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1 Introduction

Compactifications of F-theory provide a powerful tool in the study and classification of

strongly coupled 6-dimensional theories, including 6- (and 5-dimensional) superconformal

field theories (SCFTs) [1–5]. To this end, the structure of elliptically fibered Calabi-Yau

(CY) geometries and their singular degenerations is of clear relevance. In recent work [6],

compactifications of F-theory on non-simply connected CY manifolds and their physical

implications were studied. Such CY fibrations exhibit multiple fibers (i.e. everywhere

singular fibers) and notably, the presence of discretely charged “superconformal matter.”
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More precisely, discretely charged matter is found to be localized on singular loci within

the base manifold of the fibration where orbifold-type singularities are located. Over such

points in the base, the CY fibration develops multiple fibers.1 Within the resulting effective

field theory, these singularities correspond to “strongly coupled sectors” which become

SCFTs in the limit that gravity is decoupled.

In this paper, we take a more systematic look at such CY quotients, extending previous

work [6]. In particular, we demonstrate that it is possible to systematically characterize the

effective field theories resulting from F-theory compactifications on CY quotients that are

obtained by freely acting discrete symmetries acting on covering spaces that are elliptically

fibered — i.e. torus fibered with section.

Consider such a quotient of a smooth Calabi-Yau threefold, X, by a freely acting

discrete symmetry, Γ. It has been demonstrated (see e.g. [7]) that if the symmetry Γ leads

to a resulting CY threefold, X̃ = X/Γ which is also torus fibered (π̃ : X̃ → B̃), then this

new geometry will be a genus one fibered manifold (i.e. admitting only multi-sections but

no true sections to the fibration). We will frequently refer to the covering space (X) as the

“upstairs” geometry (or in an abuse of notation, sometimes refer to the associated physics

as the “upstairs theory”) and to quotient manifold X̃ as the “downstairs” geometry (or

theory). In this work we will present a direct way of calculating the F-theory effective

physics associated to such a geometry, including the degrees of freedom associated to

singularities in the base manifold, B̃ (which lead to an An (2, 0) superconformal theory

in the decoupling limit, with discretely charged superconformal matter) using only the

geometry of the covering space X and the symmetry action thereon.

In the case of genus one fibered manifolds, it is usually a somewhat difficult process

to extract the F-theory effective physics from a compactification of a fibered manifold

without a section [8–13]. In particular, the process of writing down the physical theory is

usually accomplished by describing the Jacobian of the fibration [14] (which does admit a

holomorphic section). However, the practical construction of Jacobians of CY threefolds

is not known in general. Moreover, the strength of this construction is frequently justified

by considering the dynamical connection of a genus-one fibered manifold and its Jacobian

within an M-theory limit. However, only in some cases is it known how to explicitly and dy-

namically connect the elliptically fibered Jacobian manifold with the original multisection

fibration via conifold-type transitions [9, 12].

By contrast, here we utilize the theorem of Shioda, Tate and Wazir [15–17] to categorize

the divisors of X into those that are horizontal (i.e. sections) versus vertical (i.e. pull-backs

from divisors in the base), or fibral divisors associated to non-Abelian gauge symmetries.

By studying the action of the symmetry Γ on a set of effective divisors in this set, we

will derive a series of simple rules which will allow us to characterize the effective theory

defined on the quotient manifold and verify that the associated massless spectrum in the

6-dimensional theory is consistent with anomalies.

It should be stressed here that in the examples presented in this work, frequently the

geometry of the genus-one fibered CY manifold and its Jacobian can differ substantially2

1Notably, multiple fibers have played an important role before in the context of quotient theories in the

context of CHL [18] and little string theories [19].
2We thank M. Esole, A. Grassi, and S. Katz for helpful conversations on this point.
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(for instance h1,1(X̃) < h1,1(Jac(X̃)resolved)) and as a result, care must be taken in the

context of considering the effective physics of these examples within the framework of the

Tate-Schaferavich group [12] (or more generally, the group of CY torsors [19]). Within the

following sections we base our analysis of the particle spectrum on the smooth, genus one

fibered manifolds themselves and assume that trivial uplifts from M-theory to F-theory

exist (we will refer to this as the “Working Assumption” in later sections). However, this

point is certainly deserving of more study and we will look at the physics of such uplifts

more explicitly in a separate work [20].

To construct quotients of elliptically fibered manifolds it is necessary to systematically

understand how the discrete symmetry acts on the fibers/sections. To this end, we are aided

by previous explorations such as [7, 21, 22] which produce discrete symmetries of elliptic

CY threefolds by demanding that the discrete action maps sections into one another in

a fibration-preserving manner. As we will review in section 2, this can be accomplished

in some cases by demanding that the fibers are of a form to support Mordell-Weil (MW)

Torsion. In such a construction the rank of MW torsion in a covering space geometry is

tied to the discrete symmetry action and hence to the order of the multiple fibers and

non-trivial π1(X̃) of the quotient manifold.

In many cases we find that upstairs CY threefolds with non-trivial Abelian or non-

Abelian gauge groups lead only to discrete gauge symmetries after quotienting. In partic-

ular we will demonstrate in the following sections that this quotient approach provides a

powerful tool in explicitly building F-theory models with high rank discrete gauge groups

(and for which no existing tuned Weierstrass models were previously known).

The outline of this paper is as follows. In section 2 we review the essential features of

quotients of CY threefolds and the associated F-theory physics in 6-dimensions. In particu-

lar, we review the physics associated to fixed points in the base of the fibration and the role

played by multiple fibers in the genus-one fibration over these points. We also provide a

systematic analysis of the matter spectrum associated to the downstairs theory in terms of

the upstairs covering space theory. In section 3 we provide a number of concrete examples

of quotient manifolds, including one leading to a Z6 discrete gauge group. In section 4

we explore quotients of the so-called “split bi-cubic” or “Schoen Threefold” [23, 24] with

Hodge numbers (h1,1, h2,1) = (19, 19) where a systematic classification of possible discrete

quotients is known [22]. In this section we also collect observations from these quotient

constructions to comment on possible bounds for discrete gauge symmetries appearing in

6-dimensional F-theory compactifications (although a true bound is still an open question).

In section 5 we conclude and discuss future directions. Some technical details are deferred

to the appendices.

2 F-theory on quotient manifolds

In this section we discuss some of the general properties and constraints on the quotient ge-

ometries (and associated 6-dimensional F-theory physics) that will be considered through-

out this work. Explicit examples are provided in section 3.
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2.1 Covering geometries and their quotients

Following [7] we review the properties of smooth genus-one fibered threefolds X̃ with non-

trivial fundamental group and their covering geometries X. We start by assuming that X

is a smooth, torus-fibered Calabi-Yau threefold over a smooth two fold base B.

T → X

↓ π
B

(2.1)

In the following we want to consider quotients3 of X by free, cyclic and finite groups

Γn of order n to obtain a new Calabi-Yau manifold, X̃. We place the important additional

requirement on this group action that it preserves the fibration and as such, the quotient

geometry can be used in a compactification of F-theory. In order for the quotient to be a

Calabi-Yau manifold, X must be equipped with a discrete automorphism Γn ∈ Aut(X) that

preserves its holomorphic three form. To ensure that the quotient preserves the fibration,

we will choose the group action to be decomposable as

gn = gf ◦ gb ∀ gn ∈ Γn . (2.2)

Here gf acts solely on fiber coordinates and gb acts solely on base coordinates in a given

set of local trivializations which cover the base manifold. The gb will be elements of some

group ΓBm ⊆ Γn and the gf elements of some group ΓFq ⊆ Γn. In fact, in most of the explicit

examples we will consider, the projection map takes a very simple form in terms of simply

deleting some ambient space coordinates and the symmetry action on the Calabi-Yau 3-

fold will descend from a linear action on the ambient space. In these cases we will have a

similar factorization to (2.2) for the action on the ambient coordinates as well. In addition,

all of the cases we will consider in later sections have ΓBm = Γn.

In a situation such as the one we have described in the previous paragraph, the base

of the fibration associated to X̃ is

B̃ = B/ΓBm . (2.3)

We will require that the action of ΓBm on B admits at most fixed points under subgroups

of ΓBm of order p. These fixed points descend to singular points on B̃ which are Al−1
orbifold singularities with l = gcd(p,m). The resolution of each of these singular points

would require l− 1 exceptional curves of self intersection −2. Despite the fact that we will

generically obtain a singular base upon quotienting, the full threefold X̃ can in fact remain

smooth without blowing up the fixed points in the base if the fibers over those points are

multiple. We will discuss this point in more detail in section 2.2. A superconformal matter

sector is expected to be associated to each of these singular points [4].

3It should be noted that smooth quotients of (complex) CY n-folds by freely acting discrete automor-

phisms do not exist for n even. For K3 surfaces and CY 4-folds, the quotienting process changes the anti-

canonical class (e.g. the Enriques quotient of K3). As a result, the powerful relationship between the upstairs

and downstairs theories studied here exists only in 6-dimensions. For work on quotient 4-folds, see e.g. [76].
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The action on the fiber of ΓFq can be considered in more detail. In general, the covering

geometry X has singular fibers over the discriminant, ∆, of the fibration which is co-

dimension one in the base. For simplicity, we will require that the fixed points in the base

miss this discriminant:

S ∩∆ = ∅ . (2.4)

One way4 to avoid fixed points in the total space X can be accomplished by taking the

actions gf ∈ ΓFq to be translations along the fiber. We will consider two types of fibrations

admitting a group action which is a combination of an involution pulled back from the base

and such a fiber-wise shift.

1. The fibration admits no section but only a multi-section s(n) of order n such that X

is a genus-one fibration. The image of a point b ∈ B under the multi-section

σ(n)(b) ∈ X (2.5)

is n points on the associated torus fiber and ΓFq acts as a translation that maps this

set of solutions into one another.

2. The fibration admits a section s0, the zero-section, giving the threefold X the struc-

ture of an elliptic fibration. It is important that the zero-section not be invariant

under ΓFq , as this would lead to fixed points in X over the fixed points in the base.

This implies the presence of n additional sections σn (or at least structure which

echos such behavior over the ΓBm fixed points). Note that, given the finite nature of

the group ΓFq this implies that the sections concerned should be torsional.

