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area of the genus-one fiber approaches zero. Such genus-one fibrations can be easily con-

structed as toric hypersurfaces, and various SU(5)×U(1)n and E6 models are presented as

examples. To each genus-one fibration one can associate a τ -function on the base as well as

an SL(2,Z) representation which together define the IIB axio-dilaton and 7-brane content

of the theory. The set of genus-one fibrations with the same τ -function and SL(2,Z) repre-

sentation, known as the Tate-Shafarevich group, supplies an important degree of freedom

in the corresponding F-theory model which has not been studied carefully until now.

Six-dimensional anomaly cancellation as well as Witten’s zero-mode count on wrapped

branes both imply corrections to the usual F-theory dictionary for some of these models. In

particular, neutral hypermultiplets which are localized at codimension-two fibers can arise.

(All previous known examples of localized hypermultiplets were charged under the gauge
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1 Introduction

The original F-theory construction [1–3] produces a non-perturbative type IIB string vac-

uum by using a multi-valued function “τ” with an SL(2,Z) symmetry to specify the be-

havior of the two scalar fields in type IIB string theory. This function τ is defined on the
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complement of a subvariety ∆ in a compact complex manifold B, the base of the F-theory

fibration. Moreover, the τ -function has a specific asymptotic behavior near the components

of the discriminant ∆, measured by an SL(2,Z)-valued representation of the fundamental

group of B − ∆. The components of ∆ serve as sources for the Ramond-Ramond scalar

field, i.e., as 7-branes in the theory.

The basic F-theory construction comes along with F-theory/M-theory duality: if F-

theory is further compactified on a circle, the resulting theory should be dual to M-theory

compactified on a Calabi-Yau variety Y which is fibered over B by curves of genus one,

with the curves becoming singular over ∆, and with the function b 7→ τ(b) corresponding

to the ratio of periods of the holomorphic 1-form on the fiber over b. As the area of

the genus-one curves shrinks, the dual circle expands; the zero-area limit corresponds

to decompactification to the original F-theory model. This duality arises by a fiberwise

application of an M-theory/Type IIB duality [4, 5].

The Calabi-Yau varieties Y whose M-theory compactifications have F-theory limits

should therefore admit genus-one fibrations Y → B, i.e., maps π : Y → B whose general

fiber is a curve of genus one. Traditionally in the F-theory literature one has demanded

that π : Y → B have a section but we relax that requirement in this paper. We do,

however, require that the fibration π is flat, i.e., that all fibers of π are one-dimensional.

(Otherwise, tensionless strings will give additional massless degrees of freedom in addition

to the desired low-energy effective Yang-Mills theory.)

Since Y is an algebraic variety whenever dimY ≥ 3, it must have an embedding into

projective space with some equations defining the image; the existence of the genus-one

fibration means that those equations define a family of curves of genus one parametrized

by B. In particular, these equations can be regarded as defining a curve of genus one whose

defining equations have coefficients which are locally defined functions on B. By allowing

denominators in the coefficients, we can instead think of this as a curve of genus one whose

defining equations have coefficients chosen from the field K of rational functions on B. The

equations for various open subsets of B will all induce the same equation with coefficients

in K.

Algebraic geometers and number theorists have long studied algebraic curves whose

defining equations have coefficients in a field K that may not be algebraically closed. If a

curve of genus one over K has a point on it with coefficients in K, then the curve is called

an elliptic curve over K and its points form an Abelian group. When K is the function

field of a base manifold B, the points with coefficients in K correspond to rational sections

of the genus-one fibration; thus, a genus-one fibration is an elliptic fibration exactly when

there is a rational section.

Every algebraic curve C of genus one over K has an associated elliptic curve J(C) over

K known as the Jacobian of C as we will review in section 2. Geometrically, the points on

the Jacobian represent line bundles of degree zero on C, and since there is a distinguished

line bundle (the trivial line bundle) the Jacobian has a distinguished point. Moreover,

since the set of line bundles of degree zero forms a group (under tensor product), the group

structure on J(C) is evident.
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If Y is a Calabi-Yau surface or threefold with a genus-one fibration, then the (compact-

ified) Jacobian of the fibration determines an associated Calabi-Yau variety1 J(Y ) with an

elliptic fibration [6–8]. Moreover, the multi-valued τ functions and SL(2,Z) representations

for Y → B and J(Y ) → B are identical. (Even the discriminant loci for the fibrations are

identical as subvarieties of B [9].) For this reason, one should expect that the F-theory

limits of M-theory compactified on Y and on J(Y ) are identical. It has often been asserted

— particularly by the second author of this paper — that this fact makes the study of

non-elliptic genus-one fibrations superfluous for F-theory. However, as we will show in this

paper, the compactified Jacobian J(Y ) typically has singularities for a nonsingular genus-

one fibered Calabi-Yau threefold Y without a section. The singularities in question are

“Q-factorial terminal” singularities (the simplest example being a conifold with no small

resolution) which have the property that any blowup of them introduces zeros into the

holomorphic 3-form.

The presence of such singularities on J(Y ) at first leads one to expect that M-theory

cannot be compactified on this space. However, since the nonsingular space Y has a

good F-theory limit and shares the same τ -function and monodromy representation with

J(Y ), such an interpretation would be rather puzzling. To resolve this puzzle, one should

remember that when the M-theory 3-form has torsion flux, there can be so-called “frozen”

singularities linked to that flux which are not resolved in the M-theory compactification,

and which do not contribute to the M-theory gauge group in the standard way [10, 11].

Although a complete understanding of such torsion fluxes awaits a better understanding of

the M-theory 3-form, we shall argue in this paper that this is indeed the correct explanation.

In practice, it is often easier to study Y than J(Y ), so these genus-one fibrations are

not superfluous. In fact, as we will see in detail in section 5, and as had been earlier

observed in [12], this phenomenon already happens for Calabi-Yau threefold hypersurfaces

in rather simple toric varieties. Still, one might ask how F-theory on genus-one fibrations

is really different from the familiar case of elliptic fibrations. In this paper, we will point

out the following two:

• There can be massless fields localized on codimension-two fibers. In fact, subtleties

in the interpretation of the F-theory limit for a genus-one fibration without a section

were observed already in [13] which considered a “degree two” case in the language

of this paper. In section 6 we will explain the origin of these massless fields. In

particular, the existence of such fields corrects the hypermultiplet moduli count of

6-d F-theory compactifications. After taking this correction into account, the gravi-

tational anomaly is again canceled.

• There are more possibilities for the monodromies of the Kodaira fiber over a discrim-

inant component. In fact, if one requires a section then one of the P1-components

with multiplicity 1 (corresponding to a node of the Dynkin diagram with Dynkin

label 1) must be fixed by the monodromy. This need not be the case if there is no

1This statement is presumably also true for Calabi-Yau fourfolds, but a mathematical proof has not yet

been given.
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section, yielding new ways to break non-Abelian gauge symmetry by monodromies.

For example, in section 7 we will discuss an example of a toric hypersurface where

monodromy breaks E6 → G2. The Shioda-Tate(-Wazir) formula for the cohomology

groups of elliptic fibrations naturally generalizes to genus-one fibrations with more

general monodromies, see section 8.

On the base B of the elliptic fibration, the data defining the genus-one fibration Y → B

is the τ -function and SL(2,Z) representation (or equivalently, the compactified Jacobian

J(Y )), together with a class in the Tate-Shafarevich group [14, 15] of isomorphism classes

of elliptic fibrations with the same Jacobian. The Tate-Shafarevich group XB(J(Y )) can

be described in in terms of certain sheaf cohomology groups on the base B (which make it

obvious that it is indeed a group). The simplest description [9, 16, 17], which holds when

J(Y ) and B are both smooth, all fibers of the fibration are irreducible,2 and the section of

J(Y ) → B is regular, is

XB(J(Y )) = H1(B,A), (1.1)

where A is the sheaf of rational sections of J(Y ) → B. The interpretation in F-theory is of

a degree of freedom which can be given an expectation value on a loop when compactifying

F-theory to M-theory, resulting in a collection of M-theory vacua with the same F-theory

limit [11, 18].

2 From genus-one fibrations to elliptic fibrations

Let us start by reviewing how to assign the multi-valued τ function to a genus-one fibration,

that is, how the defining equations of the given fibration determine defining equations of the

Jacobian fibration. (The latter can always be brought into Weierstrass form.) A Calabi-

Yau variety Y of dimension k with a genus-one fibration always has an embedding into

projective space when k ≥ 3.3 Let us choose a line bundle L on Y which is ample on the

general fiber of the fibration,4 and let d be the degree of L when restricted to the curves

of genus one. That is, the associated curve C of genus one over the function field K has

a line bundle LC of degree d. For small values of d, the properties of LC determine the

structure of a birational model Y of Y . This determination is based on the Riemann-Roch

theorem for C, which continues to hold even over a non-algebraically closed field. For a

line bundle M of positive degree on a curve of genus one, H1(C,M) ∼= H0(C,KC ⊗M−1)∗

which vanishes since deg(KC ⊗M−1) = 0− deg(M) < 0. Thus,

dimH0(C,M) = χ(C,M) = deg(M)− g + 1 = deg(M) (2.1)

since g = 1.

If C has a line bundle L of degree 1, this leads to “Weierstrass form” in the following

way, as explained by Deligne [19] (see also [8, 20]). H0(C,L) has dimension one, so choose

2Note that this condition implies no non-Abelian gauge symmetry in the F-theory model; the description

must be modified in more general cases.
3The case k = 2 is special because a K3 surface may fail to be a projective variety.
4That is, the sections of some power of L give a map to projective space which is an embedding of the

general fiber.
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a basis element z for this space. H0(C,L⊗2) has dimension two and contains z2; choose

another element x so that z2, x is a basis of this space. H0(C,L⊗3) has dimension three

and contains z3 and xz; choose another element y so that z3, xz, y is a basis of this space.

We can now enumerate the sections we know of various powers of L:

H0(C,L) ∋ z

H0(C,L⊗2) ∋ z2, x

H0(C,L⊗3) ∋ z3, xz, y

H0(C,L⊗4) ∋ z4, xz2, yz, x2

H0(C,L⊗5) ∋ z5, xz3, yz2, x2z, xy

H0(C,L⊗6) ∋ z6, xz4, yz3, x2z2, xyz, x3, y2.

(2.2)

Since there are seven sections of H0(C,L⊗6), there must be a relation among them. As

Deligne argues, since there is no relation among sections of lower powers of L, the coeffi-

cients of x3 and y2 in the relation must be nonvanishing, and after rescaling we can assume

those coefficients are 1. Thus, we get an equation of the form

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6, (2.3)

the long Weierstrass from. If the characteristic of K is not 2 or 3, as is true in our case,

we arrive at an equation of the form

y2 = x3 + fx2z4 + gz6. (2.4)

by completing the square on y and completing the cube on x. This is the Weierstrass form.

We can “clear denominators” in the coefficients f , g ∈ K in the Weierstrass equation

and take them to lie in the ring of functions on any subset of the base B. More generally, f

and g can be taken as sections of appropriate line bundles over B, and this gives the most

general Weierstrass forms of elliptic fibrations. Note that any genus-one fibration of degree

1 has a section (given by z = 0 in the coordinates above); that is, it is an elliptic fibration.

There are similar stories for other low values of the degree d. First, one can ana-

lyze sections of the line bundle to determine the form of the equation of the curve C of

genus one. Then, the geometric construction of the Jacobian fibration can be studied alge-

braically, resulting in a formula for the equation of the Jacobian J(C), given the equations

for C. For degrees 2, 3, and 4, such formulas are derived and presented in a systematic

way in [21].5 Weil [23] has traced the history back to Hermite. The formulas also appear

in Duistermaat’s book [24].

When d = 2, we argue as follows.6 This time, let M be a line bundle on C of degree

2. We choose a basis u, v of the two-dimensional vector space H0(C,M), and then choose

an element w of H0(C,M⊗2) so that u2, uv, v2, w is a basis of that space. Once again, we

5There is an “improved version” of these formulas in [22] which work well in characteristic 2 and 3.
6This argument is well-known in the mathematics literature, and was written out in appendix B of [25].
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enumerate the sections we know of various powers:

H0(C,M) ∋ u, v

H0(C,M⊗2) ∋ u2, uv, v2, w

H0(C,M⊗3) ∋ u3, u2v, vv2, v3, uw, vw

H0(C,M⊗4) ∋ u4, u3v, u2v2, uv3, v4, u2w, uvw, v2w,w2.

(2.5)

Since there are nine sections of H0(C,M⊗4), there must be one relation among them.

Again, since there is no relation among sections of lower powers of M, the coefficient of w2

in the relation must be nonvanishing, and after rescaling we can assume that coefficient is

1. Thus, we get an equation of the form

w2 + b0u
2w + b1uvw + b2w

2 = c0u
4 + c1u

3v + c2u
2v2 + c3uv

3 + c4v
4. (2.6)

If the characteristic of K is not 2, which we always assume in this paper, we can simplify

this to an equation of the form

w2 = e0u
4 + e1u

3v + e2u
2v2 + e3uv

3 + e4v
4. (2.7)

by completing the square on w. This is standard form for degree two.

