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F -THRESHOLDS OF HYPERSURFACES

MANUEL BLICKLE, MIRCEA MUSTAŢǍ, AND KAREN E. SMITH

Abstract. We use the D-module theoretic description of generalized test
ideals to show that in any F -finite regular ring the F -thresholds of hyper-
surfaces are discrete and rational. Furthermore we show that any limit of
F -pure thresholds of principal ideals in bounded dimension is again an F -pure
threshold; hence in particular the limit is rational.

1. Introduction

In characteristic zero one can define invariants of singularities using all divisors
over the ambient variety. A key result that makes these invariants computable says
that they can be determined by the divisors on a resolution of singularities. For
example, if a is a sheaf of ideals on a nonsingular variety, then to every nonnegative
real number λ one associates the multiplier ideal J (aλ). The jumping exponents of

a are those λ such that J (aλ) �= J (aλ
′
) for every λ′ < λ. It is an easy consequence

of the formula giving the multiplier ideals of f in terms of a log resolution of
singularities that the jumping exponents form a discrete set of rational numbers.
See for example [Laz], Ch. 9 for the basic facts about multiplier ideals and their
jumping exponents.

In positive characteristic Hara and Yoshida defined in [HY] an analogue of the
multiplier ideals, the (generalized) test ideals. The definition works in a very general
setting, involving a notion of tight closure for pairs. In this paper, however, we
assume that we work in a regular ring R of characteristic p > 0 that is F -finite, i.e.
such that the Frobenius morphism F : R −→ R is finite. If a is an ideal in R and
if λ is a nonnegative real number, then the corresponding test ideal is denoted by
τ (aλ). In this context we say that λ is an F -jumping exponent (or an F -threshold) if

τ (aλ) �= τ (aλ
′
) for every λ′ < λ. The following is our main result about F -jumping

exponents in positive characteristic.

Theorem 1.1. If R is an F -finite regular ring, and if a = (f) is a principal ideal,
then the F -jumping exponents of a are rational and they form a discrete set.

The discreteness and the rationality of F -jumping numbers has been proved in
[BMS] for every ideal when the ring R is essentially of finite type over an F -finite
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field. We also mention that for R = k[[x, y]], with k a finite field, the above result
has been proved in [Ha] using a completely different approach.

We stress that the difficulty in attacking this result does not come from the fact
that there is no available resolution of singularities in positive characteristic. Even
in cases when such a resolution is known to exist, the F -jumping exponents are
not simply given in terms of the numerical information of the resolution. We refer
to [MTW] for a discussion of the known and conjectural connections between the
invariants in characteristic zero and those in characteristic p.

In order to prove Theorem 1.1 it is enough to show that the set of F -jumping
exponents is discrete. The rationality statement follows as in [BMS]: it is enough
to use the fact that if λ is an F -jumping exponent, then so are the fractional parts
of peλ, for all e ≥ 1. Moreover, we will see that it is enough to prove the result in
the case when R is local.

The crucial step in the proof of the theorem relies on showing that if α is a
rational number, then α is not an accumulation point of F -jumping exponents of
f (irrational α’s are excluded by an inductive argument). The key point in this
step is that (after preparing α) we may rephrase the statement that “α is not
an accumulation point of F -jumping exponents” as the statement that “a certain
element eα of a certain DR-module Mα (which can be thought of as the DR-module
generated by 1

fα ; see the paragraph before Lemma 2.3) is a DR-generator of Mα”

(Corollary 2.8). Here DR denotes the ring of all differential operators of R. This
DR-module reformulation is an extension of an argument due to Alvarez-Montaner,
Blickle and Lyubeznik from [AMBL] (one can interpret the main result in loc. cit.
as the case α = 1 when Mα = Rf ). Since we may assume that R is local, one then
finishes the argument as in loc. cit. by using the fact that Mα has finite length as
a DR-module (see [Lyu]) to conclude that eα indeed generates Mα as a DR-module
(Theorem 2.11). This argument is carried out in detail in Section 2, where also the
necessary background and notation is recalled.

The second half of the paper deals with limits of F -pure thresholds. We apply our
rationality result for formal power series to deduce that every such limit is a rational
number. Recall that the F -pure threshold of a is the smallest (positive) F -jumping
exponent of a. This invariant has been introduced by Takagi and Watanabe in [TW]
who pointed out the analogy with the log canonical threshold in characteristic zero.
In a fixed characteristic p, we consider the set Tn consisting of all F -pure thresholds
of principal ideals in regular F -finite rings of characteristic p and dimension ≤ n.
We consider also the set T ◦

n of F -pure thresholds at the origin for polynomials
f ∈ k[x1, . . . , xn], where k is an algebraically closed field of characteristic p (the
definition does not depend on k). It is easy to see that every element in Tn can
be computed as the F -pure threshold of a formal power series f , and therefore it
is the limit of the F -pure thresholds of the various truncations of f . Conversely,
we show that every limit of F -pure thresholds in bounded dimension is the F -pure
threshold of some formal power series.

Theorem 1.2. For every prime p > 0 and every n ≥ 1, the set Tn is the closure
of T ◦

n . In particular, every limit of F -pure thresholds of principal ideals in F -finite
regular rings of bounded dimension is a rational number.

The proof of Theorem 1.2 uses nonstandard methods to construct a power series
whose F -pure threshold is the limit of a given sequence of F -pure thresholds. The
necessary background for Theorem 1.2 and its proof are given in Section 3. In the
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final section, Section 4, we record some peculiar features of F -pure thresholds and
test ideals, and we state some open problems in analogy with some well-known
conjectures in birational geometry.

For an application of nonstandard techniques to the study of log canonical thresh-
olds, see [dFM]. In that case the nonstandard argument is more involved due to the
fact that the definition of the log canonical threshold is “less elementary”. While
the F -pure threshold is a more subtle invariant than the log canonical threshold,
its definition is “simpler”, and this pays off when using nonstandard extensions.

We believe that exploiting the connections and analogies between the invariants
in positive and zero characteristic can be very fruitful. For example, results on test
ideals such as the Subadditivity and the Restriction Theorems are much easier to
prove than for multiplier ideals, and they imply their characteristic zero counterpart
by reduction mod p. Moreover, there are results on multiplier ideals that so far have
been proved only by reduction to characteristic p (see the work of Takagi [Ta1] and
[Ta2]). On the other hand, certain phenomena that are well understood (or just
conjectural) in characteristic zero can point to interesting phenomena in positive
characteristic.