The first case has been studied in detail in [6] and so, in this work, we will focus mainly

on the second of these two cases, first systematically used in string theory in [7, 25]. The

action of the shift symmetry on the sections of the elliptic curve is precisely realized by

the Mordell-Weil (MW) addition law [7, 25, 26], denoted by ⊕, of rational sections, with

the zero-section being its neutral element. As mentioned above, requiring finiteness of ΓFq
causes it to induce an action on the torsion part of the Mordell-Weil group [27, 28]. After

choosing a generating element σ1 of the torsional sections, ΓFq induces a translation Γ̂Fq
among the set of torsion sections as follows.

Γ̂Fq : σi
⊕σ1−−→ σi+1 . (2.6)

It is important to emphasize that this structure need not be realized globally. It is in

fact only necessary that the fibration takes this form locally over the ΓBm fixed points to

guarantee a smooth quotient. Indeed, it can happen that a set of n sections σi mirror the

form that torsional sections would take locally over ΓBm fixed points such that a quotient is

possible. We will return to this issue when we see examples of this phenomenon later on.

4But not the only way. See section 3.2 for an example of a different global fiber action.
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Properties of the quotients and their implications for F-theory

In this sub-section we will recall some geometrical properties of the quotient manifolds that

we will be considering and discuss the implications of these for the F-theoretical physics

that arises. First, we recall that indices, such as the Euler number, get divided by the

order of the quotient in passing to the downstairs space.

χ(X̃) =
1

n
χ(X) . (2.7)

In fact, we will need a somewhat more refined understanding of what happens to

h1,1 and h2,1 of the manifold under quotienting. For this we recall that, if the upstairs

manifold is elliptically fibered, we can, by the theorem of Shioda, Tate and Wazir [15–17],

identify divisors as being either vertical or horizontal in nature. More precisely, we have

the following division,

h1,1(X) = h1,1(B) + h1,1h (X) + h1,1f (X) , (2.8)

were h1,1h (X) and h1,1f (X) are the number of independent sections that generate the free

Mordell-Weil group and the number of fibral divisors, respectively (and we assume flat

fibrations).

Given that the divisors of the quotient manifold X̃ descend from a subset of the divisors

of the covering space, X, we will also be able, in the examples we study, to use their

antecedents on the covering space to classify the divisors on the quotient into horizontal

and fibral types as well (note that in the following we will be employing the “Working

Assumption” about the M-/F-theory uplift discussed in section 1):

h1,1(X̃) = h1,1(B̃) + h1,1h (X̃) + h1,1f (X̃) . (2.9)

Upon embedding such a geometry in F-theory, one can, in the examples we will consider,

then read off some of the physical features of the resulting theory from pieces of this

decomposition. In particular, we will use that

h1,1(B̃)− 1 = T(1,0) , h1,1f (X̃)− 1 = rk(G) , (2.10)

where T(1,0) is the number of tensor multiplets and rk(G) is the rank of the non-abelian

gauge group.

The quantities h1,1(X) and h1,1(X̃) can be different or the same, depending upon the

nature of the action of Γn. Defining ∆h1,1b =h1,1(B̃)−h1,1(B) and ∆h1,1f =h1,1(X̃)− h1,1(X)

we then have a number of possibilities as to the situation that could occur on quotienting:

1. ∆h1,1 = 0: Gauge symmetry and number of (1, 0) tensors is unchanged.

2. ∆h1,1b < 0: Number of (1,0) tensors reduced in the quotient.

3. ∆h1,1f < 0: Rank of non-Abelian gauge symmetry reduced in the quotient.

4. ∆h1,1h < 0: Rank of Abelian gauge symmetry reduced in the quotient.

– 6 –
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Cases 2 − 4 could, of course, happen in the same geometry. In the following we want to

show that quotients of elliptic fibrations necessarily have feature 3 or 4.

As argued above, if X is elliptic we need a set of additional sections σi , i = 1 . . . n− 1

to be related by the translations along the fiber over the fixed points. Since each section

intersects the fiber E once it follows that the resulting geometry is a genus-one geometry

with n-sections

σi(X) · E = 1 , σi(X̃) ∼ σ0 ∀i , (2.11)

σi → σ(n) , σ(n) · E = n . (2.12)

A central object in our story will be the Shioda map Σ(σi), that is a group homomorphism

of a section σi into H1,1(X) of the threefold. If these sections live in the free part of the

MW group then each one of them corresponds to a linearly independent divisor leading to

an U(1)n−1 gauge symmetry in the 6-dimensional F-theory [29]. The associated divisor is

given as the image of the section under the Shioda map.

Σ(σi) = [σi]− [σ0]− π∗(Db) +Ki,m(C−1)m,nDf,n . (2.13)

Here, [σ] is the divisor class of the zero set of the section σ and Ki,m = ([σi]− [σ0]) · Cm
where Cm is the fiber P1 of the exceptional fibral divisor Df,m. The object C−1 is the

inverse of the Cartan matrix of the gauge algebra associated to the fibration which is given

by Cmn = −Df,m · Cn in terms of intersections. Finally Db is some divisor in the base

which is chosen in order to ensure that Σ(σi) has zero intersection with any divisor which

is vertical or the zero section. The presence of such a correction term signals the presence of

a non-abelian gauge group, which in the cases we will study will be a non-simply connected

gauge group of the form (G×U(1)n−1)/Zt [30, 31].

If sections σi in the free part of the Mordell-Weil group get identified under a quotient,

such that [σi] ∼ [σ0] for i = 1 . . . n − 1 for example, then the zero-section becomes an

n-section and the descendants of all the Shioda maps Σ(σi) trivialize in the quotient. The

U(1)n−1 gauge group factor does not appear in the quotient geometry due to monodromies

and is replaced instead with a Zn symmetry. The discrete charges of the matter in the

resulting theory can be understood in terms of the U(1)n−1 charges of the upstairs model.

As always in a valid F-theory compactification, the change in the degrees of freedom that

can be computed geometrically ensures general anomaly freedom, as we show in this case

in subsection 2.3.

We can also obtain sections σi in the upstairs geometry that are global torsion. Sim-

ilarly to the case of free sections, there exists a torsion Shioda map upstairs [32] whose

image is a trivial divisor and therefore does not contribute to h1,1(X). However the effect

of the torsional section is subtle: it leads to a singular Weierstrass model associated to

a gauge algebra G with a non-trivial Zn center [32, 33]. The mere existence of torsional

sections, then, implies that a non-abelian gauge group, associated to non-trivial vertical

divisors Dj in the resolved geometry, will be non-simply connected. The effect of the quo-

tient can also nicely be seen in the structure of the Coulomb chambers in the 5-dimensional

M-theory [34] which is coarser when the torsion is present.

– 7 –
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Γn−→

Figure 1. A torsion model on the left with an SU(n)/Zn gauge group and the covering space

description of its free quotient on the right. The torsion sections fuse into a multi-section with the

additional effect to identify all SU(n) resolution divisor with the affine node.

The interplay of resolution divisors with the torsional sections is non-trivial, pre-

cisely because the torsional object encodes the non-simply connectedness of the upstairs

gauge group, as we show explicitly in examples in section 3. The key observation [32] is,

that the torsional section σi intersects the resolution divisors Df,n in a non-trivial fash-

ion σi ·Df,n = Ki,n such that the torsional Shioda map assigns to every torsional section

a divisor

Σ(σi) = [σi]− [σ0]− π∗(Db) +Ki,m(C−1)m,nDf,n , (2.14)

with C−1 being the inverse Cartan matrix leading to fractional coefficients in the above

expression. As Σ(σi) is trivial, we may write

Ξn := [σi]− [σ0]− π∗(Db) = −Ki,m(C−1)m,nDf,n . (2.15)

This can then be interpreted as a n-torsional element of the cohomology H1,1(X,Z)/〈[Df,n]〉:

n · Ξn =
∑

amDf,m = 0 mod [Df,m] . (2.16)

Having reviewed the role of MW torsion in the description of non-simply connected

gauge groups in the F-theory we are now in position to take the quotient. If a quotient

identifies a set of sections σi ∼ σ0 inducing

[σi]− [σ0] = 0 = π∗(Db)−Ki,m(C−1)m,nDGn ∀i , (2.17)

then this adds a linear equivalence relation among the resolution divisors and π∗(Db) for

each σi so identified. In other words, as the torsional sections σi get identified with the zero-

section, then resolution divisors of G that are intersected by those divisors get removed as

independent divisor classes by being related to π∗(Db) as shown in figure 1. Note that in the

case when a U(1) generating section intersects some resolution divisor an analogous effect

occurs, where non-abelian gauge group factors get reduced as compared to the covering

space upon the identification of resolution divisors with the affine node.

Naturally, the above discussion of divisor classes has important consequences for gauge

symmetry and matter content of the 6-dimensional effective F-theory description. We can

see this by taking the F-theory limit from M-theory and by recalling the origin of vector

– 8 –
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and hypermultiplets of some ADE resolved singularities over some genus g curve in the

base [35]. In the covering elliptic fibration the affine P1 stays at finite size, when taking

the F-theory limit and is identified by the intersection with the zero-section. Counting all

fibral curves C with self intersection −2 that are shrinkable and hence do not contain the

affine P1 as a component, leads to a vector and g hypermultiplets and yields the adjoint

representation. On the other hand all curves of self intersection −2 that do contain the

affine P1 and can not be shrunken contribute g − 1 hypermultiplets again comprising the

full adjoint representation.

How does the situation change in the quotient theory? We have already seen that the

quotient reduces the number of sections. In a situation where all of the generating sections

are identified with the zero-section in the quotient, none of the resolution divisors become

shrinkable and therefore do not contribute vector multiplets to the downstairs theory.

However there is still the contribution of the non-shrinkable curves that give the same

count as the adjoint representation in the covering geometry. Thus we find the following

amount of additional discrete charged hypermultiplets from the adjoint representation of

the covering geometry

Ĥ ′discrete = rt(G)
(g − 1)

n
, (2.18)

where we denote rt as the charge dimension of the adjoint group G. Also note the additional

reduction by n due to the reduction of intersection numbers, that we will explain in the

following sections in more detail.

In total we can interpret the residual gauge group as the one of the covering theory,

fully broken by monodromy. These effects capture an important part of the perturbative

degrees of freedom that are necessary to prove general anomaly cancellation in subsec-

tion 2.3. However this is only enough to prove the anomalies of the gauge sector but not

the gravitational ones, as those are also sensitive to the fixed points with the multiple

fibers, which we discuss below.

2.2 Multiple fibers and hyperconifolds

In this section we review the phenomenon of multiple fibers in the simple example of

a rational elliptic surface S, following the discussion in [36]. The surface S admits a

holomorphic map that projects to the complex one dimensional base

π : S → B1 . (2.19)

At a generic point b ∈ B1, the pullback of a local coordinate that vanishes at b, that is

π∗z vanishes to order n = 1 along the fiber π−1(b). If, over a special point b0 ∈ B1 this

vanishing is instead of order n > 1, the fiber over b is said to be multiple of order n.