We will give a derivation of the formula for the Jacobian of C in degree 2, based on

some Galois theory which is often found in undergraduate abstract algebra classes. We

start with a polynomial of degree 4 in a single variable, obtained from the right hand side

of eq. (2.7) by setting v = 1:

e0u
4 + e1u

3 + e2u
2 + e3u+ e4 = e0

(
u4 +

e1
e0

u3 +
e2
e0

u2 +
e3
e0

u+
e4
e0

)
. (2.8)

Galois theory constructs a finite extension L of the field K in which this polynomial has

roots, and as is well-known (and visible in the classic formulas of Cardano), the first step

is to define an associated polynomial of degree 3. In fact, over the field L the polynomial

will factor as

e0

4∏

i=1

(u− ri), (2.9)

and the cubic polynomial is related to this by forming the quantities

s1 = r1r2 + r3r4, s2 = r1r3 + r2r4, s3 = r1r4 + r2r3, (2.10)

and using those to form the auxiliary cubic polynomial

3∏

j=1

(x̃− sj). (2.11)

Note that
s1 − s2 = (r1 − r4)(r2 − r3)

s1 − s3 = (r1 − r3)(r2 − r4)

s2 − s3 = (r1 − r2)(r3 − r4)

(2.12)
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which implies that the discriminants of the two polynomials are the same.

We can determine the equation of the auxiliary cubic polynomial by expressing the

elementary symmetric functions of its roots in terms of the elementary symmetric functions

σ1, . . . , σ4 of {r1, . . . , r4}. The calculation is straightforward, and the result is as follows:

s1 + s2 + s3 = σ2

s1s2 + s1s3 + s2s3 = σ1σ3 − 4σ4

s1s2s3 = σ2
1σ4 + σ2

3 − 4σ2σ4

(2.13)

This implies that the cubic polynomial takes the form

x̃3 − e2
e0

x̃2 +
e1e3 − 4e0e4

e20
x̃− e21e4 + e0e

2
3 − 4e0e2e4
e30

. (2.14)

If we rescale by substituting x = e0x̃ we find a cubic polynomial

x3 − e2x
2 + (e1e3 − 4e0e4)x− (e21e4 + e0e

2
3 − 4e0e2e4). (2.15)

The corresponding homogenous equation

y2 = x3 − e2x
2z2 + (e1e3 − 4e0e4)xz

4 − (e21e4 + e0e
2
3 − 4e0e2e4)z

6 (2.16)

is the equation of the Jacobian of the curve with equation (2.7). (To put it into Weierstrass

form one should complete the cube in x.)

The Galois theory which goes along with this construction is based on the following

exact sequence of groups:

1 → (Z2)
2 → S4 → S3 → 1. (2.17)

As a consequence, if L is the field in which the degree 4 polynomial (assumed to be general)

has its roots so that the Galois group of L over K is the symmetric group S4, there is an

intermediate field L′ whose Galois group over K is S3. The above construction explicitly

builds the degree 3 polynomial whose roots lie in the field L′.

Returning to the general problem of a curve of genus one over K with a line bundle of

degree d, if d = 3 the story is straighforward: let N be a line bundle of degree 3, and choose

a basis x, y, z of H0(C,N ). There are 6 degree two monomials in x, y and z which matches

the dimension of H0(C,N⊗2). However, since there are 10 degree three monomials in x,

y, and z but the space H0(C,N⊗3) has dimension 9, there must be a relation of degree 3.

This expresses C as a cubic curve in P2
K . The formula for the Weierstrass equation of the

Jacobian is quite lengthy in this case, but can be found in [22].

If d = 4 the story is also straightforward: let P be a line bundle of degree 4, and choose

a basis x, y, z, t of H0(C,P). There are 10 degree 2 monomials in x, y, z, and t yet the

space H0(C,P⊗2) has dimension 8, so there must be two relations of degree 2. Let Q1,

and Q2 be a basis of the space of relations; then C is described as a complete intersection

{Q1 = Q2 = 0} in P4
K .

To describe the Weierstrass equation of the Jacobian in this case, we represent Q1 and

Q2 as symmetric 4× 4 matrices, and consider the determinant det(λQ1 + µQ2). This is a
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homogeneous polynomial of degree 4 in λ and µ, and thereby determines a curve C ′ of genus

one and degree 2 as the double cover of P1
K branched on the zeros of that homogeneous

polynomial. The Jacobian of C coincides with the Jacobian of C ′, and our previous formula

for the degree 2 case provides the Weierstrass equation of the Jacobian, an explicit formula

for which can be found in [21, 26, 27]. If the coordinates x, y, z, t can be chosen such that

one of the quadratics, say, Q1, takes the special form

Q1 = xy − zt, (2.18)

then {Q1 = 0} is itself a toric variety P1
K ×P1

K and we again have a hypersurface in a toric

variety.

The story above has recently been extended to d = 5. There are 5 sections of the

defining line bundle, and the equations can be presented as the vanishing of the 4 × 4

Pfaffians of a 5 × 5 matrix with entries that are linear functions of the 5 sections [28].

Formulas have been found for the Weierstrass equation of the Jacobian of the curve, and

although the formulas are too large to write down as explicit polynomials, there is an

algorithm for evaluating them [29].

3 Singularities of Jacobian fibrations

Dolgachev and Gross [9] have studied the Tate-Shafarevich group of a genus-one fibered

threefold in considerable detail. Their analysis goes beyond the Calabi-Yau case and in-

cludes arbitrary genus-one fibered algebraic threefolds. The results fall short of giving

an algorithm for computing the Tate-Shafarevich group, but they are strong enough to

compute it in some important examples. The analysis is quite technical and we will not

attempt to present the results here. However, many of the key features of their analysis

are present in one particular example which we now describe following [9].

Let f1(~x), f2(~x), f3(~x) be three general cubics in P2, and consider

Y = {(~x, ~u) ∈ P2
~x × P2

~u | u1 f1(~x) + u2 f2(~x) + u3 f3(~x) = 0}. (3.1)

We map Y → P2
~u by (~x, ~u) 7→ ~u, and note that the fiber over ~u is a curve of genus one in

P2
~x. This fibration has no section if the three cubics are general, but there is a 3-section

given by intersecting Y with x3 = 0, which gives three points in each fiber. (We stress that

this example is not Calabi-Yau, but is nevertheless fibered by curves of genus one.)

The discriminant locus for Y → P2
~u can be computed with some methods from classical

algebraic geometry. The computation was made in [30], and the result states that the dis-

criminant is an irreducible curve in P2
~u of degree 12 with 24 cusps and 21 nodes. Moreover,

the total space Y of this family is nonsingular, and the map Y → P2
~u is flat; this enables

Dolgachev and Gross to identify the Tate-Shafarevich group in this case with a subgroup

of Z/3Z, using their general results about Tate-Shafarevich groups for flat fibrations with

nonsingular total space. Since Y → P2
~u itself does not have a section, the Tate-Shafarevich

group must be nontrivial, so it must be Z/3Z.

A key result of [9] is that the Jacobian fibration J(Y ) → P2
~u has the same discriminant

locus as that of Y → P2
~u. Thus, the Jacobian fibration in this example has a Weierstrass

– 8 –
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model whose discriminant is a curve of degree 12 with 24 cusps and 21 nodes. Now over a

general point of the discriminant locus in a Weierstrass fibration, the fiber acquires a node

(Kodaira type I1) but the total space is smooth. Similarly, at a cusp in the discrimiant of a

Weiestrass model, the fiber has a cusp (Kodaira type II) but the total space is smooth. The

only place where the total space of the Weierstrass model is singular is at the 21 nodes of the

discriminant locus, where the Kodaira type of the fiber is I2. The singularity in the total

space is an ordinary quadratic singularity, otherwise known as a “conifold” singularity.7

In order to produce a nonsingular model of J(Y ) → P2
~u, one would like to find a

“small resolution” of the conifold singularity. The standard way to do this would exploit

the local factored form of the discriminant: the singularity can locally be written in the

form xy = h(u1, u2) in the affine chart u3 = 1 with h(u1, u2) representing the discriminant,

and taking a local factorization h = h1h2 (where hj = 0 defines one of the local branches

of the curve at its node, for j = 1, 2), the blowup of {x = h1 = 0} produces the small

resolution. Such a small resolution, if it existed, would give a flat family J̃(Y ) → P2
~u

with nonsingular total space. However, since h(u1, u2) is globally an irreducible curve, this

factorization cannot be performed globally and the small resolution may not exist as an

algebraic variety.8 The failure of small resolutions to exist globally has shown up a number

of times in the past in applications to string theory, including [32], where it was responsible

for a Stückelberg mechanism in effective theories of D-branes at singularities.

In fact, as shown in [9], there is no small resolution of the conifold singularities in this

example. If there were, then the general results of [9] would imply that the Tate-Shafarevich

group of J(Y ) is a subgroup of Z/1Z, i.e., it would have to be the trivial group.9 But since

the Tate-Shafarevich group is actually Z/3Z, the small resolution cannot exist.

Notice that it is always possible to blowup the conifold point itself, giving a “big”

resolution. However, any holomorphic three-form on J(Y ) which is nonvanishing near the

conifold point necessarily has zeros along the exceptional divisor of the big resolution.

Therefore, the big resolution is not suitable for studying Calabi-Yau threefolds. It also

fails to have a flat fibration.

The conclusion that the Jacobian of a nonsingular genus-one fibration has conifold sin-

gularities (or possibly worse singularities) which cannot be resolved to give a flat family ap-

pears to be a general one, borne out by additional examples in [9] as well as further examples

in this paper. The general theory of minimal models in the birational geometry of threefolds

(see [33], for example) identifies these singularities as “Q-factorial terminal singularities.”

In addition to conifold singularities which cannot be resolved, Dolgachev and Gross

find another geometric feature of J(Y ) in this example which (as we will see) helps to

identify the physics of the corresponding M-theory compactification. Let us blow up the

base at the nodes of the discriminant, and then blowup the singular locus of the total space,

7Note that all of these statements could be explicitly verified using the techniques of section 2.
8The fact that “collisions” between Kodaira fibers of type I2k+1 and I2ℓ+1 may obstruct the existence

of flat families was first observed by Miranda [31].
9According to [9], the Tate-Shafarevich group for a flat family with nonsingular total space is an extension

of a certain geometric group by Z/δZ, where δ is the minimum intersection number of a fiber with a

multisection. For Y , δ = 3, but for J(Y ), δ = 1.
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to obtain a new surface P̂2 with an elliptic fibration Ĵ(Y ) → P̂2 which is flat and has a

nonsingular total space Ĵ(Y ). The Tate-Shafarevich group of Ĵ(Y ) is again Z/3Z, and this

time can be identified with the torsion in cohomology, i.e., with10 H3(Ĵ(Y ),Z)tors. Note

that since the torsion is a birational invariant, this can also be seen as a torsion cohomology

class on the “big blowup” of the conifold points on J(Y ).

As observed in [10] and studied further in [11], there are M-theory compactifications on

certain singular spaces (spaces with “frozen” singularities) which are well-defined in spite

of the singularities; the interpretation is that the M-theory 3-form has a discrete flux which

obstructs the resolution of the singularities. We find ourselves in a similar situation here,

with an M-theory model on the singular space J(Y ) which (due to having an F-theory

limit in common with M-theory on Y ) should be well-defined. Moreover, the space has a

natural torsion 3-form.11

This, then is our interpretation: the Jacobian of a genus-one fibered Calabi-Yau three-

fold Y is an elliptic fibration J(Y ) with Q-factorial terminal singularities which is equipped

with an appropriate torsion class in such a way that M-theory compactified on J(Y ) with

torsion flux for the M-theory 3-form is well-defined.

4 Fiberwise duality with M-theory

4.1 Review of the F/M duality

One way to define F-theory compactified on an elliptic fibration is to compactify M-theory

on one of the cycles of the torus fiber down to IIA and then perform T-duality [37] to IIB.

The T-dual circle decompactifies in the limit where the torus fiber shrinks to vanishing

size, and in fact one obtains a IIB string theory compactified on the base of the elliptic

fibration with varying axion-dilaton.

The argument goes as follows. Pick coordinates z = x + τy with 0 ≤ x, y ≤ 1 on the

torus Eτ . Then the Calabi-Yau metric on a Eτ -fibration Y over B is presumably of the

form [38, 39]

ds2Y = ds2B +
v

τ2
dzdz̄ +O(v2) (4.1)

in the limit where the fiber volume v → 0. The complex structure τ = τ1 + iτ2 of the

fiber Eτ varies as a function of the base. One recognizes this as the M-theory lift, on the

x-circle, of the IIA metric

ds2M = e4φIIA/3
(
dx+ C1

)2
+ e−2φIIA/3ds2IIA,

C
(1)
IIA = τ1dy, e4φIIA/3 =

v

τ2
, ds2IIA =

√
v

τ2

(
vτ2dy

2 + ds2B
)
.

