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Abstract

This paper describes a probabilistic approach to the problem of recog-

nizing places based on their appearance. The system we present is

not limited to localization, but can determine that a new observa-

tion comes from a previously unseen place, and so augment its map.

Effectively this is a SLAM system in the space of appearance. Our

probabilistic approach allows us to explicitly account for perceptual

aliasing in the environment—identical but indistinctive observations

receive a low probability of having come from the same place. We

achieve this by learning a generative model of place appearance. By

partitioning the learning problem into two parts, new place models

can be learned online from only a single observation of a place. The

algorithm complexity is linear in the number of places in the map,

and is particularly suitable for online loop closure detection in mo-

bile robotics.

KEY WORDS—place recognition, topological SLAM, ap-

pearance based navigation

1. Introduction

This paper considers the problem of recognizing locations

based on their appearance. This problem has recently re-

ceived attention in the context of large-scale global localiza-

tion (Schindler et al. 2007) and loop closure detection in mo-

bile robotics (Ho and Newman 2007). This paper advances the

state of the art by developing a principled probabilistic frame-

work for appearance-based place recognition. Unlike many ex-

isting systems, our approach is not limited to localization—we

are able to decide if new observations originate from places al-

ready in the map, or rather from new, previously unseen places.

This is possible even in environments where many places have
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similar sensory appearance (a problem known as perceptual

aliasing). Previous solutions to this problem (Ho and Newman

2007) had complexity cubic in the number of observations,

whereas the algorithm presented here has linear complexity,

extending its applicability to much larger environments. We

refer to the new algorithm as FAB-MAP, for fast appearance-

based mapping.

Our basic approach is inspired by the bag-of-words image

retrieval systems developed in the computer vision community

(Sivic and Zisserman 2003� Nister and Stewenius 2006). How-

ever, we extend the approach by learning a generative model

for the bag-of-words data. This generative model captures the

fact that certain combinations of appearance words tend to co-

occur, because they are generated by common objects in the

environment. Our system effectively learns a model of these

common objects (without supervision, see Figure 5), which al-

lows us to improve inference by reasoning about which sets of

features are likely to appear or disappear together (for exam-

ple, see Figure 12). We present results which demonstrate that

the system is capable of recognizing places even when obser-

vations have few features in common (as low as 8%), while

rejecting false matches due to perceptual aliasing even when

such observations share many features (as much as 45%). The

approach also has reasonable computational cost—fast enough

for online loop closure detection in realistic mobile robot-

ics problems where the map contains several thousand places.

We demonstrate our system by detecting loop closures over a

2 km path length in an initially unknown outdoor environment,

where the system detects a large fraction of the loop closures

without false positives.

2. Related Work

Due to the difficulty of detecting loop closure in metric SLAM

algorithms, several appearance-based approaches to this task

have recently been described (Levin and Szeliski 2004� Se

et al. 2005� Newman et al. 2006� Ranganathan and Dellaert

2006). These methods attempt to determine when the robot

647
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is revisiting a previously mapped area on the basis of sen-

sory similarity, which can be calculated independently of the

robot’s estimated metric position. Thus similarity-based ap-

proaches may be robust even in situations where the robot’s

metric position estimate is in gross error.

Many issues relevant to an appearance-based approach

to SLAM have previously been examined in the context of

appearance-based localization systems. In particular, there has

been extensive examination of how best to represent and

match sensory appearance information. Several authors have

described systems that apply dimensionality reduction tech-

niques to process incoming sensory data. Early examples in-

clude representing appearance as a set of image histograms

(Ulrich and Nourbakhsh 2000), and as ordered sequences of

edge and color features (Lamon et al. 2001). More recently

Torralba et al. (2003) represent places by a set of texture fea-

tures, and describe a system where localization is cast as esti-

mating the state of a hidden Markov model. Kröse et al. (2001)

use principal components analysis to reduce the dimension-

ality of the incoming images. Places are then represented as

a Gaussian density in the low-dimensional space, which en-

ables principled probabilistic localization. Ramos et al. (2005)

employ a dimensionality reduction technique combined with

variational Bayes learning to find a generative model for each

place. (A drawback of both of these approaches is that they

require significant supervised training phases to learn their

generative place models—an issue which we will address in

this paper.) Bowling et al. (2005) describe an unsupervised

approach that uses a sophisticated dimensionality reduction

technique called action respecting embedding� however, the

method suffers from high computational cost (Bowling et al.

2006) and yields localization results in a “subjective” repre-

sentation which is not straightforward to interpret.

The methods described so far represent appearance using

global features, where a single descriptor is computed for an

entire image. Such global features are not very robust to ef-

fects such as variable lighting, perspective change, and dy-

namic objects that cause portions of a scene to change from

visit to visit. Work in the computer vision community has led

to the development of local features which are robust to trans-

formations such as scale, rotation, and some lighting change,

and in aggregate allow object recognition even in the face of

partial occlusion of the scene. Local feature schemes consist

of a region-of-interest detector combined with a descriptor of

the local region, SIFT (Lowe 1999) being a popular example.

Many recent appearance-based techniques represent sensory

data by sets of local features. An early example of the approach

was described by Sim and Dudek (1998). More recently, Wolf

et al. (2005) used an image retrieval system based on invari-

ant features as the basis of a Monte Carlo localization scheme.

The issue of selecting the most salient local features for lo-

calization was considered in Li and Kosecka (2006). Wang et

al. (2005) employed the idea of a visual vocabulary built upon

invariant features, taking inspiration from work in the com-

puter vision community (Squire et al. 2000� Sivic and Zisser-

man 2003). The visual vocabulary model treats an image as a

“bag of words” much like a text document, where a “word”

corresponds to a region in the space of invariant descriptors.