There is a textbook construction of multiple fibers that mirror what we will see in

case of a compact Calabi-Yau threefolds. First pick B1 to be a local neighborhood of the

point where the multiple fiber will be located, with coordinate z. We also take an elliptic

curve E with associated coordinate ω and complex structure τ . Finally, we pick an order

– 9 –
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n automorphism

φn : E ×B1 → E ×B1 , (2.20)

acting as a free quotient on the total space of the direct product of E and B1 but as an

orbifold on the base and a translation in the fiber,

φn(ω, z) =
(
ω +

τ

n
, e2πi/nz

)
. (2.21)

Denoting the quotient surface as

S = (E ×B1)/φn , (2.22)

then the induced morphism π̂ coming from the following map on the covering geometry,

π(ω, z)→ zn , (2.23)

is well defined on S and forms a suitable projection. Labeling a coordinate on the base

of the quotient by λ = zn, we can then infer the structure of the fibers from the covering

space. Picking a generic point λ 6= 0, the pullback on the covering space φ∗nπ̂
−1(λ) consists

of the n curves on the covering geometry at points zb with znb = λ. However over λ = 0

there exists only a single elliptic curve on the covering geometry. Thus π̂−1(0) is an order

n multiple fiber.

The quotient constructions that were used in [6], as well as in this work, are structurally

very similar to the above but with the base being a compact twofold embedded into a

smooth threefold. We note, that in F-theory the base, B, is the physical compactification

space and the symmetry by which we quotient, Γn, acts like a standard orbifold. This

introduces a non-standardAn (2,0) superconformal matter sector into the low energy theory

that naively contributes to anomalies in the same manner as a (1, 0) tensor and a neutral

hypermultiplet

An ∼ (n− 1)× (T(1,0) ⊕H10) . (2.24)

However, as was shown in [6] these sectors differ in a striking manner from the standard

(2,0) superconformal matter exactly due to the presence of the multiple fibers. They are

gauged under a Zn discrete symmetry. This gauging is visible when going to the tensor

branch of the theory and is nicely related to the resolution of a hyperconifold transition

utilizing a Lens space [37–39]. Such a transition, resolving the fixed point in the base and

removing the multiple fiber, is characterized by the following change of Hodge numbers.

∆(h1,1, h2,1) = (n− 1,−1) (2.25)

Over the exceptional divisors on the resolution side of the hyperconifold, n fibers of I2
type are found at codimension 2 in the base, giving rise to discrete charged singlets5 Since,

5In the associated Weierstrass model of the Jacobian fibration, the fiber singularities are in fact terminal,

but they are smooth in the genus-one fibration [40, 41].
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Hyperconifold Resolution−−−−−−−−−−−−−−−→

11
11 1111

Figure 2. Depiction of a hyperconifold resolution of an n-multiple fiber corresponding to the tensor

branch of the An discrete gauged superconformal matter with additional discrete charged states [6].

from (2.25) we loose a neutral hyper-multiplet in the complex structure sector during this

transition, we find that the matter localized at the orbifold fixed point and its subsequent

resolution that contributes to the anomaly should be thought of not as in (2.24), but rather,

after the hyperconifold transition, as follows.

An ⊕H10

Hyperconifold−−−−−−−−→ (n− 1)× T(1,0) ⊕ n×H11 . (2.26)

In summary, the gauging reflects itself in the resolved geometry by the additional discrete

charged singlets, as opposed from the naive decomposition eq. (2.24) as depicted in figure 2.

We will not discuss the tensor branch of these theories further and treat them, when

it comes to anomalies, simply as (2,0) superconformal matter keeping in mind that they

are actually discrete charged and hence are seen to actually be (1,0) theories.

2.3 6-dimensional spectrum and anomaly cancellation

Given that the geometries X̃ are genus one fibered Calabi-Yau manifolds, we expect them to

be associated to good 6-dimensional F-theory compactifications with all anomalies canceled.

In addition, we construct these quotients in such a manner that we expect that the massless

degrees of freedom descend in a well defined fashion from those of the theory associated to

the covering space. We can check this hypothesis by verifying that the anomalies are still

canceled. That this is indeed the case for the different types of quotients we will consider

is what we will show in the following. Here we talk in some generality before proceeding

to some explicit examples in section 3.

Starting with a covering geometry X over a smooth Fano base B, we take a free finite

Zn quotient reducing the fundamental domain of B̃ by 1
n . However as the action on the

base is generically non-free we obtain, in the examples we will consider, codimension two

fixed points with additional superconformal matter. In the following we use that all divisors

D ∈ {b, bmn, a} in B̂ associated to gauge divisors, U(1) height pairings and, the canonical

class of the base respectively are Cartier and hence do not intersect the above mentioned

fixed points. Therefore, we expect the (2,0) superconformal matter that appears on these

singularities to be gauged only under the discrete symmetry [6]. For the ADE divisors b,

this in fact follows from the requirement of a smooth quotient action. In addition to those
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states, the quotient affects the 6-dimensional SUGRA by reducing the number of tensors T ,

the number of Abelian symmetries and by giving rise to a smaller non-Abelian gauge group

in general. We will call the commutant of the downstairs gauge group inside the upstairs

one G′. The change in the hypermultiplet sector can then be obtained from the covering

geometry simply by using that the reduction of the fundamental domain of the base by a

factor of 1/n leads to the same reduction in the number of the charged hypermultiplets.

This reduction is readily obtained from the intersection numbers in the quotient base and

the fact, that the hypermultiplets are never localized over the fixed points, by construction.

Note that in assuming that the intersection numbers in the base divide by the order of the

discrete group we are assuming that the integral basis of divisors on B̃ descends directly

from that on B (note that for some discrete actions a change of basis is required, but we

will not consider such examples in the present work, see e.g. [42, 43] for examples of such

basis issues).

We summarize the change in the full hypermultiplet sector as

H̃charged =
1

n
Hcharged ,

H̃adjoint(G) =
1

n
Hadjoint(G) +

(n− 1)

n
(V (G)− rk(G)) ,

H̃neut = Hneut −∆h1,1 +
1

2
χ

(n− 1)

n
,

H̃ ′discrete =
1

n
Hadjoint(G

′)− 1

n
(V ′(G′)− rk(G′)) .

(2.27)

As discussed above, the change in H1,1 can either be zero or have three possible contri-

butions ∆h1,1 = {0,∆T, rk(MW), rk(G′)}. Clearly it is a requirement that all the above

multiplicities are integer valued giving non-trivial constraints on the covering geometry

(that are expected to hold in the presence of a free order n automorphism Γn).

In the following we show that the above spectrum indeed captures all massless degrees

of freedom such that all anomalies in the quotient theories are canceled. The anomalies

of the unbroken gauge groups in the quotient theory are easily checked using the above

change in the spectrum. The intersections on the quotient base B̃ simply get multiplied

by 1
n as long as the divisors involved are Cartier, as is guaranteed by smoothness of the

quotient. For more details see [6]. The mixed gauge-gravitational anomaly

Gauge2 ·Grav2 : −1

3

(
(1−Hadj)Aadj +

∑
R

ARHR

)
= b · a , (2.28)

is simply divided on both sides, on the left due to the reduced spectrum, and on the

right due to the divided intersections of the divisors a and b on the base. Hence only the

gravitational anomalies need a more careful inspection.

The anomaly cancellation condition

9− T = (K−1b )2 , (2.29)

which is satisfied in the upstairs theory, reduces to

T(2,0) −∆T =
(n− 1)

n
(K−1b )2 . (2.30)
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The number of (2,0) tensors contributed by each fixed point is simply given, in terms of

its order l, by l − 1.

Finally we turn again to the irreducible anomaly

Hneut +Hadjoint +Hcharged − V + 29T − 273 = 0 . (2.31)

We can use this to rewrite the Euler number as

(n− 1)

2n
χ =

(n− 1)

n
(rk(G) + T + 3−Hn) ,

=
(n− 1)

n
(Hcharged +Hadjoint + rk(G)− V (G) + 30T − 270) ,

=
(n− 1)

n
(Hcharged +Hadjoint + rk(G)− V (G))− 30(T(2,0) −∆T ) . (2.32)

The above equation can be used to deduce cancellation of the gravitational anomaly in the

quotient theory which admits the reduced spectrum

H̃neut + H̃charged + H̃adjoint + H̃ ′charged − (V − V (G′)) + 29(T −∆T ) + 30T(2,0) − 273 = 0 .

(2.33)

In the following we check anomaly cancellation for several cases individually for clarity.

Tensor reducing quotients

We start with tensor reducing quotients where the change in Hodge number can be fully

identified with the changed number of tensors, ∆h1,1 = ∆T , and hence there is no change

in the total gauge group.6 To be fully concrete, the full charged matter spectrum in the

quotient theory is now reduced to

H̃charged =
1

n
Hcharged ,

H̃adjoint =
1

n
Hadjoint −

(n− 1)

n
rk(G) ,

H̃neut = Hneut −∆T +
1

2
χ

(n− 1)

n
,

(2.34)

in addition to the new discrete charged (2,0) strongly coupled sector. Plugging in the

change in hypermultiplets in eq. (2.27) the gravitational anomaly of the quotient theory

becomes

H̃neut + H̃charged + H̃adjoint − V + 29(T −∆T ) + 30T(2,0) − 273 ,

= Hneut −∆T +
(n− 1)

2n
χ+

1

n
Hcharged +

1

n
Hadjoint +

(n− 1)

n
rk(G)

− V + 29(T −∆T ) + 30T(2,0) − 273 ,

= 0 ,

and hence is also satisfied upon using (2.32).

6This implies a genus-one fibration on the covering geometry and a discrete symmetry already present

there.

