Fi → C+ + C− splits then (C+ + C−) ·Y S(σ1) = 0 is required. The U(1)

charges of C+ and C− is given by S(σ1) ·Y C+ and S(σ1) ·Y C− respectively, and are always

conjugate. For I
(01)
5 , Sf is trivial, and for the remaining codimension one fiber types they

are listed in tables 1 and 2.
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Phase Sf Sf ·Y C+ Sf ·Y C−

4DF1 + 3DF2 + 2DF3 +DF4

+1 +4

−4 −1

+1 −1

+1 −1

+1 −1

Table 1. Values for Sf ·Y C± for I
(0|1)
5 local enhancement to I6.

Phase Sf Sf ·Y C+ Sf ·Y C−

3DF1 + 6DF2 + 4DF3 + 2DF4

+2 +3

−3 +3

−3 −2

+2 −2

+2 −2

Table 2. Values for Sf ·Y C± for I
(0||1)
5 local enhancement to I6.

In the section 4.4 we determined a comprehensive list of possible fibers in codimension

two, given that a rational section σ intersects either F0, F1, or F2 in codimension one,

respectively. In a model with one U(1), we apply this analysis to the zero-section σ0 and

additional section σ1. Without loss of generality, σ0 ·Y F0 = 1, and thus the possible

codimension two fibers are listed in figure 6. Depending on which codimension one fiber

type (4.4) we start with, in addition the section σ1 can be in one of the configurations in

figures 6. Obviously, only fiber types in the same phase can be combined.

The charge is computed by intersecting the Shioda map S(σ1) (4.42) with the split

curves C+ and C−. The result is shown for all codimension one fiber types in figures 7, 8,

and 9. Each of the figures contains the information

Caption for figures 7, 8, and 9: (4.44)

• The phase, specified by the box graph, and the fiber in codimension two that results,

without the section information.

• The horizontal (vertical) axis shows the different configurations for curves of the fiber

in the section σ1 (σ0).

• The entries of the tables contain the U(1) charges (a,−a) determined by S(σ1) ·Y C+

and S(σ1) ·Y C− respectively.
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• The lines between the phases, that is, connecting the six large boxes, denote that there

exist flop transitions between those linked phases.12 The coloring of the charges is

related these flops and will be discussed later.

In summary the charges for 5̄ (and negative of these for the conjugate 5) that we

find are:

U(1) charges of 5̄ matter for





I
(01)
5 ∈ {−3,−2,−1, 0,+1,+2,+3}

I
(0|1)
5 ∈ {−14,−9,−4,+1,+6,+11}

I
(0||1)
5 ∈ {−13,−8,−3,+2,+7,+12} .

(4.45)

This concludes the analysis of possible U(1) charges for an SU(5) gauge theory in F-

theory with fundamental matter, for one additional abelian gauge factor. Note that all

known charges from explicit realizations of the fiber in various toric tops as well as Tate

models, including the individual U(1) charges from models with multiple U(1) factors, are

a (strict) subset. We discuss the relation to the embedding into E8, as discussed in [24], in

appendix B.

4.7 SU(n) × U(1) with fundamental matter

In our discussion of fiber configurations in section 4.4 it was in fact of no particular im-

portance that we started with an In fiber with n = 5. Indeed the situation is very similar

and easily generalizes, to SU(n) with fundamental (i.e. the n representation) matter, where

the fiber enhances from an In to an In+1. Each section in codimension one intersects one

of the rational curves Fi, i = 0, 1, · · · , n − 1, which intersect in an affine SU(n) Dynkin

diagram. In codimension two, one of the Fi splits, as shown in [4]. For an elliptic fibration

with sections σ0 and σ1, we again use the notation

I(0|
m1)

n : σ0 ·Y F0 = 1 , σ1 ·Y Fm = 1 . (4.46)

Let Fp be the component that splits in codimension two. Then there are two cases to

consider: either σ ·Y Fp = 0 or 1, which are shown in figures 10 and 11, respectively. The

reasoning is entirely as in section 4.4, with the only difference being the length of the

chain of rational curves Fi that are located between C+ and C−. The distinct cases of

intersections (σ ·Y C+, σ ·Y C−) are also analogous to the SU(5) case.

The Shioda map can be constructed for an I
(0|m1)
n fiber and the U(1) charges of a

fibration with a specified wrapping configuration can be written in terms of m and n.

The Shioda map for an In fiber with separation m between the sections is determined by

the mth row of the inverse Cartan matrix associated to the codimension one singularity

type [9]. The inverse Cartan matrix of SU(n) is an (n− 1)× (n− 1) matrix with elements

Cmc =
1

n

{
c(n−m) c ≤ m

m(n− c) m < c .
(4.47)

12These are the flops that exist generically, as explained in [4]. This will be discussed later on.
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Figure 7. Codimension two fibers and charges for 5 matter for I
(01)
5 models. For details see (4.44).

The Shioda map for an I
(0|m1)
n fiber is then of the form

S(σ1) = n(σ1 − σ0) +

n−1∑

i=1

CmiDFi , (4.48)
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Figure 8. Codimension two fibers and charges for 5 matter for I
(0|1)
5 models. For details see (4.44).
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Figure 9. Codimension two fibers and charges for 5matter for I
(0||1)
5 models. For details see (4.44).

– 35 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
4

ignoring contributions from the base. For ease of notation we will allow cp to denote the

coefficient of the term DFp in the Shioda map, that is Cmp. The Shioda map excepting the

term n(σ1−σ0) will be denoted by Sf as before. The conjugate U(1) charges are obtained

from the intersection numbers

S(σ1) ·Y C± . (4.49)

Such an intersection can be broken into two parts, contributions from (σ1 − σ0) ·Y C±,

which were enumerated for each section in (4.40), (4.41), and contributions from Sf ·Y C±,

which are determined here. Let us consider the phase where Fp → C+ + C−, and we

shall content ourselves with only obtaining the U(1) charge of C+, as the charge for C−

is simply its negative. From the resulting fiber it is observed that the only contributions

from Sf ·Y C+ come from cp and cp−1, as these are the coefficients in the Shioda map of

the divisors DFi , which C+ intersects, i.e.

Sf ·Y C+ = cp−1 − cp . (4.50)

Given (4.47) this can be expanded explicitly in terms of m and n (importantly the depen-

dence on the phase is minimal)

Sf ·Y C+ =

{
(m− n) p ≤ m

m m < p .
(4.51)

In the above we considered only the so-called SU(n)-phases, where p = 1, · · · , n − 1.

What remains is to consider the phases with an additional U(1), where F0 → C+ + C−.

In this case the only contribution to Sf ·Y C+ comes from cn−1, which is m. In the

previous section the possible values of σi ·Y C+ were determined from the possible consistent

wrapping scenarios to be such that

σi ·Y C+ ∈ {−1, 0, 1, 2} . (4.52)

Combining this information with (4.51) tables can be constructed for all possible charges

in each phase. The two tables which cover all the phases for I
(0|m1)
n are given in table 3.

It can be seen that the possible charges are

S(σ1) ·Y C+ = m− 3n , m− 2n , · · · , m+ 2n . (4.53)

The subset of charges that exist in every phase is

S(σ1) ·Y C+ = m− 2n , m− n , · · · , m+ n . (4.54)

While these are the charges that appear in every phase for every m, there are some

special end-point values of m for which extra charges appear in all phases. When m = 1 or

m = n− 1 then charges m+2n and m− 3n respectively appear in all phases. In addition,

when m = 0 the tables degenerate on top of each other and the charge m+ 2n appears in

all phases. In the phase where F0 splits there is a new charge m + 3n from σ1 ·Y C+ = 2

and σ0 ·Y C+ = −1.

There are charges, which do not appear in every phase within the framework of fibers

satisfying the setup outlined in section 4.1. This has in particular to do with the flops of

configurations of the type shown in (iii) and (iv) of figure 11, which we will elaborate on

in section 6.
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σ1 ·Y C+

−1 0 1 2

σ
0
· Y

C
+ −1 m− n m m+ n m+ 2n

0 m− 2n m− n m m+ n

1 m− 3n m− 2n m− n m

σ1 ·Y C+

−1 0 1

σ
0
· Y

C
+ −1 m m+ n m+ 2n

0 m− n m m+ n

1 m− 2n m− n m

2 m− 3n m− 2n m− n

Table 3. The U(1) charges of all the possible wrapping combinations of the codimension one

I
(0|m1)
n fiber enhancing to an In+1 fiber. On the left are the charges in phase where Fp splits for

p = 1, · · · ,m, and on the right are the charges for the phases where p = m+ 1, · · · , n− 1 or p = 0.

In each configuration, the cases σ ·Y C+ = 2 only appear in the p = m or p = 0 phases.
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Figure 12. The three abstract splittings for I5 to I∗1 enhancements. The colored loops indicate

that there exists a root that splits into the encircled curves in codimension two.

5 SU(5) × U(1) with 10 matter

In this section we find the possible charges for 10 matter by analysing how the sections can

behave under an I5 to I∗1 enhancement. The codimension one I5 fibers and Shioda maps

are the same as those given in section 4.2.

5.1 Codimension two Fibers with Rational sections

The fibers of the 10 representation are obtained from the box graphs in tables 7 and 8 in

appendix A. The resulting fibers are all I∗1 , consistent with the local enhancement to so(10),

with the correct multiplicities. To find the charges of the 10 representation we employ the

same method as before, solving for the possible configurations under the constraints of

consistency with codimension one, σ ·Y Fiber = 1. The multiplicity of each component in

the I∗1 fiber must be taken into account when imposing the latter condition.

There are three classes of splitting types that can occur in the enhancement to I∗1 ,

shown in figure 12. They are one of the following,

(A) Fi → C+ + C̃−, Fj → C̃+ + C̃−, Fk → C̃+ + C−

(B) Fi → C̃± + Fj + C̃∓, Fk → C± + C̃∓

(C) Fi → C+ + Fj + Fk + C−, j 6= k and j, k 6= i.

In each of the three cases there are different subcases to consider depending on which

of the components of the fiber the section intersects in codimension one. There are five
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different options corresponding to the number of components in codimension one, however

the reflection symmetry of the intersection graphs allows one to consider only eleven dif-

ferent configurations, instead of fifteen. The configurations will be termed the “splitting

types” and will be denoted as

A.1 : σ ·Y Fl = 1 B.1 : σ ·Y Fl = 1 C.1 : σ ·Y Fl = 1

A.2 : σ ·Y Fi = 1 B.2 : σ ·Y Fk = 1 C.2 : σ ·Y Fk = 1

A.3 : σ ·Y Fj = 1 B.3 : σ ·Y Fj = 1 C.3 : σ ·Y Fi = 1.