While the bag-of-words model discards geometric information

about the image, it enables fast visual search through the ap-

plication of methods developed for text retrieval. Several au-

thors have proposed extensions to this basic approach. Wang

et al. use the geometric information in a post-verification step

to confirm putative matches. Filliat (2007) described a system

where the visual vocabulary is learned online. Recent work

by Ferreira et al. (2006) employs a Bernoulli mixture model to

capture the conditional dependencies between words in the vo-

cabulary. Most recently, Schindler et al. (2007) have described

how to tailor visual vocabulary generation so as to yield more

discriminative visual words, and discuss the application of the

technique to city-scale localization with a database of 10 mil-

lion images.

The work discussed so far has been mainly concerned with

the localization problem, where the map is known a priori and

the current sensory view is guaranteed to come from some-

where within the map. To use a similar appearance-based ap-

proach to detect loop closure in SLAM, the system must be

able to deal with the possibility that the current view comes

from a previously unvisited place and has no match within the

map. As pointed out in Gutmann and Konolige (1999), this

makes the problem considerably more difficult. Particularly

challenging is the perceptual aliasing problem—the fact that

different parts of the workspace may appear the same to the ro-

bot’s sensors. As noted in Silpa-Anan and Hartley (2004), this

can be a problem even when using rich sensors such as cam-

eras due to repetitive features in the environment, for exam-

ple mass-produced objects or repeating architectural elements.

Gutmann and Konolige (1999) tackle the problem by comput-

ing a similarity score between a patch of the map around the

current pose and older areas of the map to identify possible

loop closures. They then employ a set of heuristics to decide if

the putative match is a genuine loop closure or not. Chen and

Wang (2006) tackle the problem in a topological framework,

using a similarity measure similar to that developed by Kröse

et al. (2001). To detect loop closure they integrate information

from a sequence of observations to reduce the effects of per-

ceptual aliasing, and employ a heuristic to determine if a pu-

tative match is a loop closure. While these methods achieved

some success, they did not provide a satisfactory solution to

the perceptual aliasing problem. Goedemé (2006) described

an approach to this issue using Dempster–Shafer theory, using

sequences of observations to confirm or reject putative loop

closures. The approach involved separate mapping and local-

ization phases, so was not suitable for unsupervised mobile

robotics applications.

Methods based on similarity matrices have recently be-

come a popular way to extend appearance-based matching be-

yond pure localization tasks. These methods define a similarity
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score between observations, then compute the pairwise simi-

larity between all observations to yield a square similarity ma-

trix. If the robot observes frequently as it moves through the

environment and observations are ordered by time, then loop

closures appear as off-diagonal stripes in this matrix. Levin

and Szeliski (2004) describe such a method that uses a cascade

of similarity functions based on global color histograms, im-

age moments, and epipolar geometry. Silpa-Anan and Hartley

(2004, 2005) describe a similar system which employs SIFT

features. Zivkovic et al. (2005) consider the case where the

order in which the images were collected is unknown, and

use graph cuts to identify clusters of related images. A se-

ries of papers by Ho and Newman (2005b,a)� Newman and Ho

(2005)�Newman et al. (2006) advance similarity-matrix-based

techniques by considering the problem of perceptual aliasing.

Their approach is based on a singular value decomposition

of the similarity matrix that eliminates the effect of repetitive

structure. They also address the issue of deciding if a putative

match is indeed a loop closure based on examining an extreme

value distribution (Gumbel 1958) related to the similarity ma-

trix.

This paper will describe a new appearance-based technique

that improves on these existing results, particularly by address-

ing perceptual aliasing in a probabilistic framework. The core

of our approach we have previously described in Cummins

and Newman (2007)� here we expand on that presentation and

present a detailed evaluation of the system’s performance.

3. Approximating High-dimensional Discrete

Distributions

This section introduces some background material that forms a

core part of our system. Readers familiar with Chow Liu trees

may wish to skip to Section 4.

Consider a distribution P�Z� on n discrete variables, Z �

�z1� z2� � � � � zn�. We wish to learn the parameters of this distri-

bution from a set of samples. If P�Z� is a general distribution

without special structure, the space needed to represent the

distribution is exponential in n—as n increases dealing with

such distributions quickly becomes intractable. A solution to

this problem is to approximate P�Z� by another distribution

Q�Z� possessing some special structure that makes it tractable

to work with, and that is in some sense similar to the original

distribution. The natural similarity metric in this context is the

Kullback–Leibler divergence, defined as

DKL�P� Q� �
�

x�X

P�x� log
P�x�

Q�x�
� (1)

where the summation is carried out over all possible states in

the distribution. The KL divergence is zero when the distribu-

tions are identical, and strictly larger otherwise.

The naive Bayes approximation is an example of a struc-

tural constraint that allows for tractable learning of Q�Z�, un-

der which Q�Z� is restricted such that each variable must be

independent of all others. This extreme structural constraint

limits the degree to which Q�Z� can represent P�Z�. A less

severe constraint is to require each variable in Q�Z� to be con-

ditioned on at most one other variable—this restricts the graph-

ical model of Q�Z� to be a tree. Unlike the naive Bayes case,

where there is only one possible graphical model, in this case

there are nn�2 possible tree-structured distributions that sat-

isfy the structural constraint. Chow and Liu (1968) described a

polynomial time algorithm to select the best such distribution,

which we elaborate on below.

More generally, we could constrain Q�Z� such that each

variable is conditioned on at most n other variables. This struc-

ture is known as a thin junction tree. It was shown by Srebro

(2001) that the problem of determining the optimal thin junc-

tion tree is NP-hard, though there are several methods to find

a good approximate solution (for example, Bach and Jordan

(2002)).