2. Discreteness and rationality

We start by reviewing the definition and some basic properties of the generalized
test ideals from [BMS]. Let R be a regular ring of characteristic p > 0. We assume
that R is F -finite, that is, the Frobenius morphism F : R −→ R, F (u) = up is finite.
Note that F -finiteness is preserved by taking quotients, localization and completion
(see Example 2.1 in [BMS]). Moreover, if R is F -finite, then so are R[x] and R[[x]].

For an ideal J and for e ≥ 1, we put J [pe] = (upe | u ∈ J). If b is an arbitrary ideal
in R, then we denote by b[1/p

e] the (unique) minimal ideal J such that b ⊆ J [pe].
Suppose now that a is a fixed ideal in R and λ is a positive real number. For

every e ≥ 1 we have (
a
�λpe�

)[1/pe]

⊆
(
a
�λpe+1�

)[1/pe+1]

,

where �u� denotes the smallest integer ≥ u. This sequence of ideals stabilizes since

R is Noetherian, and the test ideal is defined as τ (aλ) :=
(
a�λp

e�)[1/pe]
for e 	 0.

Note that if λ > µ, then τ (aλ) ⊆ τ (aµ). It is shown in [BMS] that for every λ
there is ε > 0 such that

τ (aλ) = τ (aλ
′
)

for every λ′ ∈ [λ, λ + ε). A positive λ is called an F -jumping exponent of a if

τ (aλ) �= τ (aλ
′
) for every λ′ < λ. It is convenient to make the convention that 0 is

an F -jumping exponent, too.
If S is a multiplicative system in R, then τ ((S−1a)λ) = S−1τ (aλ). Similarly, if

R is local and R̂ is its completion, then τ ((aR̂)λ) = τ (aλ)R̂. In particular, if λ is

an F -jumping exponent for S−1a or for aR̂, then it also has to be an F -jumping
exponent for a.

Using the identification of F -jumping exponents as F -thresholds, one shows in
[BMS] that if λ is an F -jumping exponent, then so is pλ. Alternatively, this follows
from a strengthening of the Subadditivity Theorem in this context (see Proposi-
tion 4.1 below and the remark following it).
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From now on we specialize to the case of a principal ideal a = (f). In this case it
is shown in [BMS] that for every λ ≥ 1 we have τ (fλ) = f · τ (fλ−1). This implies
that if λ ≥ 1, then λ is an F -jumping exponent of f if and only if λ− 1 is such an
exponent.

Combining the above two properties, it follows that if λ is an F -jumping exponent
for f , then the fractional parts {peλ} are also F -jumping exponents for all e ≥ 1.
Hence if we know that the F -jumping exponents of f are discrete, λ has to be
rational.

Lemma 2.1. If λ = m
pe for some positive integer m, then τ (fλ) = (fm)[1/p

e].

Proof. By definition, we have τ (fλ) =
(
fmpe′−e

)[1/pe′ ]

for some e′ ≥ e. Therefore it

is enough to show that for every g ∈ R and every � ≥ 1 we have (gp)[1/p
�+1] = g[1/p

�].
This in turn follows from the flatness of the Frobenius morphism: for an ideal J ,

we have g ∈ J [p�] if and only if gp ∈ J [p�+1]. �

We now recall some basic facts about R[F e]-modules and DR-modules. For
details we refer to [Lyu] or [Bli]. Since R is an F -finite regular ring, the ring of
differential operators DR ⊆ EndFp

(R) admits the following description. For every

e ≥ 0, let De
R = EndRpe (R); hence D0

R = R. We have De
R ⊆ De+1

R and

DR =
⋃
e∈N

De
R.

By definition, R has a canonical structure of a left DR-module. Note also
that if S is a multiplicative system in R, then we have a canonical isomorphism
S−1(De

R) 
 De
S−1R. The following lemma is a concrete special case of so-called

Frobenius descent (see [AMBL] for a fast introduction), which states that the Frobe-
nius functor induces an equivalence of the category of R-modules and De

R-modules.
In this explicit case it shows the relevance of De

R-modules in our setting.

Lemma 2.2. The De
R-submodules of R are the ideals of the form J [pe] for some

ideal J . In particular, for every b the ideal
(
b[1/p

e]
)[pe]

is equal to the De
R-submodule

generated by b.

Proof. By definition, if P ∈ De
R and a, b ∈ R, then P (ap

e

b) = ap
e

P (b). This implies

that every ideal of the form J [pe] is a De
R-submodule of R.

Conversely, suppose that I is such a submodule, and let J = {a ∈ R | ape ∈ I}.
We clearly have J [pe] ⊆ I, and we show that equality holds. If q is a prime ideal
in R, then Jq = {b ∈ Rq | bpe ∈ Iq} and (J [pe])q = (Jq)

[pe]. Since Iq is a De
Rq

-

submodule of Rq, it follows that it is enough to prove that I = J [pe] when R is

local. Hence we may assume that R is free (and finitely generated) over Rpe

.
If u1, . . . , uN give a basis of R over Rpe

, then we get morphisms Pi : R −→ R

that are Rpe

-linear by mapping u =
∑N

i=1 a
pe

i ui to ap
e

i . It follows that if u ∈ I,

then Pi(u) = ap
e

i ∈ I for every i; hence ai ∈ J , and we have u ∈ J [pe]. �

We denote by Re the R-R-bimodule on R, with the left structure being the
usual one and the right one being induced by the eth composition of the Frobenius
morphism F e : R −→ R. We use the scheme-theoretic notation for an extension
of scalars via F e: if M is an R-module, then we denote by F e∗M the R-module
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Re ⊗R M . We have a canonical isomorphism Re ⊗R Re′ 
 Re+e′ that takes a ⊗ b
to abp

e

.
The ring R[F ] is the noncommutative ring extension of R generated by a variable