B.4 : σ ·Y Fm = 1

B.5 : σ ·Y Fi = 1

For each splitting type one can determine the values of the intersection numbers, from

the intersection of the section with the split curves, that are consistent with the constraints

from codimension one and the requirement that the normal bundles of subspaces embed

as subbundles of the total normal bundle. Each possible set of intersection numbers may

have multiple realizations in terms of configurations of the curves inside the section. The

intersection numbers with σ are all that is necessary to determine U(1) charges via the

Shioda map. In this section splitting type A.2 will be detailed explicitly and the tables of

results for all the other ten splitting types will be relegated to appendix A.

Consider then splitting type A.2, defined as the splitting

Fi → C̃+ + C−

Fj → C̃+ + C̃−

Fk → C+ + C̃− ,

(5.1)

with σ ·Y Fi = 1, and the intersection of the section with all other codimension one fiber

components being zero. As such the constraints from the split curves become

σ ·Y (C̃+ + C−) = 1

σ ·Y (C̃+ + C̃−) = 0

σ ·Y (C+ + C̃−) = 0 .

(5.2)

Any one of the intersection numbers σ ·Y C for any curve C determines all the other

intersection numbers with the Cs. As the normal bundle to the curves C that come from

the splitting of the curves Fi in codimension two is O(−1) ⊕ O(−1) for three-folds and

O ⊕O(−1)⊕O(−1) for four-folds it is known by Theorems 3.5 and 3.8 that σ ·Y C ≥ −1

for all such C. Solving the constraints (5.2) subject to these inequalities leads to the three

solutions

(i) σ ·Y C− = 2 , σ ·Y C̃+ = σ ·Y C+ = −1 , σ ·Y C̃− = 1

(ii) σ ·Y C− = 1 , σ ·Y C̃+ = σ ·Y C̃− = σ ·Y C+ = 0

(iii) σ ·Y C− = 0 , σ ·Y C̃+ = σ ·Y C+ = 1 , σ ·Y C̃− = −1 . (5.3)

Each of these solutions has in addition that σ ·Y Fl = σ ·Y Fm = 0 from consistency of the

curves which do not split with codimension one. It remains to ask whether there are any
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Figure 13. The different realizations of the intersection number solutions (i) (top row), (ii) (middle

row), and (iii) (bottom row) for splitting type A.2. The red integers are the degree of the normal

bundles of each curve inside the section.

possible realizations of these intersection numbers. All the configurations realizing each of

these three solutions are shown in figure 13. If a curve is such that σ ·Y C = −1 then it

must be contained in σ with deg(NC/σ) = −1, else if a curve is such that σ ·Y C = k ≥ 0

then the curve is either not contained in σ and has k transverse intersections with σ, or it

is contained in σ with deg(NC/σ) = −k− 2. In this way configurations of curves inside the

section with particular intersection numbers can be constructed.

5.2 U(1) charges

The possible codimension two fibers are obtained by combining the σ0 and σ1 configurations

appearing in the same phase. The U(1) charges of the 10 representation for each such

combined configuration are determined from the C+/C− intersections with the sections

listed in the figures and the appropriate Shioda map (4.42). The results are shown in table 4.

Each entry in the table lists the possible charges in each phase for a particular codimension

one fiber type, and is summarized in terms of the following set of possible charges:

U(1) charges of 10 matter for





I
(01)
5 ∈ {−15,−10,−5, 0,+5,+10,+15}

I
(0|1)
5 ∈ {−12,−7,−2,+3,+8,+13}

I
(0||1)
5 ∈ {−9,−4,+1,+6,+11} .

(5.4)
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Phase I
(01)
5 charges I

(0|1)
5 charges I

(0||1)
5 charges

1 −3,−2,−1, 0,+1,+2,+3 −12,−7,−2,+3,+8,+13 −9,−4,+1,+6,+11

2 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6

3 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6

4 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6,+11

5 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6

6 −2,−1, 0,+1,+2 − 7,−2,+3,+8 −9,−4,+1,+6

7 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6,+11

8 −2,−1, 0,+1,+2 − 7,−2,+3,+8 −9,−4,+1,+6,+11

9 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6,+11

10 −2,−1, 0,+1,+2 − 7,−2,+3,+8 −9,−4,+1,+6,+11

11 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8,+13 −9,−4,+1,+6,+11

12 −2,−1, 0,+1,+2 − 7,−2,+3,+8,+13 −9,−4,+1,+6,+11

13 −2,−1, 0,+1,+2 − 7,−2,+3,+8 −9,−4,+1,+6,+11

14 −2,−1, 0,+1,+2 − 7,−2,+3,+8,+13 −9,−4,+1,+6,+11

15 −2,−1, 0,+1,+2 − 7,−2,+3,+8,+13 −9,−4,+1,+6,+11

16 −3,−2,−1, 0,+1,+2,+3 −12,−7,−2,+3,+8,+13 −9,−4,+1,+6,+11

Table 4. The range of possible U(1) charges for each codimension one fiber type. The phases are

those listed in tables 7 and 8 in appendix A.

Again, like for the case of fundamental matter, the known charges that occur in concrete

realizations of elliptic fibrations of SU(5) GUTs are a strict subset of these. The comparison

to the embedding into E8 can be found in appendix B.

6 Flops and rational sections

Flops between distinct resolutions of singular elliptic Calabi-Yau fibrations have been dis-

cussed in terms of the Coulomb phases, or box graphs, in [4], and realized in terms of

explicit elliptic fibrations (based on Tate models) in [35, 52–54]. In this section, we will

study the flops for codimension two fibers with sections wrapping fiber components. For

simplicity we consider here three-folds, however we expect all of the flops to generalize

quite straightforwardly to four-fold flops, e.g. as discussed in [55, 56].

6.1 Flops and intersections

The small resolutions of the singular fibers are related by flops along curves in the fiber

in codimension two. To determine how the flops change the normal bundle degrees of

C ⊂ D, which in the three-fold case is given by the self-intersections of the curves in D,

it is useful to recapitulate some of the mathematical results on this for three-folds. The

first important notion is that of a (−2)-curve as introduced in Theorem 3.6 (see [50] for

more details). Recall that the normal bundle of the curves Fi, which remain irreducible in
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Figure 14. Flop of the curve C−
1 into C+

2 . D’s are divisors, C the curves at their intersections,

and the small numbers indicate the degree of the normal bundles of the curves inside the divisors.

The exceptional divisor, E = P1 × P1, is introduced in the blow up as an intermediate stage.

Alternatively one can blow down to the singular configuration at the bottom of the picture.

codimension two, are

NFi/Y = O ⊕O(−2) , (6.1)

whereas if Fp → C+ + C− becomes reducible in codimension two, then each of the irre-

ducible components C± have normal bundle in Y

NC±/Y = O(−1)⊕O(−1) . (6.2)

Consider the situation shown in figure 14, starting with the configuration in the lower

left hand side. The curves C±
1 both have normal bundles of degree (−1,−1), the curve C2

has normal bundle (−2, 0) (i.e. it is, in our standard notation, one of the Fi). Consider

blowing up along the curve C−
1 .

Let D and D̂ be divisors and π1 : D̂ → D the blow up of a curve C. The canonical

class changes as

KD̂ = π∗
1KD + C . (6.3)

Here the blow up affects the two divisors D2 and D′′, in particular under π1 : D̂2 → D2

the canonical class changes by the new curve, C+
2 ,

KD̂2
= π∗

1KD2 + C+
2 , KD̂′′ = π∗

1KD′′ + C+
2 . (6.4)
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The curves C2 and C+
1 , are contained within these two divisors, and their normal bundles

change in the blow up. Denoting their images under the blow up by Ĉ, the normal bundle

degrees are (using adjunction that KD ·D C = −(C)2D − 2)

deg(NĈ2/D̂2
) = (Ĉ2)

2
D̂2

= −KD̂2
·D̂2

Ĉ2 − 2

= −(π∗
1KD2 + Ĉ+

2 ) ·D̂2
Ĉ2 − 2 = −(−2 + 1)− 2 = −1

deg(NĈ+
1 /D̂′′) = (Ĉ+

1 )2
D̂′′ = −KD̂′′ ·D̂′′ Ĉ

+
1 − 2

= −(π∗
1KD′′ + Ĉ+

2 ) ·D̂′′ Ĉ
+
1 − 2 = −(−1 + 1)− 2 = −2 .

(6.5)

The normal bundles of Ĉ−
2 , Ĉ+

1 in the divisors D′, D1 respectively, are unchanged as

the canonical class of these divisors remains the same under the blow up. The resulting

configuration is shown on the top of figure 14.

The flop is completed by blowing down the curve Ĉ−
1 . The canonical classes change

again as in (6.3) for the two divisors, which contain this curve, i.e. D1 and D′ under the

blow down π2 : D → Ď

KD1 = π∗
2KĎ1

+ Ĉ−
1 , KD′ = π∗

2KĎ′ + Ĉ−
1 . (6.6)

After the blow down, denote the curve corresponding to Ĉ2 and Ĉ+
1 by Č−

2 and Č1, respec-

tively. Then the normal bundles change as follows

deg(NČ−
2 /Ď1

) = (Č−
2 )2

Ď′ = −KĎ′ ·Ď′ Č
−
2 − 2

= −(KD′ − Ĉ−
1 ) ·D′ Ĉ2 − 2 = −(0− 1)− 2 = −1

deg(NČ1/Ď1
) = (Č1)

2
Ď1

= −KĎ1
·Ď1

Č1 − 2

= −(KD1 − Ĉ−
1 ) ·D1 Ĉ

+
1 − 2 = −(−1− 1)− 2 = 0 .

(6.7)

On the other hand, Ĉ−
1 is not in D̂2 or D̂′′, so the blow down does not affect the normal

bundle of Č−
2 in D̂2 or of Č+

1 in D̂′′. Thus the flop of C−
1 , which was previously the

intersection of D′ and D1, produces a new curve Ĉ+
2 which is no longer contained inside

either D′ or D1 but instead intersects them in a point.

Alternatively, one can consider first blowing down with p2 in figure 14, and then

blowing up. The advantage of the process we described here, is that the geometry in every

step is smooth, whereas the lower, singular configuration would require particular care in

applying the intersection calculus.

The prior analysis can now be applied to the case of SU(5) models with e.g. fundamental

matter. Taking one of the divisors D′ or D1 above to be one of the rational sections we

see that, under a flop, a curve contained inside the section is flopped to one that intersects

the section in a point and vice versa. Consider a configuration in figure 6, for example

where σ ·Y F1 = 1 in codimension one, then the generic flops for fibers studied in [4] dictate

how the configurations flop into each other. However for fibers with rational sections, not

every configuration appears to have a flop image in the category of fiber configurations

that satisfy our initial setup. This is indicated in the shading of the charges in figures 7–9,

showing which charges flop into each other. The charges in blue appear in every phase

whereas the charges highlighted in green only appear in certain phases. The flop of the

configurations, which do not appear in all phases will be discussed in section 6.3.
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Figure 15. Flop of a σ1 wrapping configuration from phase 6 (left) to phase 8 (right) where

σ1 ·Y F1 = 1. The red numbers denote the self intersections of the curves inside σ1.