3.1. Chow Liu Trees

The Chow Liu algorithm approximates a discrete distribution

P�Z� by the closest tree-structured Bayesian network Q�Z�opt,

in the sense of minimizing the Kullback–Leibler divergence.

The structure of Q�Z�opt is determined by considering a mu-

tual information graph �. For a distribution over n variables,

� is the complete graph with n nodes and �n�n � 1���2 edges,

where each edge �zi � z j � has weight equal to the mutual infor-

mation I �zi � z j � between variable i and j ,

I �zi � z j � �
�

zi���z j��

p�zi � z j � log
p�zi � z j �

p�zi �p�z j �
� (2)

and the summation is carried out over all possible states of z.

Mutual information measures the degree to which knowledge

of the value of one variable predicts the value of another. It is

zero if two variables are independent, and strictly larger other-

wise.

Chow and Liu prove that the maximum-weight spanning

tree (Cormen et al. 2001) of the mutual information graph will

have the same structure as Q�Z�opt (see Figure 1). Intuitively,

the dependencies between variables which are omitted from

Q�Z��opt have as little mutual information as possible, and so

are the best ones to approximate as independent. Chow and

Liu further prove that the conditional probabilities p�zi �z j � for

each edge in Q�Z�opt are the same as the conditional probabil-

ities in P�Z�—thus maximum likelihood estimates can be ob-

tained directly from co-occurrence frequency in training data.

To mitigate potential problems due to limited training data, we

use the pseudo-Bayesian p� estimator described in Bishop et

al. (1977), rather than the maximum likelihood estimator. This

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Oxford University Libraries on June 5, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


650 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / June 2008

Fig. 1. (a) Graphical model of the underlying distribution P�Z�. Mutual information between variables is shown by the thickness

of the edge. (b) Naive Bayes approximation. (c) Chow Liu tree.

prevents any probabilities from having unrealistic values of 0

or 1.

In the following section we will use Chow Liu trees to ap-

proximate large discrete distributions. Because we are inter-

ested in learning distributions over a large number of variables

(�10� 000) the mutual information graph to be computed is

very large, typically too large to be stored in RAM. To deal

with this, we use a semi-external spanning tree algorithm (De-

mentiev et al. 2004). The mutual information graph is required

only temporarily at learning time—it is discarded once the

maximal spanning tree has been computed. Meil�a (1999) has

described a more efficient method of learning Chow Liu trees

that avoids the explicit computation of the full mutual informa-

tion graph, and provides significant speed-up for “sparse data”

such as ours. However, as we need to compute Chow Liu trees

only infrequently and offline, we have not yet implemented

this approach.

We have chosen to use Chow Liu trees because they are

tractable to compute even for very high-dimensional distrib-

utions, are guaranteed to be the optimal approximation within

their model class, and require only first-order conditional prob-

abilities, which can be reliably estimated from available train-

ing data. However, our approach could easily substitute a more

complex model such as a mixture of trees (Meil�a-Predoviciu

1999) or a thin junction tree of wider tree width (Bach and

Jordan 2002), should this prove beneficial.

4. Probabilistic Navigation using Appearance

We now describe the construction of a probabilistic frame-

work for appearance-based navigation. In overview, the world

is modeled as a set of discrete locations, each location being

described by a distribution over appearance words. Incoming

sensory data is converted into a bag-of-words representation�

for each location, we can then ask how likely it is that the ob-

servation came from that location’s distribution. We also find

an expression for the probability that the observation came

from a place not in the map. This yields a probability den-

sity function (PDF) over location, which we can use to make

a data association decision and update our belief about the ap-

pearance of each place. Essentially, this is a SLAM algorithm

in a discrete world. The method is outlined in detail in the fol-

lowing sections.

4.1 Representing Appearance

We adopt a “bag-of-words” representation of raw sensor data

(Sivic and Zisserman 2003), where scenes are represented as a

collection of attributes (words) chosen from a set (vocabulary)

of size ��� . An observation of local scene appearance, visual or

otherwise, captured at time k is denoted as Zk � �z1� � � � � z����,

where zi is a binary variable indicating the presence (or ab-

sence) of the i th word of the vocabulary. Furthermore �k is

used to denote the set of all observations up to time k.

The results in this paper employ binary features derived

from imagery, based on quantized Speeded Up Robust Fea-

tures (SURF) descriptors (see Section 5)� however, binary fea-

tures from any sensor or combination of sensors could be used.

For example, laser or sonar data could be represented using

quantized versions of the features proposed in Johnson (1997)�

Frome et al. (2004)�Mozos et al. (2005).

4.2. Representing Locations

At time k, our map of the environment is a collection of nk dis-

crete and disjoint locations �k � �L1� � � � � Lnk
�. Each of these

locations has an associated appearance model. Rather than

model each of the locations directly in terms of which features

are likely to be observed there (i.e. as p�Z �L j �), here we in-

troduce an extra hidden variable e. The variable ei is the event

that an object which generates observations of type zi exists.

We model each location as a set �p�e1 � 1�L i �� � � � � p�e�� � �

1�L i ��, where each of the feature generating objects ei are

generated independently by the location. A detector model re-

lates feature existence ei to feature detection zi . The detector

is specified by

� :

�
�

�

p�zi � 1�ei � 0�� false positive probability�

p�zi � 0�ei � 1�� false negative probability�
(3)
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Fig. 2. Factor graph of our generative model. Observed vari-

ables are shaded, latent variables unshaded. The environ-

ment generates locations L i . Locations independently generate

words e j . Words generate observations zk , which are interde-

pendent.