F such that Fa = apF for every a ∈ R. For every e ≥ 1 we also consider the subring
R[F e] ⊆ R[F ]. An R[F e]-module is hence nothing but an R-module M together
with an “action of the eth composition of the Frobenius on M”, that is, a group
homomorphism F e = F e

M : M −→ M such that F e(au) = ap
e

u (or more concisely:
F e
M is an R-linear map M −→ F e

∗M). Due to the adjointness of F e∗ and F e
∗ this

can be rephrased as follows: M is an R-module together with a morphism of left R-
modules ϑe

M : Re ⊗R M −→ M . The adjointness is expressed through the equation
ϑe
M (a⊗ u) = aF e(u).
A unit R[F e]-module is an R[F e]-module M such that ϑe

M is an isomorphism.
Note that for every s ≥ 1, the inclusion R[F se] ⊆ R[F e] makes any (unit) R[F e]-
module into a (unit) R[F se]-module. Moreover, ϑse

M can be described recursively
as

Rse ⊗R M 
 Re ⊗R (R(s−1)e ⊗R M)
1⊗ϑ

(s−1)e
M−−−−−−−−→ Re ⊗R M

ϑe
M−−−→ M.

Every unit R[F e]-module M has a canonical structure of a DR-module. This is
described as follows: since DR =

⋃
s≥1D

se
R , it is enough to describe the action of

P ∈ Dse
R on M . Using the isomorphism ϑse

M : Rse ⊗R M −→ M , we let P act by
P (a⊗ u) = P (a)⊗ u. A fundamental result of Lyubeznik [Lyu] says that if R is an
algebra of finite type over a regular local F -finite ring, then every finitely generated
unit R[F e]-module has finite length in the category of DR-modules.

It is a general fact that for every R-module P and every e ≥ 1, the pull-back
F e∗(M) has a natural structure of a DR-module. Moreover, if P is a unit R[F e]-
module, then ϑe

P : F e∗(P ) −→ P is an isomorphism of DR-modules. For a discussion
of this and related facts we refer to [AMBL], §2.

For simplicity, from now on we assume that R is a domain. A basic example
of an R[F ]-module is given by Rf , where f ∈ R is nonzero. The action of F on
Rf is given by the Frobenius morphism of Rf . It is easy to see that Rf is a unit
R[F ]-module. In fact, we will check this for the following generalization.

Suppose that α is a positive rational number such that p does not divide the
denominator of α. Therefore we can find positive integers e and r such that α =

r
pe−1 .

We define the R[F e]-module Mα as being the Rf -free module with generator eα.
We think of eα formally as 1

fα . Since p
eα = r+α, this suggests the following action

of F e on Mα:

F e

(
b

fm
· eα

)
=

bp
e

fmpe+r
· eα.

It is clear that this makes Mα an R[F e]-module.

Lemma 2.3. For every α as above, Mα is a unit R[F e]-module.

Proof. It follows from definition that the morphism ϑe
Mα

: Re ⊗R Mα −→ Mα is
given by

ϑe
Mα

(
a⊗ b

fm
eα

)
=

abp
e

fmpe+r
eα.

It is straightforward to check that the map c
fs eα −→ cfs(pe−1)+r ⊗ 1

fs eα is well-

defined and that it is an inverse of ϑe
Mα

. �
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Remark 2.4. If e′ = es for some positive integer s, then we may write

(1) α =
r

pe − 1
=

r′

pe′ − 1
,

with r′ = r · pe′−1
pe−1 . Since

(F e)s(eα) =
1

fr(1+pe+···+p(s−1)e)
eα =

1

fr′
eα,

we see that the action of F e′ on eα is the same for both ways of writing α in (1).
In particular, the DR-module structure on Mα depends only on α.

The following lemma relates the module Mα to some test ideals of f . If α = r
pe−1

as above and m ∈ N, we put αm := pme−1
pme · α. Hence the αm form a strictly

increasing sequence converging to α.

Lemma 2.5. With the above notation, the following are equivalent:

(i) τ (fαm) = τ (fαm+1).

(ii) There is a differential operator P ∈ D
(m+1)e
R such that P · eα = F e(eα).

Proof. It follows from Lemma 2.1 that we have

τ (fαm) =
(
fr pe(pme−1)

pe−1

)[1/p(m+1)e]

and τ (fαm+1) =

(
fr p(m+1)e−1

pe−1

)[1/p(m+1)e]

.

Therefore Lemma 2.2 implies

τ (fαm)[p
(m+1)e]=D

(m+1)e
R ·fr pe(pme−1)

pe−1 and τ (fαm+1)[p
(m+1)e]=D

(m+1)e
R ·fr p(m+1)e−1

pe−1 .

We always have τ (fαm+1) ⊆ τ (fαm) for every m. It follows from the above

formulas that these ideals are equal if and only if there is P ∈ D
(m+1)e
R such that

(2) fr pe(pme−1)
pe−1 = P · fr p(m+1)e−1

pe−1 .

We claim that this is the case if and only if P · eα = 1
fr eα in Mα. Note first that

since P ∈ D
(m+1)e
R , it follows from the description of the action of DR on Mα that

P · eα = ϑ
(m+1)e
Mα

(P ⊗ 1)(ϑ
(m+1)e
Mα

)−1(eα).

The formula for (ϑe
Mα

)−1 in the proof of Lemma 2.3 implies that

(ϑ
(m+1)e
Mα

)−1(eα) = fr p(m+1)e−1
pe−1 ⊗ eα,

and therefore

(ϑ
(m+1)e
Mα

)−1(P · eα) = P

(
fr p(m+1)e−1

pe−1

)
⊗ eα = frp(m+1)e ·P

(
fr p(m+1)e−1

pe−1

)
⊗ 1

fr
eα.

On the other hand,

(ϑ
(m+1)e
Mα

)−1

(
1

fr
eα

)
= fr pe(p(m+1)e−1)

pe−1 ⊗ 1

fr
eα;

hence P · eα = 1
fr eα if and only if

frp(m+1)e

P

(
fr p(m+1)e−1

pe−1

)
= fr pe(p(m+1)e−1)

pe−1 ,

which is equivalent to (2). This completes the proof of the lemma. �
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Remark 2.6. Since we have D
(m+1)e
R ⊆ D

(m+2)e
R , it follows from the lemma that

if τ (fαm) = τ (fαm+1), then τ (fαi) = τ (fαm) for every i ≥ m. In other words,
there is no F -jumping exponent in (αm, α). See also Proposition 4.3 below for an
alternative proof of this statement.