6.2 An I
∗

1
flop

Consider the flop of the curve C+
3,4 depicted in figure 15. In this case it is simpler to

consider first blowing down this curve, and then blowing up. The starting configuration,

shown on the left of figure 15, appears in phase 6 of table 10 where the section intersects

F1 in codimension one. The splitting in this phase is given by,

F4 → C+
3,4 + F1 + F2 + C−

1,5 (6.8)

These curves have the following self-intersections, i.e. normal bundle degrees, inside DF4 ,

(C+
3,4)

2
DF4

= −1

(C−
1,5)

2
DF4

= −1

(F1)
2
DF4

= −2

(F2)
2
DF4

= −2 ,

(6.9)

determined by the box graph for this phase. For the curves Fi do not split,

(Fi)
2
DFi

= 0 . (6.10)

In the configuration shown F2, C
+
3,4, F3 ⊂ σ1 and the self intersections in σ1 are given by

the red numbers appearing next to these curves in the figure. Now consider the blow down

of the curve C+
3,4 which changes the canonical class of DF4 and σ1,

Kσ1 = π∗
1Kσ̌1 + C+

3,4, KDF4
= π∗

1KĎF4
+ C+

3,4 . (6.11)

Under the blow up π2 of the singular geometry we reach the I∗1 fiber obtained by the

splitting,
F4 → C+

2,4 + F1 + C−
1,5

F2 → C+
2,4 + C−

3,4

(6.12)
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The configuration in this phase, phase 8, is shown on the right in figure 15, where the

flopped curve C−
3,4 6⊂ σ1 and the canonical class of the divisor ĎF2 is

KD̂F2
= π∗

2KĎF2
+ C−

3,4 . (6.13)

Only the normal bundle of the curve F2, which becomes C+
2,4, is altered by this flop as

no other curve intersected C+
3,4 in the original configuration. As the intermediate stage in

this description of the flop is singular the self intersection of the curve C+
2,4 in the divisors

D̂F4 , σ̂1 and D̂F2 in phase 8 is computed by always pulling back to one of the resolved

geometries,
(C+

2,4)
2
σ̂1/D̂F4

=−Kσ̂1/D̂F4
·σ̂1/D̂F4

C+
2,4 − 2

=−Kσ̌1/ĎF4
·σ̌1/ĎF4

F̌2 − 2

=− (Kσ1/DF4
− C+

3,4) ·σ1/DF4
F2 − 2

=− (0− 1)− 2 = −1 .

(6.14)

In the above, the second equality sign holds as the canonical class of ĎF4 and σ̌1 is un-

changed by the blow up π2.

(C+
2,4)

2
D̂F2

=−KD̂F2
·ĎF2

C+
2,4 − 2

=− (π∗
2KĎF2

+ C−
3,4) ·D̂F2

C+
2,4 − 2

=− (π∗
2KDF2

+ C−
3,4) ·D̂F2

C+
2,4 − 2

=− (−2 + 1)− 2 = −1 .

(6.15)

Thus the curve C+
2,4 has normal bundle degree (−1,−1) in the flopped geometry which

is exactly what we expect from the splitting in phase 8. The flop discussed here exactly

reproduces what was claimed in the previous section: a curve contained inside the section

is flopped to one which intersects it at a point.

6.3 Flops to singular sections

It was mentioned in section 6.1 that certain configurations do not flop into configurations

within the class of fibers that we considered here. All such fibers are of the type that the

entire fiber except for one curve is contained inside the section. We now briefly comment

on this. Consider for instance flopping the curve C+
1 on the left hand side of figure 16. In

this configuration the splitting is given by F1 → C+
1 + C−

2 and the curve C+
1 has normal

bundle (−1,−1) inside of DF1 .

Proceeding as described above, we blow up every point along C+
1 and in doing so we

obtain the exceptional divisor E. The two points at which C+
1 intersected the section

become two curves contained inside the section. Under the contraction of the C+
1 ruling

of the exceptional divisor E, the two curves contained in the section are identified. Thus

we obtain a curve which is contained inside the section twice. The section is now singular

as it meets itself along this curve.13 This configuration is shown on the right hand side

13We thank Dave Morrison for discussions on this point.
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Figure 16. The almost fully wrapped fiber (the rational curves contained in the section σ are

shown in blue) shown on the left flops via C+
1 to the fiber, which is fully contained in the section.

However the section is now singular along the curve C−
1 , along which it self-intersects as shown on

the far right. The numbers in black and blue denote the degree of the normal bundle of the curves

inside the divisors DFi
and the section σ, respectively.

of figure 16. In our analysis we assumed throughout that the section is a smooth divisor

in the Calabi-Yau. Clearly, after this flop this condition ceases to hold, and it would be

interesting to study such configurations, and to determine whether or not the singular

section is consistent from the point of view of the F-theory compactification. We will

comment on this further in the discussion section 10.

7 Singlets

As a final application of our method, we now turn to discuss U(1)-charged GUT singlets.

Mathematically, this corresponds to analyzing the codimension two fibers with rational

section for an I1 to I2 enhancement. Apart from the interest in the types of singlet charges

that are possible, this has wide-ranging implications for Higgsing the U(1) symmetries to

a discrete gauge symmetry, as in e.g. [37–39]. Other phenomenologically interesting impli-

cations, in particular when applied to four-folds, concern the possible Yukawa couplings of

the type RR1 as well as non-renormalizable couplings, which e.g. could regenerate proton

decay operators. After some general properties of singlets, we first discuss the situation in

three-folds in section 7.2, and for four-folds in section 7.3.

7.1 Constraints on singlet curves

Consider a smooth Calabi-Yau three- or four-fold Y . An I1 fiber consists of a single nodal

rational curve F0, with arithmetic genus pa(F0) = 1, such that

DF0 ·Y F0 = 0 (7.1)

Above a codimension two locus, the node splits

F0 → C+ + C− , (7.2)
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where C± are smooth rational curves, which intersect in an I2 Kodaira fiber. Consistency

with codimension one requires that

DF0 ·Y C+ = −DF0 ·Y C− , . (7.3)

As both C± are smooth rational curves contained insideDF0 , it follows by Corollary 3.4 that

deg(NC+/DF0
) + deg(NC−/DF0

) = −4 . (7.4)

However, as these curves do not arise as complete intersections, their normal bundles in Y

are not fixed by the degrees of NC±/DF0
. We require one of the curves in the I2 fiber to

be contractible. Without loss of generality, we take C− to be the contractible curve. In

Calabi-Yau three-folds this condition is known to have three solutions, as summarized in

Theorem 3.6, which will be discussed in the next section. For four-folds we are not aware

of a similar result, and we will therefore conduct a survey without imposing the additional

contractibility condition in section 7.3.

7.2 Singlets in three-folds

In this section, let Y be a smooth Calabi-Yau three-fold. We will first determine the possible

section configurations that are consistent from the point of view of normal bundle degrees

in a three-fold. Following this, we determine the possible singlet charges and fiber types.

7.2.1 Normal bundle constraints

We start by considering the possible normal bundle degrees for rational curves in an I2
fiber. We assume C− to be contractible. Theorem 3.6 implies that a contractible rational

curve can have the following normal bundles in Y :

A) NC−/Y = O(−1)⊕O(−1)

B) NC−/Y = O ⊕O(−2)

C) NC−/Y = O(1)⊕O(−3) .

We do not constrain C+ to be contractible therefore its normal bundle takes the general

form

NC+/Y = O(p)⊕O(−2− p), p ≥ −1 . (7.5)

We consider a fibration with two rational sections, σ0 and σ1. In codimension one both

sections intersect F0, therefore it is sufficient to just consider one of the sections to find

the possible configurations for the fiber in codimension two. For an I1 local enhancement

to I2 the constraint from codimension one is,

σ ·Y (C+ + C−) = 1 . (7.6)

For each case A−C there always exists the solution, where the section intersects transver-

sally either C+ or C− and does not contain any curves in the fiber. The two cases will

differ in the possible wrapping configurations.
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As the normal bundle of C+ is the same for cases A−C we can first derive some general

statements irrespective of the normal bundle of C−. Consider C+ ⊂ σ, using Theorem 3.5

(iii), there exists an embedding

NC+/σ →֒ NC+/Y = O(p)⊕O(−2− p) , p ≥ −1 , (7.7)

in the following two cases:

(i) deg(NC+/σ) = p

(ii) deg(NC+/σ) ≤ −p− 2.

Using Corollary 3.4 one finds that for (i)

σ ·Y C+ = −p− 2 . (7.8)

Combining (7.8) with (7.6), one obtains the intersection of C− with σ,

σ ·Y C− = p+ 3 . (7.9)

The intersections of σ with C+ (resp. C−) will be bounded from below (resp. above) by (7.8)

(resp. (7.9)).

Now let us consider case A where C− has normal bundle degree (−1,−1). If C− ⊂ σ

then in order for NC−/σ to embed inside NC−/Y we must have,

deg(NC−/σ) ≤ −1 . (7.10)

This is a consequence of Theorem 3.5 part (ii) and as a result the intersections of σ with

C± are

(σ ·Y C+, σ ·Y C−) = (2,−1), (1, 0), (0, 1), (−p− 2, p+ 3) . (7.11)

The codimension one constraint (7.6) then specifies the upper bound for the intersection

of σ with C+. The possible configurations which realize these intersections are:

A.1) σ ·Y C+ = 2, σ ·Y C− = −1

The lower bound on σ ·Y C− is achieved by C− ⊂ σ, with deg(NC−/σ) = −1. To

obtain the correct intersection for C+ with the section there are two possibilities:

(i) C+ 6⊂ σ

The correct intersections are automatic in this case as in any I2 fiber the curves

C± intersect each other in two points, and C− is contained inside the section.

(ii) C+ ⊂ σ

The degree of NC+/σ is determined using Corollary 3.4, requiring σ ·Y C+ = 2

implies deg(NC+/σ) = −4. This solution is only valid when NC+/Y = O(−4)

can be embedded non-trivially into NC+/Y which is true for

− 1 ≤ p ≤ 2 . (7.12)
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A.2) σ ·Y C+ = 1, σ ·Y C− = 0

There are two configurations, which realize the above intersections. The first is given

by C+ 6⊂ σ, but σ intersects C+ transversally. In this case the section does not

contain any components of the fiber. The second solution is given by C+, C− ⊂ σ

and deg(NC+/σ) = −3 and deg(NC−/σ) = −2. One can check using Corollary 3.4 that

these values give the correct intersection values for σ ·Y C±. The latter configuration

can only be realized for

− 1 ≤ p ≤ 1 (7.13)

A.3) σ ·Y C+ = 0, σ ·Y C− = 1

The solutions in this case can be obtained from the solutions in A.2 by exchanging

C±. The configuration where the entire fiber is contained inside the section is a

solution for

p = −1 or 0 . (7.14)

A.4) σ ·Y C+ = −p− 2, σ ·Y C− = p+ 3

As was detailed above, to achieve a negative intersection with the section, C+ must

be contained inside it with deg(NC+/σ) = p. There are two possibilities for C−:

(i) C− 6⊂ σ

The section, from the containment of C+, intersects C− in two points necessarily.