The reason for introducing this extra hidden variable e is

twofold. Firstly, it provides a natural framework for incorpo-

rating data from multiple sensors with different (and possibly

time-varying) error characteristics. Secondly, as outlined in the

next section, it facilitates factoring the distribution p�Z �L j �

into two parts—a simple model for each location composed of

independent variables ei , and a more complex model that cap-

tures the correlations between detections of appearance words

p�zi �Zk�. Because the location model has a simple structure,

it can be estimated online from the few available observations

(combined with a prior). The more complex model that cap-

tures the correlations between observations is learned offline

from abundant training data, and can be combined with the

simple location models on the assumption that the conditional

dependencies between appearance words are independent of

location. We describe how this is achieved in the following

section. The generative model is illustrated in Figure 2.

4.3. Estimating Location via Recursive Bayes

Calculating p�L i ��
k� can be formulated as a recursive Bayes

estimation problem:

p�L i ��
k� �

p�Zk �L i ��
k�1�p�L i ��

k�1�

p�Zk��k�1�
� (4)

Here p�L i ��
k�1� is our prior belief about our location,

p�Zk �L i ��
k�1� is the observation likelihood, and p�Zk ��

k�1�

is a normalizing term. We discuss the evaluation of each of

these terms below.

4.3.1. Observation Likelihood

To simplify evaluation of the observation likelihood

p�Zk �L i ��
k�1�, we first assume independence between the

current and past observations, conditioned on the location.

The simplified observation likelihood p�Zk �L i � can then be

expanded as

p�Zk �L i � � p�zn�z1� z2� � � � � zn�1� L i �

p�zn�1�z1� z2� � � � � zn�2� L i � 	 	 	

p�z2�z1� L i �p�z1�L i�� (5)

This expression cannot be evaluated directly because of the

intractability of learning the high-order conditional dependen-

cies between appearance words. The simplest approximation

is to make a naive Bayes assumption, yielding

p�Zk�L i � 
 p�zn�L i� 	 	 	 p�z2�L i �p�z1�L i�� (6)

Each factor can be further expanded as

p�z j �L i � �
�

s��0�1�

p�z j �e j � s� L i �p�e j � s�L i �� (7)

Applying the independence assumptions in our model

(p�z j �e j � L i � � p�z j �e j �, i.e. detector errors are independent

of position in the world) this becomes

p�z j �L i � �
�

s��0�1�

p�z j �e j � s�p�e j � s�L i �� (8)

which can now be evaluated directly. Here p�z j �e j � s� are

the components of the detector model specified in Equation

(3) and p�e j � s�L i� is a component of the place appearance

model.

While a naive Bayes approach yields reasonable results (see

Section 5), substantially better results can be obtained by in-

stead employing a Chow Liu approximation to capture more

of the dependencies between appearance words. Using a Chow

Liu assumption, the appearance likelihood becomes

p�Zk �L i � 
 p�zr �L i �

����

q�2

p�zq �z pq � L i �� (9)

where zr is the root of the tree and z pq is the parent of zq in

the tree. The observation factors in Equation (9) can be further

expanded as

p�zq �z pq � L i �

�
�

seq ��0�1�

p�zq �eq � seq � z pq � L i �p�eq � seq �z pq � L i�� (10)

Applying our independence assumptions and making the ap-

proximation that p�e j � is independent of zi for all i �� j , the

expression becomes

p�zq �z pq � L i �

�
�

seq ��0�1�

p�zq �eq � seq � z pq �p�eq � seq �L i �� (11)
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The term p�zq �eq� z pq � can be expanded (see Appendix B) as

p�zq � szq �eq � seq � z p � sz p � �

�
1�
	




��1

� (12)

where szq � seq � sz p � �0� 1� and

	 � p�zq � szq �p�zq � szq �eq � seq �

p�zq � szq �z p � sz p �� (13)


 � p�zq � szq �� 	
 �
prior

p�zq � szq �eq � seq �� 	
 �
detector model

p�zq � szq �z p � sz p ��� 	
 �
conditional from training

(14)

where sz denotes the opposite state to sz . 	 and 
 are now ex-

pressed entirely in terms of quantities which can be estimated

from training data (as indicated by the under-braces). Hence

p�Zk �L i � can now be computed directly.

4.3.2. New Place or Old Place?

We now turn our attention to the denominator of Equation (4),

p�Zk ��
k�1�. For pure localization we could compute a PDF

over location simply by normalizing the observation likeli-

hoods computed as described in the previous section. How-

ever, we would like to be able to deal with the possibility that

a new observation comes from a previously unknown location,

which requires an explicit calculation of p�Zk ��
k�1�.

If we divide the world into the set of mapped places M and

the unmapped places M , then

p�Zk ��
k�1� �

�

m�M

p�Zk �Lm�p�Lm ��
k�1�

�
�

u�M

p�Zk �Lu�p�Lu��
k�1�� (15)

where we have applied our assumption that observations are

conditionally independent given location. The second summa-

tion cannot be evaluated directly because it involves all possi-

ble unknown places. We have compared two different approx-

imations to this term. The first is a mean field approximation

(Jordan et al. 1999):

p�Zk ��
k�1� 


�

m�M

p�Zk �Lm�p�Lm ��
k�1�

� p�Zk �Lavg�
�

u�M

p�Lu ��
k�1�� (16)

where Lavg is the “average place” where the ei values are set to

their marginal probability, and
�

u�M p�Lu ��
k�1� is the prior

probability that we are at an unknown place, which can be ob-

tained from our previous position estimate and a motion model

(discussed in the next section).

An alternative to the mean field approach is to approxi-

mate the second summation via sampling. The procedure is

to sample location models Lu according to the distribution by

which they are generated by the environment, and to evaluate�
u�M p�Zk �Lu�p�Lu ��

k�1� for the sampled location models.