(4.2)

10This identification proceeds [9, 17] via the cohomological Brauer group Br′(Ĵ(Y )) = H2(Ĵ(Y ),O×

Ĵ(Y )
),

which coincides with the torsion in cohomology since Ĵ(Y ) is nonsingular [34], a result which holds since

Ĵ(Y ) has no holomorphic 1-forms or 2-forms.
11There is a subtlety here, in that the torsion 3-form exists not on J(Y ) itself but on a blowup. However,

as shown in [35], in the context of explaining some examples of discrete torsion in type IIA string theory [36],

a torsion class on a blowup of J(Y ) can lead to corresponding physical effects on J(Y ) itself. The torsion

in [35] was related to the cohomological Brauer group in that case just as it is in the present case.

– 10 –



J
H
E
P
0
8
(
2
0
1
4
)
1
3
2

To dualize to type IIB, we now perform T-duality on the remaining y-circle. Its circum-

ference, in the IIA metric, is Ly = v3/4τ
1/4
2 . Hence, T-duality amounts to rescaling

T : y 7→ v−3/2τ
−1/2
2 y (4.3)

which results in the IIB metric

ds2IIB,S =

√
v

τ2

(
dy2

v2
+ ds2B

)
. (4.4)

Moreover, T-duality shifts the dilaton φ and identifies corresponding RR-forms with one

leg in the circle direction, namely

eφIIB =
1

Ly
eφIIA =

1

τ2
, C

(0)
IIBdy = C

(1)
IIA. (4.5)

Finally, we rescale the IIB metric from the string frame to the Einstein frame to obtain

ds2IIB,E = e−
φIIB
2 ds2IIB,S =

√
v

(
dy2

v2
+ ds2B

)
. (4.6)

Remarkably, the τ -dependence of the metric has completely disappeared. The fiber volume

v is constant over the base, so the metric is just a metric on [0, 1]×B and decompactifies

to R×B in the limit v → 0. The entire τ -dependence is in the IIB axion-dilaton, which is

simply C
(0)
IIB + ie−φIIB = τ1 + iτ2 = τ

4.2 Fiberwise duality

The argument presented above is clearly näıve: the fiber complex structure τ varies holo-

morphically, so if it is non-constant then it must have zeros and poles where the ansatz

eq. (4.1) cannot be valid. Even worse, there are SL(2,Z) transformations along loops which

encircle the discriminant locus ∆ ⊂ B, so there is no global choice of x and y-circle.

Hence, we also need to appeal to fiberwise duality to complete the M-theory/IIB

duality. Locally, over the base B, there is no preferred SL(2,Z) frame. But that choice

also has no physical significance: possible Dehn twists on the F-theory elliptic curve just

correspond to the changing S-duality frame of the IIB axion-dilaton. We can apply the

above duality on sufficiently small open sets and glue the IIB description via SL(2,Z)

transformations. The result is IIB on the base with varying axion-dilaton τ . The actual

value of τ is not uniquely defined, but it is unique up to SL(2,Z)-transformations. The

representation π1(B −∆) → SL(2,Z) is part of the defining data of the elliptic fibration.

However, SL(2,Z)-transformations are not the entire symmetry group by which one

can glue local patches. In addition, there are translations along the fiber. This obviously

does not preserve the zero-section (i.e., the locus of points serving as “0” in the group

structure on each fiber), so the ensuing fibration will, in general, only be a genus-one fi-

bration. At first sight, allowing translations seems to be very boring: τ does not change if

we translate along the torus, so no physical quantity appears to know about it. However,

this argument really only tells us that no field knows about the translations locally, which

is tautologically true, as the geometry has local sections. But global monodromies can and

will depend on this additional freedom, and in section 7.5 we will see an explicit example.
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4.3 Tate-Shafarevich group

To be able to act requires an identity element on the part of the actor, but not on the part of

the acted upon. A vector space acts on an affine space by translations. Or, relevant for our

purposes, an elliptic curve acts on a curve of genus one with the same τ by translations. In

particular, recall from section 2 that for every genus-one fibration Y there is an elliptic fibra-

tion J(Y ). Sections of the Jacobian act by translation on the genus-one fibration, turning

the Mordell-Weil group of the Jacobian into a subgroup of the birational symmetries of Y .

To construct new genus-one fibrations, we can start with an elliptic fibration Y → B

and choose translations locally in each patch of the base B. Gluing together the patches

by the translations creates a genus-one fibration which may or may not have sections.

Explicitly, let A be the sheaf of rational sections of the elliptic fibration. By definition, A
is a sheaf of Abelian groups with respect to fiber-wise addition, which we write as “+”. We

are interested in a collection σαβ ∈ A(Uα ∩Uβ) of local sections that fits together on triple

overlaps, that is, σαβ + σβγ = σαγ . Moreover, changing the local sections by a coboundary

is just a reparametrization and yields the same genus-one fibration after gluing. Therefore,

the distinct genus-one fibrations that can be constructed by twisting the elliptic fibration

are in one-to-one correspondence with the elements of the cohomology group

XB(A) = H1(B,A), (4.7)

also known as the Tate-Shafarevich group. By the above discussion, we can identify its

elements with the set of genus-one fibrations having the same Jacobian, that is, having the

same τ .

This construction works as stated whenever the fibration Y → B is generic, i.e., has

only Kodaira fibers of types I0, I1 and II (and no non-Abelian gauge symmetry). For more

complicated fibrations, the sheaf A misses too much of the structure of Y , and the more

detailed analysis of [9] must be used.

4.4 Relation with discrete torsion

On an elliptic curve, that is, a curve of genus one with marked point σ, a choice of point

p amounts to a choice of line bundle O(p− σ) with vanishing first Chern class. Hence, we

could use the defining data of the Tate-Shafarevich group just as well to glue something by

tensoring with a line bundle of vanishing first Chern class. Except for the “vanishing c1”

part, one recognizes this as the familiar gerbe data defining the twist of a projective vector

bundle. For torsion gerbe characteristic classes, this is also knows as discrete torsion in

string theory. In more fancy language, we can think of the sheaf A as the degree-zero part

of the relative Picard sheaf

0 −→ A −→ Pic(Y/B) −→ Z −→ 0, (4.8)

except that the Picard sheaf may not be well-defined for sufficiently complicated fibrations,

leading to considerable technical difficulties for which we refer the reader to [9, 16, 17].

Nevertheless, the induced map in cohomology

XB(A) = H1(B,A) −→ H1
(
B,P ic(Y/B)

)
(4.9)
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and the Leray spectral sequence

· · · −→ Br′(B) −→ Br′(Y ) −→ H1
(
B,P ic(Y/B)

)
−→ · · · (4.10)

for O×
Y on the projection Y → B links the Tate-Shafarevich group to the (cohomological)

Brauer group and gerbes (for generic fibrations).

However, note that only the Brauer group on the total space modulo the pull-back of

the Brauer group on the base has a chance of contributing according to eq. (4.10). That

is, the Tate-Shafarevich group provides similar but strictly independent global information

from B-fields and gerbes in Type IIB. In the special case where dimB = 1 or where all

fibers are irreducible (hence no non-Abelian gauge symmetry), the relationship between

the Brauer and the Tate-Shafarevich groups becomes particularly simple. In this case [9]

the quotient of the Brauer groups is indeed the only contribution,

XB(A) = coker
(
Br′(B) → Br′(Y )

)
. (4.11)

Hence, under these simplifying assumptions the IIB gerbes on the base and the Tate-

Shafarevich group of the fibration combine together into the Brauer group of the total

space of the fibration.

The IIB fluxes should, more precisely, be thought of as classes in a suitable version of

K-theory. For example, for orientifolds the correct flavor of K-theory is KR-theory, Real

equivariant with respect to the orientifold involution. It would be nice to understand this

better and have a direct connection to the Tate-Shafarevich group that does not proceed

via cohomology.

5 Moduli of genus-one fibrations

5.1 Weierstrass hypersurface

So far we have argued that the degrees of freedom in F-theory include the Tate-Shafarevich

group, elements of which correspond geometrically to distinct genus-one fibrations with the

same Jacobian fibration. Allowing genus-one fibrations has direct physical consequences.

In this section, we will see that it corrects the uncharged hypermultiplet count. In the

next section, we will find new ways to break gauge symmetry. However, before getting

ahead of ourselves, let us start with proper elliptic fibrations giving rise to SU(5) gauge

theory to make contact with physics literature. Only later, starting with section 5.6, will

we consider genus-one fibrations that do not admit a section. In order to make use of

the strong anomaly cancellation conditions, let us focus on the case of genus-one fibered

Calabi-Yau threefolds compactifying F-theory down to 6 dimensions.

The simplest way to construct an elliptic fibration over a fixed base B is as a Weierstrass

hypersurface. That is, consider the P2[2, 3, 1] bundle

X = P
(
OB(−2K)⊕ OB(−3K)⊕ OB

)
[2, 3, 1]. (5.1)

For suitable bases B, an anticanonical hypersurface Y ⊂ X is a Calabi-Yau threefold with

only canonical singularities for which there exists a smooth Calabi-Yau resolution Ỹ → Y .
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In order to avoid tensionless strings in our models, we are only interested hypersurfaces

whose resolution has a fibration is flat, i.e., has only one-dimensional fibers. If the base is

a toric variety with fan ΣB, then the ambient space X = XΣ is also a toric variety. To

construct the polytope for X, we note that the anticanonical hypersurface equation takes

the long Weierstrass form

y2 = x3 + a1xyz + a2x
2z2 + a3yz

3 + a4xz
4 + a6z

6 (5.2)

with coefficients ai ∈ Γ(OB(K
−i)). The hypersurface equation defines its Newton polytope

and we define Σ as its normal fan, that is, the face fan of the dual polytope.12 For example,

if B = P2 then one obtains the weighted projective space X = P4[1, 1, 1, 6, 9] as ambient

fourfold. The defining polytope is:

u v w x y z

9 0 0 0 −1 3 2 1 1

6 0 0 −1 0 2 1 1 0

−1 1 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0

three tops13 fiber
facet

interior

(5.3)

The toric varietyX corresponding to eq. (5.1) inherits singularities from the fiber P2[2, 3, 1].

However, for B = P2 there is a unique toric resolution preserving the fibration, so we will

not dwell on this issue.

The choice of ambient space induces additional structure on the hypersurface beyond

that of a generic torus-fibered Calabi-Yau threefold over B. In particular,

• The toric divisor V (z) ∩ Y is a section of Y , namely

s : B → Y, b 7→
(
b, [1 : 1 : 0]

)
. (5.4)

• The self-intersection of the canonical class on the toric fiber P2[2, 3, 1] equals 6. There-

fore, −KX ∩ Y is a family of 6-sections. It can be chosen to contain a section as an

irreducible component, which we can subtract to leave us with a 5-section. The

particular choice

{y2 = x3} ∩ Y =
{
z
(
a1xy + a2x

2z + a3yz
2 + a4xz

3 + a6z
5
)
= 0
}
∩ Y (5.5)

of 5-section in this family is called “the Tate divisor” in the physics literature [40].

12Depending on the base B, the dual need not be a lattice polytope. That is, the Newton polytope need

not be reflexive. This means that the singular variety does not admit a resolution to a smooth Calabi-Yau

hypersurface.
13See section 5.2 for the definition of “top”. The above example has only trivial (consisting of a single

point) tops, which would not illustrate the definition adequately.
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Figure 1. The split SU(5) top and associated extended Dynkin diagram, the I5 Kodaira fiber.

A generic Calabi-Yau hypersurface in the projective space bundle X has a nonsingular

total space and only three types of Kodaira fibers: I0 (a nonsingular fiber), I1 (a fiber with

a node), and II (a fiber with a cusp). In particular, its F-theory compactification has no

gauge symmetry at all, only h2,1(Y ) + 1 = 273 uncharged hypermultiplets. In order to

generate non-Abelian interactions, one needs to find special loci in the complex structure

moduli space where more complicated Kodaira fibers appear. At the same time, one has

to ensure that there still exists a flat resolution. Examples of terminal singularities as

well as examples of canonical singularities whose resolution is not flat exist. While not

insurmountable obstacles, these are very real complications.

5.2 Elliptic fibration with a toric SU(5)

Instead of trying to specialize the Weierstrass equation by hand, we can also specialize the

ambient space in a way that enforces particular Kodaira fibers. In particular, this avoids

potential terminal singularities: a generic three-dimensional Calabi-Yau hypersurface in a

toric variety can always be resolved into a smooth threefold [41].