In order to satisfy (7.6) C− requires p + 1 additional intersections with the

section.

(ii) C− ⊂ σ

In this case we require deg(NC−/σ) = −p − 5 to satisfy σ ·Y C− = p + 3. This

solution is valid for p ≥ −1 as for these values of p the following embedding

always exists

O(−p− 5) →֒ O(−1)⊕O(−1) . (7.15)

The full set of configurations for A are summarized below. The configurations which have

been marked (∗) are only valid when p falls within the ranges specified in (7.12), (7.13)

and (7.14), respectively.

σ ·Y C+ σ ·Y C− C+configuration C−configuration

2 −1 C+ 6⊂ σ, σ ·Y C+ = 2 C− ⊂ σ, deg(NC−/σ) = −1

C+ ⊂ σ, deg(NC+/σ) = −4 C− ⊂ σ, deg(NC−/σ) = −1 (∗)

1 0 C+ 6⊂ σ, σ ·Y C+ = 1 C− 6⊂ σ, σ ·Y C− = 0

C+ ⊂ σ, deg(NC+/σ) = −3 C− ⊂ σ, deg(NC−/σ) = −2 (∗)

0 1 C+ 6⊂ σ, σ ·Y C+ = 0 C− 6⊂ σ, σ ·Y C− = 1

C+ ⊂ σ, deg(NC+/σ) = −2 C− ⊂ σ, deg(NC−/σ) = −3 (∗)

−p− 2 p+ 3 C+ ⊂ σ, deg(NC+/σ) = p C− 6⊂ σ, σ ·Y C− = p+ 3

C+ ⊂ σ, deg(NC+/σ) = p C− ⊂ σ, deg(NC−/σ) = −p− 5

(7.16)
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For case B the curve C− has normal bundle degree (0,−2). To find the lower bound

for the intersection of C− with the section we need to consider C− ⊂ σ. Requiring NC−/σ

to embed inside NC−/Y gives the constraint

deg(NC−/σ) ≤ 0 , (7.17)

where deg(NC−/σ) 6= −1. This bounds the intersection of C− with the section from below,

σ ·Y C− ≥ −2 ⇒ σ ·Y C+ ≤ 3 . (7.18)

The possible intersections are given by

(σ ·Y C+, σ ·Y C−) = (3,−2), (1, 0), (0, 1), (−p− 2, p+ 3) . (7.19)

The intersection of C+ with σ can not take the value −1 due to the constraint deg(NC−/σ) 6=

−1. The solutions for the last three intersection sets are the same as those given for case

A therefore we shall only detail the solutions for the first set here.

B.1) σ ·Y C+ = 3, σ ·Y C− = −2

The two configurations for this set of intersections must have C− ⊂ σ, deg(NC−/σ) =

0. This is mandated by the intersection of the section with C−. There are two

possibilities for C+:

(i) C+ 6⊂ σ

The containment of C− inside the section means that C+ intersects the section

twice through the intersection of C− and C+ in the fiber. Consistency with codi-

mension one requires an additional transverse intersection between σ and C+.

(ii) C+ ⊂ σ

Requiring σ ·Y C+ = 3 means that deg(NC+/σ) = −5. This configuration is a

valid solution for

− 1 ≤ p ≤ 3 . (7.20)

The configurations for case B are (p is constrained in the (*)’ed configurations as in (7.20),

(7.13) and (7.14), respectively)

σ ·Y C+ σ ·Y C− C+configuration C−configuration

3 −2 C+ 6⊂ σ, σ ·Y C+ = 3 C− ⊂ σ, deg(NC−/σ) = 0

C+ ⊂ σ, deg(NC+/σ) = −5 C− ⊂ σ, deg(NC−/σ) = 0 (∗)

1 0 C+ 6⊂ σ, σ ·Y C+ = 1 C− 6⊂ σ, σ ·Y C−σ = 0

C+ ⊂ σ, deg(NC+/σ) = −3 C− ⊂ σ, deg(NC−/σ) = −2 (∗)

0 1 C+ 6⊂ σ, σ ·Y C+ = 0 C− 6⊂ σ, σ ·Y C− = 1

C+ ⊂ σ, deg(NC+/σ) = −2 C− ⊂ σ, deg(NC−/σ) = −3 (∗)

−p− 2 p+ 3 C+ ⊂ σ, deg(NC+/σ) = p C− 6⊂ σ, σ ·Y C− = p+ 3

C+ ⊂ σ, deg(NC+/σ) = p C− ⊂ σ, deg(NC−/σ) = −p− 5

(7.21)

– 50 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
4

Finally, in case C, the curve C− has normal bundle (1,−3). If C− ⊂ σ then the only

wrapped configuration which gives negative intersections with the section is

deg(NC−/σ) = 1 ⇒ C− ·Y σ = −3 . (7.22)

This generates the upper bound σ ·Y C+ ≤ 4. The set of possible intersections are

(σ ·Y C+, σ ·Y C−) = (4,−3), (1, 0), (0, 1), (−p− 2, p+ 3) . (7.23)

Once again, the solutions for second and fourth set of intersections are the same as those

given in A. Though the third set of intersections has appeared previously the solutions for

this normal bundle case are more restricted and we will find only one solution.

C.1) σ ·Y C+ = 4, σ ·Y C− = −3

The two solutions to this set of intersection numbers both require C− ⊂ σ,

deg(NC−/σ) = 1. To obtain the correct intersection for C+ with the section there are

two possibilities:

(i) C+ 6⊂ σ

In addition to the two intersections C+ has with the section through the in-

tersection of C+ and C− two further intersections are required to satisfy the

codimension one constraint (7.6).

(ii) C+ ⊂ σ

The degree of the normal bundle NC+/σ is fixed by the intersection σ ·Y C+ = 4

to be deg(NC+/σ) = −6. This is a valid solution for

− 1 ≤ p ≤ 4 . (7.24)

C.3) σ ·Y C+ = 0, σ ·Y C− = 1

This set of intersections has appeared in A and B however the configuration given by

C+, C− ⊂ σ and deg(NC+/σ) = −3, deg(NC−/σ) = −2 is not a valid solution here as

NC−/σ does not embed into NC−/Y = O(1) ⊕O(−3). The only solution is given by

C+, C− 6⊂ σ and σ ·Y C− = 1.

The full set of solutions for case C are (with ranges of p in the (*)’ed configurations

constrained as in (7.24) and (7.14))

σ ·Y C+ σ ·Y C− C+configuration C−configuration

4 −3 C+ 6⊂ σ, σ ·Y C+ = 4 C− ⊂ σ, deg(NC−/σ) = 1

C+ ⊂ σ, deg(NC+/σ) = −6 C− ⊂ σ, deg(NC−/σ) = 1 (∗)

1 0 C+ 6⊂ σ, σ ·Y C+ = 1 C− 6⊂ σ, σ ·Y C− = 0

0 1 C+ 6⊂ σ, σ ·Y C+ = 0 C− 6⊂ σ, σ ·Y C− = 1

C+ ⊂ σ, deg(NC+/σ) = −2 C− ⊂ σ, deg(NC−/σ) = −3 (∗)

−p− 2 p+ 3 C+ ⊂ σ, deg(NC+/σ) = p C− 6⊂ σ, σ ·Y C− = p+ 3

C+ ⊂ σ, deg(NC+/σ) = p C− ⊂ σ, deg(NC−/σ) = −p− 5

(7.25)
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� � �������� �� �� � ���

Table 5. Consistent wrapping configurations for I1 → I2 for normal bundle cases A−C. The

components in red are those contained inside the section with their normal bundle degrees in σ

indicated by the red numbers adjacent to the component. Configurations where both components

of the I2 fiber are contained inside the section (excluding those appearing in the first column) are

only valid for certain ranges of p, see main text for more details.

7.2.2 Compilation of fibers and U(1) charges

The solutions for each case A−C are presented in table 5 where the intersection sets appear

along the horizontal axis and the different normal bundles run along vertically. The I2 fibers

are labeled as follows:

• The components of the fiber coloured in red are those contained inside the section

and the red numbers appearing next to these components denote the degree of the

normal bundle of those components inside σ.

• Red dots on unwrapped fiber components correspond to transverse singlet intersec-

tions with σ. The red numbers next to a sequence of such dots denote the number

of such transverse intersection points.

Not every set of σ ·Y C± intersections can be realized in each case A−C. Where an inter-

section column has been left blank there is no configuration corresponding to that set of

intersections with σ.

The U(1) charges of singlets can be determined by combining configurations for σ0 and

σ1 in each case A−C. As both sections intersect F0 in codimension one the Shioda map,

S(σ1), is given by

S(σ1) = σ1 − σ0 . (7.26)

Singlet charges are obtained by computing S(σ1) ·Y C±. The set of possible singlet charges

and the associated I2 fibers are shown in figure 17. The fibers along the horizontal (resp.

vertical) axis, coloured in red (resp. blue), are for σ1 (resp. σ0). The entries (a,−a) are the

U(1) charges obtained by combining configurations for σ1 and σ0. Only one representative

has been chosen for each distinct set of intersections σ ·Y C±, wherefore there are more

realizations of each charge than shown in the figure. The singlet charges which appear in
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Figure 17. U(1) charges of singlets for normal bundles cases A−C. Configurations for σ1 (σ0)

are along the horizontal (vertical) axis and the charges are the pairs (a,−a) in the grid. Only one

representative has been chosen for each distinct set of intersections σ ·Y C± therefore there are more

realizations of each charge than shown.

each normal bundle pairing are:

U(1) charges of singlets in





A ∈ {0,±1,±2,±(p+ 2),±(p+ 3),±(p+ 4)}

B ∈ {0,±1,±2,±3,±(p+ 2),±(p+ 3),±(p+ 5)}

C ∈ {0,±1,±3,±4,±(p+ 2),±(p+ 3),±(p+ 6)} .

(7.27)

The charges are dependent on p, appearing in (7.5), which defines the normal bundle of C+.