Remark 2.7. Using the language of roots and generators of finitely generated unit
R[F e]-modules as in [Lyu], one can easily show that Mα is naturally isomorphic to
the unit R[F e]-module generated by

β : R
a 	→fr·a⊗1−−−−−−−−→ Re ⊗R ∼= F e∗R .

The unit module generated by β is by definition the inductive limit M̃α of the
direct system one obtains by composition of Frobenius powers of the map β. As

an R-module, M̃α is isomorphic to Rf , but the action of the Frobenius is not the
usual one (except in the case r = pe − 1). One easily checks (by sending the image

of 1 ∈ R in the limit M̃α to eα ∈ Mα) that M̃α and Mα are isomorphic as R[F e]-
modules. By construction it follows that Reα ⊆ Mα is a root of Mα. Therefore
[AMBL, Corollary 4.4] implies that eα generates Mα as a DR-module. In Theorem
2.11 below we will give a direct proof of this fact.

Corollary 2.8. If α = r
pe−1 , then eα generates Mα as a DR-module if and only if

α is not an accumulation point of F -jumping exponents of f .

Proof. The αm form a strictly increasing sequence converging to α. Hence α is
not an accumulation point of F -jumping exponents if and only if the sequence
of ideals {τ (fαm)}m stabilizes. By Remark 2.6, this is the case if and only if
τ (fαm) = τ (fαm+1) for somem. SinceDR =

⋃
m≥1D

me
R , it is clear from Lemma 2.5

that if Mα = DR ·eα, then α is not an accumulation point of F -jumping exponents.
Conversely, if this is the case, then 1

fr eα ∈ DR · eα. By Remark 2.4, we see that in

fact we have infinitely many positive integers rm such that 1
frm

eα lies in DR · eα.
Since these elements generate Mα as an R-module, we see that Mα = DR · eα. �

Corollary 2.9. If α = r
pe−1 , then α is not an accumulation point of F -jumping

exponents of f ∈ R if and only if for every q ∈ Spec(R), α is not an accumulation

point of F -jumping exponents of f
1 ∈ Rq.

Proof. We have seen that α is not an accumulation point of F -jumping exponents of
f if and only if τ (fαm) = τ (fαm+1) for some m. Since taking test ideals commutes
with localization, it is clear that if this property holds in R, then it holds in every
Rq. For the converse, note that if

(3) τ ((fRq)
αm) = τ ((fRq)

αm+1),

then the same holds for all primes q′ in a neighborhood of q. If Um is the open
subset consisting of those q for which (3) holds and if Spec(R) =

⋃
m Um, then

Spec(R) = Um0
for some m0 (we use the fact that Spec(R) is quasicompact and

that Um ⊆ Um+1 by Remark 2.6). This implies that τ (fαm0 ) = τ (fαm0+1), hence
α is not an accumulation point of F -exponents of f . �

Remark 2.10. It is easy to see that Mα is generated by eα as an R[F e]-module.
Indeed, Mα is generated as an R-module by the (F e)m(eα) = 1

f
r
pme−1
pe−1

· eα, with
m ≥ 1.
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Theorem 2.11. Let R be an F -finite regular domain. If f is a nonzero element
in R and α = r

pe−1 for some positive integers r and e, then Mα is generated over

DR by eα.

Proof. Note first that by Corollary 2.9, we may assume that R is local. Then the
argument follows verbatim the argument for Theorem 4.1 in [AMBL]. Let N denote
the DR-submodule of Mα generated by eα. Note that we have

F e∗(N) ⊆ F e∗(Mα)
ϑe
Mα−−−−→ Mα;

hence we may consider F e∗(N) as a submodule of Mα. We claim that N ⊆ F e∗(N).
Since F e∗(N) is a DR-submodule of Mα, it is enough to show that eα ∈ F e∗(N).
This follows from eα = fr · ϑe

Mα
(1⊗ eα).

Theorem 4.3 in [AMBL] shows that this makes N a unit R[F e]-module, i.e., we
have in fact N = F e∗(N). The idea is the following: if N �= (F ∗)(N), then the
faithful flatness of the Frobenius implies that we have a sequence of strict inclusions

N � F e∗(N) � (F 2e)∗(N) � · · ·
of DR-submodules of Mα. This contradicts Lyubeznik’s Theorem [Lyu] which says
that as a unit R[F e]-module, Mα has finite length in the category of DR-modules
(we may apply the theorem, since we assume that R is local and F -finite).

Therefore we have N = (Fme)∗(N) for every m. On the other hand, every
element in Mα lies in some (Fme)∗(N). This follows from

1

frp(m−1)e
eα = ϑme

Mα
(1⊗ eα) ∈ (Fme)∗(N).

Therefore N = Mα. �

Remark 2.12. By putting together the above results, we see that under the hypoth-
esis of Theorem 2.11, every rational number α whose denominator is not divisible
by p is not an accumulation point of F -jumping exponents of a given f . The above
proofs extend to this setting the main result in [AMBL], which deals with the case
α = 1. In addition, we have dropped the extra assumption that was imposed in
loc. cit. in order to apply Lyubeznik’s Theorem.

Before we proceed to the proof of Theorem 1.1 we show the following lemma
which allows us to do induction. Note that this lemma itself does not require the
ideal to be principal.

Lemma 2.13. Let R be an F -finite regular ring, and a an ideal in R.

(i) If λ is an F -jumping exponent of a, then there is a prime ideal q in R such
that λ is also an F -jumping exponent of aRq.

(ii) If λ is an accumulation point of jumping numbers of a, then we can find a
nonmaximal prime ideal q such that λ is an F -jumping exponent of aRq.