In order to do this, some method of sampling location mod-

els Lu is required. Here we make an approximation for ease

of implementation—we instead sample an observation Z and

use the sampled observation to create a place model. The rea-

son for doing this is that sampling an observation Z is ex-

tremely easy—our sampler simply consists of selecting at ran-

dom from a large collection of observations. For our robot

which navigates in outdoor urban environments using imagery,

large collections of street-side imagery for sampling are read-

ily available—for example from previous runs of the robot,

or from such sources as Google Street View1. In general, this

sampling procedure will not create location models according

to their true distribution because models may have been cre-

ated from multiple observations of the location. However, it

will be a good approximation when the robot is exploring a

new environment, where most location models will have only

a single observation associated with them. In practice, we have

found that it works very well, and it has the advantage of being

very easy to implement.

Having sampled a location model, we must evaluate

p�Zk �Lu�p�Lu ��
k�1� for the sample. Calculating p�Zk �Lu�

has already been described� however, we currently have no

method of evaluating p�Lu��
k�1�, the prior probability of our

sampled place model with respect to our history of observa-

tions, so we assume it to be uniform over the samples. Equa-

tion (15) thus becomes

p�Zk��
k�1� 


�

m�M

p�Zk �Lm�p�Lm ��
k�1�

� p�Lnew��
k�1�

ns�

u�1

p�Zk �Lu�

ns

� (17)

where ns is the number of samples used, and p�Lnew��
k�1� is

our prior probability of being at a new place.

4.3.3. Location Prior

The last term to discuss is the location prior p�L i ��
k�1�. The

most straightforward way to obtain a prior is to transform the

previous position estimate via a motion model, and use this as

our prior for location at the next time step. While at present

our system is not explicitly building a topological map, for the

1. See http://maps.google.com/help/maps/streetview/.
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purpose of calculating a prior we assume that sequentially col-

lected observations come from adjacent places, so that, if the

robot is at place i at time t , it is likely to be at one of the

places �i � 1� i� i � 1� at time t � 1, with equal probability.

For places with unknown neighbors (e.g. the next place after

the most recently collected observation, where place i�1 may

be a new place not already in the map), part of the probability

mass is assigned to a “new place” node and the remainder is

spread evenly over all places in the map. The split is governed

by the probability that a topological link with unknown end-

point leads to a new place, which is a user-defined parameter

in our system. Clearly this prior could be improved via a better

topology estimate or through the use of some odometry infor-

mation� however, we have found that the effect of the prior is

relatively weak, so these issues are not crucial to performance.

If the assumption that sequential observations come from

adjacent places is not valid, the prior can be simply left uni-

form. While this results in some increase in the number of false

matches, performance is largely unaffected. Alternatively, if

we have an estimate for the topology of the environment, but

no estimate of our position within this topology, we could ob-

tain a prior as the limit of a random walk on the topology. This

can be obtained efficiently as the dominant eigenvector of the

normalized link matrix of the topology (Page et al. 1998).

4.3.4. Smoothing

We have found that the performance of the inference procedure

outlined above is strongly dependent on an accurate estimation

of the denominator term in Equation (4), p�Zk��
k�1�. Ideally

we would like to perform the Monte Carlo integration in Equa-

tion (17) over a large set of place models Lu that fully capture

the visual variety of the environment. In practice, we are lim-

ited by running time and available data. The consequence is

that occasionally we will incorrectly assign two similar im-

ages a high probability of having come from the same place,

when in fact the similarity is due to perceptual aliasing.

An example of this is illustrated in Figure 13, where two

images from different places, both of which contain iron rail-

ings, are incorrectly assigned a high probability of having

come from the same place. The reason for this mistake is that

the railings generate a large number of features, and there are

no examples of railings in the sampling set used to calculate

p�Zk ��
k�1�, so the system cannot know that these sets of fea-

tures are correlated.

In practice, due to limited data and computation time, there

will always be some aspects of repetitive environmental struc-

ture that we fail to capture. To ameliorate this problem, we

apply a smoothing operation to our likelihood estimates:

p�Zk �L i � � � p�Zk �L i ��
�1� ��

nk

� (18)

where nk is the number of places in the map and � is the

smoothing parameter, which for our experiments was set to

0�99.

The effect of this very slight smoothing of the data like-

lihood values is to prevent the system asserting loop closure

with high confidence on the basis of a single similar image

pair. Smoothing the likelihood values effectively boosts the

importance of the prior term p�L i ��
k�1�, so that high proba-

bility of loop closure can now only be achieved by accumulat-

ing evidence from a sequence of matched observations. While,

in principle, mistakes due to our approximate calculation of

p�Zk ��
k�1� can still occur, in practice we have found that this

modification successfully rejects almost all outliers, while still

allowing true loop closures to achieve high probability after a

sequence of only two or three corresponding images.

4.3.5. Updating Place Models

We have now outlined how to compute a PDF over location

given a new observation. The final issue to address is data

association and the updating of place appearance models. At

present we simply make a maximum likelihood data associ-

ation decision after each observation. Clearly there is room

for improvement here, for example by maintaining a PDF over

topologies using a particle filter, as described by Ranganathan

and Dellaert (2006).

After taking a data association decision, we can update the

relevant place appearance model, which consists of the set

�p�e1 � 1�L j �� � � � � p�e��� � 1�L j ��. When a new place is cre-

ated, its appearance model is initialized so that all words exist

with marginal probability p�ei � 1� derived from the train-

ing data. Given an observation that relates to the place, each

component of the appearance model can be updated according

to

p�ei � 1�L j ��
k�

�
p�Zk �ei � 1� L j �p�ei � 1�L j ��

k�1�

p�Zk �L j �
� (19)

where we have applied our assumption that observations are

conditionally independent given location.

4.4. Summary of Approximations and Parameters

We briefly recap the approximations and user-defined terms

in our probabilistic scheme. For tractability, we have made a

number of independence assumptions:

1. Sets of observations are conditionally independent given

position: p�Zk �L i ��
k�1� � p�Zk �L i �.