– 13 –



J
H
E
P
1
2
(
2
0
1
9
)
1
3
1

Mordell-Weil reducing quotients

We next consider a case where the change in the MW rank, and thus the number of U(1)’s,

accounts entirely for the change in Hodge number ∆h1,1 = rk(MW ). The spectrum gets

reduced as in the case before, with the exception that Abelian charges are now interpreted

as discrete ones, such that the charged hypers get reduced to

H̃discrete =
1

n
Hcharged . (2.35)

Note from above, that we also have to include the Abelian charged singlets, that are now

discrete charged ones. With this change the gravitational anomaly in the quotient theory

is satisfied as well

H̃neut + H̃charged + H̃adjoint(G) + H̃discrete − V (G) + 29T + 30T(2,0) − 273 = 0 . (2.36)

Non-Abelian group reducing quotients

Finally we consider the case where ∆T = 0 and we can identify the change in Hodge number

entirely with the reduction of the resolution divisors of the gauge group, as determined by

G′. In this situation, in the quotient theory, we simply have a gauge group G with T(2,0)
superconformal tensors and a reduced amount of hypermultiplets to solve the gravitational

anomaly

H̃neut + H̃charged + H̃adjoint + H̃ ′discrete − V (G) + 29T + 30T(2,0) − 273 = 0 . (2.37)

This is indeed the case, using the following charged hypermultiplet spectrum

H̃charged =
1

n
Hcharged (2.38)

H̃adjoint(G) =
1

n
Hadjoint(G) +

n− 1

n
(V (G)− rk(G)) (2.39)

H̃ ′discrete =
1

n
Hadjoint(G

′)− 1

n
(V (G′)− rk(G′)) (2.40)

and neutral degrees of freedom

H̃neut = Hneut − rk(G′)− 30T(2,0)

+
n− 1

n
(Hcharged +Hadjoint(G) + (rk(G)− V (G)))

+
n− 1

n
(Hadjoint(G

′) + (rk(G′)− V (G′)) . (2.41)

Using the gravitational anomaly for the neutral hypers of the covering theory, given as

Hneut = V (G) + V (G′)− 29T −Hcharged −Hadjoint(G)−Hadjoint(G
′) + 273 , (2.42)

one can then verify that (2.37) is indeed satisfied and the gravitational anomaly is also

satisfied in the quotient with this matter content.
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3 Examples of quotient geometries

Below we illustrate explicitly some of the possible quotient actions on elliptically or genus-

one fibered CY 3-fold geometries. It will be demonstrated in each case that the F-theory

physics of the theory associated to X̃ = X/Γ can be readily determined from the covering

geometry, X. In something of an abuse of nomenclature we will refer to the effective 6-

dimensional theory obtained by F-theory compactified on X as the “upstairs theory,” while

that associated to a compactification on X̃ will be referred to as the “downstairs theory.” As

mentioned in section 2, it is important to recall that the upstairs and downstairs theories

are not dynamically related in any way (and correspond to topologically very distinct

geometries). However, it is a unique feature of the downstairs quotient geometries that

they can be entirely specified in terms of Γ-invariant quantities in the upstairs geometry.

In our context, this will allow us to describe the downstairs theories, which, as discussed in

section 2, can have a multitude of complicated geometric features, in terms of their much

simpler covering spaces.

In the case of elliptic fibrations, as mentioned in section 2, due to the theorem of

Shioda-Tate-Wazir, it is clear that we can characterize the action of the discrete symmetry

on divisors by whether the classes of horizontal and/or vertical divisors are reduced or

preserved under the symmetry action. In the case that h1,1(X̃) < h1,1(X), this will lead

to the classes of examples outlined in section 2.

In the following sub-sections, we consider explicit CY quotients that illustrate each

effect in isolation. We conclude this section with a more complicated example of a higher

order quotient with non-trivial subgroups that both reduces the rank of the gauge group

and reduces the number of tensors in order to set the stage for more general and complicated

possibilities. The latter will be illustrated via the well-known Schoen manifold (with Hodge

numbers (h1,1, h2,1) = (19, 19)) in section 4.

3.1 Tensor reducing Z2 quotient

3.1.1 The geometry

The simplest class of examples to consider is one in which the discrete symmetry action

identifies divisors in the base, B, of the fibration π : X → B. In such a fibration, it is

actually unimportant whether or not a section exists, since these base divisors, in either the

elliptic or genus-one fibered case, play a clear role both geometrically and in the counting

of tensor multiplets in the 6-dimensional theory.

With this in mind, we begin with a quotient action that acts non-trivially on the base,

B, of the genus-one fibration π : X → B and in particular, reduces the dimension of

h1,1(B/Γ) compared to h1,1(B), so that the number of tensor multiplets in the downstairs

theory is less than that of the upstairs theory.

Consider a simple direct product manifold as the ambient variety, A = F0 × dP3,

whose anti-canonical hypersurface will define the upstairs (i.e. covering) CY 3-fold, X.

This ambient space can be torically realized as being associated to the convex hull of
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the polytope

x0 x1 y0 y1 z1 z2 z3 z4 z5 z6

1 −1 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 0 0 0 −1 0 1 1 0 −1

0 0 0 0 −1 −1 0 1 1 0

(χ=−96)

(h1,1=6,h2,1=54)

. (3.1)

(where the superscript denotes the Euler character and the subscript the Hodge numbers

of the resulting CY threefold) resulting in the λi ∈ C∗ equivalences

dP3 : (z1, z2, z3, z4, z5, z6) ∼ (λ4λ1z1, λ2z2, λ3λ4z3, λ1z4, λ2λ4z5, λ3z6) ,

F0 : (x0, x1, y0, y1) ∼ (λ5x0, λ5x1, λ6y0, λ6y1)
(3.2)

and the Stanley-Reisner ideal (SRI)

SRI : {x0x1, y0y1; z1z3, z1z4, , z2z4, z2z5, z2z6, z3z5, z3z6, z4z6} . (3.3)

To build a quotient threefold X̃ = X/Γ, we fix a Z2 discrete symmetry acting on the

ambient space as an orbifold on the F0 component and a 180◦ rotation on the dP3 toric

diagram acting on the coordinates as [26]

Γ2 : (xj , yj , zi)→ ((−1)jxj , (−1)jyj , zi+3) for j = 1, 2 i = 1..6 . (3.4)

The full ambient space admits 4 × 4 fixed points. Those of F0 lie over the intersection of

toric divisors whereas those for dP3 do not, due to the form of the SRI. Here, the fixed

points satisfy the equation

zi = λizi+3 = ri , (3.5)

with λi, ri ∈ C∗. Using the λ4 relation, these can be fixed to the following set of fixed points

fpF0/Z2
: [x0, x1; y0, y1] = (0, 1, 0, 1) , (3.6)

fpdP3/Z2
: (z1, z2, z3, z4, z5, z6) =

(
+1,+1,+1 ,+1,+1,+1

+1,−1,−1 ,+1,+1,+1

)
, (3.7)

where different permutations are denoted via an underline.

In this example, we can view B = dP3 as the base of the fibration and the genus-one

fiber as a biquadric in F0 with hypersurface equation

p =
(
s
(+)
1 y20 + s

(−)
2 y1y0 + s

(+)
3 y21

)
x20 +

(
s
(−)
5 y20 + s

(+)
6 y1y0 + s

(−)
7 y21

)
x0x1 (3.8)

+
(
s
(+)
8 y20 + s

(−)
9 y1y0 + s

(+)
10 y

2
1

)
x21

The functions si are generic sections of O(K−1dP3
). Once the discrete group action is imposed

however, we must require the complete defining equation to be equivariant. Taking into
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account the Z2 action on the fiber, coefficient functions s±i must transform equivariantly

with ± eigenvalues. This equivariance requirement forces a tuning of the complex structure

to yield the following

s
(+)
i = z21z2z6(z5z6a[1,i] + z2z3a[2,i]) + z3z

2
4z5(z2z3a[1,i] + z5z6a[2,i]) (3.9)

+ z1z4(z
2
2z

2
3a[3,i] + z25z

2
6a[3,i] + z2z3z5z6a[4,i]) ,

s
(−)
j = z1z4(z2z3 − z5z6)(z2z3 + z5z6)b[1,j] + z21z2z6(z2z3b[2,j] + z5z6b[3,j])

− z3z24z5(z5z6b[2,j] + z2z3b[3,j]) . (3.10)

Here a[m,i] and b[n,j] are generic complex constant coefficients. It can readily be checked

that all fixed points miss the specialized hypersurface equation and hence, the quotient

geometry is smooth.

The dP3 base exhibits four divisor classes h1,1(B) = 4 on the covering geometries. The

identification (zi ↔ zi+3) fixes one overall Kähler class [26] resulting in h1,1(dP3/Z2) = 3

while it leaves the ambient space classes of F0 invariant. The quotient threefold X̃ admits

the Hodge numbers

(h1,1, h2,1)χ(X̃) = (5, 29)−48 . (3.11)

3.1.2 The effective physics

We are now left with the task of comparing the physical theories associated to the upstairs

geometry (X) and downstairs geometry (X̃) along the lines of the discussion in section 2.

At this point, the genus one nature of the covering space geometry becomes important and

it is worth a brief digression here to explain our philosophy in such cases. We will interpret

the 6-dimensional physics associated to any genus one fibered CY 3-fold via its Jacobian

following standard techniques [44]. In the context of imposing discrete symmetries then

we have a commutative diagram of the form

X
φ−→ J(X)

Γ ↓ ↓ Γ

X̃
φ̃−→ J(X̃)

(3.12)

where we will practically construct the “quotient” action on the Jacobian, J(X), via

imposing equivariance of the defining equations of X and then mapping these across the

morphism φ above to produce a restricted form of that Jacobian which will determine the

form of the Jacobian, J(X̃) of the genus one fibered manifold X̃.

The analysis of J(X) for the geometry chosen above associates to this genus-one fi-

bration a Z2 × U(1) gauge group, as has been investigated in [44] (with general formulas

for the spectrum computation). The full spectrum of covering and quotient theories are

summarized in table 1 and consists of several U(1) and discrete charged multiplets. We find

that the overall gauge symmetry stays invariant in this case while the quotient produces

four A1 singularities in the base with multiple fibers over them. The quotient acts freely
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Group Z2 ×U(1)

Multiplicity X X̃

1(0,−) 60 30

1(1,−) 36 18

1(1,+) 36 18

1(0,+) 55 30

V 1 1

T(1,0) 3 2

T(2,0) 0 4 ×A1

Table 1. Summary of the massless 6d spectrum of the covering and quotient threefold X and X̃.

The quotienting does not change the gauge group but does affect the tensor content of the base.

on the multiplicity of hypermultiplets, dividing them by 1/2 as none of them lie on fixed

point loci. In this example, by using the form of the Jacobian of the genus one fibered

geometry and the reasoning laid out in (3.12) above, the spectrum can be readily deter-

mined via the discussion in section 2 and can be verified to be anomaly free by including

the appropriately reduced (1, 0) tensors.