For example, consider the following split I5 toric elliptic fibration over P2 [42–44] with

Hodge numbers h1,1 = 6, h2,1 = 171. The ambient space is the toric variety with polytope

∇ whose points are

u v w0 w1 w2 w3 w4 f0 f1 f2

6 0 3 2 1 0 1 3 0 −1 1 1 2

4 0 2 1 0 0 1 2 −1 0 0 1 1

−1 0 1 1 1 1 1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0 0 0

three tops fiber facet interior

(5.6)

and which is fibered over P2 via the projection to the last two coordinates. In terms of

homogeneous coordinates, this is the map

π : X∇ → P2, [u : v : w0 : · · · : w4 : f0 : f1 : f2] 7→
[
u : v : w0w1w2w3w4

]
(5.7)
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The Dynkin diagram of the gauge group can be seen from the tops [45–51] of the fibration.

We recall their definition and important properties:

• Given a ray ρ of the base fan, the preimage π−1(ρ) ⊂ ∇ is called a “top”.

• Regardless of the dimension of the codimension-two fibered toric variety, a top is

always a 3-dimensional lattice polytope with the origin on one facet (namely the

fiber polygon).

• The top over ρ defines the gauge group over the discriminant component V (ρ) as

follows:

– The edge graph (with corresponding integral points) not meeting the fiber poly-

gon equals the quotient of the Dynkin diagram by the monodromy.

– The Dynkin labels are the height of the points over the fiber polygon.

• The toric (multi-)sections correspond to the vertices of the fiber polygon, and their in-

tersection with the fiber irreducible components are also visible as the edges of the top.

In the case of an elliptically fibered K3, there are only two rays in the base P1 and they

divide the K3 polytope in a top and a bottom half. This is the origin of the name, but in

general there is one top for each ray in the base.

In our example there are three tops over the three rays of the fan of the base P2.

Two of them are trivial with only a single vertex added over the fiber polygon. The third

accounts for the SU(5) gauge group and is shown in figure 1. Using toric geometry to

translate the polyhedral data into an algebraic variety [42, 52, 53], each integral point of

the w-top corresponds to an irreducible component of the (complex two-dimensional) toric

fiber over w = 0 in the base. The hypersurface equation cuts out P1’s in each irreducible

toric fiber component. In the case at hand, the hypersurface equation yields a single P1 in

each of the five components, linked as in the I5 Kodaira fiber.

5.3 Adding a single U(1)

For physics applications it is desirable to have a non-trivial Mordell-Weil group, unlike the

threefold constructed in section 5.2. The torsion part of the Mordell-Weil group is a discrete

symmetry of the low energy effective action, and the rank equals the number of U(1) factors

in the gauge group. Both have important phenomenological applications, for example ruling

out certain operators that would lead to excessive proton decay. Although not necessary

for the remainder of this paper, we now make a small digression to discuss ways to realize

additional U(1) factors. The reader not interested in these can skip ahead to section 5.6.

The most straightforward idea to generate a U(1) is to take the Weierstrass hypersur-

face and restrict the complex structure further until an extra section appears. (In fact, as

argued in [25], this is the only way to do it.) If one wants the additional U(1) to be toric,

then this means one should find a point to add to the fiber polytope such that it induces

a new toric section and such that the convex hull is again reflexive. It is easy to see that

adding (−1,−1, 0, 0) to the polytope in eq. (5.6) works, and the new polytope is drawn
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in the top row of table 1. In fact, the new Calabi-Yau hypersurface has three sections:

V (f0), V (f1), and V (f2). The new h1,1(Y ) = 7, so the additional toric sections generate

a rank-one Mordell-Weil group. Therefore, the gauge group is enhanced to SU(5)× U(1).

The self-intersection number of the canonical class of the generic toric fiber drops from 6

on P2[2, 3, 1] to 5. Hence the Tate divisor degenerated into a 4-section and the new section.

This construction is known as the “U(1)-restricted Tate model” in the physics literature.

This is not the only way to generate a single U(1) using toric techniques,14 and in

table 1 we list two more polytopes that give rise to the same spectrum. In fact, it is easy

to see that the top two cases contain the bottom polytope, that is, the hypersurfaces of the

top two toric varieties are special limits of the hypersurface of the bottom toric variety. In

particular, we recognize that the extra U(1) comes from the additional vertex of the fiber

polytope. This extra vertex yields an additional integral point of the ∇-polytope not in the

interior of a facet, and therefore increases h1,1 by one. Hence, the reason for the additional

U(1) is this additional vertex in the toric picture, and not the fact that one of the three is

the restriction of the Weierstrass hypersurface to a special point. That the three polytopes

are contained in each other implies that the Weierstrass model is the same, but the details

of the resolution to a smooth threefold are different. In particular, the toric description of

the codimension-two degeneration where the 53 matter is localized differs.

• In the first SU(5)×U(1) polytope of table 1 we recognize a conifold singularity defined

by the square f1, f2, w3, w2. In constructing a smooth Calabi-Yau threefold, one

must resolve it in one of two ways. Either way, this extra curve is the additional P1 in

7 out of the 19 fibers where the I5 Kodaira fiber degenerates into an I6 Kodaira fiber.

Depending on which resolution one takes, this curve is contained in the V (f1)∩Y or

the V (f2) ∩ Y section.

• In the second and third SU(5)×U(1) polytope of table 1, none of the extra P1 in the

codimension-two I6 fibers are toric curves in the top. All toric sections intersect the

irreducible components of I6 codimension-two fibers transversely.

None of these differences in resolution impact the physics of the SU(5) × U(1) F-theory

model.

5.4 U(1) charge assignments

In the case at hand all charged hypermultiplets arise from isolated curves. Their U(1)

charge of the hypermultiplet on a curve C under the U(1) of a section S ∈ MW (Y ) is

determined by the intersection

C · π(S) = C · S +
∑

i,j

(S · θi)(A−1)ij(Θj · C) (5.8)

where the θi are the curves carrying the roots, that is, the irreducible components of the

gauge group discriminant component not intersecting the given section, the Θj are the divi-

14A systematic analysis of the toric ambient spaces for elliptic curves which can be employed to construct

multiple toric sections for elliptically-fibered varieties was given in [44, 54–57].
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Figure 2. The U(1) charge of a 5 hypermultiplet localized at a codimension-two fiber where the

I5 discriminant (green) degenerates to I6 (red). Pick the red node where the section generating

the Mordell-Weil group intersects the fiber. The number next to the node is the ratio of the U(1)

charge relative to a 1 hypermultiplet.

sors swept out by the curve θi over the discriminant, and A is the Cartan matrix of the gauge

group. For example, for the 5 hypermultiplets the U(1) charge works out as in figure 2.15

In addition to the SU(5)-charged hypermultiplets, there are also a number of hypermul-

tiplets charged only under the U(1) whose curves are localized away from the non-Abelian

discriminant component. That is, they are localized at special points of the I1 discriminant

component. We will only encounter the three simplest cases in the following discussion:

• Smooth point: u = v or u = v2 (Milnor number 0)

• Node: uv = 0 (Milnor number 1)

• Cusp: u2 = v3 (Milnor number 2)

It is of practical importance to be able to determine the number of such singularities

in the I1 component efficiently for a generic hypersurface. One useful trick is to take

the polynomial δ1(u, v, w) whose vanishing defines I1 and compute its discriminant with

respect to one of the variables. This then factorizes into linear, quadratic, and cubic

factors that can be counted easily. For example, the SU(5) model has 171 cusps in the I1
discriminant component and no nodes. In fact, without any section there cannot be any

node for intersection-theoretic reasons: the resolved Calabi-Yau would have an I2 Kodaira

fiber over the node, but without a section there is no divisor available to be the Poincaré

dual of the irreducible fiber component not intersecting the given section.

The three SU(5)× U(1) models with h1,1 = 7, h2,1 = 109, see table 1, have 171 cusps

and 63 nodes in the I1 discriminant component. Computing the intersections with the toric

sections, one finds the U(1) charges of the hypermultiplets to be

7× 53 ⊕ 12× 52 ⊕ 3× 101 ⊕ 63× 15 (5.9)

which satisfies the U(1) anomaly cancellation conditions for an appropriate choice of Green-

Schwarz term. For completeness, let us recall the anomaly cancellation conditions for a

15Note that we will always normalize U(1) charges to be integral. The electron charge is −3.
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single non-Abelian gauge group G and a single U(1) when the base B is P2. A Green-

Schwarz term proportional to
∫

−3

2
trR2 + 2b trG F 2

G + 2b̃F 2
U(1) (5.10)

will cancel the anomalies provided that [25, 58]:

18b =
∑

i

ARi
−Aad, 0 =

∑

i

BRi
−Bad, 3b2 =

∑

i

CRi
− Cad,

0 =
∑

i

ERi
ri, 18b̃ =

∑

i

dim(Ri)r
2
i ,

bb̃ =
∑

i

ARi
r2i , 3b̃2 =

∑

i

dim(Ri)r
4
i .

(5.11)

where the model has hypermultiplets transforming in the representations (Ri, ri). In the

example at hand, all anomalies cancel16 for b = 1 and b̃ = 120.

5.5 Three U(1)’s

In order to realize three toric U(1) factors in a toric hypersurface, the generic ambient

space fiber must be dP6 [44, 51, 57]. One possibility for SU(5) × U(1)3 gauge symmetry

with h1,1 = 9, h2,1 = 52 is:

u v w0 w1 w2 w3 w4 f0 f1 f2 f3 f4 f5

3 0 0 −1 −1 0 0 1 1 0 −1 −1 0

1 0 −1 −1 0 1 0 1 0 −1 −1 0 1

−1 0 1 1 1 1 1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0 0 0

three tops fiber

(5.12)

All SU(5) models studied so far have 19 points on the discriminant where the vanishing

degree jumps from (0, 0, 5) to (0, 0, 6) and three points where it jumps to (2, 3, 7). Therefore,

the SU(5)-charged hypermultiplets are 19 × 5 ⊕ 3 × 10 which is precisely what is needed

to cancel the non-Abelian gauge anomaly

18b = 19 · 1 + 3 · 3− 10, 0 = 19 · 1 + 3 · (−3)− 10, 3b2 = 19 · 0 + 3 · 3− 6. (5.13)

The SU(5)×U(1)3 model with toric sections, see eq. (5.12), has 171 cusps and 122 nodes.

5.6 No section

After the detour on F-theory models with a section, we now finally present an example

without a section. In addition to the SU(5) model with a toric section, see eq. (5.6), there

are 15 further fibered toric hypersurfaces with an I5 discriminant component and h1,1 = 6,

that is, no U(1). They do differ in the number of complex structure parameters, ranging

from 90 to 49 instead of h2,1 = 171 of eq. (5.6). This is quite a common phenomenon. In

16The non-Abelian anomaly coefficients, see section A, are A1 = B1 = C1 = 0, A5 = B5 = 1, C5 = 0,

A10 = −B10 = C10 = 3, and Aad = Bad = 10, Cad = 6.
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Figure 3. The SU(5)×U(1)3 top.

table 2 we list all toric hypersurfaces fibered over P2 such that the gauge group is only

SU(n) and the non-Abelian discriminant component is a toric curve in the base P2. Just

to be explicit, we will use the SU(5) model with h2,1 = 90 in the remainder of this section

as an example. The polytope of the ambient toric variety is

u v w0 w1 w2 w3 w4 f0 f1 f2

2 0 1 1 0 −1 0 1 1 −1 1

1 0 1 0 0 1 1 1 −1 0 0

−1 0 1 1 1 1 1 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0

three tops fiber facet int.

(5.14)

with the fibration being defined by the projection on the last two coordinates. The fiber

polygon is that of P2[1, 1, 2] which does not lead to a toric section, see figure 4. In fact,

there is no section at all: by a direct computation, the I1 discriminant component of a

generic hypersurface can be seen to have 171 cusps and 81 nodes. As we mentioned earlier,

the presence of a node means that a single section cannot serve as Poincaré dual divisor

to both irreducible components of the I2 resolution. Hence there cannot be a section.

However, a two-section is clearly allowed since it can easily intersect both components of

the I2. And, in fact, the P2[1, 1, 2] fiber polytope does induce 2 toric two-sections, V (f0)∩Y
and V (f1) ∩ Y . Each of them meets the I5 Kodaira fiber of the non-Abelian discriminant

component in two distinct components.