Proof. We may assume that λ > 0, and let us fix a strictly increasing sequence of
positive numbers {λm}m, with limm−→∞ λm = λ. For every m we have τ (aλ) ⊆
τ (aλm+1) ⊆ τ (aλm). Let Im be the ideal

(τ (aλ) : τ (aλm)) = {h ∈ R | h · τ (aλm) ⊆ τ (aλ)}.
Therefore Im ⊆ Im+1 for every m, and since R is Noetherian, there is an ideal I
such that Im = I for all m 	 0.
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Note that λ is an F -jumping exponent of a if and only if for every m we have
τ (aλ) �= τ (aλm), or equivalently, Im �= R. Moreover, λ is an accumulation point of
F -jumping exponents if and only if τ (aλm) �= τ (aλm+1) for every m.

If λ is an F -jumping exponent of a, let q be a minimal prime containing I. Since

(τ ((aRq)
λ) : τ ((aRq)

λm)) = (τ (aλ)Rq : τ (a
λm)Rq) = Iq �= Rq,

it follows that λ is an F -jumping exponent of aRq. This gives (i).
We now show that if λ is an accumulation point of F -jumping exponents, then

we can find q as above that is not a maximal ideal. Equivalently, we need to show
that dim(R/I) ≥ 1, i.e., R/I is not Artinian. By assumption, if m 	 0, then we
have a strictly decreasing sequence

τ (aλm)/τ (aλ) � τ (aλm+1)/τ (aλ) � . . .

of finitely generated R/I-modules. Therefore R/I cannot be Artinian, and we get
(ii). �

Proof of Theorem 1.1. Since R is a regular ring, we may write R = R1 × · · · ×Rm,
where Ri are regular domains. If we write f = (f1, . . . , fm), then the set of F -
jumping exponents of f is the union of the sets of F -jumping exponents of each of
the fi. Therefore, in order to prove Theorem 1.1 for R, we may assume that R is
a domain and that f �= 0, the case f = 0 being trivial.

We have seen that for every R and f , the discreteness of the set of F -jumping
exponents implies the rationality of every such exponent. Conversely, if we know
that all F -jumping exponents are rational, then they form a discrete set. Indeed,
if α is an accumulation point of F -jumping exponents, then α is an F -jumping
exponent, too; hence α ∈ Q. We can find a positive integer m such that the
denominator of pmα is not divisible by p. For every F -jumping exponent β, pmβ
is again an F -jumping exponent. Therefore also pmα is an accumulation point of
F -jumping exponents, contradicting Theorem 2.11 (see also Remark 2.12).

We claim that it is enough to prove Theorem 1.1 when R is local. Indeed, given
an arbitrary regular F -finite local ring, if α is an F -jumping exponent of f , then α
is also an F -jumping exponent for fRq for some prime q, by Lemma 2.13. Hence
α ∈ Q, by the local case, and, as we have seen, this implies that R satisfies the
theorem.

Suppose now that R is local. In particular, dim(R) < ∞, and we prove the
statement by induction on dim(R). The case dim(R) = 0 is trivial; hence we may
assume that the theorem holds for local rings of dimension < dim(R). If α is an
accumulation point of F -jumping exponents, then Lemma 2.13 implies that there is
a prime ideal q in R, different from the maximal ideal, such that α is an F -jumping
exponent for fRq. Since dim(Rq) < dim(R), we may apply induction to conclude
that α ∈ Q. Arguing as before, we get a contradiction with Theorem 2.11. This
implies that the set of F -jumping numbers of f is discrete, and as a consequence,
it contains only rational numbers. �

3. Limits of F -pure thresholds

The F -pure threshold of an ideal has been introduced in [TW] and further studied
in [MTW]. We start by recalling some basic properties. In fact, it is convenient to
consider more generally the interpretation of all F -jumping exponents of an ideal
as F -thresholds as follows. We refer to [BMS] for details and proofs.
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Suppose that R is an F -finite regular ring, a is an ideal in R, and J is an ideal
such that a ⊆ Rad(J). For every e let ν(pe) denote the largest r such that ar �⊆ J [pe]

(if there is no such r, we put ν(pe) = 0). By the flatness of the Frobenius one has
that

ν(pe)/pe ≤ ν(pe+1)/pe+1

for every e. The limit

cJ (a) = lim
e−→∞

ν(pe)

pe
= sup

e≥1

ν(pe)

pe

is finite, and it is called the F -threshold of a with respect to J . It was shown in
[BMS], Corollary 2.24, that the set of all F -thresholds of a (when we vary J) is
equal to the set of F -jumping exponents of a. More precisely, cJ (a) is the smallest
λ such that τ (aλ) ⊆ J . We mention that one can show that for every e we have a
strict inequality ν(pe)/pe < cJ (a) (see Proposition 1.7 in [MTW]).

Note that τ ((am)λ) = τ (amλ) for every λ; hence cJ (am) = cJ(a)/m for every J .

On the other hand, we have cJ
[p]

(a) = p · cJ(a).

Remark 3.1. When a = (f) is principal, then fr ∈ J [pe] implies fpr ∈ J [pe+1].
Therefore we have

ν(pe+1) + 1

pe+1
≤ ν(pe) + 1

pe
;

hence cJ (a) = infe
ν(pe)+1

pe . It follows that for every ideal J and every e, we have

ν(pe) + 1 = �cJ (f)pe�.

Suppose now that R is a domain. If (0) �= a �= R, then τ (a0) = R, and τ (aλ) �= R
for λ 	 0 (in fact, the test ideal is contained in a for λ 	 0; see, for example,
Proposition 2.20 in [BMS]). The F -pure threshold fpt(a) is defined as the smallest
positive F -jumping exponent of a, i.e., it is the smallest λ such that τ (aλ) �= R.
We make the convention that fpt(0) = 0 and fpt(R) = ∞.

If R = R1×· · ·×Rm and a = a1×· · ·×am, then we define the F -pure threshold
of a by fpt(a) = mini fpt(ai). We can use this to reduce the computation of F -pure
thresholds to the case when R is a domain, which we will do henceforth.

It is clear from the definition that if a ⊆ b, then fpt(a) ≤ fpt(b). Note also
that fpt(am) = fpt(a)/m. We record in the following proposition a few other useful
properties of F -pure thresholds.

Proposition 3.2. Let a be an ideal in R.

(i) If (R,m) is local and a �= R, then fpt(a) = cm(a).
(ii) If S is a multiplicative system in R, then fpt(S−1a) ≥ fpt(a).
(iii) If m is a maximal ideal containing a, then fpt(aRm) = cm(a).
(iv) We have fpt(a) = minq fpt(aRq), where the minimum is either over the

prime ideals or over the maximal ideals of R.