Singlet configurations (I2 fibers in the presence of an one additional rational section)

with charges

S(σ1) ·Y C− = {−1,+1,+2} , (7.28)
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have appeared in [9, 15, 21]. The zero section in these configurations is holomorphic

i.e. σ0 does not contain curves in the fiber over codimension two. The range of possible

singlet charges was extended in [18] where a singlet configuration with charge +3 was

found. Comparing these fibers to those in figure 17, we find the same configurations in the

following normal bundle cases:

Charge S(σ1) ·Y C− I2 fiber Realization

−1 �� A

+1 A-C

+2 �� A-C when p = −1

+3 �� �� A when p = −1

(7.29)

Finally, we compare the singlet charges found above with those required for every 5̄q1
and 5q2 in (4.45) to form a Yukawa coupling

5q1 5̄q21−q1−q2 . (7.30)

Generically, in the geometry all such couplings will be present for base varieties of dimension

≥ 3 and correspond to codimension three enhancements to SU(7), which will be discussed

in detail in section 8. Using the set of 5̄ charges in (4.45), the set of singlets, 1−q1−q2 , for

each codimension one fiber in (4.4) is

U(1) charges of GUT singlets in





I
(01)
5 ∈ {0,±1,±2,±3,±4,±5,±6}

I
(0|1)
5 ∈ {0,±5,±10,±15,±20,±25}

I
(0||1)
5 ∈ {0,±5,±10,±15,±20,±25} .

(7.31)

Comparison (after multiplication by five) yields, that the singlet charges in (7.31) fall within

the charges derived from analysing I1 → I2 enhancements in (7.27). It would be interesting

to analyze this further from the point of view of four-fold normal bundle consistencies at

the Yukawa points.

7.3 Singlets in four-folds

One of the criteria for the codimension two I2 fiber is that one of the curves needs to

be contractible. In the case of three-folds discussed in the last section, the relevant cri-

terion goes back to Theorem 3.6. A similar result, which constrains the normal bundle

of contractible curves in four-folds, to our knowledge, is not known. Nevertheless, we can

consider a general types of I2 fiber, and without imposing contractibility, determine the

consistent section configurations and corresponding charges.

The result of this analysis is summarized in table 6. The normal bundle degrees

deg(NC±/σα
) of curves C± that are wrapped by the sections in the I2 fiber, represented
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by r, s,m and k in the table, have been left un-constrained, i.e. we do not impose that

one of the curves in the I2 fiber is contractible. The intersections of C± with the section

are calculated using Corollary 3.4, the only input being the values of r, s,m and k. In the

table, these intersections with σ0 and σ1 are shown below each fiber type, and the U(1)

charge is again computed using the Shioda map S(σ1) = σ1 − σ0. It would be interesting

to generalize the results of [50, 51] to four-folds in order to further constraint the normal

bundles and thereby the U(1) charge values in four-folds.

8 Codimension three fibers and Yukawa couplings

In elliptic Calabi-Yau four-folds there are codimension three points in the base of the

fibration, above which the codimension two fibers can enhance further, i.e. again some of

the rational curves become reducible. From an F-theory point of view, the fibers above

such points in the base are of interest as they give rise to coupling of matter fields in

Yukawa interactions.

8.1 Codimension three fibers and phases

The codimension three fibers for SU(5) with 5 and 10 matter were determined from the

box graphs using mutual compatibility of the relative cones of effective curves in [4]. The

Yukawa couplings 10× 10× 5 and 5̄× 5̄× 10 occur at codimension three loci, where the

fiber enhances from the I6 and I∗1 fibers, that realize the fundamental and anti-symmetric

matter, to monodromy-reduced IV ∗ or I∗2 fibers, which correspond to a local enhancement

of the symmetry to E6 and SO(12), respectively. Physically, the Yukawas can be thought

of as generated by the splitting of matter curves into other matter curves, plus, potentially,

roots [57].

Here we will focus on the coupling between singlets and two fundamentals: 5× 5̄× 1.

These are realized above codimension three loci with an SU(7) enhancement. This is the

simplest instance in which the fibers (without the presence of additional sections) are not

standard Kodaira fibers in codimension three, but are monodromy-reduced, i.e. the fiber

is not I7, but remains I6. However, if there is a suitable additional section, there is an

enhancement to a full I7 fiber [58, 59].

We will now explain how the box graphs can be used to determine the consistent codi-

mension three fibers. The analysis works for general types of fibers, but we will concentrate

here on SU(5) with 5 matter, i.e. the phases and fibers shown in figure 4. As before, Fi are

the rational curves associated to the simple roots of SU(5). First consider two codimension

two I6 fibers, which are characterized by the splitting

Fi → CT+
i + CT−

i , Fj → CB+
j + CB−

j . (8.1)

The superscripts Top and Bottom label the curves in the two I6 fibers in codimension two.

The combined phase is obtained by stacking the box graphs for each I6 fiber on top of each

other. Representation theoretically we are looking at the decomposition

su(7) → su(5)⊕ su(2)⊕ u(1) . (8.2)
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Denote by F̃ the curve associated to the simple root α̃ of the su(2). Then in the combined

box graph this acts between the two layers, from the bottom to the top layer, e.g.

�
�

�� �� �� ��

��
�

��
� ��

	

��
	

. (8.3)

The combined box graphs need to satisfy both the flow rules for the SU(5), as well as

compatibility with the action of this additional root.

Let us first assume i 6= j. In this case, e.g. shown in figure 18, both Fi and Fj are

reducible, and the extremal generators of the relative cone of curves are

CT+
i , CT−

i , CB+
j , CB−

j , Fk, k 6= i, j . (8.4)

In particular F̃ is not extremal. The resulting fiber is obtained applying similar rules to

the standard box graph analysis, summarized in section 2 (for more details on how the

fiber is determined from the graph we refer the reader to [4, 52, 54]) and exemplified in

part (i) of figure 18.

For i = j, the phases of the two I6 fibers agree, and the extremal generators are

CT−
i , CB+

j , F̃ , Fk, k 6= i, j , (8.5)

where F̃ remains irreducible, and the curves in the I6 fibers, which became reducible, split

as follows
CT+
i → CB+

i + F̃

CB−
j → CT−

j + F̃ .
(8.6)

Note that this is the splitting from the I6 Top and Bottom codimension two fibers respec-

tively. The rational curves in the fiber in codimension three intersect again in an I7 fiber,

which is shown in part (ii) of figure 18.

Let us reemphasize that in both these cases, it is paramount that the fiber has an

additional rational section, as otherwise there is a monodromy reduction from I7 to I6.

8.2 Codimension three fibers with rational sections

Like in the splitting from codimension one to two that we analyzed in section 4.4, we require

various conditions on the intersection numbers of the section σ with the fiber components

to be retained, when passing from codimension two to three:

1. The section σ intersects the fiber as σ ·Y Fiber = 1.

2. Let C be a rational curve in the fiber, which remains irreducible when passing from

codimension two to codimension three, and let SC 6⊂ σ, i.e. matter surface obtained by

fibering C over the matter locus is not contained in the section, but let C be contained

in σ in codimension three. Then σ ·Y C needs to be preserved in codimension three.

– 57 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
4

��

��

��

����

��

�	
�
�	
���
�	

��

����

�� �	

����

��
�
��
�
�
��

�

��

��
�
��
�
�
��

�

�	
�
�	
��
�	

�

��
�

��
�

��

��

�	
�

�	
�

����

�� �	

����

�	

��
�
��
�
�
��

�

��
��

��
�

��

��

����

�� �	

����

��
�
��
�
�
��

�

��
�
��
��
�
��

��

��

�
�

��� ����

Figure 18. Construction of the fiber in codimension three, where two codimension two I6 fibers

in the phases/box graphs shown on the left, collide to give a fiber of type I7 in codimension three.

The box graph for the I7 is shown on the right of each figure. Figure (i) shows the codimension

three enhancement when the two I6 fibers are in different phases/box graphs, whereas in (ii) they

are in the same phase. Note that for each of these enhancements it is necessary to have at least one

extra rational section.

3. If SC ⊂ σ in codimension two, and C → C+ + C− then by Corollary 3.4

σ ·Y C = −4− deg(NC+/σ)− deg(NC−/σ) . (8.7)

Note that, obviously, a curve that is contained in the codimension two fiber continues to be

contained in the codimension three fiber to which the codimension two fiber degenerates.

The compatibility between codimension two and three has to be imposed for every codi-

mension two fiber whose codimension two locus in the base passes through the codimension

three point in question (i.e. all the codimension two fibers that correspond to matter that

participates in the Yukawa coupling).

Note also, that the constraints on the normal bundle derived for four-folds Y in sec-

tion 3.3 need to be respected. The normal bundle of the rational curves in the fiber have

to be such that they embed into the normal bundle NC/Y . From Theorem 3.7 observe that

the normal bundles of Fi in the four-fold Y are

NFi/Y = O ⊕O ⊕O(−2) , (8.8)

and the normal bundles of the curves C±
i , obtained from the splitting Fi → C+

i + C−
i ,

which correspond to weights of the fundamental representation, are

NC±
i /Y = O ⊕O(−1)⊕O(−1) . (8.9)
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8.3 Charged singlet Yukawas

We now consider the Yukawa couplings that are realized by codimension three enhance-

ments to I7 involving charged singlets, i.e. 5×5×1 couplings. First consider the case of the

two I6 fibers in different phases. An example is shown in figure 19. Starting with an I
(0|1)
5

model at the far left in codimension one, the next two entries correspond to the codimen-

sion two fibers. The blue/red colored fibers indicate the rational curves that are contained

in the sections σ0 and σ1, respectively. From figure 8 the configurations in codimension

two, labeled (1) and (2), correspond to fundamental matter with U(1) charges

q(5
(1)

) = +11 , q(5
(2)

) = +1 . (8.10)

The codimension three fiber when these two collide can be determined by imposing the

requirements in section 8.2. The compatibility conditions have to be satisfied for both of

the two I6 fibers enhancing to the I7 fiber. For instance, consider the I6 fiber (1). We can

characterize the configuration by For instance, the configurations of the I6 fibers (1) and

(2) can be characterized by

(1) : F1, F2, F3 ⊂ σ0 deg(NFi/σ0
) = −2

C+
4 ⊂ σ0 deg(NC+

4 /σ0
) = −1

C−
4 , F0 6⊂ σ0 σ0 ·Y C−

4 = σ0 ·Y F0 = 1

F0 ⊂ σ1 deg(NF0/σ1
) = −2

C−
4 ⊂ σ1 deg(NC−

4 /σ1
) = −1

C+
4 , F1 6⊂ σ1 σ1 ·Y C+

4 = σ1 ·Y F1 = 1

(2) : F1 ⊂ σ0 deg(NF1/σ0
) = −2

C+
2 ⊂ σ0 deg(NC+

2 /σ0
) = −1

C−
2 , F0 6⊂ σ0 σ0 ·Y C−

2 = σ0 ·Y F0 = 1

C+
2 ⊂ σ1 deg(NC+

2 /σ1
) = −1

C−
2 , F1 6⊂ σ1 σ1 ·Y C−

2 = σ1 ·Y F1 = 1 .