The Calabi-Yau threefold Y is a genus-one fibration without a section and therefore

not an elliptic fibration. However, it has a Jacobian fibration J(Y ) and J(Y ) in turn has

a Weierstrass model WY = {y2 = x3+ fx+ g}. (A Weierstrass model always has a section

by construction.) The Weierstrass model also has 81 terminal singularities over the 81
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G h1,1 h2,1expected h2,1

SU(2) 3 231 {231, 123, 119, 1112, 107, 81,

77, 76, 75, 73, 72, 71}
SU(3) 4 208 {208, 110, 104, 100, 98,

73, 71, 68, 65, 644, 61}
SU(4) 5 189 {189, 99, 98, 93, 90, 89, 872, 83,

66, 62, 60, 593, 58, 572, 56, 55}
SU(5) 6 171 {171, 90, 87, 84, 83, 81, 80, 78,

57, 542, 53, 52, 512, 50, 49}
SU(6) 7 154 {154, 151, 792, 77, 74, 73, 713,

682, 64, 474, 462, 432, 40}
SU(7) 8 138 {138, 68, 662, 62, 60, 42, 41, 38}
SU(8) 9 123 {123, 60, 59, 54, 512, 47, 36}
SU(9) 10 109 {109, 53, 46, 44}
SU(10) 11 96 {96, 47, 39, 32}
SU(11) 12 84 {84, 30}
SU(12) 13 73 {73}
SU(13) 14 63 {63}
SU(14) 15 54 {54}
SU(15) 16 46 {46}
SU(16) 17 39 {39}
SU(17) 18 33 {33}
SU(24) 25 19 {19}

Table 2. Hodge numbers of the Calabi-Yau threefolds in toric varieties, fibered over P2, with

gauge group a pure SU(n) such that the non-Abelian discriminant component is a toric curve. The

expected number of parameters h2,1
expected = 271− 23n+ n(n+1)

2 . Exponents indicate that the value

of h2,1 is realized by multiple polytopes. Only the hypersurfaces with h2,1
expected complex structure

moduli are actual elliptic fibrations, others are genus-one fibrations without section.

nodes in the I1 discriminant component, so it is too singular to define a string theory or

M-theory compactification. However, as described in section 3, these terminal singularities

come along with a discrete torsion class in the cohomology of the big blowup, and the M-

theory vacuum with 3-form flux on that class is expected to be a sensible M-theory model

with 81 “frozen” singularities.

To further verify that compactifying F-theory on a genus-one fibration without section

makes sense, we now turn to the anomaly cancellation conditions which provide a very

stringent consistency check.

6 Gravitational anomaly cancellation

Näıvely, the genus-one fibrations are at odds with the gravitational anomaly cancella-

tion [13]. With fixed gauge group and changed matter content, the number of uncharged
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Figure 4. The SU(5) top without section.

hypermultiplets must satisfy Hu + Hc − V + 29T = 273. The standard lore is that the

uncharged hypermultiplets are the h2,1(Y ) complex structure moduli plus one universal

hypermultiplet, for a total of Hu = h2,1(Y ) + 1. This cancels the anomaly for an elliptic

fibration as it is related to its Euler number [59, 60]. A genus-one fibration has fewer

complex structure moduli and, at least naively, not enough uncharged hypermultiplets. In

fact, the missing complex structure moduli are easily understood from the nodes in the

I1 discriminant component: the complex structure moduli determine the position of the

I1, and each node imposes one additional constraint. For example, the genus-one fibration

from section 5.6 has h2,1(Y ) = 90 and 81 nodes in the I1. If we add those integers, we

arrive at 171 which is equal to the number of complex structure moduli of the SU(5) elliptic

fibration eq. (5.6). This suggests that the uncharged hypermultiplet count for genus-one

fibrations is corrected to

Hu = h2,1(Y ) + 1 +#{nodes}. (6.1)

In fact, Witten’s quantization argument for rigid curves [61] tells us that there is an

additional hypermultiplet localized at the I2 fiber over the node, so this correction is to be

expected. What is new is that this localized hypermultiplet is uncharged. It is instructive

to compare this hypermultiplet with a geometrically similar hypermultiplet that arises [25]

when there are two sections of the fibration (instead of a single 2-section). On the right-

hand side of figure 5, we have drawn the 2-section and how it intersects the I2 fiber over the

node in the base. Locally, this is indistinguishable from two distinct sections generating a

rank-one Mordell-Weil group (left figure). The difference is only visible globally: either the

two local sections stay separate globally or they meet and are exchanged at a ramification

point. In either case there is a massless hypermultiplet, either charged under the U(1)

determined by the difference of the sections, or uncharged in the case of a 2-section.

– 23 –



J
H
E
P
0
8
(
2
0
1
4
)
1
3
2

⇓

δ1 = 0

δ1 = 0

0-section

free MW (Y )-generator

I2 ⇒ one charged hyper

⇓

I2

2-section

Figure 5. Left: a localized hypermultiplet charged under a U(1) from the difference of two sections.

Right: a global monodromy preventing the U(1) gauge charge, resulting in a localized uncharged

hypermultiplet.

Note that the U(1) charge of a hypermultiplet changes sign if we exchange the role of

the zero-section and the generating section of the Mordell-Weil group. Therefore, we can

no longer assign U(1) charges to the localized hypermultiplets if the global monodromy

breaks the gauge group.17

7 Triality of E6 and monodromies

7.1 Unbroken gauge group

In this section we will take a closer look at fibrations with a Kodaira fiber of type IV ∗,

which translates into an E6 gauge group possibly broken by monodromies. In fact, we will

find new monodromy effects in section 7.5. But for the sake of a coherent presentation we

will first review the two known classes, which are known as split and non-split case [63].

To start, let us look at the unique split E6 toric elliptic fibration over P2, that is, the

model whose gauge group is unbroken E6 and nothing else. The ambient space is the toric

variety with polytope ∇1 whose points are

u v w0 w1 w2 w3 w4 w5 w6 f0 f1 f2

6 0 3 3 2 1 3 1 0 3 −1 0 2 2 1 1 1

4 0 2 2 1 1 2 0 0 2 0 −1 1 1 1 1 0

−1 0 3 2 2 2 1 1 1 0 0 0 0 1 0 1 0

−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

three tops fiber facet interior

(7.1)

and which is fibered over P2 via the projection to the last two coordinates. In terms of

homogeneous coordinates, this is the map

π : X∇1 → P2, [u : v : w0 : · · · : w6 : f0 : f1 : f2] 7→
[
u : v : w3

0w
2
1w

2
2w

2
3w4w5w6

]
(7.2)

In the case at hand, the w-top and Dynkin diagram are shown in figure 6, which con-

firms that the gauge group is E6 with no monodromy. Since the fiber polygon is that of

17Similar issues are discussed in [62].
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Figure 6. The split E6 top and associated Dynkin diagram.

P2[1, 2, 3], we are in the favorable case where a Calabi-Yau hypersurface coincides with its

Weierstrass model. There is a toric section V (f0) meeting the fiber component V (w4) ∩ F

in a point [44], a toric 2-section V (f2) meeting V (w5)∩F and V (w6)∩F in one point each,

and a toric 3-section V (f3) meeting V (w6)∩F in a single point and meeting V (w3)∩F in a

point with multiplicity two (for a total of 3 points). It is straightforward to check that the

Tate algorithm [63–65] and monodromy equation [60] agrees with the above identification

of the gauge group.

The elliptic fiber degenerates further over a number of points in the base. The most

basic degeneration is where the vanishing degree (deg f, deg g, deg∆) of the Weierstrass

coefficients and discriminant is enhanced from (3, 4, 8) to (3, 5, 9). In general the degen-

eration encodes charged matter content of the 6-d theory, and this particular one yields

a 27 of E6, and requires an intersection of the IV ∗ discriminant component and the I1
discriminant component with multiplicity 4. Hence, by degree counting, one expects that

the toric IV ∗ discriminant component intersect the I1 discriminant component in 7 points

of multiplicity 4. A numerical analysis of a general toric hypersurface equation confirms

this. To summarize, the generic Calabi-Yau hypersurface Y1 ⊂ X∇1 has Hodge numbers

h1,1(Y1) = 8, h2,1(Y1) = 161. The 6-d F-theory compactification is a E6 gauge theory with

7× 27. This satisfies the gauge and gravitational anomaly cancellation conditions

Hu = h2,1 + 1 = 162, Hc = 7 · 27, V = 78

Hu +Hc − V = 273, 18b = 7 · 6− 24, 3b2 = 7 · 3− 18
(7.3)

for b = 1.

7.2 Alternative gauge groups

Strictly speaking, the smooth Calabi-Yau threefold constructed in section 7.1 does not yield

any gauge interactions. Instead, one must contract some irreducible fiber components. The

– 25 –



J
H
E
P
0
8
(
2
0
1
4
)
1
3
2

ensuing singularity is what is responsible for the 5-d gauge group, from which we infer the

6-d gauge group. (The compactification to 5-d gives the Coulomb branch of the 6-d theory,

which may exhibit a variety of unbroken subgroups, all containing the Cartan subgroup.)

The conventional way in which the 6-d group was determined was to generate a 5-d gauge

group by contracting all irreducible fiber components except the one meeting the section,

which produced a maximal group. The inference that this must coincide with the 6-d group

is clear.

Note that when there is more than one section a choice must be made, but the groups

obtained are all isomorphic to each other. However, when there is no section, the situation

is different and it is possible to produce different maximal 5-d gauge groups which are not

contained in one another (somewhat analogous to the situation described in [66]). We will

see explicit examples of this shortly.

However, let us first just consider the E6 theory from section 7.1. We can, for example,

shrink all components except the three irreducible fiber components at the three ends of

the E6 extended Dynkin diagram, even though the unique section passes through only one

of them. This amounts to the Levi type18 branching rule

E6 ⊃ D4,

ad(E6) = ad(D4)⊕ 2
(
8v ⊕ 8s ⊕ 8c

)
⊕ 2× 1,

27 = 8v ⊕ 8s ⊕ 8c ⊕ 3× 1.

(7.4)

The anomaly virtual representation restricts to

H − V = 7× 27⊖ ad(E6) = 5
(
8v ⊕ 8s ⊕ 8c

)
⊕ 19× 1⊖ ad(D4), (7.5)

and we obtain a D4 = SO(8) gauge theory with 5 copies of vector, spinor, and conjugate

spinor as well as Hu = h2,1 + 1 + 19 uncharged hypers. Of course we recognize this as

the Higgs mechanism: some of the vector multiplets got massive, eating a hypermultiplet

partner in the process. In particular, the anomaly cancellation condition is preserved.

By contrast, let us now shrink all irreducible fiber components except the central one19

in the E6 extended Dynkin diagram, see figure 6. This is allowed by the geometry, that is,

there exists a particular triangulation of the face fan of the polyhedron such that V (w0)

is the only fibral divisor that does not vanish at a particular face of the Kähler cone.

Contracting two simply laced nodes creates an A2 singularity, so the resulting gauge group

is A3
2 = SU(3)3. The corresponding branching rule is

E6 ⊃ SU(3)3,

ad(E6) = (8,1,1)⊕ (1,8,1)⊕ (1,1,8)⊕ (3,3,3)⊕ (3,3,3),

27 = (3,3,1)⊕ (1,3,3)⊕ (3,1,3).

(7.6)

This is an extended type branching rule, corresponding to the removal of a node from the

extended Dynkin diagram. Note that the E6 and A3
2 theories stand on the same footing as

18That is, a branching rule corresponding to the removal of nodes from the (non-extended) Dynkin

diagram.
19Note that a section cannot pass though the central node: its multiplicity is three, so only (3n)-sections

can pass through it.
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Figure 7. The F4 top with Z2 monodromy and associated contracted Dynkin diagram.

both correspond to the removal of a single node from the extended Dynkin diagram. We

are just picking a different compact subgroup of the affine E6. In particular, neither can be

obtained by the Higgs mechanism from the other. Note that the 6-d theory obtained this

way is not a standard gauge theory as it contains exotic vector multiplets in the (3,3,3)

and (3,3,3) representation in addition to the gauge multiplets.

7.3 The non-split case

We now proceed to the so-called non-split IV ∗, that is, a IV ∗ Kodaira fiber with a Z2

monodromy exchanging two of the three legs [67]. This is interpreted as E6 broken to F4

by the monodromy. The toric ambient space corresponds to the polytope ∇2 with points

u v w0 w1 w2 w3 w4 f0 f1 f2

0 7 0 0 1 0 2 3 −1 0 0 1 1 1 2

0 4 2 1 2 0 2 2 0 −1 1 0 1 1 1

−1 0 3 2 2 1 1 0 0 0 1 0 0 1 0

−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

three tops fiber facet interior

(7.7)

The coordinates are again chosen such that the only non-trivial discriminant component

comes from the w-top, which is depicted in figure 7. The toric section V (f0) intersects

the irreducible fiber component V (w4) ∩ F in a single point, and the toric 3-section V (f2)

intersects the irreducible fiber component V (w0)∩F in a point with multiplicity 3. The toric

2-section V (f2) intersects the fiber component V (w3)∩F in two points. Since the latter has

multiplicity one, the fiber component V (w3)∩F must consist of two irreducible components.

This explains why the Dynkin diagram is contracted as on the left hand side of figure 7.

The standard choice in contracting the fiber components is to contract every one except

V (w4). This leads to a F4 gauge theory, namely E6 broken by the Z2 monodromy. As for the
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Figure 8. Different contractions of the IV ∗ Kodaira fiber with Z2 monodromy (vertical arrows).