3.2 U(1) reducing Z2 quotient

Below we will provide our first example of a quotient which reduces the rank of the total

gauge group. Geometrically the quotient action globally identifies sections generating the

free part of the Mordell-Weil group with the zero-section, leading to a downstairs CY geom-

etry that is genus-one fibered (and includes multiple fibers). The form of this identification

is particularly easy to see over fixed points in the base as we will illustrate below.

3.2.1 The geometry

For ease of exposition we choose the same geometry as in the example before, given by the

polytope (3.1) but switch the role of the fiber and base ambient space. In this case then

the elliptic fiber is described by an equation of the form

p = s
(−)
1 z5z

2
3z

2
4z2 + s

(+)
2 z1z

2
3z4z

2
2 + s

(−)
3 z25z3z

2
4z6 + ŝ4z5z1z3z4z2z6

+ s
(+)
3 z21z3z

2
2z6 + s

(−)
2 z25z1z4z

2
6 + s

(+)
1 z5z

2
1z

2
6z2 , (3.13)

within the ambient space dP3 as defined in (3.1). In that space each toric ray is a −1 curve

which results in a rational section on the generic fiber [45]. To begin, the si can be taken

to be generic polynomials in the anti-canonical class of the F0 base. Upon fixing a zero-

section, only three of the rational sections are linearly inequivalent under the Mordell-Weil

group law [45] for this hypersurface realization of the elliptic fiber. One such choice in the
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X X̃

χ −96 −48

h1,1 6 5

h2,1 54 29

Group U(1)3 U(1)2 × Z2

V 3 2

H1q 192 96

T1,0 1 1

T2,0 0 4×A1

Table 2. Summary of the F-theory matter content associated to a CY covering geometry X and

its quotient X̃ with reduced Mordell-Weil rank.

zi is given as

S0 : p = z4 = 0 : [1, 1, s
(+)
1 , 0,−s(+)

3 , 1] ,

S1 : p = z5 = 0 : [1, 1, 1, s
(+)
3 , 0,−s(+)

2 ] ,

S2 : p = z1 = 0 : [0,−s(−)3 , 1, 1, 1, s
(−)
1 ] ,

S3 : p = z3 = 0 : [1, s
(−)
2 , 0,−s(+)

1 , 1, 1] .

(3.14)

The effective theory associated to the upstairs geometry in this case must contain a

U(1)3 gauge group. Using the general formulas outlined in [44], the full charged spectrum

can be determined and is given in table 2.

It now remains to impose the Z2 symmetry on X described in the previous subsection

(see e.g. (3.4)). As above, we can view this process as a specialization in complex structure

of the si. These si come in the general form

s
(±)
i = x20

(
y21a[1,i] + y20a[2,i] ± y0y1a[3,i]

)
± x0x1

(
y21a[4,i] ± y0y1a[5,i] + y20a[6,i]

)
+ x21

(
y21a[7,i] + y20a[8,i] ± y0y1a[9,i]

)
, (3.15)

ŝ4 = x20y
2
1b[1] + x20y

2
0b[2] + x0x1y0y1b[3] + x21y

2
1b[4] + x21y

2
0b[5] , (3.16)

with a[i,j], b[i] being generic complex constants. Note that only ŝ4 is actually a Z2 invariant

polynomial, in contrast to the others (denoted with superscripts) which are interchanged

under the Γ2,b action s
(+)
i ↔ s

(−)
i . Note that the above transformation behavior under Γ2,b

does not pose a problem for the associated Weierstrass model as the relevant objects, such as

f =−1

3

(
(s

(−)
1 )2(s

(+)
1 )2+(s

(−)
2 )2(s

(+)
2 )2−s(−)2 s

(+)
2 s

(−)
3 s

(+)
3 +(s

(−)
3 )2(s

(+)
3 )2 (3.17)

− s(−)1 s
(+)
1 (s

(−)
2 s

(+)
2 +s

(−)
3 s

(+)
3 )

)
− 1

2

(
(s

(+)
1 s

(+)
2 s

(−)
3 +s

(−)
1 s

(−)
2 s

(+)
3 )ŝ4

+ 8(s
(−)
1 s

(+)
1 +s

(−)
2 s

(+)
2 +s

(−)
3 s

(+)
3 )(ŝ4)

2−(ŝ4)
4
)
,

and similarly g, are manifest Γ2,b invariant sections.
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3.2.2 The effective physics

For this fibration, it is clear that S0 and the section S2 get interchanged upon the Γ2

action (3.4). Another good consistency check of this can be obtained by considering the

mapping of points on the elliptic fiber over a fixed point in the base where the intersection

points of the two sections are manifestly mapped into one another.

This mapping of sections clearly has repercussions for the Shioda map and the gener-

ator of the U(1) gauge symmetry, given as

σ(S2) = [S2]− [S0]−K−1F0
. (3.18)

Under the identification of S2 and S0 this becomes trivial resulting in a loss of free Mordell-

Weil rank and zero-section.7 The quotient action does not reduce the dimension of the

cohomology of the F0 base and thus preserves the number of (1, 0) tensors present in the

covering theory. In addition there are again the four Z2 fixed points that augment the

6-dimensional SUGRA theory with four A1 discrete gauged subsectors.

As described in section 2, the quotient again acts freely on the matter multiplets, as

the fiber is smooth over all fixed points, reducing their multiplicities simply by one half.

The full spectrum is summarized in table 2 which is manifestly consistent with anomaly

cancellation.

3.3 Non-Abelian group reducing quotients

In this section we present quotients which involve the identification of sections in an ellip-

tically fibered covering space geometry and as described in section 2, torsional sections of

the fibration. In each case the quotient action will identify fibral divisors in such a way

that there is no residual continuous gauge group associated to the downstairs genus-one

fibered geometries. However, these kinds of quotients are potentially interesting as they al-

low to systematically construction models with (possibly high order) discrete gauge groups

of the same order as the torsional Mordell-Weil group. We will refer to these again in

section 4 in order to comment on potential bounds to the order of discrete symmetries in

six dimensions.

An SU(2)/Z2 quotient

The simplest possible example, that of an SU(2)/Z2 gauge group, can be obtained from a

Weierstrass model with a Z2 torsion point [33], given as

y2 = x(x2 + a2x+ a4) , a4 ∈ O(K−4b ) , a2 ∈ O(K−2b ) . (3.19)

f = a4 −
1

3
a22 , g =

1

27
a2(2a

2
2 − 9a4) (3.20)

∆ = a24(4a4 − a22) (3.21)

The Z2 torsion point in this representation is located at y = x = 0, which is visible due

to its y → −y symmetry. As argued before, this model requires by construction at least

7Since f and g are Γ2,b invariant sections, it is clear that also this model becomes singular if the sections

are not shifted accordingly.
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an SU(2) gauge factor over the a4 = 0 locus. As required, the collision of a4 = 0 with the

I1 locus produces an order V (f, g,∆) = (1, 2, 3) singularity which leads to no additional

matter. Hence the charged hypermultiplet sector of the theory contains adjoint matter

only and is counted by the genus of the a4 = 0 curve.

For simplicity, we choose to consider the tuned Weierstrass model above over the base

F0 (chosen since it’s suitable for a Z2 quotient). This complete Calabi-Yau threefolds has

a simple toric description in terms of the following polytope

x0 x1 y0 y1 u v w e1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

−2 −2 −2 −2 −2 0 2 1

−1 −1 −1 −1 −1 1 −1 0

(χ=−288)

(h1,1=4,h2,1=148)

, (3.22)

where the superscript and subscripts above are the Euler number and Hodge numbers

respectively. The Calabi-Yau is given as the anti-canonical hypersurface with defining

equation

p = b1u
4 + b2u

2w2e1 + w2e21 + b6uwve1 + e1v
2 , (3.23)

that admits the Weierstrass form (3.19) upon the identification

f = b1 − 1/48(−4b2 + b26)
2 ,

g = 1/864(4b2 − b26)(72b1 − (−4b2 + b26)
2) ,

∆ = 1/16b21(64b1 − (−4b2 + b26)
2) ,

(3.24)

which can be obtained from the generic model upon shifting

a2 → (−b2 + 1/4b26) , a4 → b1 . (3.25)

We fix a triangulation of the polytope with SRI

SRI : {x0x1, y0y1, ue1, vw} . (3.26)

We choose u = 0 as the zero section of the fiber, and v (or equivalently w) as the Z2 torsion

point which intersect the SU(2) resolution divisor De1 = 0 (see [44] for a detailed study of

this fiber type). The particle spectrum associated to the 6-dimensional SU(2)/Z2 upstairs

theory is given in table 3.

This upstairs geometry admits a quotient by a freely acting Z2 symmetry. The Z2

action (Γ2) on the threefold in terms of fiber coordinate ω and P1
x× P1

y coordinates can be

given as

Γ2 : (x0, x1, y0, y1;ω)→ (x0,−x1, y0,−y1;ω + ŝ1) . (3.27)

The smooth quotient threefold, X̃ admits the following Hodge numbers [7, 25, 26]

(h1,1, h2,1)χ(X̃) = (3, 75)−144 , (3.28)
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Figure 3. Depiction of the SU(2)/Z2 fibration after taking the quotient. The two sections ŝ0
and ŝ1 intersect the two SU(2) irreducible curves. Their identification over the multiple fiber locus

breaks the SU(2) at codimension one.

X X̃

χ −288 −144

h1,1 4 3

h2,1 148 75

group SU(2)/Z2 Z2

V 3 0

H
10 × 149

3× 49

10 × 76

11 × 48

T1,0 1 1

T2,0 0 4×A1

Table 3. Summary of the 6-dimensional F-theory spectrum on the threefold, X, and its quotient, X̃.

which is now a two-section genus fibered geometry with four A1 fixed points in the base

and multiple fibers over them. A picture of the geometry is given in figure 3. Note that the

covering geometry only admitted matter in the form of adjoint charged hypermultiplets

over the genus 49 curve a4 = 0. The smooth quotient reduces this number to

3× (1 + 48)→ 24× (11 ⊕ 1−1) , (3.29)

that is 48 discrete charged hypers. The addition of the four A1 discrete charged SCFT

points completes the full spectrum, as summarized in table 3, (and is consistent with

anomaly cancellation, as expected).

Example of an (SU(3) × SU(3))/Z3 quotient

Moving on from the simple example of the previous subsection, we next turn to an example

with two non-Abelian gauge group factors and a Z3 torsion point. The tuned Weierstrass
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form of the most general Z3 torsion model is given as [33]

y2 + a1xy + a3y = x3 , a1 ∈ O(K−1b ) , a3 ∈ O(K−3b )

f =
1

2
a1a2 −

1

48
a41 , g =

1

4
a23 +

1

864
a61 −

1

24
a31a3 ,

∆ =
1

16
a33(27a3 − a31) .