(8.11)

The fibers split as determined by the box graphs, and applying the compatibility conditions

on the sections in codimension three determines the fibers,14 e.g. it is clear that all the

components that are contained in either of the codimension two fibers have to continue

to be contained in the sections. Furthermore, imposing that the intersection numbers and

normal bundles are consistent, results in the configuration shown in figure 19.

From the I7 we can obtain the I2 fiber and thereby the singlet that participates in

the Yukawa coupling. As we consider two I6 fibers in different phases F̃ is not extremal,

see (8.4) for the configuration in figure 19, but is given in terms of

F̃ → C+
4 + F3 + C−

2 , (8.12)

14Note that the codimension three fiber is not unique, but only unique in terms of the intersection

numbers. This is similar to the codimension two fibers, where, for example, σ ·Y F = 1 can be either

realized in terms of a transverse intersection, or in terms of F ⊂ σ with deg(NF/σ) = −3. These ambiguities

however do not change the charges or, in the case of codimension three, the possible Yukawa couplings.
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Figure 19. Example of a codimension three fiber with one additional rational section where the

codimension two fibers are in different phases. Codimension one: I5 fiber with two sections, σ0

(blue) and σ1 (red). Codimension two: I6 fiber with sections as indicated (the configuration is

described in (8.11)), corresponding to 5 matter, with charge 11 and charge 1, respectively. Here

the two I6 fibers are in different phases. The curves, C±, into which the Fi that become reducible

in codimension two have split are shown by dotted lines. Colored fiber components correspond to

rational curves that are contained in the respective sections. The numbers next to these indicate

the degree of the normal bundle of these curves in the section. Codimension three: I7 fiber with

sections, as well as the corresponding box graph, obtained by stacking the box graphs associated

to the codimension two fibers. Again, fiber components that are contained in the sections σ0/1 are

colored accordingly. The green line indicates where the I7 fiber needs to be “cut” to determine the

singlet that couples to the two fundamental matter multiplets. On the far right the I2 fiber that

realizes this singlet is shown.

which can be read off from the box graph or directly from the fiber. In figure 8.4 the

component F̃ is shown, separated from its conjugate component, by the green cut through

the I7 fiber. The combination in equation (8.12) are uncharged under the GUT group

SU(5), i.e. geometrically

DFi ·Y F̃ = 0 , i = 0, · · · , 4 , (8.13)

as required for a singlet, but intersects the sections as

σ0 ·Y F̃ = σ0 ·Y (C+
4 + F3 + C−

2 ) = −1 + 0 + 1 = 0

σ1 ·Y F̃ = σ1 ·Y (C+
4 + F3 + C−

2 ) = 1 + 0 + 1 = 2 .
(8.14)

Likewise we can consider the conjugate field, given by the curve (so to speak the other half

of the cut I7 fiber)

F̃ → C−
4 + F0 + F1 + C+

2 , (8.15)
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which intersects the sections as

σ0 ·Y F̃ = σ0 ·Y (C−
4 + F0 + F1 + C+

2 ) = 1 + 1 + 0− 1 = 1

σ1 ·Y F̃ = σ1 ·Y (C−
4 + F0 + F1 + C+

2 ) = −1 + 0 + 1 +−1 = −1 .
(8.16)

Applying Shioda (and multiplying by 5 for the SU(5) normalization) we obtain that the

charges of these singlets are indeed ∓10, as required for the coupling to the matter of

charge ±11 and ∓1, i.e. 511 × 5−1 × 1−10.

Finally, let us briefly comment on the case when the two I6 fibers are in the same

phase, an example is shown in figure 20. The charges are

q(5
T
) = +11 q(5

B
) = −9 . (8.17)

The splitting from codimension two to codimension three of the fiber components is that

in (8.6) and part (ii) in figure 18, and F̃ is an irreducible, new fiber component. Again we

impose ompatibility with the section configurations in codimensions two and three, as well

as consistent normal bundle configurations. The resulting codimension three fiber is shown

in figure 20. The singlet charge is obtained by intersecting F̃ with the sections. Note, that

F̃ ·Y DFi = 0, which is consistent with this being the singlet, and

σ0 ·Y F̃ = −2

σ1 ·Y F̃ = 2 .
(8.18)

Likewise, the conjugate field is

F̃ → CB+
4 + F3 + F2 + F1 + F0 + CT−

4 (8.19)

and

σ0 ·Y F̃ = 3

σ1 ·Y F̃ = −1 .
(8.20)

The associated I2 fiber, which realizes these intersections, is shown in figure 20, and matches

the required charge of 20 from (8.17), such that the coupling 5−95−11120 is uncharged.

9 Multiple U(1)s and Higgsing

The analysis shown in the preceding sections has been for a single additional rational

section of the elliptic fibration, which generates one U(1) symmetry. This can be extended

to the case of elliptic fibrations with multiple rational sections, which generates multiple

U(1) symmetries. Furthermore, based on the classification of singlets, we can consider

the possible Higgsings of the abelian symmetry to discrete subgroups. The case of partial

Higgsing of multiple U(1)s is left for future work.
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Figure 20. Example of a codimension three fiber with one additional rational section, where the

codimension two fibers are in the same phase. The matter corresponds to charge +11 (T) and

charge −9 (B) 5 matter and a singlet of charge 20. The notation is as in figure 19.

9.1 Multiple U(1)s and rational sections

The set of rational sections, σi, in an elliptic fibration generate the Mordell-Weil group,

which is a finitely generated abelian group

Zn ⊕ Γ , (9.1)

where n is the number of rational sections in the fibration and Γ is the discrete part of the

Mordell-Weil group, which we do not consider here. The zero-section σ0 is the origin of

the Mordell-Weil group, and σi, i = 1, · · · , n, are the generators of the free part.

The key point to note is that our analysis for one rational section applies independently

to each generator of the free part of the Mordell-Weil group. The set of configurations for

each section in an Ik → Ik+1 enhancement is therefore just given by those in figures 10

and 11, where the section, σi, is taken to intersect Fmi in codimension one. One can then

construct the Shioda map, S(σi) for each section, which defines the generator of the abelian

gauge factor U(1)i. Let us consider an example with two additional rational sections, σ1
and σ2, where the codimension one fiber type is I

(0|1||2)
5 , as depicted in figure 21. For each

phase, the possible charges for 5̄ matter under U(1)1, are given in figure 8 (modulo the

fully wrapped configurations). To each of these one can overlay a configuration for σ2 in

the same phase and compute the charge under U(1)2 by intersection C± with

S(σ2) = 5σ2 − 5σ0 + 2DF1 + 4DF2 + 6DF3 + 3DF4 . (9.2)

Further, consider σ1 such that q5̄ = −4 in the phase where F2 splits. This is shown in

figure 21. This configuration can be combined with any one of the three possible config-

urations for σ2, each of which gives a different charge under U(1)2. Repeating this for

every configuration in all phases gives the full set of charges for this codimension one fiber.
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Figure 21. Example set of 5̄ charges for an I
(0|1||2)
5 model in the phase where F2 splits. The

sections σ0/σ1/σ2 are colored blue/red/green. The configurations for σ0 and σ1 are fixed to give

charge −4 under U(1)1. Combining this with the possible configurations for σ2 gives the set of

charges under U(1)2.

Following this procedure we determine all possible combinations, and it can be shown that

all known explicit realizations of models with multiple U(1) factors form a subclass of the

models obtained here.

9.2 Higgsing and discrete symmetries

In section 7 the set of possible codimension two I2 fibers with rational sections were de-

termined along with the corresponding singlet charges. One application of this result is

to use such U(1) charged singlets to Higgs the U(1) symmetry to a discrete subgroup Zq.

Examples of such Higgsing have recently been considered in [37–39]15 for q = 2, 3. Though

Higgsing different singlet configurations of the same charge leads to the same discrete sym-

metry in the F-theory compactification, this was shown not to be the case upon the circle

reduction to M-theory. This can be seen field theoretically by reducing F-theory in 6d

along an S1 to M-theory in 5d [37–39, 61, 62]. Turning on a vacuum expectation value

for the Higgs field, Sq, of charge q breaks the U(1) in F-theory to Zq. Starting in 6d, and

compactifying to 5d on a circle, the masses of the Kaluza-Klein modes are labeled by the

charge q, the mode number (or KK-charge) n and the Wilson line ξ along the circle

mq
n = |qξ + n| . (9.3)

15Other discussions of discrete symmetries in F-theory compactifications without section (i.e. genus one

fibrations) have appeared in [18, 22, 60–62]
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The massless spectrum depends on the value of ξ and for ξ = k/q with integral k the

KK-charge n = −k becomes massless. There are q distinct values for the Wilson line,

modulo the action of SL2Z, which correspond to distinct M-theory vacua, between which

the Tate-Shafarevich group acts [60].

Equipped with the set of I2 fibers and their corresponding charges, given in figure 17,

we can now consider the Higgsing with more general singlet configurations, with charges

beyond q = 2, 3. Furthermore, it is possible to determine for a fixed singlet charge q, the

fibers which realize the q different choices of 5d Higgs fields. Note that the KK-charge n is

computed by intersecting with the zero-section

σ0 ·Y C± = n± . (9.4)

That is, we look for configurations where C+, or C−, has intersections with σ0 within

the set

n± = σ0 ·Y C± ∈ {0, · · · , q − 1} mod q . (9.5)

The result is that for charges up to q = 9 it is always possible, by tuning the degree of the

normal bundle of the curve C+ in (7.5), to obtain curves in the I2 fiber with the desired

intersections with σ0. It would be interesting to study how these configurations are related

via flop transitions such as in the case of q = 3 studied in [39]. For charges q ≥ 10 the set

of KK-charges, which do not have a realization grows with q and it would be interesting

to explore how the other configurations could be realized.

10 Discussion and outlook

In this paper we determined the possible U(1) charges of matter in F-theory compactifi-

cations to four and six dimensions, by classifying the possible configurations of rational

sections in codimension two fibers. Our analysis for charged matter in the fundamental

and anti-symmetric representations of SU(n) in sections 4 and 5 holds for both Calabi-Yau

three- and four-folds. The main inputs were the classification result of codimension two

fibers in [4] as well as constraints on rational curves and their normal bundles in Calabi-Yau

varieties, as discussed in section 3. There are various exciting directions for future research.

• Building complete models:

In our analysis we did not discuss constraints from charged matter Yukawa couplings,

only couplings between fundamental matter and singlets. It would be interesting to

see whether codimension three constraints will provide further conditions as to how

various codimension two fiber types can co-exist in a given model. The codimension

three fibers and possible Coulomb phases without additional sections were derived

already in [4, 35] and it would be interesting to generalize this to models with ra-

tional sections. Clearly further constraints that would select subsets of compatible

codimension two fibers would also be of interest for model building, and could play

an important role for a systematic study of the phenomenology similar to [23, 25, 63].

• Explicit realizations:

The charges and fibers in explicitly known fibrations with various numbers of abelian
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factors [9–22, 28, 29], as well as the matter charges in the singlet-extended E8

model [24], form a strict subset of the fibers that we have found in the present

paper. It would be extremely interesting to determine realizations for the new fiber

types, including the singlets that we classified in section 7.