Left: contract all components not intersecting the given section ⇒ F4. Right: contract everything

except the rightmost monodromy orbit ⇒ B4.

matter content, one again expects the most simple degeneration of the Weierstrass model

where the vanishing degree (deg f, deg g, deg∆) jumps from (3, 4, 8) to (3, 5, 9). If one

allows non-trivial monodromy, this requires a double intersection of the IV ∗ and I1 divisor

components. Hence, by degree counting, there should be 14 such points and a numerical

analysis of the Weierstrass hypersurface equation indeed confirms this. Unlike in the case

without monodromy, there is no curve stuck over these codimension-two points in the base.

Instead, the matter comes from one-parameter families of curves over the IV ∗ discriminant

locus and is determined by the Euler characteristic of their moduli space. In particular,

the moduli space here is the base P1 branched at 14 points, that is, a Riemann surface

of genus 6. To summarize, the generic Calabi-Yau hypersurface Y2 ⊂ X∇2 has Hodge

numbers h1,1(Y2) = 6, h2,1(Y2) = 180. The 6-d F-theory compactification is a F4 gauge

theory with 6 × 26 matter hypermultiplets.20 This satisfies the gauge and gravitational

anomaly cancellation conditions21

Hu = h2,1 + 1− 6 · 2 = 169, Hc = 6 · 26, V = 52

Hu +Hc − V = 273, 18b = 6 · 6− 18, 3b2 = 6 · 3− 15
(7.8)

for b = 1.

7.4 Starting at the other end

Instead of picking the fiber component intersecting the given section, we can also pick the

two fiber components, exchanged by the monodromy, at the other end of the contracted

Dynkin diagram (see figure 8). Shrinking all the complementary fiber components, we

arrive at a B4 gauge theory. We can use the extended-type F4 ⊃ B4 branching rule

F4 ⊃ B4,

ad(F4) = ad(B4)⊕ 16,

26 = 16⊕ 9⊕ 1

(7.9)

to convert one into the other. To actually break the gauge group to B4, the 16 vector

multiplet pairs up with a corresponding hypermultiplet and becomes massive. Hence we

20This matches the restricting of the anomaly virtual representation H−V under the E6 ⊃ F4 branching

rule. Since the branching rule is of symmetric type, this breaking is not the traditional Higgs mechanism.
21Note that the charged dimension [59, 60] of 26 is 24. We review its definition in section A. In order to

count a charged hyper as a complete 26, we have to also remove two unchanged hypers.
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obtain a B4 gauge theory with 5 × 16 and 6 × 9 charged hypermultiplets. The charged

dimension of 9 is only 8, so we have to subtract 6 uncharged hypermultiplets to avoid

overcounting. The resulting matter content cancels the gauge and gravity anomalies

Hu = h2,1 + 1− 6× 1 = 175, Hc = 5 · 16 + 6 · 9, V = 36

Hu +Hc − V = 273,

18b = 5 · 4 + 6 · 2− 14, 0 = 5 · (−2) + 6 · 2− 2, 3b2 = 5 · 3 + 6 · 0− 12

(7.10)

for b = 1.

More systematically, we can derive the hyper and vector multiplet count from the geom-

etry of the elliptic fibration. Since identifying the correct branching rule will be somewhat

tricky in an example that we encounter later on, let us walk through the more pedestrian

argument. In the case with monodromy, note that there are no isolated codimension-two

curves stuck over a point in the base and the proper way to count the non-isolated curves is

by the genus of their moduli space. The trick is to identify all (possibly reducible) curves,

count the number of massless fields supported on them, and then reassemble the compo-

nent fields into gauge multiplets. For purposes of the exposition, let us stick to an IV ∗

Kodaira fiber whose irreducible fiber components correspond to the simple Ẽ6 roots. The

roots are generated by the simple roots, and we henceforth identify

• The 72 roots ±αi of E6,

• The affine roots
⋃{

(α; 0), (θ − α; 1)
}
where θ is the highest root of E6,

• Curves

C =
∑

aiCi =

(
a2 a5

a4 a1 a0
a3 a6

)
(7.11)

of self-intersection C · C = −2 in F .

Clearly, the positive roots αi correspond to the affine roots (αi; 0) which correspond to

curves not wrapping the extended node in the Dynkin diagram. Flipping the sign of αi

corresponds to α̂i 7→ (θ, 1)− α̂i which corresponds to C 7→ F − C.

We are interested in the case where the gauge group is broken both by leaving some

irreducible fiber components at finite size and by a monodromy group Γ acting by permu-

tation on the affine roots. A fiber component C can be moved along the discriminant, and

we take the moduli space to be a curve of genus g′(MC). We say that a curve shrinks if

either C or F −C has zero volume, that is, does not wrap any irreducible fiber component

chosen to have finite size.

• Each monodromy orbit ΓC of a shrinking curve yields g′(MC) hypermultiplets and

1 vector multiplet.

• Each monodromy orbit ΓC of a finite-size curve yields g′(MC) − 1 hypermultiplets

and no vector multiplets.
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In the B4 example, we distinguish two curve types: if the curve is fixed by the monodromy,

then its moduli space equals the corresponding discriminant component (which is a P1).

If the fiber component is exchanged by monodromy, then it is a branched double cover of

P1. The number of branch points can be read off from the Weierstrass model, and we find

14. Hence, the moduli space of curves that are not fixed under the monodromy action is a

Riemann surface of genus g′ = 6. The roots are tabulated in table 3. We see that, indeed,

the spectrum consists of a vector multiplet in the adjoint of B4 as well as 5 × 16 and

6× 9 hypermultiplets. Finally, we can also systematically count the number of uncharged

hypermultiplets. The weight zero subspace of the adjoint of E8 is 6, which means that

this many complex structure moduli are actually frozen by requiring a IV ∗ Kodaira fiber.

This is already accounted for in the gravitational anomaly where the complete V including

its weight zero subspace is subtracted from the number of complex structure moduli. To

assemble the components in table 3 into complete B4 representations, we need 4 uncharged

fields for the adjoint and one uncharged field for the 9. The adjoint field is the gauge vector

multiplet, and its weight zero subspace is already accounted for. Therefore, the remaining

number of B4-uncharged hypermultiplets equals

Hu = h2,1 + 1− 6 · 1 = 175 ⇒ Hu +Hc − V = 273. (7.12)

7.5 A novel monodromy effect

The third model with a IV ∗ Kodaira fiber under consideration will have a different fiber

ambient space, namely P2 instead of P2[1, 2, 3]. The effect of this change is that the toric

ambient space no longer forces the fibration to have a section but only 3-sections. Explicitly,

we consider the polytope ∇3 with points

u v w0 w1 w2 f0 f1 f2

0 −1 1 1 1 1 0 −1 0

0 1 0 0 0 0 1 −1 0

−1 0 3 2 1 0 0 0 1

−1 1 0 0 0 0 0 0 0

three tops fiber facet interior

(7.13)

where again the only non-trivial discriminant component comes from the w-top. Each of

V (f0), V (f1), and V (f2) is a toric 3-section. From the intersection numbers we conclude

that, restricted to a generic fiber F , V (w0) ∩ F consists of a single P1 of multiplicity 3,

V (w1) ∩ F consists of three disjoint P1 of multiplicity 2, and V (w2) ∩ F consists of three

disjoint P1 of multiplicity 1. Therefore, the affine E6 Dynkin diagram is folded as in figure 9

into the ambient toric divisors. Each of the three disconnected components of V (w2) ∩ F

intersects the irreducible three-section V (f0) in a point. Hence, the monodromy action

freely permutes the three irreducible components in V (w2)∩F . In particular, there cannot

be a section (toric or not) in this genus-one fibration as it would unambiguously mark one

of the three components.

As discussed in section 5, the lack of a section allows for nodes in the I1 discriminant

component. In fact, a numerical analysis of a generic Calabi-Yau hypersurface finds that
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Figure 9. The G2 top with S3-monodromy and associated Dynkin diagram.

there are 108 nodes in the I1 discriminant component, all of which are away from the

IV ∗ discriminant component. This contributes an extra 108 uncharged hypermultiplets

localized in codimension-two over the base.

For any gauge theory to arise, one needs to contract some of the fiber irreducible compo-

nents. Since there is no section, the standard prescription cannot be applied. The minimal

generalization would be to contract all three irreducible components V (w2)∩F , and this is

what we will consider in the remainder of this subsection. This corresponds to the E6 ⊃ G2

branching rule, the composition of E6 ⊃ D4 from eq. (7.4) with the symmetric-type

D4 ⊃ G2 branching rule. There is no change in the Weierstrass model compared to the non-

split E6, so we still expect 14 branch points over the IV ∗ discriminant locus. This is con-

firmed by a numerical analysis of a generic Calabi-Yau hypersurface. There are three pos-

sible stabilizers under the symmetric group action, leading to the following types of roots:

• The moduli space of a S3-symmetric curve is still P1. For

example, the moduli space of the central fiber component

C0 = V (w0) ∩ F is still P1.

0 0
0 0 1

0 0

• The moduli space of a Z2-invariant curve is a triple cover

of P1 branched at 14 points. Such a Riemann surface has

genus g′ = 5. For example, C1 which is one of the three

irreducible components of V (w1) ∩ F .

0 0
0 1 0

0 0

• The moduli space of a curve with trivial S3-stabilizier is a

sixfold cover over P1 branched at 14 points. At each ram-

ification point, the six sheets meet in three pairs. Hence,

the moduli space is a Riemann surface of genus g′ = 16.

1 0
1 1 2

2 1

The spectrum is tabulated in table 4 using the method explained in section 7.4. Reassem-

bling the massless fields into G2 representations, we find one adjoint (14) vector multiplet

– 32 –



J
H
E
P
0
8
(
2
0
1
4
)
1
3
2

Γ-orbit G2-wt. g′(C) H V
1 11 1 2 1 1 (−3, 3) 0 0 1

0 00 0 1 0 0 (−3, 6) 0 0 1

1 11 1 1 1 1 ( 0, −3) 0 0 1

1 00 1 2 1 0 ( 0, 3) 0 0 1

2 11 2 2 2 1 ( 3, −6) 0 0 1

1 00 1 1 1 0 ( 3, −3) 0 0 1

2 11 1 3 2 1
1 11 2 3 2 1

2 11 2 3 1 1 (−2, 3) 5 5 1

1 11 1 2 2 1
2 11 1 2 1 1

1 11 2 2 1 1 (−1, 0) 5 5 1

0 00 0 1 1 0
1 00 0 1 0 0

0 00 1 1 0 0 (−1, 3) 5 5 1

2 11 1 2 2 1
1 11 2 2 2 1

2 11 2 2 1 1 ( 1, −3) 5 5 1

1 00 0 1 1 0
0 00 1 1 1 0

1 00 1 1 0 0 ( 1, 0) 5 5 1

0 00 0 0 1 0
1 00 0 0 0 0

0 00 1 0 0 0 ( 2, −3) 5 5 1

0 00 0 1 1 1
1 10 0 1 0 0

0 01 1 1 0 0 (−2, 3) 5 4 0

1 10 1 2 1 1
1 01 1 2 1 1

1 11 1 2 1 0 (−2, 3) 5 4 0

0 00 0 0 0 1
0 10 0 0 0 0

0 01 0 0 0 0 (−1, 0) 5 4 0

1 10 0 1 1 1
0 01 1 1 1 1

1 11 1 1 0 0 (−1, 0) 5 4 0

1 00 1 2 1 1
1 10 1 2 1 0

1 01 1 2 1 0 (−1, 3) 5 4 0

2 10 1 3 2 1
1 01 2 3 2 1

2 11 2 3 1 0 (−1, 3) 5 4 0

0 00 0 0 1 1
1 10 0 0 0 0

0 01 1 0 0 0 ( 1, −3) 5 4 0

1 10 1 1 1 1
1 01 1 1 1 1

1 11 1 1 1 0 ( 1, −3) 5 4 0

1 00 1 2 2 1
2 10 1 2 1 0

1 01 2 2 1 0 ( 1, 0) 5 4 0

2 10 2 3 2 1
2 01 2 3 2 1

2 11 2 3 2 0 ( 1, 0) 5 4 0

1 00 1 1 1 1
1 10 1 1 1 0

1 01 1 1 1 0 ( 2, −3) 5 4 0

2 10 1 2 2 1
1 01 2 2 2 1

2 11 2 2 1 0 ( 2, −3) 5 4 0

1 00 0 1 1 1
0 00 1 1 1 1

1 10 0 1 1 0
1 10 1 1 0 0

0 01 1 1 1 0
1 01 1 1 0 0

( 0, 0) 16 15 0

1 10 1 2 2 1
2 10 1 2 1 1

1 01 1 2 2 1
1 01 2 2 1 1

2 11 1 2 1 0
1 11 2 2 1 0

( 0, 0) 16 15 0

Table 4. The Γ = S3-orbits of the 72 curves, G2 weight, genus of the moduli space, and the

resulting number of hyper and vector multiplets. The weight under G2 is the intersection product

with C1 + C2 + C3 and 3C0.
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and 5+ 4+ 4 = 13 hypermultiplets transforming in the the fundamental 7. There are also

15+15 = 30 additional uncharged hypermultiplets. To summarize, the generic Calabi-Yau

hypersurface Y3 ⊂ X∇3 has Hodge numbers h1,1(Y3) = 4, h2,1(Y3) = 70. The 6-d F-theory

compactification is a G2 gauge theory with 13 × 7 matter hypermultiplets. This satisfies

the gauge and gravity anomaly cancellation conditions22

Hu = h2,1 + 1− 13 · 1 + 30 + 108 = 196, Hc = 13 · 7, V = 14

Hu +Hc − V = 273, 18b = 13 · 2− 8, 3b2 = 13 · 1− 10
(7.14)

for b = 1.