(3.30)

The a3 = 0 divisor signals the presence of at least one SU(3)/Z3 gauge factor if it does

not become reducible. In the following we consider a splitting of the form a3 → b2b1 which

yields a (SU(3)× SU(3))/Z3 gauge group.

This tuned elliptic fiber can be readily found within a smooth toric hypersurface which

describes an elliptic fibration over a P2 base. This Calabi-Yau hypersurface is given by the

following polytope

x0 x1 x2 u e1 e2 v w e3 e4

1 0 −1 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0

−1 −1 −1 −1 0 1 2 −1 0 1

0 0 0 1 1 1 1 −2 −1 0

(χ=−108)

(h1,1=6,h2,1=60)

, (3.31)

where once again the superscript and subscripts denote Euler and Hodge numbers. The P2

base is given by the projection onto the first two columns. There exist two triangulations

of the ambient toric variety. Here we consider one that leads to the Stanley-Reisner ideal

SRI : {ue2, uv, uw, ue3, ue4, e1w, e2w, vw,we4, e1v, e1e3, e1e4, e2e3,
e2e4, ve3, x0x1x2e1, x0x1x2e2, x0x1x2v, x0x1x2e3, x0x1x2e4} . (3.32)

The three sections u, v, w admit a Z3 torsional relation [45] and the ei are associated to

the four resolution divisors of the two SU(3) gauge groups. The hypersurface equation is

given as

p = b1e
2
1e2u

3 + a1e1e2vwue3e4 + b2w
3e23e4 + e1e

2
2v

3e3e
2
4 , (3.33)

where {e1, e2} and {e3, e4} correspond to the resolution divisors over b2 = 0 and b1 = 0

that are degree six and degree three polynomials in the base P2. Choosing v = 0 as the zero

section, the other two sections w = 0, u = 0 combine with the zero section to admit the

Z3 torsion relation. From the toric diagram it becomes directly visible that each torsion

section intersects one of the three irreducible fiber components each.

To realize a freely-acting Z3 quotient, the standard toric Z3 action on the base

P2 : xj ∼ e2πi/3jxj can be combined with an order three shift of the sections analogous

to (3.27).

Under this quotient action the sections are identified and the resolution divisors corre-

sponding to SU(3) roots will be identified with the affine one. As a result, the quotient is

associated to a downstairs theory with fully broken continuous gauge group and a residual

Z3 symmetry. This expectation can be verified by considering the upstairs and downstairs

matter spectrum which is listed in table 4 which is consistent with all anomalies.
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X X̃

χ −108 −36

h1,1 6 2

h2,1 60 20

Group SU(3)2/Z3 Z3

V 16 0

H

10 × 61

(3,3)× 18

(8,1) + (1,8)× 10

10 × 21

11 × 9 · 6
11 × 3 · 6

T(1,0) 0 0

T(2,0) 0 3×A2

Table 4. Summary of the spectrum of the SU(3)2/Z3 theory obtained from geometry X and its

quotient theory on X̃.

3.4 Combining effects in a Z6 quotient

With the observations of the previous two subsections in hand, we can attempt to engineer

an example with a higher order discrete symmetry group. While examples of geometries

with Z3 and Z4 have appeared before [13, 44, 46, 47], higher order discrete symmetries

have proven more elusive. In this section we discuss an example of a non-prime quotient

that reduces the numbers of tensors and also the number of Abelian gauge group factors.

The geometry is realized as a complete intersection CY threefold [21, 24, 48] given by the

configuration matrix.

M =


P1
x 1 0 0 1

P1
y 1 0 0 1

P1
z 1 0 0 1

P2
u 0 1 1 1

P2
w 0 1 1 1



(χ=−72)

(h1,1=8,h2,1=44)

(3.34)

where here the first column denotes an ambient space which is a product of projective space

factors and each column denotes the multi-degree of an equation in this space defining the

complete intersection. As in other examples, super-/sub-scripts denote topological data.

Within this description, the base of the fibration can be identified as dP3 realized as a

hypersurface

dP3 =

P1
x 1

P1
y 1

P1
z 1

 . (3.35)
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Order (x0, x1; y0, y1; z0, z1)− (P1)3 − Coordinate multiplicity

Z6 (0, 1; 0, 1; 0, 1) 1

Z3 (
√

3a110,±i
√
a000;

√
3a110,±i

√
a000;

√
3a110,±i

√
a000)/ ∼Z2 1

Z2 {(0, 1; 1, 0; 1, 0)− (1, 0; 0, 1; 1, 0)− (1, 0; 1, 0; 0, 1)}/ ∼Z3 1

Table 5. Summary of Z6 fixed points in the base. The residual identification identifies several

solutions, leaving only one fixed point of each order.

For this CY threefold, the genus one fiber is given as

genus-one fiber ∼

[
P2
u 1 1 1

P2
w 1 1 1

]
, (3.36)

that does not admit a section, but three-sections only.

Finally it should be noted that the Jacobian of this genus-one fibration can be readily

constructed and leads to a rank three Mordell-Weil group in that elliptically fibered geom-

etry. Hence, in this case the upstairs CY geometry is associated to a U(1)3 gauge group.

This threefold has a known, freely acting Z6 symmetry [49], acting as

Γ6,f : (x0 → y0, x1 → −y1, y0 → z0, y1 → −z1, z0 → x0, z1 → −x1) ,
Γ6,b : (u0 → w0, u1 → w1γ

2
3 , u2 → w2γ3, w0 → u0, w1 → u1, w2 → u2) ,

(3.37)

with γ3 a third root of unity, including the non-trivial action on the hypersurface equations

Γ6 :(b1, f1, f2, f3)→ (b1, f1, γ
2
3f2,−γ3f3) , (3.38)

reducing the Hodge numbers of the quotient [50], X̃ to

(h2,1(X̃), h1,1(X̃)) = (2, 8) . (3.39)

Within the quotient CY threefold, the fixed points in the base can be found by con-

sidering a Γ6,b-invariant equation for the base

b̂ = a000x0y0z0 + a110(x1y1z0 + x1y0z1 + x0y1z1) . (3.40)

Within this description, we find a set of Γi6,b fixed points of orders two, three and six.

Note that several of them get identified upon residual Z6 elements. These fixed points are

summarized in table 5.

In terms of the physical theory, once again the downstairs geometry is associated to a

discrete gauge group only. The symmetry action identifies sections and base divisors such

that the number of vectors and tensors in the downstairs theory is fully reduced. The action

on the base produces three fixed points of orders two, three and six, respectively in the

base with multiple fibers of the same orders over them. We thus deduce that the geometry

presented above is associated to a Z6 discrete gauge symmetry with 24 discrete charged

singlets. The full spectrum of covering and quotient theory is summarized in table 6. Note

that, subject to the Working Assumption mentioned in section 1, to our knowledge, this is

the first time that an order six discrete symmetry has been constructed in six dimensional

F-theory compactifications.
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Covering Quotient

Gauge Group U(1)3 × Z3 Z6

multiplicity

Hneut 45 9

Hcharged 144 24

V 3 0

T(1,0) 3 0

T(2,0) 0 A1 ⊕A2 ⊕A5

Table 6. Summary of the spectrum of a U(1)3 CICY model and its Z6 quotient.

4 Quotients of the Schoen manifold

The discussion in the previous sections has involved the general properties that can arise in

quotients of elliptically fibered Calabi-Yau threefolds, however it is hampered by the fact

that no complete classification of such symmetries is yet known (see [49, 51] for systematic

efforts with some data sets of manifolds). In this section we consider one manifold for which

all possible (fibration preserving) discrete symmetries have been classified [22] — the so-

called “Schoen” or “split bi-cubic” threefold with Hodge numbers (h11, h21) = (19, 19).

In particular, as in section 3.3, in this section we will systematically consider fibra-

tions with higher order Mordell-Weil torsion. Realizing these fibrations within the Schoen

manifold will allow us to use it as the covering space of quotient CY threefolds associated

to theories with higher order discrete symmetries. As with freely acting discrete symme-

tries, a full classification of the possible MW torsion groups of elliptic threefolds would

be desirable but is unfortunately an open problem [52]. To begin, it is worth noting that

Mazur [53] has classified torsion groups for a single elliptic curve over Q, and found the

following:

Zk , n = 1, . . . 10, 12 , Z2 ⊕ Zm, m = 2, 4, 6, 8 . (4.1)

Moreover, for elliptic K3 surfaces, a MW torsion classification also exists [54] with orders

n = 2 . . . 8 as well as m = 2, 4, 6 but also Z3 ⊕ Z3 and Z4 ⊕ Z4 and hence are not simply

included in the set of Mazurs classification. However, for CY three and fourfolds, such a

classification is unknown.

For CY threefolds, a classification of MW torsion could be used to systematically

construct higher order discrete symmetries by taking a sufficient quotient of the theory (as

described in previous sections). The state of the art in constructing explicit Weierstrass

models with additional torsional points of various orders was performed by Aspinwall and

Morrison [33], with models ranging from

Zn , n = 2, . . . 6 , Z2 ⊕ Z2m ,m = 2, 4 , Z3 ⊕ Z3 . (4.2)
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In the following we will take the models of Aspinwall and Morrison and consider CY

quotients acting via rotation of sections within those torsion groups in the fiber and with

a non-trivial action in the base of the fibration.

In all known examples the discrete action in the fiber and the base are the same group.

Thus it is clear that the case symmetry action also constrains the possible symmetries

appearing in the fiber (i.e. torsion groups) for this class of models. For a Fano base for

example, the order of the quotient is already restricted purely from the consideration of

the reducible gravitational anomaly

9− T(1,0) = (K−1b )2 , (4.3)

where 9 > (K−1b )2 > 0 and in addition, both sides must be divisible by the order n and

thus at most an order nine quotient is possible.

In the case of the Schoen threefold, π : X → dP9 and this base surface seems naively,

to allow for infinite order quotients. However this is not the case and all freely acting

discrete symmetries were classified in [22, 55] and in fact, do not exceed the orders above.

In this section we consider these higher order torsion models and discuss their F-theory

physics as wells as their quotients.