• Flops:

Our classification assumes that the section, which is a divisor in the Calabi-Yau

variety, is smooth. We have observed in section 6 that, by flopping codimension

two fibers with certain section configurations, the resulting fiber has a section which

self-intersects in a curve in the fiber, and is thus no longer smooth. It would be very

interesting to study such flops concretely, to determine the complete flop chain when

the allowed configurations include such singular sections. It would also be interesting

to study the flops for the I2 fibers realizing different KK-charges for the singlets,

generalizing the analysis for charge 3 singlets in [39].

• Singlets:

Unlike the charged matter, the analysis for the classification of singlets in section 7 is

comprehensive only for Calabi-Yau three-folds, as we impose that one of the curves in

the I2 fiber should be contractible. A similar criterion for contractibility for higher-

dimensional Calabi-Yau varieties is not known to us, however we have determined all

possible codimension two I2 fibers with rational section, without necessarily requiring

contractibility of the curves, in table 6. It would be interesting to determine a

contractibility criterion on the normal bundle of rational curves in four-folds and

to thereby constrain the singlet configurations in table 6 to the allowed set in four-

folds. Note that no such disclaimer holds for the charged matter in sections 4 and 5,

which do not rely on imposing any contractibility on the curves, and our results hold

for codimension two in three- and four-folds alike.

• Higgsing and discrete groups:

We determined the singlet fibers for U(1) charges up until q = 9, including realizations

for each KK-charge. This allows a comprehensive study of discrete symmetries by

giving vacuum expectation values to these singlets, and it would be interesting to

determine the effects on the low energy theories, for instance like in [64].
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Figure 22. (i) is a schematic depiction of an I∗1 fiber and (ii) is this I∗1 fiber in the configuration

(1123–x). As usual if a component is colored red then it is contained inside the section, and the

red integer adjacent to the component is the degree of the normal bundle to that component in the

section. A red node indicates an additional transverse intersection with the section.

A Details for anti-symmetric matter

In this appendix the various details of the enhancements from I5 to I∗1 , which gives rise

to matter in the 10 representation of SU(5), are collected. Tables 7 and 8 list the six-

teen different enhancements that can occur, as determined in [4], and represented by the

appropriate box graph. The possible U(1) charges listed in section 5 are determined by

studying each of these sixteen enhancements and asking in what ways fiber curves, or col-

lections of fiber curves, can be contained inside the section, whilst remaining consistent

with the intersection data in codimension one. There are eleven qualitatively different

“splitting types”, which were previously listed in section 5, and for each of these it is deter-

mined what the possible configurations of curves in any rational section for that particular

splitting type are.

A.1 Codimension two I
∗

1
fibers

For the purpose of this appendix a new notation will need to be introduced to concisely

summarize all of the different configurations as there are many configurations that realize

the same intersection numbers of the curves with the section. Each fiber will be displayed

as in figure 22a. As such there is an obvious choice of ordering C1, · · · , C6, where these

curves can be curves associated to either roots or weights. If a curve Ci is contained within

the section it is such that deg(NCi/σ) ≤ −1 by Theorems 3.5 and 3.8, and by the analysis

it is also known that this value always happens to be in the (negative) single digits. The

notation is then given by the string (n1n2n3n4n5n6) where the ni are

(i) If Ci is contained inside the section then ni = −deg(NCi/σ).

(ii) If Ci is uncontained in the section and has an additional transverse intersection with

the section then the ni is replaced by an “x”. Additional here means that there is a

transverse intersection that does not come from the intersection(s) of Ci with another

curve Cj which is contained inside the section.

(iii) If the curve Ci is otherwise then the ni is replaced with an en-dash “–”.
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Figure 23. The structure and ordering of the I∗1 fibers of A-type, B-type, and C-type, respectively.

Such a string completely determines the configuration, for example consider the con-

figuration (1123–x) on the fiber presented in figure 22a. Such a configuration is represented

in figure 22b. The string fixes that

• C1, C2, C3, C4 ⊂ σ with deg(NC1/σ) = deg(NC2/σ) = −1, deg(NC3/σ) = −2, and

deg(NC4/σ) = −3.

• C5 6⊂ σ and σ ·Y C5 = 1 from the single intersection point between C5 and the

contained curve C4.

• C6 6⊂ σ and σ ·Y C6 = 2 with one contribution from the intersection point of C6

and C4, and an additional contribution from the extra transverse intersection of the

section with C6.

A.2 Compilation of codimension two fibers

In this section the different sets of intersection numbers and the possible realizations as

configurations of the fiber curves contained within the section are enumerated for each

splitting type introduced in section 5.1. Figure 23 demonstrates the ordering of the fiber

components for each of the three major types, and fixes the ordering of the notation

(n1 · · ·n6). All the configurations, determined by a similar procedure to that used in

section 5 for the A.2 splitting types, are listed in table 9.

For each splitting type there are many more configurations than there are possible

sets of intersections numbers between the split curves and the section. Multiple configu-

rations correspond to the same intersection numbers, the same U(1) charges. In table 9

the intersection numbers are listed for each set of configurations with common intersection

numbers. The intersection numbers σ ·Y C are given as a tuple of integers in the same

ordering as the strings describing the configurations. The intersections of the section with

curves that do not split are not included in such a listing as they are always determined by

codimension one: they are either zero or one depending on whether the section intersects

that component in codimension one.

Each of the concrete enhancements from the I5 fiber into an I∗1 fiber, listed in tables 7

and 8, are realizations of one of the splitting types just analyzed. Determining the split-

ting type depends on the phase (which fixes whether it is of type A, B, or C), and the
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# Box Graph Splitting Intersections I
(0|1)
5 Sf values I

(0||1)
5 Sf values

1 F0 → C+
4,5 + F2 + F3 + F̃0

���
�

��

��

�� ��

���
	

Sf ·Y C+
4,5 = +2 Sf ·Y C+

4,5 = +4

F̃0 = C−
1,2 Sf ·Y C−

1,2 = +3 Sf ·Y C−
1,2 = +6

2 F3 → C+
3,5 + C−

4,5

��

��

�����
�

���
�

���
	

Sf ·Y C+
3,5 = +2 Sf ·Y C+

3,5 = +4

F0 → C+
3,5 + F2 + F̃0 Sf ·Y C−

4,5 = −2 Sf ·Y C−
4,5 = −4

F̃0 = C−
12 Sf ·Y C−

1,2 = +3 Sf ·Y C−
1,2 = +6

3 F2 → C+
2,5 + C−

3,5
��

��

���
�

���
�

��	
�

��	
�

Sf ·Y C+
2,5 = +2 Sf ·Y C+

2,5 = −1

F4 → C+
3,4 + C−

3,5 Sf ·Y C−
3,5 = −2 Sf ·Y C−

3,5 = −4

F0 → C+
2,5 + F̃0 Sf ·Y C+

3,4 = +2 Sf ·Y C+
3,4 = +4

F̃0 = C−
1,2 Sf ·Y C−

1,2 = +3 Sf ·Y C−
1,2 = +6

4 F2 → C+
2,5 + C−

3,4 + F4

��

��

��

���
�

���
	

���
�

Sf ·Y C+
2,5 = +2 Sf ·Y C+

2,5 = −1

F0 → C+
2,5 + F̃0 Sf ·Y C−

3,4 = −2 Sf ·Y C−
3,4 = −4

F̃0 = C−
12

5 F1 → C+
1,5 + C−

2,5
��

��

��

���
�

���
	

�
�
�

Sf ·Y C+
1,5 = −3 Sf ·Y C+

1,5 = −1

F4 → C+
3,4 + F2 + C−

2,5 Sf ·Y C−
2,5 = −2 Sf ·Y C−

2,5 = +1

Sf ·Y C+
3,4 = +2 Sf ·Y C+

3,4 = +4

6 F4 → C+
3,4 + F1 + F2 + C−

1,5
��

��

��

���
�

��

��	



Sf ·Y C+
3,4 = +2 Sf ·Y C+

3,4 = +4

Sf ·Y C−
1,5 = +3 Sf ·Y C−

1,5 = +1

7 F1 → C+
1,5 + C−

2,5
��

��

���
�

���
	

��

�

��

	

Sf ·Y C+
1,5 = −3 Sf ·Y C+

1,5 = −1

F2 → C+
2,4 + C−

3,4 Sf ·Y C−
2,5 = −2 Sf ·Y C−

2,5 = +1

F4 → C+
2,4 + C−

2,5 Sf ·Y C+
2,4 = +2 Sf ·Y C+

2,4 = −1

Sf ·Y C−
3,4 = −2 Sf ·Y C−

3,4 = −4

8 F2 → C+
2,4 + C−

3,5

��

��

��

���
�

���
	

��

	

Sf ·Y C+
2,4 = +2 Sf ·Y C+

2,4 = −1

F4 → C+
2,4 + F1 + C−

1,5 Sf ·Y C−
3,4 = −2 Sf ·Y C−

3,4 = −4

Sf ·Y C−
1,5 = +3 Sf ·Y C−

1,5 = +1

Table 7. Splitting rules for SU(5)×U(1) with 10 and Shioda map details Sf for I
(0|1)
5 and I

(0||1)
5

for phases 1–8.

codimension one configuration, which determines the subcase. The configurations of I∗1
curves in the section can then be determined for each phase and codimension one configu-

ration of the section. All of the configurations for each of the sixteen phases are listed in

tables 10 and 11.
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# Box Graph Splitting Intersections I
(0|1)
5 Sf values I