2. Detector behavior is independent of position:

p�z j �e j � L i � � p�z j �e j �.
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3. Location models are generated independently by the en-

vironment.

In addition to these independence assumptions, we also

make an approximation for tractability:

1. Observations of one feature do not inform us about

the existence of other features: p�e j �Zk� 
 p�e j �z jk �.

While more complex inference is possible here, in effect

this approximation only means that we will be some-

what less certain about feature existence than if we made

full use of the available data.

4.4.1. Input Parameters

The only user-specified inputs to the algorithm are the detector

model, p�zi � 1�ei � 0� and p�zi � 0�ei � 1� (two scalars),

the smoothing parameter � , and a term that sets the prior prob-

ability that a topological link with an unknown endpoint leads

to a new place. Of these, the algorithm is particularly sensitive

only to the detector model, which can be determined from a

calibration discussed in the following section.

5. Evaluation

We tested the described algorithm using imagery from a mo-

bile robot. Each image that the robot collects is passed into a

processing pipeline that produces a bag-of-words representa-

tion, which is then the input to the algorithm described. There

are many possible ways to convert input sensory data into a

bag-of-words representation. Our system uses the SURF de-

tector/descriptor (Bay et al. 2006) to extract regions of interest

from the images, and compute 128D non-rotation-invariant de-

scriptors for these regions. Finally, we map regions of descrip-

tor space to visual words as suggested by Sivic and Zisserman

(2003). This is achieved by clustering all the descriptors from

a set of training images using a simple incremental cluster-

ing procedure, then quantizing each descriptor in the test im-

ages to its approximate nearest cluster center using a kd-tree.

We have not focused on this bag-of-words generation stage of

the system—more sophisticated approaches exist (Nister and

Stewenius 2006� Schindler et al. 2007) and there are probably

gains to be realized here.

5.1. Building the Vocabulary Model

The next step is to construct a Chow Liu tree to capture the

co-occurrence statistics of the visual words. To do this, we

construct the mutual information graph as described in Sec-

tion 3.1. Each node in the graph corresponds to a visual word,

and the edge weights (mutual information) between node i and

j are calculated as per Equation (2)—essentially this amounts

to counting the number of images in which word i and j co-

occur. The Chow Liu tree is then the maximum weight span-

ning tree of the graph.

If the Chow Liu tree is to be a good approximation to the

true distribution, it must be computed from a large number of

observations. To prevent bias, these observations should be in-

dependent samples from the observation distribution. We col-

lected 2,800 images from 28 km of urban streets using the ro-

bot’s camera. The images were taken 10 m apart, perpendicu-

lar to the robot’s motion, so that they are non-overlapping and

approximate independent samples from the observation distri-

bution. From this data set we computed the clustering of SURF

features that form our vocabulary, then compute the Chow Liu

tree for the vocabulary. The clustering procedure generated

a vocabulary of approximately 11,000 words. The combined

process took 2 hours on a 3 GHz Pentium IV. This is a one-off

computation that occurs offline.

Illustrative results are shown in Figures 3, 4, and 5, which

show sample visual words learned by the system and a vi-

sualization of a portion of the Chow Liu tree. These words

(which correspond to parts of windows) were determined to

have high pairwise mutual information, and so are neighbors

in the tree. The joint probability of observing the five words

shown in the tree is 4,778 times higher under the Chow Liu

model than under a naive Bayes assumption. Effectively the

system is learning about the presence of objects that generate

the visual words. This significantly improves inference (see

Figure 12).

5.2. Testing Conditions

We used this vocabulary to navigate using imagery collected

by a mobile robot. We modeled our detector by p�zi � 0�ei �

1� � 0�39 and p�zi � 1�ei � 0� � 0, i.e. a per-word false

negative rate of 39%, and no false positives2. In principle dif-

ferent detector terms could be learned for each word� for ex-

ample, words generated by cars might be less reliably reob-

servable than words generated by buildings. At present we

assume all detector terms are the same. The number of sam-

ples for determining the denominator term p�Zk ��
k�1� was

fixed at 2,800—the set of images used to learn the vocabu-

lary. The smoothing parameter � was 0.99, and the prior that

a new topological link leads to a new place was 0.9. To eval-

uate the effect of the various alternative approximations dis-

cussed in Section 4, several sets of results were generated,

comparing naive Bayes versus Chow Liu approximations to

p�Z �L i � and mean field versus Monte Carlo approximations

to p�Zk ��
k�1�.

2. To set these parameters, we �rst assumed a false positive rate of zero. The

false negative rate could then be determined by collecting multiple images at

a test location� p�zi � 0�ei � 1� then comes directly from the ratio of the

number of words detected in any one image to the number of unique words

detected in union of all the images from that location.
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Fig. 3. A sample word in the vocabulary, showing typical image patches and an example of the interest points in context. Interest

points quantized to this word typically correspond to the top-left corner of windows. The most correlated word in the vocabulary

is shown in Figure 4.

Fig. 4. A sample word in the vocabulary, showing typical image patches and an example of the interest points in context. Interest

points quantized to this word typically correspond to the cross-piece of windows. The most correlated word in the vocabulary is

shown in Figure 3.

5.3. Results

We tested the system on two outdoor urban data sets col-

lected by our mobile robot. Both data sets are included in

Extension 3. As the robot travels through the environment,

it collects images to the left and right of its trajectory ap-

proximately every 1.5 m. Each collected image is processed

by our algorithm and is used either to initialize a new place,

or, if loop closure is detected, to update an existing place

model.