7.6 Alternative limits

There is no particular reason to pick the monodromy orbit at the ends of the affine E6

Dynkin diagram as the curves to keep at finite size. Certainly, there is no given section

that would single out this choice. Another possibility is to select the central (monodromy-

invariant) node. As we will see, this choice leads to a 5-d theory with some interesting

features, and suggests similar features of the 6-d F-theory limit.

First, the unbroken gauge group is A2 = SU(3): not shrinking the central node yields

an A3
2 gauge group as discussed in section 7.2. The S3 monodromy breaks it further to

the diagonal A2. Note that the monodromy is the same as in section 7.5, only the choice

of shrinking curves differs. Breaking the anomaly virtual representation by this branching

rule leads to

H − V = 7× 27⊖ ad(E6) = 14× ad
(
SU(3)

)
⊕ 19× 1⊖ Sym3(3)⊖ Sym3(3). (7.15)

Surprisingly, this representation content is at odds with Witten’s rule [61] for counting fields

by the genus of the moduli space of the curves (as reviewed in section 7.4). In particular, the

näıve application would result in the same SU(3)-representations for vectors and hypers

in contrast to the branching rule. The resolution of this puzzle must be that there are

additional massless degrees of freedom, and indeed there ought to be: the central P1 fiber

component, which we chose to leave at finite size, has multiplicity three. Therefore, one has

additional infinitesimal23 deformations that ought to manifest themselves as massless fields.

We can understand this multiplicity in more detail by writing down the projection

map. For the smooth Calabi-Yau hypersurface, this is

X∆3 → P2, [u : v : w0 : w1 : w2 : f1 : f2 : f3] 7→ [u : v : w3
0w

2
1w2] (7.16)

for any smooth triangulation of the polytope eq. (7.13) respecting the fibration structure.

Now, contracting all fiber components except the central node amounts to removing the

rays corresponding to w1 and w2 from the fan and merging their star into a single cone,

making the triangulation coarser. The projection map of this singular toric variety is

X∆′

3
→ P2, [u : v : w0 : f1 : f2 : f3] 7→ [u : v : w3

0] (7.17)

22Similar to eq. (7.8), note that the charged dimension of 7 is 6.
23They do not extend to finite deformations, which means that there is a superpotential term that prevents

them from acquiring a vev.
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Γ-orbit A2-wt. g′ H V
1 11 1 2 1 1 (−3, 3) 0 0 1

0 00 0 1 0 0 (−3, 0) 0 0 1

1 11 1 1 1 1 ( 0, 3) 0 0 1

1 00 1 2 1 0 ( 0, −3) 0 0 1

2 11 2 2 2 1 ( 3, 0) 0 0 1

1 00 1 1 1 0 ( 3, −3) 0 0 1

2 11 1 3 2 1
1 11 2 3 2 1

2 11 2 3 1 1 (−2, 1) 5 6 2

1 11 1 2 2 1
2 11 1 2 1 1

1 11 2 2 1 1 (−1, 2) 5 5 1

0 00 0 1 1 0
1 00 0 1 0 0

0 00 1 1 0 0 (−1, −1) 5 5 1

2 11 1 2 2 1
1 11 2 2 2 1

2 11 2 2 1 1 ( 1, 1) 5 5 1

1 00 0 1 1 0
0 00 1 1 1 0

1 00 1 1 0 0 ( 1, −2) 5 5 1

0 00 0 0 1 0
1 00 0 0 0 0

0 00 1 0 0 0 ( 2, −1) 5 6 2

0 00 0 1 1 1
1 10 0 1 0 0

0 01 1 1 0 0 (−2, 1) 5 4 0

1 10 1 2 1 1
1 01 1 2 1 1

1 11 1 2 1 0 (−2, 1) 5 4 0

0 00 0 0 0 1
0 10 0 0 0 0

0 01 0 0 0 0 (−1, 2) 5 5 1

1 10 0 1 1 1
0 01 1 1 1 1

1 11 1 1 0 0 (−1, 2) 5 4 0

1 00 1 2 1 1
1 10 1 2 1 0

1 01 1 2 1 0 (−1, −1) 5 4 0

2 10 1 3 2 1
1 01 2 3 2 1

2 11 2 3 1 0 (−1, −1) 5 5 1

0 00 0 0 1 1
1 10 0 0 0 0

0 01 1 0 0 0 ( 1, 1) 5 5 1

1 10 1 1 1 1
1 01 1 1 1 1

1 11 1 1 1 0 ( 1, 1) 5 4 0

1 00 1 2 2 1
2 10 1 2 1 0

1 01 2 2 1 0 ( 1, −2) 5 4 0

2 10 2 3 2 1
2 01 2 3 2 1

2 11 2 3 2 0 ( 1, −2) 5 5 1

1 00 1 1 1 1
1 10 1 1 1 0

1 01 1 1 1 0 ( 2, −1) 5 4 0

2 10 1 2 2 1
1 01 2 2 2 1

2 11 2 2 1 0 ( 2, −1) 5 4 0

1 00 0 1 1 1
0 00 1 1 1 1

1 10 0 1 1 0
1 10 1 1 0 0

0 01 1 1 1 0
1 01 1 1 0 0

( 0, 0) 16 15 0

1 10 1 2 2 1
2 10 1 2 1 1

1 01 1 2 2 1
1 01 2 2 1 1

2 11 1 2 1 0
1 11 2 2 1 0

( 0, 0) 16 15 0

Table 5. The Γ = S3-orbits of the 72 curves, A2 weight, genus of the moduli space, and the

resulting number of hyper and vector multiplets. The weight under A2 is the intersection product

with C1 + C2 + C3 and C4 + C5 + C6.

and we see that turning on w0 infinitesimally does indeed not move the fiber to first order.

We note that this is a novel feature of not having a section: a section can only intersect

the fiber in a single point (counted with multiplicity), that is, a point on a fiber component

with multiplicity one. Only a three-section can intersect the central node of the affine E6

in a single point of multiplicity three. Hence, we propose the following addition to the

Witten’s rule for counting the massless spectrum:

• Each curve C that does not wrap a fiber irreducible component whose multiplicity is

one yields an additional hyper/vector multiplet pair.
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Note that, as before, this is meant to apply to curves such that either C or F − C does

not wrap a multiplicity-one curve, that is, either a4 = a5 = a6 = 0 or a4 = a5 = a6 = 1. In

table 5 we applied this modified rule to count the hyper- and vector multiplets.

In terms of A2-representations, the weights näıvely assemble into Sym3(3)⊕ Sym3(3)

of vector multiplets and vector and 14 adjoint hypermultiplets, which is at first sight quite

an odd field content. However, also note that the weights live in an index-3 sublattice of the

A2 weight lattice. Geometrically, this is because (C1+C2+C3)−(C4+C5+C6) is divisible

by 3 modulo F = 3C0+2(C1+C2+C3)+(C4+C5+C6). Hence, we should have used these

refined curve classes which amounts to the intersection numbers spanning the whole weight

lattice instead of a index-3 sublattice. Hence, we identify the actual field content as vector

multiplets transforming in the ad
(
SU(3))⊕ 2× (3⊕ 3) and hypermultiplets transforming

as 14× (3⊕ 3). The vector multiplets not in the adjoint can pair up with hypermultiplets

and become massive, leaving us with an ordinary SU(3) gauge theory with 12 × (3 ⊕ 3)

charged hypermultiplets, canceling the non-Abelian gauge anomaly

18b = 12 · (1 + 1)− 6, 3b2 = 12 ·
(
1

2
+

1

2

)
− 9 (7.18)

for b = 1. To count the uncharged hypermultiplets, note that there are again 2 × 15

uncharged fields localized along the discriminant, see table 5, and 108 fields localized in

codimension-two at the cusps of the I1 discriminant component. Together, they cancel the

gravitational anomaly as

Hu = h2,1 + 1 + 30 + 108, Hc = 12 · (3 + 3), V = 8, Hu +Hc − V = 273. (7.19)

8 The Shioda-Tate(-Wazir) formula

The divisors in a smooth elliptic fibration π : Y → B are either (multi-)sections, that is,

map to all of B, or vertical, that is, their image is again codimension-one in the base. The

vertical case can be further subdivided in the case where divisor contains the entire fiber

or only irreducible fiber components. In particular, one has the following divisors:

• The given section σ,

• sections Si, i = 1, . . . , rankMW (Y ) forming a basis of the Mordell-Weil group,

• Pull-backs from the base, Bj = π−1(bj), j = 1, . . . , h1,1(Y ),

• and fibral divisors Tδ,k that are irreducible components of the preimage π−1(δ) of

irreducible components of the discriminant, δ ⊂ ∆. The subscript k = 0, . . . ,Kδ − 1

labels the irreducible fiber components modulo the monodromy action.

To avoid obvious homology relations, we considered a basis for the Mordell-Weil group

and the base divisors bj here. For the fibral divisors Tδ,k one further notes that the sum

over all fiber components is already generated by the Bj , so we have to exclude one of the

fiber components. Customarily, one excludes the component intersecting the given section
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(labeled k = 0), so we demand that k ≥ 1. The Shioda-Tate formula [68–70] (extended to

threefolds by Wazir [71]) statess that these generate all divisor classes, that is,

h1,1(Y ) = 1 + rankMW (Y ) + h1,1(B) +
∑

δ

(Kδ − 1) (8.1)

Now consider a genus-one fibration Y ′ → B without a section. Even if there is no

section, there is always some multi-section σ′ for a sufficiently high degree for a projective

genus-one fibration, generating some one-dimensional subspace of h1,1(Y ′). Hence, the

generalization of Shioda-Tate-Wazir formula still contains the “1+” part.

As for the fibral divisors, the story also generalizes in an obvious way. Even if there

are more general monodromies, one still has to group irreducible fiber components into the

K ′
δ monodromy orbits. One of these fibral divisors needs to be excluded to avoid homology

relations with the divisors Bj . We cannot rely on a section to pick it, but any choice is fine.

Finally, consider the term involving the Mordell-Weil group. For a genus-one fibration

Y ′ we still have an associated Mordell-Weil group MW (J(Y ′)) of the Jacobian. Recall that

the Mordell-Weil group acts by translations (birationally) on the points of the elliptic fibra-

tion. This action commutes with the twist by an element of the Tate-Shafarevich group,

and therefore extends to an action on the genus-one fibration. Hence we can act on the

chosen multi-section σ′ to produce new multi-sections S′
i(σ

′) of the same degree. Moreover,

free generators in the Mordell-Weil group cannot fix σ′. In fact, the set of images S′
i(σ

′)

for a basis i = 1, . . . , rankMW (J(Y ′)) are again independent multi-sections in homology.

To summarize, the Shioda-Tate-Wazir formula generalized to

h1,1(Y ′) = 1 + rankMW (J(Y ′)) + h1,1(B) +
∑

δ

(K ′
δ − 1) (8.2)

for genus-one fibrations. By the analogous argument as in the case with a section, we can

identify the Mordell-Weil lattice with the Abelian gauge bosons in the F-theory compacti-

fication. That is, the F-theory gauge group is G×U(1)r with r = rankMW (J(Y )) and G

a simple Lie group.
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A Representation theory in sage

The representation theory of semisimple Lie groups is of course a well-known subject.