The Schoen manifold is well-known to be an exceptional point in the landscape of

Calabi-Yau manifolds. As a fiber product of two rational elliptic surfaces it has a range

of remarkable features, including a vast number of freely acting discrete symmetries and

in fact, an infinite number of inequivalent genus-one fibrations [48, 56, 57]. For generic

points in its complex structure moduli space, the Schoen manifold has a non-trivial, rank

8 Mordell-Weil group, the highest rank explicitly known for a Calabi-Yau threefold [58].

In the following subsections, we begin by illustrating a Z5 quotient of the Schoen

manifold in some detail and provide a brief summary of results for other higher order

quotients in subsection 4.2 and appendix A. These explicit examples illustrate some features

which lead us to comment on possible bounds on discrete symmetries in subsection 4.4.

4.1 F-theory on a Z5 torsion model and its quotient

As written in [33], a Z5 torsion model can be obtained by the following tuned Weierstrass

form:

y2 + a1xy + (a1 − b1)b21y = x3 + (a1 − b1)b1x2

f =
1

6
a1b

3
1 −

1

48
a41 +

1

3
a22b

2
1 −

1

3
b41 −

1

6
a31b1

g = +
1

864
(a21 − 2a1b1 + 2b21)(a

4
1 + 14a31b1 + 26a21b

2
1 − 11a1b

3
1 + 76b41)

∆ =
1

16
(a21 + 9a1b1 − 11b21)b

5
1(a1 − b1)5 ,

(4.4)

This gives rise to a SU(5) × SU(5)/Z5 gauge group if the sections a1 and b1 are generic

polynomials.

Beginning with the upstairs geometry/physics, it should be observed that since the

divisors supporting both SU(5) factors are both in the class of the anti-canonical class of
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the base, they are generically curves of genus-one (and hence, will contribute one adjoint

hypermultiplet each to the massless spectrum). Due to the Z5 quotient in the gauge group,

there is no bi-fundamental matter among the two SU(5) groups as one might expect from

a simple adjoint breaking of E8 but instead non-minimal vanishing (V (f, g,∆) ∼ (4, 6, 12)

leads to superconformal matter points with multiplicity nscp = (K−1b )2 (and at best non-

flat resolutions over these points in the CY threefold). Since the resolution of each non-flat

(4, 6, 12) point contributes exactly one Kähler deformation [59, 60] we find for a (weak)

Fano base

T + nscp = 9 , h(1,1)(X) = 19 . (4.5)

With this observation and noting that each (4, 6, 12) point contributes 29 hypermultiplets

to the gravitational anomaly, one can deduce that

Hn +Hc − V + 29(T + nscp)− 273 = 0 . (4.6)

Hence, any CY elliptic fibration with a weak Fano base and this fiber type must yield 19

complex structure moduli. This is an interesting hint that the Schoen manifold (or its

cousins) is a good starting point to consider such fiber types. Moreover, by taking the

Schoen as our chosen elliptic fibration, the fibration over the base dP9 base is flat and

(K−1b )2 = 0. Hence superconformal points are avoided.

Another motivation for considering this CY manifold is that all freely acting discrete

symmetries arising on it have been classified [22, 55]. In the case of a Z5 quotient, it exists if

both rational ellipic surfaces in the fiber product admit the same Z5 torsion automorphism

given above in their fibers.8

Taking a Z5 quotient (compatible with the torsion action) results in a manifold with

reduced Hodge numbers as summarized in (4.7). The Z5 quotient essentially identifies all

SU(5) resolution divisors in the fibers and analogously eight tensors in the base. Thus only

a Z5 discrete gauge symmetry remains in the downstairs theory and two order 5 multiple

fibers that restrict to two A4 singularities in the base.

Covering Theory Quotient

G : SU(5)2/Z5 Z5

(h1,1, h2,1) (19, 19) (3, 3)

Hc : (24,1)⊕ (1,24) 0

T(1,0) : 9 1

T(2,0) : 0 A4 ⊕A4

(4.7)

In this theory there are no ordinary charged states, but the two superconformal matter

points do contribute to the tensors as shown in (4.7) and is consistent with anomaly can-

cellation.
8In the classification of Schoen quotients, smoothness obtained by choosing a symmetry action on the

fiber product and in particular the shared P1 base in such a way that singularities of one dP9/Z5 miss those

of the other [22].
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Covering Theories

MWtor Gauge Group

Z5 SU(5)2/Z5

Z6 (SU(2)× SU(3)× SU(6))/Z6

Z2 × Z4 (SU(2)2 × SU(4)2)/Z2 × Z4

Z3 × Z3 SU(3)4/Z3 × Z3

Content:

T(1,0) : 9

Hch : 1 ·Adj(G)

(h1,1, h2,1) : (19, 19)

Quotient Theories

T(2,0) Content

2×A4

A1 ⊕A2 ⊕A5

2 · (A1 ⊕A3)

4 · A2

T(1,0): 1

Hch: 0

(3, 3)

Table 7. Summary of the minimal gauge group for various higher order torsion models over dP9

bases described as a Schoen manifold. In the quotient theory the gauge symmetry is fully broken

to a discrete one with only superconformal matter charged under it.

4.2 More Schoen manifolds and their quotients

The Schoen is an intriguing playground to construct models of higher order torsion. We

give a summary of the minimal gauge group over a Fano base and matter content of these

models in table 7. As it turns out, all of these models admit a rank 8 gauge group localized

over genus one curves in the base, that hosts exactly one adjoint representation.

The fact that the Schoen manifold can be viewed as a hypersurface inside dP9×dP9 [48]

allows for a simple symmetry between the fiber and base of the geometry. In the following

discussion we have engineered symmetry actions in the elliptic fibers using tuned torsional

Weierstrass models. In fact, free quotients exist if we choose the dP9 base to admit the

same torsion structure as the fibers [22]. Under quotienting by this symmetry all eight

resolution divisors in the F-theory elliptic fiber are identified as well as the eight tensor

multiplets in the base. Therefore the gauge symmetry is completely broken to a discrete

gauge group and the identification of the tensors in the base results in discrete charged

superconformal matter.

There are in general many quotients of the Schoen manifold possible [22] but the general

construction follows simply by picking two rational surfaces with the same automorphisms

and take a fiber product to ensure smoothness of the quotient. Hence, from the perspective

of the covering theory, the fiber as well as the base dP9 admit the same torsion structure

with resolved G = ADE fibers. Since the quotient collapses all resolution divisors of the

fiber, the same happens analogously to the tensors of the dP9 base which are then the

singular ADE points. Hence we observe that basically the ADE (resolved) structure in

fiber and base is found as codimension two singularities in the base upon the quotient.

However note that in fact we had a non-simply connected total gauge group in the fiber

of type Gtotal = G/Center(G) of the covering theory due to the non-trivial Mordell-Weil

torsion group. Hence it is tempting to speculate whether there exists a global structure of

the superconformal matter system in the base of type G/Center(G) type.
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Figure 4. The folding of an affine E7/Z2 Dynkin diagram into that of E
(2)
6 induced by the order

two monodromy of the two sections.

4.3 Quotients with residual gauge groups

The previous sections focused on examples where the non-simply connected gauge factor

was fully removed in the quotient process. This however does not need to be the case as

exemplified in the following. Qualitatively, this effect is very similar to the Dynkin diagram

folding along an outer autmorphism that produces a non-simply connected gauge group.

The main difference to this construction however is that there is no section in the downstairs

genus one geometry and hence the induced monodromy will always affect the affine node

as well. Therefore, the folding acts always on the full affine Dynkin diagram, resulting in

a twisted affine algebra [8, 22]. Note that such Dynkin diagrams can appear in genus-one

fibrations more generally and do not require the existence of a quotient construction to be

realized [20].

As a starting point we start with a Z2 torsion model, as given in (3.19) and perform

the additional tuning

b4 → b1c
3
1 , a2 → c21 , [c1], [b1] ∈ K−1b , (4.8)

to obtain an (E7 × SU(2))/Z2 gauge group that are located over c1 = 0 and b1 = 0.

In the resolution, the Z2 torsion section has to intersect the only multiplicity one root,

as highlighted in figure 4 of the Dynkin diagrams to enforce the Z2 torsion factor. The

smooth and flat realization of that model exists as a Schoen elliptic fibration over a dP9

base. The curves a1 = 0 and b1 = 0 are genus one curves of self-intersection zero and hence

host one adjoint, as required by anomaly cancellation of the covering theory. This threefold

admits a free Z2 automorphism [22] that removes four fibral divisors, and four tensors of

the base as well, adding four A1 superconformal theories in the base. As in the examples

before the SU(2)/Z2 factor is broken completely. The Z2 acts on the E7 affine Dynkin

diagram by a Z2 folding into that of an E
(2)
6 as shown in figure 4. Hodge numbers and

the F-theory interpretation of the resulting gauge theories of covering and quotient theory

is summarized in table 8. The gauge theory interpretation of the E
(2)
6 Dynkin diagram

matches that of an F4 non-simply laced group, as suggested when deleting the affine node.

Upon taking the quotient, the curves a1 = 0 and b1 = 0 stay genus one curves with self

intersection zero. Hence the former curve hosts an adjoint of F4 and while the latter one

does not contribute discrete charged singlets from the broken SU(2) as argued in previous

sections. Including the full superconformal matter sector, this spectrum is fully consistent

with anomaly cancellation.
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Covering Theory Quotient

G: (E7 × SU(2))Z2 F4 × Z2

(h1,1, h2,1) (19, 19) (11, 11)

Hc: 133⊕ 3 52

T(1,0) : 9 1

T(2,0) : 0 4×A1

Table 8. Summary of the F-theory spectrum quotient group, with residual non-simply laced gauge

F4, appearing from a Z2 quotient of a Schoen threefold.

4.4 Comments on bounds on discrete symmetries

In the previous sections we have constructed numerous non-simply connected genus-one

fibrations with n-sections, and due to the simple nature of quotienting CY threefolds, whose

geometry and physics is fully specified by elliptic fibrations with finite Mordell-Weil group

of order n. As a result of this relationship, the quotienting process provides a systematic

way to construct 6-dimensional theories with Zn discrete gauge symmetries.

This raises the natural question — what discrete symmetries can appear in this context?

Is there a bound on the order of the discrete groups? In the context of the so-called

“Swampland program” [61] it is of interest to map out what effective theories are realizable

within F-theory in 6-dimensions and in particular, to ask what is the maximal order of a

discrete gauge symmetry?

From the constructions given here, it is clear that a classification of non-simply con-

nected CY threefolds (and their multiple fibers) would have implications on the possible

bounds for discrete symmetries and their link to superconformal matter. Also, from a

related but complementary point of view a classification of Mordell-Weil torsion groups of

CY threefolds would also be valuable for this question. However, at present neither type

of classification yet exists within the literature.