The area of our test data sets did not overlap with the re-

gion where the training data was collected. The first data set—

New College—was chosen to test the system’s robustness to

perceptual aliasing. It features several large areas of strong vi-
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Fig. 5. Visualization of a section the Chow Liu tree computed for our urban vocabulary. Each word in the tree is represented

by a typical example. Clockwise from top, the words correspond to the cross-pieces of window panes, right corners of window

stills, top-right corners of window panes, bottom-right corners of window panes, and top-left corners of window panes. Under

the Chow Liu model the joint probability of observing these words together is 4,778 times higher than under the naive Bayes

assumption.

sual repetition, including a medieval cloister with identical re-

peating archways and a garden area with a long stretch of uni-

form stone wall and bushes. The second data set—labeled City

Center—was chosen to test matching ability in the presence of

scene change. It was collected along public roads near the city

center, and features many dynamic objects such as traffic and
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Fig. 6. Appearance-based matching results for the City Center data set overlaid on an aerial photograph. The robot travels twice

around a loop with total path length of 2 km, collecting 2,474 images. Positions (from hand-corrected GPS) at which the robot

collected an image are marked with a yellow dot. Two images that were assigned a probability p � 0�99 of having come from

the same location (on the basis of appearance alone) are marked in red and joined with a line. There are no incorrect matches that

meet this probability threshold. This result is best viewed as a video (Extension 2).

pedestrians. Additionally, it was collected on a windy day with

bright sunshine, which makes the abundant foliage and shadow

features unstable.

Figures 6 and 7 show navigation results overlaid on an aer-

ial photo. These results were generated using the Chow Liu

and Monte Carlo approximations, which we found to give the

best performance. The system correctly identifies a large pro-

portion of possible loop closures with high confidence. There

are no false positives that meet the probability threshold. See

also Extensions 1 and 2 for videos of these results.

Precision recall curves are shown in Figure 8. The curves

were generated by varying the probability at which a loop clo-

sure was accepted. Ground truth was labeled by hand. We are

primarily interested in the recall rate at 100% precision—if

the system were to be used to complement a metric SLAM al-

gorithm, an incorrect loop closure could cause unrecoverable

mapping failure. At 100% precision, the system achieves 48%

recall on the New College data set, and 37% on the more chal-

lenging City Center data set. “Recall” here is the proportion of

possible image-to-image matches that exceed the probability
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Fig. 7. Appearance-based matching results for the New College data set overlaid on an aerial photograph. The robot traverses

a complex trajectory of 1.9 km with multiple loop closures. 2,146 images were collected. Positions (from hand-corrected GPS)

at which the robot collected an image are marked with a yellow dot. Two images that were assigned a probability p � 0�99 of

having come from the same location (on the basis of appearance alone) are marked in red and joined with a line. There are no

incorrect matches that meet this probability threshold. This result is best viewed as a video (Extension 1).

Fig. 8. Precision–recall curves for the City Center and New College data sets. Note the scale.
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Fig. 9. Some examples of remarkably similar-looking images from different parts of the workspace that were correctly assigned

a low probability of having come from the same place. The result is possible because most of the probability mass is captured

by locations in the sampling set—effectively the system has learned that images like these are common. Of course, had these

examples been genuine loop closures they might also have received a low probability. We would argue that this is correct behavior,

modulo the fact that the probabilities in (a) and (b) are too low. The very low probabilities in (a) and (b) are due to the fact that

good matches for the query images are found in the sampling set, capturing almost all the probability mass. This is less likely in

the case of a true but ambiguous loop closure. Words common to both images are shown in green, others in red. (Common words

are shown in blue in (b) for better contrast.) The probability that the two images come from the same place is indicated between

the pairs.

threshold. As a typical loop closure is composed of multiple

images, even a recall rate of 37% is sufficient to detect almost

all loop closures.

Some examples of typical image matching results are pre-

sented in Figures 9 and 10. Figure 9 highlights robustness to

perceptual aliasing. Here very similar images that originate

from different locations are correctly assigned a low proba-

bility of having come from the same place. We emphasize that

these results are not outliers� they show typical system perfor-

mance. Figure 10 shows matching performance in the presence

of scene change. Many of these image pairs have far fewer vi-

sual words in common than the examples of perceptual alias-

ing, yet are assigned a high probability of having come from

the same place. The system can reliably reject perceptual alias-

ing, even when images have as much as 46% of visual words

in common (e.g. Figure 9(b)), while detecting loop closures

where images have as few as 8% of words in common. Poor

probability estimates do occasionally occur—some examples

of images incorrectly assigned a high probability of a place

match are shown in Figure 13. Note, however, that the typi-

cal true loop closure receives a much higher probability of a

match. Neither of the examples in Figure 13 met the data as-

sociation threshold of 0.99.

5.3.1. Comparing Approximations

This section presents a comparison of the alternative ap-

proximations discussed in Section 4—naive Bayes versus

Chow Liu approximations to p�Z �L i � and mean field versus.

Monte Carlo approximations to p�Zk��
k�1�. Figure 11 shows

precision–recall curves from the New College data set for the

four possible combinations. Timing and accuracy results are

summarized in Table 1. The Chow Liu and Monte Carlo ap-

proximations both considerably improve performance, partic-

ularly at high levels of precision, which is the region that con-
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Fig. 10. Some examples of images that were assigned a high probability of having come from the same place, despite scene

change. Words common to both images are shown in green, others in red. The probability that the two images come from the

same place is indicated between the pairs.

Table 1. Comparison of the four different approximations. The recall rates quoted are at 100% precision. The time to

process a new observation is given as a function of the number of places already in the map, plus a fixed cost to perform

the sampling. Timing results are for a 3 GHZ Pentium IV.