(v) If R is a local ring and R̂ is its completion, then fpt(aR̂) = fpt(a).

Proof. For all assertions we may assume that R is a domain and that a is a proper
nonzero ideal. (i) is clear, and (ii) follows from the fact that taking test ideals
commutes with localization. For (iii), note that since m[pe] is m-primary, we get
(mRm)

[pe] ∩R = m[pe], which gives our statement.
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In order to prove (iv), let c = fpt(a). If I = τ (ac), then for every prime ideal q
containing I we have τ ((aRq)

c) = Iq �= Rq; hence c = fpt(aRq). (v) follows from
the fact that taking test ideals commutes with completion. �

The following lemma will allow us to approximate arbitrary F -pure thresholds
by F -pure thresholds of polynomials. The statement can be found in [MTW], but
we give the proof for completeness.

Lemma 3.3. If J is an ideal in R and a, b are ideals contained in Rad(J), then
cJ (a+ b) ≤ cJ(a) + cJ (b).

Proof. If e ≥ 1 and r, s are such that ar ⊆ J [pe] and bs ⊆ J [pe], then it is clear that
(a + b)r+s ⊆ J [pe]. The assertion of the lemma now follows from the definition of
F -thresholds. �

Corollary 3.4. If m[ps] ⊆ J ⊆ m for some maximal ideal m and some s ≥ 1, and
if f , g ∈ m are such that f − g ∈ mN , then

|cJ (f)− cJ(g)| ≤ ps · dim(Rm)

N
.

Proof. Since f − g ∈ mN , the lemma gives

|cJ (f)− cJ(g)| ≤ cJ (mN ) ≤ cm
[ps]

(mN ) =
ps · dim(Rm)

N
,

where we use the fact that cm(m) = dim(Rm). �

We now turn to the study of the set of F -pure thresholds of principal ideals in
bounded dimension. Recall that since τ (f) = (f), we have fpt(f) ≤ 1 for every
noninvertible f in a domain R. If k is a field and f ∈ k[x1, . . . , xn] is such that
f(0) = 0, then we denote by fpt0(f) the F -pure threshold of the image of f in
k[x1, . . . , xn](x1,...,xn).

We now fix the characteristic p. For n ≥ 1 and for every field k of characteristic
p we denote by T ◦

n (k) the set of F -pure thresholds fpt0(f), where f ∈ k[x1, . . . , xn]
is such that f(0) = 0. We also put Tn for the set of F -pure thresholds fpt(g), where
g ∈ R is not invertible and R is an F -finite regular domain of dimension ≤ n.

Theorem 3.5. If the characteristic p is fixed, then

(i) For every n we have T ◦
n (k) ⊆ T ◦

n+1(k).
(ii) For every field extension K/k, we have T ◦

n (k) ⊆ T ◦
n (K).

(iii) The set T ◦
n (k) does not depend on k if k is algebraically closed (from now

on we simply denote this set by T ◦
n ).

(iv) The set Tn is contained in the closure of T ◦
n .

Proof. If f ∈ k[x1, . . . , xn], then fpt0(f) = lime−→∞ ν(pe)/pe, where ν(pe) is the

largest r such that fr �∈ (xpe

1 , . . . , xpe

n ). It is clear that ν(pe) does not change if we
consider instead f in k[x1, . . . , xn] or in K[x1, . . . , xn], for some field extension K
of k. This gives the first two assertions.

For (iii), it is enough to show that for every d ≥ 1 and c > 0, the existence of
f ∈ k[x1, . . . , xn]≤d (these are the polynomials of degree ≤ d) with fpt0(f) = c does
not depend on the algebraically closed field k. Note that

{f ∈ k[x1, . . . , xn]≤d | f(0) = 0} ∼= kN
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can be viewed as the set of k-valued points of a suitable affine space AN . Recall
first from [BMS, Proposition 3.6] that the denominators of the F -jumping numbers
of f in the above set are bounded in terms of d, n and the characteristic p; in
particular, the bound is independent of the field k. Therefore we have 0 < a1 <
· · · < am(d,n,p) ≤ 1 such that for every nonzero f of degree ≤ d and with f(0) = 0,
we have fpt0(f) = ai for some i. From now on we may assume that c = aj for some
j.

On the other hand, for every a > 0, the condition that fpt0(f) ≤ a is equivalent

with fape�+1 ∈ (xpe

1 , . . . , xpe

n ) for every e. Here we have denoted by �u� the largest
integer ≤ u. Since the degree of f is bounded above by d, it follows that the
condition for f to have fpt0(f) ≥ a is an intersection of closed conditions defined
over Fp; hence it is closed and defined over Fp. In other words, there is a closed
subscheme Za ⊆ AN

Fp
, such that f ∈ k[x1, . . . , xn]≤d with f(0) = 0 has fpt0(f) ≤ a

if and only if f corresponds to a k-valued point of Za.
Given c = aj , let us choose a and b such that aj−1 < a < aj < b < aj+1. It

follows that there is f ∈ k[x1, . . . , xn]≤d with fpt0(f) = aj if and only if Za(k) �=
Zb(k). This condition does not depend on k if k is algebraically closed, which proves
(iii).

In order to prove (iv), consider c ∈ Tn. By definition, there is an F -finite regular
ring R of dimension ≤ n and g ∈ R noninvertible such that c = fpt(g). By (iv)
and (v) in Proposition 3.2, we may assume that R is local and complete. Since
R is regular and contains a field, Cohen’s Structure Theorem implies that R 

k[[x1, . . . , xm]] for some field k and some m ≤ n. Since k is a quotient of R, it follows
that [k : kp] < ∞. Using Proposition 3.2 again we see that if f ∈ k[x1, . . . , xm] with
f(0), then fpt0(f) is equal to its F -pure threshold in R. If we denote by g≤d the
truncation of g up to degree ≤ d, it follows from Corollary 3.4 that

| fpt0(g≤d)− fpt(g)| ≤ m

d+ 1
.