(0||1)
5 Sf values

9 F1 → C+
1,5 + F4 + C−

2,4

��

��

��

���
�

���
	

��

�

Sf ·Y C+
1,5 = −3 Sf ·Y C+

1,5 = −1

F3 → C+
2,3 + C−

2,4 Sf ·Y C−
2,4 = −2 Sf ·Y C−

2,4 = +1

Sf ·Y C+
2,3 = +2 Sf ·Y C+

2,3 = −1

10 F1 → C+
1,4 + C−

2,4
��

��

���
�

���
�

�	

�

�	�
�

Sf ·Y C+
1,4 = −3 Sf ·Y C+

1,4 = −1

F3 → C+
2,3 + C−

2,4 Sf ·Y C−
2,4 = −2 Sf ·Y C−

2,4 = +1

F4 → C+
1,4 + C−

1,5 Sf ·Y C+
2,3 = +2 Sf ·Y C+

2,3 = −1

Sf ·Y C−
1,5 = +3 Sf ·Y C−

1,5 = +1

11 F1 → C+
1,5 + F4 + F3 + C−

2,3
��

��

����

���
�

��	



Sf ·Y C+
1,5 = −3 Sf ·Y C+

1,5 = −1

Sf ·Y C−
2,3 = −2 Sf ·Y C−

2,3 = +1

12 F1 → C+
1,4 + F3 + C−

2,3
��

��

��

���
�

���
�

��	



Sf ·Y C+
1,4 = −3 Sf ·Y C+

1,4 = −1

F4 → C+
1,4 + C−

1,5 Sf ·Y C−
2,3 = −2 Sf ·Y C−

2,3 = +1

Sf ·Y C−
1,5 = +3 Sf ·Y C−

1,5 = +1

13 F3 → C+
2,3 + F1 + C−

1,4
��

��

��

���
�

���
�

��	
�

Sf ·Y C+
2,3 = +2 Sf ·Y C+

2,3 = −1

F0 → C−
1,4 + F̃0 Sf ·Y C−

1,4 = +3 Sf ·Y C−
1,4 = +1

F̃0 = C+
4,5 Sf ·Y C+

4,5 = +2 Sf ·Y C+
4,5 = −4

14 F1 → C+
1,3 + C−

2,3

��

��

���
�

���
�

��	
�

��	
�

Sf ·Y C+
1,3 = −3 Sf ·Y C+

1,3 = −1

F3 → C+
1,3 + C−

1,4 Sf ·Y C−
2,3 = −2 Sf ·Y C−

2,3 = +1

F0 → C−
1,4 + F̃0 Sf ·Y C−

1,4 = +3 Sf ·Y C−
1,4 = +1

F̃0 = C+
4,5 Sf ·Y C+

4,5 = +2 Sf ·Y C+
4,5 = +4

15 F2 → C+
1,2 + C−

1,3
��

��

�����
�

���
�

���
	

Sf ·Y C+
1,2 = −3 Sf ·Y C+

1,2 = −6

F0 → F̃0 + F3 + C−
1,3 Sf ·Y C−

1,3 = +3 Sf ·Y C−
1,3 = +1

F0 = C+
4,5

16 F0 → C−
1,2 + F2 + F3 + F̃0

��

�� ��

�����
�

���
	

Sf ·Y C+
4,5 = +2 Sf ·Y C+

4,5 = +4

F0 = C+
4,5 Sf ·Y C−

1,2 = +3 Sf ·Y C−
1,2 = +6

Table 8. Splitting rules for SU(5)×U(1) with 10 and Shioda map details Sf for I
(0|1)
5 and I

(0||1)
5

for phases 9–16.
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Splitting type Intersection numbers Configurations

A.1

(-1,1,-1,1) (1231– –), (1231–3), (12313–), (123133)

(0,0,0,0) (– – – –x–), (2222–2), (222232)

(1,-1,1,-1) (–213–1), (3213–1), (–21331), (321331)

A.2

(-1,1,-1,2) (12312x), (123124)

(0,0,0,1) (– – – – –x), (22222–), (222223)

(1,-1,1,0) (–21– – –), (321– – –), (–21322), (321322)

A.3
(-1,1,0,0) (1– – – – –), (123222)

(0,0,1,-1) (– – – – –1), (222321)

B.1

(-1,1,-1) (1223–1), (122331)

(0,0,0) (– – – –x–), (2222–2), (222232)

(1,-1,1)
(–221– –), (3221– –), (–2213–), (–221–3),

(32213–), (3221–3), (–22133), (322133)

B.2

(-1,1,0) (122– – –), (122322)

(0,0,1) (– – – – –x), (22222–), (222223)

(1,-1,2) (–2212x), (32212x), (–22124), (322124)

B.3
(-1,0,0) (1– – – – –), (123222)

(0,-1,1) (– – –12–), (22312–), (– – –123), (223123)

B.4

(-1,1,-1) (1–2321), (132321)

(0,0,0) (–x– – – –), (2–2222), (232222)

(1,-1,1)
(– –212–), (3–212–), (–3212–), (– –2123)

(33212–), (3–2123), (–32123), (332123)

B.5

(0,1,-1) (– – – – –1), (222321)

(1,0,0) (x– – – – –), (–22222), (322222)

(2,-1,1) (x2212–), (x22123), (42212–), (422123)

C.1

(1,-1) (–222–1), (3222–1), (–22231), (322231)

(0,0) (– – – –x–), (2222–2), (222232)

(-1,1) (1222– –), (12223–), (1222–3), (122233)

C.2
(-1,0) (122– – –), (122322)

(0,-1) (– – – – –1), (222321)

C.3

(2,-1) (x22221), (422221)

(1,0) (x– – – – –), (–22222), (322222)

(0,1) (– – – – –x), (22222–), (222223)

(-1,2) (12222x), (122224)

Table 9. For each of the different splitting types, listed in section 5.1, for the enhancements from

an I5 fiber to an I∗1 , including the information of which fiber component the section intersects

in codimension one, all the possible consistent configurations of the I∗1 fiber components with the

section are listed in the third column, using the notation described in section A.1. There are multiple

configurations of the curves inside the section where all of the fiber curves have the same intersection

numbers with the section, these are collected and the intersection numbers particular to those

configurations are listed in the second column. These intersection numbers are the relevant datum

for the computation of the U(1) charges. The tuples of intersection numbers do not include the

curves which do not split as their intersection numbers are always uniquely fixed by codimension one.
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B Charge comparison to singlet-extended E8

In [24] U(1) charges for SU(5) models that come from a Higgsing of E8, extended by non-

E8 singlets, are determined. What is considered is the decomposition of the adjoint of

E8 → SU(5) × U(1)4, which is then augmented by additional singlets carrying different

charge under the abelian U(1)4 such that for every pair of 5 and 5 representations of SU(5)

coming from the decomposition of E8 there exists a singlet such that the coupling 155 is

uncharged under the U(1)4. Various singlets can be Higgsed to produce models with fewer

abelian symmetries, and determine the tree of possible theories arising from this singlet-

extension of E8. In this appendix the charges found from this analysis, listed in tables 2.1

and 2.2 of [24], are compared to the possible U(1) charges determined in the main body

of this paper. In summary, it is found that the charges appearing in descendants of the

singlet-extended E8 form a strict subset of the charges found herein.

Consider first the single U(1) models from the singlet-extended E8. There are eleven

such models listed in [24], which all have U(1) charges16 that are subsets of one of the

following three classes of charges

10 5

(1) : {−2,−1, 0, 1, 2} {−3,−2,−1, 0, 1, 2, 3}

(2) : {−8,−3, 2, 7} {−11,−6,−1, 4, 9}

(3) : {−4, 1, 6} {−8,−3, 2, 7} .

(B.1)

For each of the three classes there is at least one model which realizes matter represen-

tations with all of the charges in that class. These three classes have charges which are

subsets of the charges17 from the three codimension one fiber types, I
(01)
5 , I

(0|1)
5 , and I

(0||1)
5

respectively, as determined in sections 4 and 5 for the 5 and 10 matter. There are some

U(1) charges which come from the analysis of configurations of the fiber curves with the

section which do not appear to arise from the singlet-extended E8. The missing charges are

• In class (1) the charges ±3 for the 10 representation.

• In class (2) the charges −13 and +12 for the 10 and 14 for the 5.

• In class (3) the charges −9 and +11 for the 10 and −13 and +12 for the 5.

The significance of E8 is not entirely clear so that this mismatch in the charges of

the 10 and 5 matter is perhaps not too surprising. However all the single U(1) models

from the singlet-extended E8 have charges which come from the analysis of the possible

configurations of the section in the present paper, as expected. This includes also the

singlet charges which appear in [24] as, from the analysis in section 7, the range of singlet

charges depends on an integer p, which specifies the normal bundle of one of the curves in

16Some models have an additional discrete symmetry from the Higgsing of the U(1). This is not relevant

for this comparison and will be ignored at this point.
17There is an overall sign between the charges of class (2) and the I

(0|1)
5 codimension one configurations

which were listed in figure 8.
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the I2 fiber. As we do not know of any constraint on the possible values of p it is possible

to tune p such that one realizes the charges in the singlet-extended E8 analysis.

Moving on to the models with two or more remaining U(1) symmetries after the further

Higgsing of the U(1)4 it appears that there are models which have charges that are not

neatly pairs of charges that would be possible for single U(1)s. As discussed in section 9,

when there are multiple U(1)s one can consider any linear combination of the U(1) gener-

ators and thus produce another U(1) generator, under which the matter will have different

charges. To be concrete, consider the model labelled {4, 6, 8} from table 2.1 of [24]. This

model has 5 matter with U(1) charges (−4,−4) and (−2,−1), among other 5 matter. Re-

call that for a single U(1) it was only possible to realize a 5 matter curve with charge −4

in an I
(0|1)
5 model, and thus all the 5 matter should have charge, under that U(1), which

take values in −14, −9, −4, 1, 6, and 11. The model in question also has 5 matter with

charge −2 (or −1 if one studies the second U(1)) which is not one of the possible charges.

However, if one designates the two U(1) generators as U1 and U2 respectively then one can

define two new U(1)s by linear combinations of these, as

U ′
1 = U1 − U2

U ′
2 = 2U1 − 3U2 .

(B.2)

Under this new pair of U(1) generators the charges of the 10 and 5 curves in the model

{4, 6, 8} transform as

10 5

(−2,−2) (−4,−4)

(0, 1) (−2,−1)

(1, 0) (−1,−2)

(3, 3) (1, 1)

(3, 4)

(4, 3)

↔

10 5

(2, 0) (4, 0)

(−3,−1) (−1,−1)

(2, 1) (4, 1)

(−3, 0) (−1, 0)

(−6,−1)

(−1, 1) .

(B.3)

Now it can be seen that the sets of charges are consistent with the charges listed in the

main text for each additional U(1). Indeed with respect to the first new generator U ′
1 the

section σ2 to which it is associated seems to be an I
(0|2)
5 fiber in codimension one, and the

section of the second generator, σ1, seems to intersect the codimension one fiber as I
(01)
5 .

The {4, 6, 8} model can be seen to come from an enhancement of an I
(01|2)
5 model.

The remaining multiple U(1) models in table 2.1 of [24] which have charges that do not

immediately match the charges found in the main body of this paper can all be brought into

the form listed here by taking the appropriate linear combination of the U(1) generators,

and thus all the U(1) charges found therein can be seen to be U(1) charges that also come

from the analysis of how the section can contain curves in the codimension two fiber that

has been the focus of this paper.
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[52] A.P. Braun and S. Schäfer-Nameki, Box Graphs and Resolutions I, arXiv:1407.3520

[INSPIRE].

[53] M. Esole, S.-H. Shao and S.-T. Yau, Singularities and Gauge Theory Phases II,

arXiv:1407.1867 [INSPIRE].

[54] A.P. Braun and S. Schafer-Nameki, Box Graphs and Resolutions II, to appear.

[55] K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York,

(2002).

[56] K. Matsuki, Weyl groups and birational transformations among minimal models, Mem. Am.

Math. Soc. 116 (1995) 557.
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