Algorithm Recall: New College Recall: City Center Run time

Mean Field, Naive Bayes 33% 16% 0.6 ms/place

Mean Field, Chow Liu 35% 31% 1.1 ms/place

Monte Carlo, Naive Bayes 40% 31% 0.6 ms/place + 1.71 s sampling

Monte Carlo, Chow Liu 47% 37% 1.1 ms/place + 3.15 s sampling

cerns us most. Some examples of typical loop closures de-

tected by the Chow Liu approximation but not by the naive

Bayes are shown in Figure 12.

The extra performance comes at the cost of some increase

in computation time� however, even the slowest version using

Chow Liu and Monte Carlo approximations is still relatively

fast. Running times are summarized in Table 1. The maximum

time taken to process a new observation over all data sets was

5.9 s. As the robot collects images approximately every 2 s,

this is not too far from real-time performance. The dominant

computational cost is the calculation of p�Z �L i� for each place

model in the map and each sampled place. Each of these calcu-

lations is independent, so the algorithm is highly parallelizable

and will perform well on multi-core processors.

6.3.2. Generalization Performance

Because FAB-MAP relies on a learned appearance model to

reject perceptual aliasing and improve inference, a natural

question is to what extent system performance will degrade in

environments very dissimilar to the training set. To investigate

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Oxford University Libraries on June 5, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Cummins and Newman / FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance 661

Fig. 11. Precision–recall curves for the four variant algorithms on the New College data sets. Note the scale. Relative performance

on the City Center data set is comparable.

Fig. 12. Some examples of situations where the Chow Liu approximation outperforms naive Bayes. In (a), a change in lighting

means that the feature detector does not fire on the windows of the building. In (b), the people are no longer present. In (c),

the foreground text and the scaffolding in the top right are not present in the second image. In each of these cases, the missing

features are known to be correlated by the Chow Liu approximation, hence the more accurate probability. Words common to both

images are shown in green, others in red. The probability that the two images come from the same place (according to both the

Chow Liu and naive Bayes models) is indicated between the pairs.
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Fig. 13. Some images from different locations incorrectly assigned a high probability of having come from the same place. In

(a), the training set contains no examples of railings, so the matched features are not known to be correlated. In (b), we encounter

the same truck again in a different part of the workspace. Errors of this type are particularly challenging. Note that while both

images are assigned a high probability of a match, a typical true loop closure is assigned a much higher probability. Neither of

these image pairs met our p � 0�99 data association threshold.

this question we have recently performed some preliminary in-

door navigation experiments with data from a hand-held video

camera, using the same training data and algorithm parame-

ters as used outdoors. The quality of the imagery in this indoor

data set is considerably poorer than that from the robot, due to

adverse lighting conditions and greater motion blur. Interest-

ingly, however, system performance is largely similar to our

outdoor results (46% recall at 100% precision). The fact that

the system works indoors despite using outdoor training data

is quite surprising. Most interestingly, the Chow Liu approxi-

mation continues to noticeably outperform the naive Bayes on

the indoor data set (46% recall as opposed to 39%). This sug-

gests that some of the correlations being learned by the Chow

Liu tree model generic low-level aspects of imagery. These re-

sults, while preliminary, indicate that the system will degrade

gracefully in environments dissimilar to the training set. See

(Extension 4 and 5) for video results.

6. Conclusions

This paper has introduced the FAB-MAP algorithm, a prob-

abilistic framework for navigation and mapping which relies

on appearance information only. The system is robust even in

visually repetitive environments and is fast enough for online

loop closure detection in realistic mobile robotics applications.

In our evaluation, FAB-MAP was successful in detecting large

portions of loop closures in challenging outdoor environments,

without false positives.

Two aspects of our results are particularly noteworthy.

Firstly, learning a generative model of our bag-of-words ob-

servations yielded a marked improvement in performance. We

think that this technique will have applications beyond the

specific problem addressed in this paper. Secondly, we have

observed that the system appears to perform well even in en-

vironments quite dissimilar to the training data. This suggests

that the approach is practical for deployment in unconstrained

navigation tasks, as a natural compliment to more typical met-

ric SLAM algorithms.
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Appendix A: Appendix of Multimedia

Extensions

The multimedia extension page is found at http://www.ijrr.org.

Table of Multimedia Extensions

Extension Type Description

1 Video Results for the New College Dataset.

2 Video Results for the City Centre Dataset.

3 Data Images, GPS coordinates and ground

truth labels.

4 Video Generalization Performance – Indoor

Dataset A

5 Video Generalization Performance – Indoor

Dataset B

Appendix B: Derivation

This appendix presents the derivation of Equation (12) from

Section 4.3. For compactness of notation, in this appendix

zq � szq will be denoted as zq and zq � szq as zq , etc.

We seek to express the term p�zq �eq� z p� as a function of

the known quantities p�zq�, p�zq �eq�, p�zq �z p�.

Applying Bayes rule,

p�zq �eq� z p� �
p�eq �zq� z p�p�zq �z p�

p�eq �z p�

now expanding p�eq �z p� as

p�eq �z p� � p�eq �zq � z p�p�zq �z p�� p�eq �zq� z p�p�zq �z p��

and making the approximation p�eq �zq � z p� 
 p�eq �zq�, the

expression becomes

p�zq �eq� z p� 

p�eq �zq�p�zq �z p�

p�eq �zq�p�zq �z p�� p�eq �zq�p�zq �z p�

�

�
1�

p�eq �zq�p�zq �z p�

p�eq �zq�p�zq �z p�

��1

�

Now

p�eq �zq� �
p�zq �eq�p�eq�

p�zq�

and similarly for p�eq �zq�, so

p�eq �zq�

p�eq �zq�
�

p�zq �eq�p�zq�

p�zq �eq�p�zq�
�

and substituting back yields

p�zq �eq� z p� 


�
1�
	




��1

�

where

	 � p�zq�p�zq �eq�p�zq �z p��


 � p�zq�p�zq �eq�p�zq �z p��
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