This implies that c = fpt(g) is in the closure of T ◦
n . �

Our next goal is to prove Theorem 1.2. In order to show that Tn is closed,
the key idea is to associate to a sequence of polynomials fm ∈ k[x1, . . . , xn] with
limm−→∞ fpt0(fm) = α a formal power series f over some extension field of k
such that fpt(f) = α. This will be done using some basic constructions from non-
standard analysis. We briefly present these constructions and refer to [Gol] for
details.

Recall that an ultrafilter U on the set N is a collection of subsets of N with the
following properties:

(i) ∅ �∈ U .
(ii) If A ∈ U and B ⊇ A, then B ∈ U .
(iii) If A, B ∈ U , then A ∩B ∈ U .
(iv) If A ⊆ N, then either A or N�A is in U .
An ultrafilter U is nonprincipal if every subset of N whose complement is finite

belongs to U . It follows from Zorn’s Lemma that there are nonprincipal ultrafilters
on N, and from now on we fix one such nonprincipal ultrafilter U . Since we will
need this later we point out that the properties (iii) and (iv) easily imply that if
A = U1 ∪ · · · ∪Un is a finite disjoint union, and if A ∈ U , then one and only one of
the Ui is in U .
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If {Am}m∈N is a sequence of sets, then one defines on the product
∏

m∈N
Am the

equivalence relation

(am)m ∼ (bm)m iff {m | am = bm} ∈ U .

The set of equivalence classes is called the ultraproduct (with respect to the ul-
trafilter U), and we denote it here by [Am]; the class of (am)m is denoted by
[am]. Similarly, from a sequence of functions fm : Am −→ Bm we get a function
[fm] : [Am] −→ [Bm] that takes [am] to [f(am)].

When Am = A for every m, the corresponding ultraproduct is denoted by ∗A
and is called the nonstandard extension of A. Note that we have an injective map
A ↪→ ∗A that takes a to the class of (a, a, . . .). Similarly, a function u : A −→ B has
a nonstandard extension ∗u : ∗A −→ ∗B. As a general principle one observes that if
A has an algebraic structure, then ∗A has a similar structure, too. For example, ∗R
is an ordered field, and if k is an algebraically closed field, then so is ∗k.

If we have a sequence of polynomials fm ∈ k[x1, . . . , xn], then we obtain an
internal hyperpolynomial F = [fm] ∈ ∗(k[x1, . . . , xn]). We can view any polynomial
g ∈ k[x1, . . . , xn] (or more generally any power series) as a function Nn −→ k given
by sending the tuple (m1, . . . ,mn) to the coefficient of the monomial xm1

1 · . . . ·xmn
n

in g. Hence we can view F as a function (∗N)n −→ ∗k. If we restrict this function
F to Nn, then we get a formal power series f ∈ (∗k)[[x1, . . . , xn]]. Hence we have
the following natural maps:

k[x1, . . . , xn] ↪→ ∗(k[x1, . . . , xn]) −→ (∗k)[[x1, . . . , xn]].

Note that if fm(0) = 0 for every m, then f lies in the maximal ideal, i.e. f(0) = 0.
After these preparations, we can prove that Tn is closed.

Proof of Theorem 1.2. We fix an algebraically closed field k of characteristic p.
We have already seen in Theorem 3.5 that T ◦

n = T ◦
n (k) is independent on the

choice of k, and that it is dense in Tn. Therefore, in order to show that Tn is
closed, it is enough to show that if we have a sequence fm ∈ k[x1, . . . , xn] with
fm(0) = 0 and limm−→∞ fpt0(fm) = α, then α ∈ Tn. In fact, we will show that
if f ∈ (∗k)[[x1, . . . , xn]] is the formal power series associated to F = [fm] as above,
then α = fpt(f). The function fpt0 : {g ∈ k[x1, . . . , xn] | g(0) = 0} −→ R extends to

∗fpt0 : {F ∈ ∗
(k[x1, . . . , xn]) | F (0) = 0} −→ ∗R

such that ∗fpt0(F ) = [fpt0(fm)] ∈ ∗R.
It is a general fact that for every element w ∈ ∗R there is a unique real number,

its shadow denoted by sh(w) such that |w − sh(w)| < ε for every positive real
number ε (see [Gol], §5.6). Moreover, Theorem 6.1 in loc. cit. implies that if cm
is a sequence of real numbers converging to c, then sh([cm]) = c. Hence in order
to conclude we need to show that sh(

∗
fpt0(F )) = fpt(f). Denoting by ( )◦ the

subsets consisting of polynomials or power series vanishing at zero, this means that
we have to show that the following diagram commutes:

∗
(k[x1, . . . , xn]

◦) ��

∗fpt0

��

(∗k)[[x1, . . . , xn]]
◦

fpt0

��
∗R

sh �� R
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For every positive integer d, we denote by f≤d the truncation of f of degree ≤ d.
It follows from Corollary 3.4 that

(4) | fpt(f)− fpt(f≤d)| ≤
n

d+ 1
.

We have by definition f≤d = [(fm)≤d]; hence

(5) |∗fpt0(F )− ∗fpt0(f≤d)| = [| fpt0(fm)− fpt0((fm)≤d)|] ≤ n/(d+ 1).

If we show that fpt(f≤d) =
∗fpt0(f≤d), then we are done. Indeed, we deduce from

(4) and (5) that | fpt(f)− ∗fpt0(F )| ≤ 2n/(d+ 1) for any d. Since fpt(f) ∈ R, this
implies fpt(f) = sh(∗fpt0(F )).

To simplify the notation we put gm = (fm)≤d and g = [gm]. It follows from
Proposition 3.2 that for any polynomial h ∈ k[x1, . . . , xn] with h(0) = 0, we may
compute fpt0(h) by considering h in (k∗)[[x1, . . . , xn]].

Recall that if we bound the degree of a polynomial, then we can also bound
the denominators of its F -jumping exponents, independent of the base field (see
Proposition 3.6 in [BMS]). Since the F -pure thresholds of principal ideals are
bounded above by 1, it follows that there is a finite set of rational numbers A such
that fpt(g) ∈ A and fpt(gm) ∈ A for every m. This implies that there is a unique
a ∈ A such that {m ∈ N | fpt(gm) = a} ∈ U .