However the richness of representations and branchings often requires us to look through

tables, which is quite tedious. In this appendix we would like to give a quick introduction

to Sage [72, 73] (http://www.sagemath.org) and show how one can use it to compute

with representations. Let us start by defining the adjoint representation of E6:

sage: E6 = WeylCharacterRing(’E6’, style=’coroots ’)
sage: E6.dynkin_diagram ()

O 2
|
|

O---O---O---O---O
1 3 4 5 6
E6

sage: AdjE6 = E6(0,1,0,0,0,0)
sage: AdjE6 # print the representation

E6(0,1,0,0,0,0)

sage: AdjE6.degree () # its dimension

78

sage: AdjE6 * AdjE6 # tensor product

E6(0,0,0,0,0,0) + E6(0,1,0,0,0,0) + E6(0,2,0,0,0,0) +
E6(0,0,0,1,0,0) + E6(1,0,0,0,0,1)

Here, we used the coroots (a.k.a. Dynkin labels), which are non-negative integers corre-

sponding to the nodes of the Dynkin diagram, to define the representation AdjE6. The

branch() method computes the branching of the representation to a subgroup. In sim-

ple cases it will be able to guess the desired branching rule, for example the Levi-type

branching rule associated to removing a node from the Dynkin diagram:

sage: D5 = WeylCharacterRing(’D5’, style=’coroots ’)
sage: AdjE6.branch(D5) # defaults to rule=’levi’

D5(0,0,0,0,0) + D5(0,0,0,1,0) + D5(0,0,0,0,1) + D5(0,1,0,0,0)

However, in general you have to specify it with the rule=<rulename> keyword option. For

example, applying the Levi-type rule twice:24

sage: D4 = WeylCharacterRing(’D4’, style=’coroots ’)
sage: levi2x = branching_rule(E6 , D5 , rule=’levi’) * \
....: branching_rule(D5, D4, rule=’levi’)
sage: levi2x

composite branching rule E6 => (levi) D5 => (levi) D4

sage: AdjE6.branch(D4 , rule=levi2x)

2*D4(0,0,0,0) + 2*D4(0,0,1,0) + 2*D4(0,0,0,1) +
2*D4(1,0,0,0) + D4(0,1,0,0)

24Requires Sage version 6.1 or later.
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G An Bn Cn Dn G2 F4 E6 E7 E8

λG 1 2 1 2 2 6 6 12 60

Table 6. Extra normalization factor in the fundamental trace.

In addition to the Levi-type branching rules, there is a variety of other ones implemented.

In particular, all branchings to maximal subgroups are. As a fancy example, here is the

(non-maximal) branching rule associated to the automorphism of the D4 Dynkin diagram:

sage: G2 = WeylCharacterRing(’G2’, style=’coroots ’)
sage: D4(0,1,0,0). branch(G2 , rule=’symmetric ’)

2*G2(1,0) + G2(0,1)

sage: D4(0,1,0,0). degree(), G2(1,0). degree(), G2(0,1). degree ()

(28, 7, 14)

So the irreducible representations decompose as ad(D4) = 2 × 7 ⊕ 14 for this particular

embedding D4 ⊃ G2. Each representation can be restricted to a maximal torus T ⊂
G, where it decomposes further into a sum of one-dimensional representations since T is

Abelian. These are the weights of the representation, and can be enumerated using

sage: G2(1 ,0). weight_multiplicities ()

{(-1, 1, 0): 1, (0, 1, -1): 1, (1, 0, -1): 1, (0, 0, 0): 1,
(-1, 0, 1): 1, (0, -1, 1): 1, (1, -1, 0): 1}

In particular, we can read off the multiplicity of the trivial weight having multiplicity 1

in 7. The number of all non-trivial weights is the charged dimension [59, 60], and we just

computed that the charged dimension of 7 is 6.

Finally, one would like to know the anomaly coefficients. These are integers AR, BR,

and CR associated to representations R such that25

trR F 2 = AR
1

λG
trF 2, trR F 4 = BR

1

λG
trF 4 + CR

(
1

λG
trF 2

)2

, (A.1)

where trR is the trace over the Lie algebra generator in the representation R and tr is the

trace over the fundamental representation. We will be using the integral normalization [60]

where the factors λG listed in table 6 are absorbed into the anomaly coefficients. That is,

we use the properly normalized 1
λG

tr for the trace over the fundamental representation in

eq. (A.1). However, note that much of the physics literature uses the convention where

the λG prefactors are not absorbed. This then requires compensating factors of λG in the

gauge anomaly cancellation condition, which is why we are not following this convention.

The traces on the right hand sides of eq. (A.1) are easily determined by restriction, that

is, branching to a subgroup. We will be using SU(4), the simplest group with a quartic

Casimir. There are various bases one can use for the representations of SU(4), for example

25If the group G does not have an independent quartic Casimir operator then the two parameters BR, CR

are not uniquely determined. It is customary to define BR = 0 in that case. The computation of the anomaly

coefficients is analogous but simpler, and it suffices to just consider a SU(2) ⊂ G subgroup instead of SU(4).
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• Irreducible representation R(i, j, k) indexed by coroots,

• Tensor products 4i ⊗ 6j ⊗ 4
k
, and

• Tensor products of symmetrizations

S(i, j, k)
def
= Symi(4)⊗ Symj(6)⊗ Symk(4). (A.2)

In either basis one can explicitly construct representations in terms of tensor operations.

The traces for irreducible representations of the subgroup can then be evaluated directly.

The third basis has the advantage that, for the two particular Lie algebra generators

F1 =
1√
2
diag(+1,−1, 0, 0), F2 =

1√
2
diag(0, 0,+1,−1) (A.3)

of SU(4), one can explicitly evaluate the traces as polynomials in i, j, and k. They are

trS(i,j,k) F
2 =

1

1814400

3∏

x=1

(i+ x)
5∏

y=1

(j + y)
3∏

z=1

(k + z)

×
(
21i2 + 20j2 + 21k2 + 84i+ 120j + 84k

)
,

trS(i,j,k) F
4 =

1

1814400

3∏

x=1

(i+ x)

5∏

y=1

(j + y)

3∏

z=1

(k + z)

×
(
30i4 + 60i2j2 + 25j4 + 63i2k2 + 60j2k2 + 30k4 + 240i3 + 360i2j+240ij2

+ 300j3 + 252i2k + 240j2k + 252ik2 + 360jk2 + 240k3 + 435i2 (A.4)

+ 1440ij + 825j2 + 1008ik + 1440jk + 435k2 − 180i− 450j − 180k
)
,

trS(i,j,k) F
2
1F

2
2 =

1

163296000

3∏

x=1

(i+ x)

5∏

y=1

(j + y)

3∏

z=1

(k + z)

×
(
45i4 + 180i2j2 + 125j4 + 189i2k2 + 180j2k2 + 45k4 + 360i3 + 1080i2j

+ 720ij2 + 1500j3 + 756i2k + 720j2k + 756ik2 + 1080jk2 + 360k3

+ 495i2 + 4320ij + 4525j2 + 3024ik + 4320jk + 495k2 − 900i+ 150j−900k
)
.

Since the (usually reducible) representations S(i, j, k) form a basis, one can express any

representation as a linear combination of them. The anomaly coefficients then are

AR = λG
trR F 2

1

trF 2
1

= λG
trR F 2

2

trF 2
2

BR = λG
trR F 4

1 − 3 trR F 2
1F

2
2

trF 4
1

= λG
trR F 4

2 − 3 trR F 2
1F

2
2

trF 4
2

CR = λ2
G

3 trR F 2
1F

2
2(

trF 2
1

)(
trF 2

2

)

(A.5)

We implemented the above algorithm in Sage, which one can find and use at the

following URL:
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sage: load(’http :// boxen.math.washington.edu/home/vbraun/
www/anomaly_coefficients.py’)

sage: E6 = WeylCharacterRing(’E6’, style=’coroots ’)
sage: anomaly_coefficients(E6(1,0,0,0,0,0)) # the 27 of

E6

{’A’: 6, ’B’: 0, ’C’: 3}

sage: E6(3,2,0,0,0,0). degree ()

3162159

sage: anomaly_coefficients(E6(3,2,0,0,0,0))
# about 30 minutes

{’A’: 5027022 , ’C’: 22621599 , ’B’: 0}

The group D4 = Spin(8) is special in that it has three independent Casimir operators in

degree 4. There are two ways to handle this, either by introducing an additional anomaly

coefficient and another gauge anomaly cancellation condition or by demanding that the

F 4-anomaly still cancels if one acts by triality. Note that the BR, CR anomaly coefficients

transform non-trivially under triality:

sage: D4 = WeylCharacterRing(’D4’, style=’coroots ’)
sage: D4.dynkin_diagram ()

O 4
|
|

O---O---O
1 2 3
D4

sage: anomaly_coefficients(D4(1,0,0,0)) # 8_spinor

{’A’: 2, ’C’: 0, ’B’: 2}

sage: anomaly_coefficients(D4(0,0,1,0)) # 8_conjugate

{’A’: 2, ’C’: 0, ’B’: 2}

sage: anomaly_coefficients(D4(0,0,0,1)) # 8_vector

{’A’: 2, ’C’: 3, ’B’: -4}

As a final example, consider the SU(N)-representation , that is, with coroots

(0, 2, 0, . . . , 0). Knowing that the anomaly coefficients are polynomials in N , we can easily

determine them (see also table 1 of [74]):

sage: def Young2x2_SU(N):
....: SU_N = WeylCharacterRing ((’A’,N-1), style=’coroots ’)
....: young_box_2x2 = SU_N (0,2)
....: return anomaly_coefficients(young_box_2x2)
sage: R.<N> = QQ[]
sage: for X in [’A’, ’B’, ’C’]:
....: data = [(N, Young2x2_SU(N)[X]) for N in range (4 ,10)]
....: print X, ’:’ , R.lagrange_polynomial(data). factor ()
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A : (1/3) * (N - 2) * N * (N + 2)
B : (1/3) * N * (N^2 - 58)
C : (3) * (N^2 + 2)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[15] I.R. Šafarevič, Principal homogeneous spaces defined over a function field, Trudy Mat. Inst.

Steklov. 64 (1961) 316 [AMS Transl. 37 (1964) 85].

[16] N. Nakayama, Global structure of an elliptic fibration, Publ. Res. Inst. Math. Sci. 38 (2002)

451.

[17] R. Donagi and T. Pantev, Torus fibrations, gerbes and duality, Mem. Amer. Math. Soc. 193

(2008) vi+90 [math.AG/0306213] [INSPIRE].

– 42 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(96)00172-1
http://arxiv.org/abs/hep-th/9602022
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602022
http://dx.doi.org/10.1016/0550-3213(96)00242-8
http://dx.doi.org/10.1016/0550-3213(96)00242-8
http://arxiv.org/abs/hep-th/9602114
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602114
http://dx.doi.org/10.1016/0550-3213(96)00369-0
http://dx.doi.org/10.1016/0550-3213(96)00369-0
http://arxiv.org/abs/hep-th/9603161
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603161
http://dx.doi.org/10.1016/0370-2693(95)01138-G
http://arxiv.org/abs/hep-th/9508143
http://inspirehep.net/search?p=find+EPRINT+hep-th/9508143
http://dx.doi.org/10.1016/0920-5632(96)00004-7
http://dx.doi.org/10.1016/0920-5632(96)00004-7
http://arxiv.org/abs/hep-th/9508154
http://inspirehep.net/search?p=find+EPRINT+hep-th/9508154
http://www.jstor.org/stable/1970131
http://www.jstor.org/stable/1970500
http://arXiv.org/abs/alg-geom/9210009
http://dx.doi.org/10.1088/1126-6708/1998/02/006
http://arxiv.org/abs/hep-th/9712028
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712028
http://arxiv.org/abs/hep-th/0103170
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103170
http://dx.doi.org/10.4310/ATMP.2003.v7.n2.a1
http://arxiv.org/abs/hep-th/0303218
http://inspirehep.net/search?p=find+EPRINT+hep-th/0303218
http://dx.doi.org/10.1142/S0217751X00000598
http://dx.doi.org/10.1142/S0217751X00000598
http://arxiv.org/abs/hep-th/9812141
http://inspirehep.net/search?p=find+EPRINT+hep-th/9812141
http://www.jstor.org/stable/2372778
http://www.jstor.org/stable/2372778
http://dx.doi.org/10.2977/prims/1145476270
http://dx.doi.org/10.2977/prims/1145476270
http://arxiv.org/abs/math.AG/0306213
http://inspirehep.net/search?p=find+EPRINT+math/0306213


J
H
E
P
0
8
(
2
0
1
4
)
1
3
2

[18] D.R. Morrison, Wilson lines in F-theory, lecture at Harvard University, unpublished, U.S.A.

January 8 1999.

[19] P. Deligne, Courbes elliptiques: formulaire (d’après J. Tate), in Modular functions of one

variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp Belgium 1972), Lect.

Notes Math. 476, Springer, Berlin Germany (1975), pg. 53.

[20] D. Mumford and K. Suominen, Introduction to the theory of moduli, in Algebraic geometry,

Oslo Norway 1970 (Proc. Fifth Nordic Summer-School in Math.), Wolters-Noordhoff, The

Netherlands (1972), pg. 171.

[21] S.Y. An et al., Jacobians of genus one curves, J. Number Theory 90 (2001) 304.

[22] M. Artin, F. Rodriguez-Villegas and J. Tate, On the Jacobians of plane cubics, Adv. Math.

198 (2005) 366.
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