At present, the only classifcations of freely acting discrete symmetries of CY threefolds

exist for specific datasets of manifold (and assume a coordinate action inherited from a sim-

ple ambient space). These include [49] for CICY threefolds and [51] for toric hypersurfaces.

An analysis of the former has been undertaken to determine which symmetries are con-

sistent with fibration structures [21] (based on the tools and classification in [48, 62–64]).

Although quotients by non-Abelian discrete groups are known for CY threefolds. In that

work it was also found that in the set of CICY threefolds, only Abelian discrete groups pre-

serve genus one fibration. Moreover the possible groups/orders appearing in that dataset

are found to be

Zn , n ∈ {2, 3, 4, 6} , Z2 × Zm ,m ∈ {2, 3, 4} , Z3 × Z3 . (4.9)

Similarly to the discussion of MW torsion in the previous section, it is worth noting

that Z6 is the highest order (single factor) appearing and Z3×Z3 the highest order product.9

9Note however that clearly some discrete actions in the symmetry classifications listed above are missing

since for example the Schoen threefold appears in the CICY threefold list [49], but the Z5 symmetry

(described in the previous section) is not inherited from a simple toric/projective ambient space.
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It is also interesting to compare the discrete symmetries known above to those ap-

pearing in other constructions. Another relation between F-theory models with Mordell-

Weil torsion and multi-sections also appeared in the context of applying fiber-wise mirror

symmetry of an elliptic fibration [44, 46, 65] where it was observed that genus-one ge-

ometries and those with torsional sections were exchanged. This construction is only a

statement about the structure of the generic fiber itself and no action on the base twofold

was given.10 Hence this construction gives further evidence that a systematic classification

of torsion groups of elliptic fibrations could lead to a more systematic understanding of

genus-one fibrations with multi-sections of the same order and hence discrete symmetries in

F-theory. In [65] this connection was further related to mirror-symmetry in the context of

Heterotic/F-theory duality [66] of K3 surfaces that are stable degenerated. In that context

discrete symmetries, torsional sections and subgroups of E8 (and hence of bounded rank),

naturally arise.

The observations above also appear to agree with recent classifications of U(1) charges

in the type IIB context [67–69] using matrix factorization techniques, that are bounded to

be not higher than charge six and hence upon Higgsing, there is a maximal Z6 symmetry

over a generic base.11

To summarize, it seems that via known constructions in 6-dimensions, a Z6 discrete

symmetry seems to be the maximal order appearing thus far. It should be noted however

that the 6-dimensional YM coupled to SUGRA theories constructed in [70] seem to go

beyond these bounds but do not have a full F-theory realization in their present form.

Originating from Higgsed exotic representations of some non-Abelian groups, Abelian gauge

group remnants, with up to q = 21 U(1) charged singlets have been obtained that can

potentially be broken further to a Z21 symmetry. Whether or not these fully broken

discrete models exist and if they fit into the above picture is an interesting avenue for

future research.

5 Conclusions and future directions

In this article we generalize the discussion of F-theory on smooth genus-one fibered Calabi-

Yau threefold quotients initiated in [6]. In particular, in contrast to that work, we focus

here on freely acting discrete symmetries appearing on elliptically fibered CY threefolds (fre-

quently with multiple or torsional sections). In the F-theory physics of the 6-dimensional

theory, we find that the matter content of the downstairs quotient theory can be eas-

ily determined from the form of the upstairs covering space geometry and that moreover

the induced symmetry actions on covering space divisors have clear ramifications for the

number of tensor, hyper and vector multiplets in the downstairs theory. We have found

examples of quotient CY threefolds with Abelian and non-Abelian non-simply connected

gauge symmetries all of which must include (2,0) strongly coupled sectors gauged under the

discrete symmetries. Geometrically this sector originates from points in the base, where

10It has been shown in [71] that mirror symmetry on a full threefold can factorize into a fiber and base

part, yielding also to the observed mirror structure of the generic fiber.
11A similar important role of E8 has been played in swampland bounds of U(1) symmetries [72].
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the quotient acts like an orbifold and a free shift of the sections in the fiber of the F-theory

torus producing a multiple fiber. Over these points, all sections are identified producing

a genus-one geometry that results in a discrete gauge symmetry in 6-dimensions. The

residual massless degrees of freedom in the downstairs theory can be determined from the

covering space in full generality.

It should be noted that the quotient construction explored here always leads to fi-

brations over singular base manifolds. The presence of these singularities means that this

class of theories serves as a toolbox to systematically construct 6-dimensional supergravity

theories coupled to discrete charged An (2,0) superconformal matter from elliptic fibrations

with non-trivial Mordell-Weil groups.

Moreover, the construction we have outlined in this work admits several starting points

for future research. These include several subtle cases that could potentially be considered

in more detail, such as quotients of gauge groups of type SU(N ×M)/ZN or U(1)×G/Zn
that potentially lead to interesting residual gauge groups after quotienting. These groups

arise from the existence of multisections rather than being unique to quotient construc-

tions (indeed, these effects can appear over generic bases and a detailed analysis of those

geometries is left for future research [20].)

In addition, even for the class of theories explored here it seems to be puzzling, from a

field theory perspective, why the construction of SU(n)/Zn groups should be constrained

or forbidden at all. The fact that these may be bounded by the order of MW torsion would

be interesting to understand from the point of view of coupling YM theories to SUGRA in

6-dimensions. This either could point towards the realization of other more unconventional

fibers with higher rank torsion groups or possibly be ruled out by more subtle anomalies.

Finally, it would be interesting to see how the discrete symmetries studied in this

work interact with more novel solutions of F-theory, including so-called “T-brane” solu-

tions [73–75] and whether any bounds could be derived on the order of discrete symmetries

or maximal charges of matter.
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A Higher order torsion models

This sections continues the more detailed discussion of F-theory of elliptic fibrations with

higher order torsion and their quotients that has been started in subsection 4.1 with Z5.

The explicit Weierstrass models have been constructed in [33] which we take here. For every

model we show that it can be embedded into a Schoen manifold while avoiding non-flat

fibers requires the base to be dP9. Hodge numbers of the quotients are obtained from [22].

A.1 The Z6 torsion model

The generic Weierstrass model with a Z6 torsion point is given as

y2 + a1xy +
1

32
(a1 − b1)(3a1 + b1)(a1 + b1) = x3 +

1

8
(a1 − b1)(a1 + b1)x

2

f =
1

192
b1(3a

3
1 − 3a21b1 − 3a1b

2
1 − b31)

g =
1

110592
(3a21 − 6a1b1 − b21)(9a41 − 6a21b

2
1 − 24a31b1 − 11b41)

∆ =
1

224
(a1 − 5b1)(3a1 + b1)

2(a1 + b1)
3(a1 − b1)6 , a1 ∈ O(K−1b ) , b1 ∈ O(K−1b )

(A.1)

Assuming that the sections ai and bi do not factorize further, this model admits an

SU(2)× SU(3)× SU(6)/Z6 gauge group. Each gauge factor is localized over a genus one

curve contributing a single adjoint hypermultiplet. From the structure of the Z6 factor

we do not expect bifundamental matter but at most trifundamentals. This is consis-

tently reflected in the geometry where all three gauge group factors collide over the points

a1 = b1 = 0 with multiplicity nscp = (K−1b )2. From the gravitational anomaly, the number

of complex structures and Kahler deformation are those of the Schoen manifold. Excluding

all non-flat fibers over a dP9 base allows to take a Z6 quotient. The details of the spectra

are summarized in the following:

Cover Theory Quotient

G : (SU(2)× SU(3)× SU(6))/Z6 Z6

(h1,1, h2,1) (19, 19) (3, 3)

Hc : 3⊕ 8⊕ 35 0

T(1,0) 9 1

T(2,0) 0 A1 ⊕A2 ⊕A5

(A.2)

A.2 The Z2 × Z4 model

The Z2 × Z4 WSF model is given as

y2 + a1xy − (a1)

(
b21 −

1

16
a21

)
y = x3 −

(
b21 −

1

16
a1

)
x2

f = − 1

798
a41 −

7

24
a21b

2
1 −

1

3
b41

g =
1

55296
(a21 + 16b21)(a

2
1 − 24a1b1 + 16b21)(a

2
1 + 24a1b1 + 16b21)

∆ =
1

216
a21b

2
1(a1 − 4b1)

4(a1 + 4b1)
4 , a1 ∈ O(K−1b ) , b1 ∈ O(K−1b )

(A.3)
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Again we find a generic SU(2)2 × SU(4)2 gauge symmetry localized on genus 1 curves

each. The torsion point forbids bifundamentals but requires in fact quad-fundamental rep-

resentations which overshots the discriminant. Indeed over the (K−1b )2 points of collisions

a1 = b1 = 0 we find an (4,6,12) points but leads to the expected Hodge numbers. De-

manding the absence of these points requires again a dP9 base which allows a quotient

when the base is of the same torsion type. The spectra of covering and quotient theory are

summarized as

Cover Theory Quotient

G : (SU(2)× SU(4))2/Z2 × Z4 Z2 × Z4

(h1,1, h2,1) (19, 19) (3, 3)

Hc : 2× (3⊕ 15) 0

T(1,0) 9 1

T(2,0) 0 2× (A1 ⊕A3)

(A.4)

A.3 The Z3 × Z3 models

This Weierstrass model is given as

y2+a1xy−
1

3
(a1+wb1)(a1+w2b1)yb1 =x3−(a1−b1)b1x2+

1

3
(a1+wb1)(a1+w2b1)b

2
1c ,

f =− 1

48
a1(a1−2b1)(a1−2wb1)(a1−2w2b1)

g=
1

864
(a21+2a1b1−2b21)(a

2
1+2wa1b1−2w2b21)(a

2
1+2w2a1b1−2wb21)

∆ =
1

432
(a1+b1)

3(a1+wb1)
3(a1+w2b1)

3b31 , a1 ∈O(K−1b ) , b1 ∈O(K−1b ) ,w= e
2πi
3

(A.5)

Which indeed gives an SU(3)4 gauge group. The two Z3 factors however forbid not only

all bifundamental but also trifundamental representations and there is at most a quad-

fundamental possible. This however overshots the discriminant and leads to (4,6,12) points

which go away upon choosing a dP9 base with the usual spectrum summarized as

Cover Theory Quotient

G : (SU(2)× SU(3))4/Z3 × Z3 Z3 × Z3

(h1,1, h2,1) (19, 19) (3, 3)

Hc : 4× 8 0

T(1,0) 9 1

T(2,0) 0 4×A2

(A.6)
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