Let us prove for example that a ≤ fpt(g) (the reverse inequality follows by an
analogous argument). We choose positive integers r and e such that a ≥ r+1

pe and

every element in A that is < a is also < r
pe . Since fpt(g) ∈ A, if we show that

gr �∈ (xpe

1 , . . . , xpe

n ), then fpt(g) ≥ r
pe ; hence fpt(g) ≥ a. Note that if for some m

we have fpt(gm) = a, then using Remark 3.1 we get grm �∈ (xpe

1 , . . . , xpe

n ). Hence

there is a monomial xb1
1 · · ·xbn

n with all bi ≤ pe − 1 that does not appear in gm.
Note that the set of those m that satisfy this condition is in U . Since there are
only finitely many monomials as above, it follows that after possibly passing to a
smaller subset we may assume in addition that the same monomial works for all
these m. This means that the coefficient of the monomial in gr = [grm] is nonzero;

hence gr �∈ (xpe

1 , . . . , xpe

n ), as required. This proves that Tn is closed.
The last assertion in the theorem follows since Tn is contained in Q by Theo-

rem 1.1. �

4. Remarks and open problems

Recall that test ideals satisfy the following analogue of the Subadditivity Theo-
rem for multiplier ideals. If a and b are ideals in R and if λ ∈ R+, then

τ ((ab)λ) ⊆ τ (aλ) · τ (bλ).

See, for example, Lemma 2.10 in [BMS] for a proof. In the case of a p-power, we
have the following strengthening.

Proposition 4.1. If a is an ideal in R+ and if λ ∈ R+, then

(6) τ (apλ) ⊆ τ (aλ)[p].

Moreover, if τ (apλ) ⊆ J [p] for some ideal J , then τ (aλ) ⊆ J .
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Proof. If e 	 0, then τ (aλ) =
(
a�λp

e+1�
)[1/pe+1]

and τ (apλ) =
(
a�λp

e+1�
)[1/pe]

. By

definition we have

a
�λpe+1� ⊆

((
(a�λp

e+1�)[1/p
e+1]

)[p]
)[pe]

;

hence
(
a�λp

e+1�
)[1/pe]

⊆
((

a�λp
e+1�

)[1/pe+1]
)[p]

, which gives (6).

Suppose now that

τ (apλ) =
(
a
�λpe+1�

)[1/pe]

⊆ J [p].

It follows that a�λp
e+1�⊆ (J [p])[p

e]=J [pe+1]. Therefore τ (aλ)=
(
a�λp

e+1�
)[1/pe+1]

⊆
J . �
Remark 4.2. The above proposition gives another proof for the fact that if λ is an
F -jumping exponent for an ideal a, then pλ is also an F -jumping exponent. More
precisely, if ε > 0 is such that τ (apλ−ε) = τ (apλ), then τ (aλ−

ε
p ) = τ (aλ).

As we have already mentioned, there are many analogies between the F -pure
threshold and a characteristic zero invariant that is very much studied, the log
canonical threshold (see [TW] and also [MTW]). However, in characteristic zero
there is not much difference in considering log canonical thresholds of principal or
of arbitrary ideals. This is not the case in characteristic p. For example, every
rational number c is equal to fpt(a) for some ideal a in some polynomial ring R:
if c = n

r , we may take R = k[x1, . . . , xn] and a = (x1, . . . , xn)
r. On the other

hand, as the following proposition shows, there are intervals in (0, 1) containing no
F -pure threshold of a principal ideal in any dimension. For example, there is no

such F -pure threshold in
(
1− 1

p , 1
)
. The proposition also follows from the results

in Section 2 (see Remark 2.6), but we give a direct argument below.

Proposition 4.3. Let R be a regular F -finite ring of characteristic p, and f ∈ R.

(i) Let α = r
pe−1 for some positive r and e, and we put αm =

(
1− 1

pme

)
α for

m ≥ 0. If there is an F -jumping exponent of f in (αm+1, αm+2], then there
is an F -jumping exponent of f also in (αm, αm+1].

(ii) For every e ≥ 1 and every 0 ≤ a ≤ pe − 1, the F -pure threshold fpt(f) does

not lie in
(

a
pe ,

a
pe−1

)
.

Note that (ii) gives for every e open intervals of total length∑
0≤i≤pe−1

i/pe(pe − 1) = 1/2

containing no F -pure threshold of a principal ideal in characteristic p. One should
compare this with the characteristic zero case when every c ∈ (0, 1] is the log
canonical threshold of some hypersurface: for example, if c = n

r ≤ 1, then c is the
log canonical threshold of

∑n
i=1 x

r
i .

Proof of Proposition 4.3. The assertion in (i) follows from the fact that if λ ∈
(αm+1, αm+2], then peλ − r ∈ (αm, αm+1], and we have seen that peλ − r is an
F -jumping exponent if λ is as well. In particular, we see that if λ is an F -jumping
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exponent in (α1, α), then there is another positive F -jumping exponent < λ. Hence
λ is not the F -pure threshold of f . �

Motivated by the analogy with some important conjectures on log canonical
thresholds in characteristic zero (see [Kol], §8) we make the following conjectures
on F -pure thresholds.

Conjecture 4.4. For every prime p and every n, the set Tn satisfies ACC (the
Ascending Chain Condition), i.e. it contains no strictly increasing sequences.

Remark 4.5. Note that if f ∈ k[[x1, . . . , xn]] lies in the maximal ideal, then Corol-
lary 3.4 implies that whenever f − g ∈ (x1, . . . , xn)

d, we have | fpt(f) − fpt(g)| ≤
n/d. Therefore the above conjecture predicts that given f , there is d such that
fpt(f) ≥ fpt(f + h) for all h ∈ (x1, . . . , xn)

d. However, even this special case is not
known.

Conjecture 4.6. For every prime p and every n ≥ 1, the accumulation points of
Tn are contained in Tn−1 (by convention, T0 = {0}).

We have seen in the previous section that the set Tn is the closure of T ◦
n . In fact,

we make also the following conjecture.

Conjecture 4.7. For every prime p and every n, every F -pure threshold in dimen-
sion ≤ n can be obtained as the F -pure threshold at the origin of some polynomial
in k[x1, . . . , xn], i.e. we have Tn = T ◦

n .
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